2019-06-30 18:20:32 +00:00
|
|
|
#include <DataTypes/DataTypesNumber.h>
|
|
|
|
#include <Columns/ColumnsNumber.h>
|
|
|
|
#include <Columns/ColumnConst.h>
|
|
|
|
#include <Common/typeid_cast.h>
|
2019-08-21 02:28:04 +00:00
|
|
|
#include <Common/assert_cast.h>
|
2019-06-30 18:20:32 +00:00
|
|
|
#include <Functions/IFunction.h>
|
|
|
|
#include <Functions/FunctionHelpers.h>
|
|
|
|
#include <Functions/FunctionFactory.h>
|
|
|
|
#include <ext/range.h>
|
2019-12-08 21:59:41 +00:00
|
|
|
#include <math.h>
|
2019-06-30 18:20:32 +00:00
|
|
|
#include <array>
|
|
|
|
|
|
|
|
|
|
|
|
namespace DB
|
|
|
|
{
|
|
|
|
|
|
|
|
namespace ErrorCodes
|
|
|
|
{
|
|
|
|
extern const int ARGUMENT_OUT_OF_BOUND;
|
|
|
|
extern const int ILLEGAL_COLUMN;
|
|
|
|
extern const int LOGICAL_ERROR;
|
|
|
|
}
|
|
|
|
|
2019-12-03 01:55:46 +00:00
|
|
|
/** https://en.wikipedia.org/wiki/Great-circle_distance
|
|
|
|
*
|
|
|
|
* The function calculates distance in meters between two points on Earth specified by longitude and latitude in degrees.
|
|
|
|
* The function uses great circle distance formula https://en.wikipedia.org/wiki/Great-circle_distance .
|
|
|
|
* Throws exception when one or several input values are not within reasonable bounds.
|
|
|
|
* Latitude must be in [-90, 90], longitude must be [-180, 180].
|
|
|
|
* Original code of this implementation of this function is here https://github.com/sphinxsearch/sphinx/blob/409f2c2b5b2ff70b04e38f92b6b1a890326bad65/src/sphinxexpr.cpp#L3825.
|
|
|
|
* Andrey Aksenov, the author of original code, permitted to use this code in ClickHouse under the Apache 2.0 license.
|
|
|
|
* Presentation about this code from Highload++ Siberia 2019 is here https://github.com/ClickHouse/ClickHouse/files/3324740/1_._._GEODIST_._.pdf
|
|
|
|
* The main idea of this implementation is optimisations based on Taylor series, trigonometric identity and calculated constants once for cosine, arcsine(sqrt) and look up table.
|
|
|
|
*/
|
|
|
|
|
2019-11-27 00:42:46 +00:00
|
|
|
namespace
|
|
|
|
{
|
2019-10-16 17:25:46 +00:00
|
|
|
|
2019-12-03 01:55:46 +00:00
|
|
|
constexpr double PI = 3.14159265358979323846;
|
2019-12-08 23:00:34 +00:00
|
|
|
constexpr float DEG_IN_RAD = static_cast<float>(PI / 180.0);
|
|
|
|
constexpr float DEG_IN_RAD_HALF = static_cast<float>(PI / 360.0);
|
2019-12-03 01:55:46 +00:00
|
|
|
|
2019-12-08 23:00:34 +00:00
|
|
|
constexpr size_t COS_LUT_SIZE = 1024; // maxerr 0.00063%
|
|
|
|
constexpr size_t ASIN_SQRT_LUT_SIZE = 512;
|
|
|
|
constexpr size_t METRIC_LUT_SIZE = 1024;
|
2019-10-16 17:25:46 +00:00
|
|
|
|
2019-12-08 23:00:34 +00:00
|
|
|
float cos_lut[COS_LUT_SIZE + 1]; /// cos(x) table
|
|
|
|
float asin_sqrt_lut[ASIN_SQRT_LUT_SIZE + 1]; /// asin(sqrt(x)) table
|
|
|
|
float metric_lut[METRIC_LUT_SIZE + 1][2]; /// geodistAdaptive() flat ellipsoid method k1, k2 coeffs table
|
2019-10-16 17:25:46 +00:00
|
|
|
|
2019-10-16 17:43:44 +00:00
|
|
|
inline double sqr(double v)
|
|
|
|
{
|
2019-11-27 00:42:46 +00:00
|
|
|
return v * v;
|
2019-10-16 17:43:44 +00:00
|
|
|
}
|
2019-11-27 00:42:46 +00:00
|
|
|
|
2019-12-08 21:59:41 +00:00
|
|
|
inline float sqrf(float v)
|
2019-10-16 17:43:44 +00:00
|
|
|
{
|
2019-11-27 00:42:46 +00:00
|
|
|
return v * v;
|
2019-10-16 17:43:44 +00:00
|
|
|
}
|
2019-10-16 17:25:46 +00:00
|
|
|
|
2019-11-27 00:42:46 +00:00
|
|
|
void geodistInit()
|
2019-10-16 17:25:46 +00:00
|
|
|
{
|
2019-12-08 23:00:34 +00:00
|
|
|
for (size_t i = 0; i <= COS_LUT_SIZE; ++i)
|
|
|
|
cos_lut[i] = static_cast<float>(cos(2 * PI * i / COS_LUT_SIZE)); // [0, 2 * pi] -> [0, COS_LUT_SIZE]
|
2019-10-16 17:25:46 +00:00
|
|
|
|
2019-12-08 23:00:34 +00:00
|
|
|
for (size_t i = 0; i <= ASIN_SQRT_LUT_SIZE; ++i)
|
|
|
|
asin_sqrt_lut[i] = static_cast<float>(asin(
|
|
|
|
sqrt(static_cast<double>(i) / ASIN_SQRT_LUT_SIZE))); // [0, 1] -> [0, ASIN_SQRT_LUT_SIZE]
|
2019-10-16 17:25:46 +00:00
|
|
|
|
2019-12-08 23:00:34 +00:00
|
|
|
for (size_t i = 0; i <= METRIC_LUT_SIZE; ++i)
|
2019-10-16 17:25:46 +00:00
|
|
|
{
|
2019-12-08 23:00:34 +00:00
|
|
|
double x = i * (PI / METRIC_LUT_SIZE) - PI * 0.5; // [-pi / 2, pi / 2] -> [0, METRIC_LUT_SIZE]
|
|
|
|
|
|
|
|
metric_lut[i][0] = static_cast<float>(sqr(111132.09 - 566.05 * cos(2 * x) + 1.20 * cos(4 * x)));
|
|
|
|
metric_lut[i][1] = static_cast<float>(sqr(111415.13 * cos(x) - 94.55 * cos(3 * x) + 0.12 * cos(5 * x)));
|
2019-10-16 17:25:46 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-11-27 00:42:46 +00:00
|
|
|
inline float geodistDegDiff(float f)
|
2019-10-16 17:25:46 +00:00
|
|
|
{
|
2019-12-08 21:59:41 +00:00
|
|
|
f = fabsf(f);
|
2019-10-16 17:25:46 +00:00
|
|
|
while (f > 360)
|
|
|
|
f -= 360;
|
|
|
|
if (f > 180)
|
|
|
|
f = 360 - f;
|
|
|
|
return f;
|
|
|
|
}
|
|
|
|
|
2019-11-27 00:42:46 +00:00
|
|
|
inline float geodistFastCos(float x)
|
2019-10-16 17:25:46 +00:00
|
|
|
{
|
2019-12-08 23:00:34 +00:00
|
|
|
float y = fabsf(x) * (COS_LUT_SIZE / PI / 2);
|
2019-10-17 06:28:26 +00:00
|
|
|
int i = static_cast<int>(y);
|
2019-10-16 17:25:46 +00:00
|
|
|
y -= i;
|
2019-12-08 23:00:34 +00:00
|
|
|
i &= (COS_LUT_SIZE - 1);
|
|
|
|
return cos_lut[i] + (cos_lut[i + 1] - cos_lut[i]) * y;
|
2019-10-16 17:25:46 +00:00
|
|
|
}
|
|
|
|
|
2019-11-27 00:42:46 +00:00
|
|
|
inline float geodistFastSin(float x)
|
2019-10-16 17:25:46 +00:00
|
|
|
{
|
2019-12-08 23:00:34 +00:00
|
|
|
float y = fabsf(x) * (COS_LUT_SIZE / PI / 2);
|
2019-10-17 06:28:26 +00:00
|
|
|
int i = static_cast<int>(y);
|
2019-10-16 17:25:46 +00:00
|
|
|
y -= i;
|
2019-12-08 23:00:34 +00:00
|
|
|
i = (i - COS_LUT_SIZE / 4) & (COS_LUT_SIZE - 1); // cos(x - pi / 2) = sin(x), costable / 4 = pi / 2
|
|
|
|
return cos_lut[i] + (cos_lut[i + 1] - cos_lut[i]) * y;
|
2019-10-16 17:25:46 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/// fast implementation of asin(sqrt(x))
|
|
|
|
/// max error in floats 0.00369%, in doubles 0.00072%
|
2019-11-27 00:42:46 +00:00
|
|
|
inline float geodistFastAsinSqrt(float x)
|
2019-10-16 17:25:46 +00:00
|
|
|
{
|
2019-12-08 21:59:41 +00:00
|
|
|
if (x < 0.122f)
|
2019-10-16 17:25:46 +00:00
|
|
|
{
|
|
|
|
// distance under 4546km, Taylor error under 0.00072%
|
2019-12-08 21:59:41 +00:00
|
|
|
float y = sqrtf(x);
|
2019-10-16 17:25:46 +00:00
|
|
|
return y + x * y * 0.166666666666666f + x * x * y * 0.075f + x * x * x * y * 0.044642857142857f;
|
|
|
|
}
|
2019-12-08 21:59:41 +00:00
|
|
|
if (x < 0.948f)
|
2019-10-16 17:25:46 +00:00
|
|
|
{
|
|
|
|
// distance under 17083km, 512-entry LUT error under 0.00072%
|
2019-12-08 23:00:34 +00:00
|
|
|
x *= ASIN_SQRT_LUT_SIZE;
|
2019-10-17 06:28:26 +00:00
|
|
|
int i = static_cast<int>(x);
|
2019-12-08 23:00:34 +00:00
|
|
|
return asin_sqrt_lut[i] + (asin_sqrt_lut[i + 1] - asin_sqrt_lut[i]) * (x - i);
|
2019-10-16 17:25:46 +00:00
|
|
|
}
|
2019-12-08 21:59:41 +00:00
|
|
|
return asinf(sqrtf(x)); // distance over 17083km, just compute honestly
|
2019-10-16 17:25:46 +00:00
|
|
|
}
|
2019-12-03 01:55:46 +00:00
|
|
|
|
2019-11-27 00:42:46 +00:00
|
|
|
}
|
2019-12-03 01:55:46 +00:00
|
|
|
|
|
|
|
|
2019-06-30 18:20:32 +00:00
|
|
|
class FunctionGreatCircleDistance : public IFunction
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
static constexpr auto name = "greatCircleDistance";
|
2019-10-29 13:31:53 +00:00
|
|
|
static FunctionPtr create(const Context &) { return std::make_shared<FunctionGreatCircleDistance>(); }
|
2019-06-30 18:20:32 +00:00
|
|
|
|
|
|
|
private:
|
|
|
|
String getName() const override { return name; }
|
|
|
|
size_t getNumberOfArguments() const override { return 4; }
|
|
|
|
|
2019-12-03 01:55:46 +00:00
|
|
|
bool useDefaultImplementationForConstants() const override { return true; }
|
|
|
|
|
2019-06-30 18:20:32 +00:00
|
|
|
DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override
|
|
|
|
{
|
|
|
|
for (const auto arg_idx : ext::range(0, arguments.size()))
|
|
|
|
{
|
|
|
|
const auto arg = arguments[arg_idx].get();
|
2019-12-08 22:09:32 +00:00
|
|
|
if (!isNumber(WhichDataType(arg)))
|
2019-06-30 18:20:32 +00:00
|
|
|
throw Exception(
|
2019-12-08 22:09:32 +00:00
|
|
|
"Illegal type " + arg->getName() + " of argument " + std::to_string(arg_idx + 1) + " of function " + getName() + ". Must be numeric",
|
2019-06-30 18:20:32 +00:00
|
|
|
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
|
|
|
|
}
|
|
|
|
|
2019-12-03 01:55:46 +00:00
|
|
|
return std::make_shared<DataTypeFloat32>();
|
2019-06-30 18:20:32 +00:00
|
|
|
}
|
|
|
|
|
2019-12-03 01:55:46 +00:00
|
|
|
Float32 greatCircleDistance(Float32 lon1deg, Float32 lat1deg, Float32 lon2deg, Float32 lat2deg)
|
2019-06-30 18:20:32 +00:00
|
|
|
{
|
2019-12-03 01:55:46 +00:00
|
|
|
float lat_diff = geodistDegDiff(lat1deg - lat2deg);
|
|
|
|
float lon_diff = geodistDegDiff(lon1deg - lon2deg);
|
2019-10-16 17:25:46 +00:00
|
|
|
|
2019-12-03 01:55:46 +00:00
|
|
|
if (lon_diff < 13)
|
2019-10-16 17:25:46 +00:00
|
|
|
{
|
|
|
|
// points are close enough; use flat ellipsoid model
|
2019-12-08 22:44:17 +00:00
|
|
|
// interpolate metric coefficients using latitudes midpoint
|
|
|
|
|
2019-12-08 23:00:34 +00:00
|
|
|
float latitude_midpoint = (lat1deg + lat2deg + 180) * METRIC_LUT_SIZE / 360; // [-90, 90] degrees -> [0, KTABLE] indexes
|
|
|
|
size_t latitude_midpoint_index = static_cast<size_t>(latitude_midpoint) & (METRIC_LUT_SIZE - 1);
|
2019-12-08 22:44:17 +00:00
|
|
|
|
|
|
|
/// This is linear interpolation between two table items at index "latitude_midpoint_index" and "latitude_midpoint_index + 1".
|
|
|
|
|
2019-12-08 23:00:34 +00:00
|
|
|
float k_lat = metric_lut[latitude_midpoint_index][0]
|
|
|
|
+ (metric_lut[latitude_midpoint_index + 1][0] - metric_lut[latitude_midpoint_index][0]) * (latitude_midpoint - latitude_midpoint_index);
|
2019-12-08 22:44:17 +00:00
|
|
|
|
2019-12-08 23:00:34 +00:00
|
|
|
float k_lon = metric_lut[latitude_midpoint_index][1]
|
|
|
|
+ (metric_lut[latitude_midpoint_index + 1][1] - metric_lut[latitude_midpoint_index][1]) * (latitude_midpoint - latitude_midpoint_index);
|
2019-12-08 22:44:17 +00:00
|
|
|
|
|
|
|
/// Metric on a tangent plane: it differs from Euclidean metric only by scale of coordinates.
|
|
|
|
|
|
|
|
return sqrtf(k_lat * lat_diff * lat_diff + k_lon * lon_diff * lon_diff);
|
2019-12-03 01:55:46 +00:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
// points too far away; use haversine
|
2019-12-08 22:44:17 +00:00
|
|
|
|
|
|
|
/// Earth mean diameter in meters, https://en.wikipedia.org/wiki/Earth
|
|
|
|
static constexpr float diameter = 2 * 6371000;
|
|
|
|
|
2019-12-08 23:00:34 +00:00
|
|
|
float a = sqrf(geodistFastSin(lat_diff * DEG_IN_RAD_HALF))
|
|
|
|
+ geodistFastCos(lat1deg * DEG_IN_RAD) * geodistFastCos(lat2deg * DEG_IN_RAD) * sqrf(geodistFastSin(lon_diff * DEG_IN_RAD_HALF));
|
2019-12-08 22:44:17 +00:00
|
|
|
|
|
|
|
return diameter * geodistFastAsinSqrt(a);
|
2019-10-16 17:25:46 +00:00
|
|
|
}
|
2019-06-30 18:20:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void executeImpl(Block & block, const ColumnNumbers & arguments, size_t result, size_t input_rows_count) override
|
|
|
|
{
|
2019-12-03 01:55:46 +00:00
|
|
|
auto dst = ColumnVector<Float32>::create();
|
|
|
|
auto & dst_data = dst->getData();
|
|
|
|
dst_data.resize(input_rows_count);
|
2019-06-30 18:20:32 +00:00
|
|
|
|
2019-12-03 01:55:46 +00:00
|
|
|
const IColumn & col_lon1 = *block.getByPosition(arguments[0]).column;
|
|
|
|
const IColumn & col_lat1 = *block.getByPosition(arguments[1]).column;
|
|
|
|
const IColumn & col_lon2 = *block.getByPosition(arguments[2]).column;
|
|
|
|
const IColumn & col_lat2 = *block.getByPosition(arguments[3]).column;
|
2019-06-30 18:20:32 +00:00
|
|
|
|
2019-12-03 01:55:46 +00:00
|
|
|
for (size_t row_num = 0; row_num < input_rows_count; ++row_num)
|
2019-12-03 02:25:23 +00:00
|
|
|
dst_data[row_num] = greatCircleDistance(
|
|
|
|
col_lon1.getFloat32(row_num), col_lat1.getFloat32(row_num),
|
|
|
|
col_lon2.getFloat32(row_num), col_lat2.getFloat32(row_num));
|
2019-06-30 18:20:32 +00:00
|
|
|
|
2019-12-03 01:55:46 +00:00
|
|
|
block.getByPosition(result).column = std::move(dst);
|
2019-06-30 18:20:32 +00:00
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
void registerFunctionGreatCircleDistance(FunctionFactory & factory)
|
|
|
|
{
|
2019-11-27 00:42:46 +00:00
|
|
|
geodistInit();
|
2019-06-30 18:20:32 +00:00
|
|
|
factory.registerFunction<FunctionGreatCircleDistance>();
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|