The basic idea for `MergeTree` engines family is the following. When you have tremendous amount of a data that should be inserted into the table, you should write them quickly part by part and then merge parts by some rules in background. This method is much more efficient than constantly rewriting data in the storage at the insert.
ClickHouse supports certain operations with partitions that are more effective than general operations on the same data with the same result. ClickHouse also automatically cuts off the partition data where the partitioning key is specified in the query. This also increases the query performance.
For partitioning by month, use the `toYYYYMM(date_column)` expression, where `date_column` is a column with a date of the type [Date](../../data_types/date.md). The partition names here have the `"YYYYMM"` format.
-`index_granularity` — The granularity of an index. The number of data rows between the "marks" of an index. By default, 8192. The list of all available parameters you can see in [MergeTreeSettings.h](https://github.com/yandex/ClickHouse/blob/master/dbms/src/Storages/MergeTree/MergeTreeSettings.h).
-`use_minimalistic_part_header_in_zookeeper` — Storage method of the data parts headers in ZooKeeper. If `use_minimalistic_part_header_in_zookeeper=1`, then ZooKeeper stores less data. For more information refer the [setting description](../server_settings/settings.md#server-settings-use_minimalistic_part_header_in_zookeeper) in the "Server configuration parameters" chapter.
-`min_merge_bytes_to_use_direct_io` — The minimum data volume for merge operation required for using of the direct I/O access to the storage disk. During the merging of the data parts, ClickHouse calculates summary storage volume of all the data to be merged. If the volume exceeds `min_merge_bytes_to_use_direct_io` bytes, thеn ClickHouse reads and writes the data using direct I/O interface (`O_DIRECT` option) to the storage disk. If `min_merge_bytes_to_use_direct_io = 0`, then the direct I/O is disabled. Default value: `10 * 1024 * 1024 * 1024` bytes.
ENGINE MergeTree() PARTITION BY toYYYYMM(EventDate) ORDER BY (CounterID, EventDate, intHash32(UserID)) SAMPLE BY intHash32(UserID) SETTINGS index_granularity=8192
We also set an expression for sampling as a hash by the user ID. This allows you to pseudorandomize the data in the table for each `CounterID` and `EventDate`. If, when selecting the data, you define a [SAMPLE](../../query_language/select.md#select-sample-clause) clause, ClickHouse will return an evenly pseudorandom data sample for a subset of users.
-`date-column` — The name of a column of the type [Date](../../data_types/date.md). ClickHouse automatically creates partitions by month on the basis of this column. The partition names are in the `"YYYYMM"` format.
-`(primary, key)` — primary key. Type — [Tuple()](../../data_types/tuple.md)
-`index_granularity` — The granularity of an index. The number of data rows between the "marks" of an index. The value 8192 is appropriate for most tasks.
A table consists of data *parts* sorted by primary key.
When data is inserted in a table, separate data parts are created and each of them is lexicographically sorted by primary key. For example, if the primary key is `(CounterID, Date)`, the data in the part is sorted by `CounterID`, and within each `CounterID`, it is ordered by `Date`.
Data belonging to different partitions are separated into different parts. In the background, ClickHouse merges data parts for more efficient storage. Parts belonging to different partitions are not merged. The merge mechanism does not guarantee that all rows with the same primary key will be in the same data part.
For each data part, ClickHouse creates an index file that contains the primary key value for each index row ("mark"). Index row numbers are defined as `n * index_granularity`. The maximum value `n` is equal to the integer part of dividing the total number of rows by the `index_granularity`. For each column, the "marks" are also written for the same index rows as the primary key. These "marks" allow you to find the data directly in the columns.
You can use a single large table and continually add data to it in small chunks – this is what the `MergeTree` engine is intended for.
A sparse index allows extra data to be read. When reading a single range of the primary key, up to `index_granularity * 2` extra rows in each data block can be read. In most cases, ClickHouse performance does not degrade when `index_granularity = 8192`.
The number of columns in the primary key is not explicitly limited. Depending on the data structure, you can include more or fewer columns in the primary key. This may:
If the primary key is `(a, b)`, then adding another column `c` will improve the performance if the following conditions are met:
- There are queries with a condition on column `c`.
- Long data ranges (several times longer than the `index_granularity`) with identical values for `(a, b)` are common. In other words, when adding another column allows you to skip quite long data ranges.
- Provide additional logic when data parts merging in the [CollapsingMergeTree](collapsingmergetree.md#table_engine-collapsingmergetree) and [SummingMergeTree](summingmergetree.md) engines.
A long primary key will negatively affect the insert performance and memory consumption, but extra columns in the primary key do not affect ClickHouse performance during `SELECT` queries.
[ALTER of the sorting key](../../query_language/alter.md) is a lightweight operation because when a new column is simultaneously added to the table and to the sorting key, existing data parts don't need to be changed. Since the old sorting key is a prefix of the new sorting key and there is no data in the just added column, the data at the moment of table modification is sorted by both the old and the new sorting key.
For`SELECT` queries, ClickHouse analyzes whether an index can be used. An index can be used if the `WHERE/PREWHERE` clause has an expression (as one of the conjunction elements, or entirely) that represents an equality or inequality comparison operation, or if it has `IN` or `LIKE` with a fixed prefix on columns or expressions that are in the primary key or partitioning key, or on certain partially repetitive functions of these columns, or logical relationships of these expressions.
Thus, it is possible to quickly run queries on one or many ranges of the primary key. In this example, queries will be fast when run for a specific tracking tag; for a specific tag and date range; for a specific tag and date; for multiple tags with a date range, and so on.
SELECT count() FROM table WHERE EventDate = toDate(now()) AND CounterID = 34
SELECT count() FROM table WHERE EventDate = toDate(now()) AND (CounterID = 34 OR CounterID = 42)
SELECT count() FROM table WHERE ((EventDate >= toDate('2014-01-01') AND EventDate <= toDate('2014-01-31')) OR EventDate = toDate('2014-05-01')) AND CounterID IN (101500, 731962, 160656) AND (CounterID = 101500 OR EventDate != toDate('2014-05-01'))
The queries above show that the index is used even for complex expressions. Reading from the table is organized so that using the index can't be slower than a full scan.
To check whether ClickHouse can use the index when running a query, use the settings [force_index_by_date](../settings/settings.md#settings-force_index_by_date) and [force_primary_key](../settings/settings.md).
The key for partitioning by month allows reading only those data blocks which contain dates from the proper range. In this case, the data block may contain data for many dates (up to an entire month). Within a block, data is sorted by primary key, which might not contain the date as the first column. Because of this, using a query with only a date condition that does not specify the primary key prefix will cause more data to be read than for a single date.
These indices aggregate some information about the specified expression on blocks, which consist of `granularity_value` granules (size of the granule is specified using `index_granularity` setting in the table engine),
then these aggregates are used in `SELECT` queries for reducing the amount of data to read from the disk by skipping big blocks of data where `where` query cannot be satisfied.
Stores extremes of the specified expression (if the expression is `tuple`, then it stores extremes for each element of `tuple`), uses stored info for skipping blocks of the data like the primary key.
Stores unique values of the specified expression (no more than `max_rows` rows, `max_rows=0` means "no limits"), use them to check if the `WHERE` expression is not satisfiable on a block of the data.
Stores [bloom filter](https://en.wikipedia.org/wiki/Bloom_filter) that contains all ngrams from block of data. Works only with strings.
Can be used for optimization of `equals`, `like` and `in` expressions.
`n` -- ngram size,
`size_of_bloom_filter_in_bytes` -- bloom filter size in bytes (you can use big values here, for example, 256 or 512, because it can be compressed well),
`number_of_hash_functions` -- number of hash functions used in bloom filter,
`random_seed` -- seed for bloom filter hash functions.
For concurrent table access, we use multi-versioning. In other words, when a table is simultaneously read and updated, data is read from a set of parts that is current at the time of the query. There are no lengthy locks. Inserts do not get in the way of read operations.