ClickHouse/dbms/include/DB/Core/Field.h

830 lines
24 KiB
C
Raw Normal View History

2011-08-28 00:31:30 +00:00
#pragma once
2010-03-01 16:59:51 +00:00
#include <vector>
2014-01-08 16:33:28 +00:00
#include <type_traits>
#include <functional>
2010-03-01 16:59:51 +00:00
#include <boost/static_assert.hpp>
2010-03-01 16:59:51 +00:00
#include <mysqlxx/Date.h>
#include <mysqlxx/DateTime.h>
#include <mysqlxx/Manip.h>
2011-08-09 19:19:00 +00:00
2010-03-01 16:59:51 +00:00
#include <DB/Core/Types.h>
2011-10-10 10:05:39 +00:00
#include <DB/Core/Exception.h>
#include <DB/Core/ErrorCodes.h>
#include <DB/IO/ReadHelpers.h>
#include <DB/IO/WriteHelpers.h>
#include <DB/IO/WriteBufferFromString.h>
2010-03-01 16:59:51 +00:00
#include <DB/IO/DoubleConverter.h>
2010-03-01 16:59:51 +00:00
namespace DB
{
class Field;
typedef std::vector<Field> Array; /// Значение типа "массив"
2010-03-01 16:59:51 +00:00
2011-09-19 01:42:16 +00:00
using Poco::SharedPtr;
2013-01-08 21:32:16 +00:00
/** 32 хватает с запасом (достаточно 28), но выбрано круглое число,
* чтобы арифметика при использовании массивов из Field была проще (не содержала умножения).
*/
#define DBMS_TOTAL_FIELD_SIZE 32
/** Discriminated union из нескольких типов.
* Сделан для замены boost::variant:
* является не обобщённым,
* зато несколько более эффективным, и более простым.
*
* Используется для представления единичного значения одного из нескольких типов в оперативке.
2010-03-01 16:59:51 +00:00
* Внимание! Предпочтительно вместо единичных значений хранить кусочки столбцов. См. Column.h
*/
2013-01-08 21:32:16 +00:00
class __attribute__((aligned(DBMS_TOTAL_FIELD_SIZE))) Field
{
public:
struct Types
{
/// Идентификатор типа.
enum Which
{
Null = 0,
UInt64 = 1,
Int64 = 2,
Float64 = 3,
2013-02-09 02:20:26 +00:00
/// не POD типы. Для них предполагается relocatable.
String = 16,
Array = 17,
};
static const int MIN_NON_POD = 16;
static const char * toString(Which which)
{
switch (which)
{
case Null: return "Null";
case UInt64: return "UInt64";
case Int64: return "Int64";
case Float64: return "Float64";
case String: return "String";
case Array: return "Array";
default:
throw Exception("Bad type of Field", ErrorCodes::BAD_TYPE_OF_FIELD);
}
}
};
2010-03-01 16:59:51 +00:00
/// Позволяет получить идентификатор для типа или наоборот.
template <typename T> struct TypeToEnum;
template <Types::Which which> struct EnumToType;
2010-03-01 16:59:51 +00:00
2012-08-26 06:48:39 +00:00
Field()
: which(Types::Null)
{
}
2010-03-01 16:59:51 +00:00
/** Не смотря на наличие шаблонного конструктора, этот конструктор всё-равно нужен,
* так как при его отсутствии, компилятор всё-равно сгенерирует конструктор по-умолчанию.
*/
Field(const Field & rhs)
{
create(rhs);
}
Field & operator= (const Field & rhs)
{
destroy();
create(rhs);
return *this;
}
template <typename T>
Field(const T & rhs)
{
create(rhs);
}
/// Создать строку inplace.
Field(const char * data, size_t size)
{
create(data, size);
}
Field(const unsigned char * data, size_t size)
{
create(data, size);
}
void assignString(const char * data, size_t size)
{
destroy();
create(data, size);
}
void assignString(const unsigned char * data, size_t size)
{
destroy();
create(data, size);
}
template <typename T>
Field & operator= (const T & rhs)
{
destroy();
create(rhs);
return *this;
}
~Field()
{
destroy();
}
Types::Which getType() const { return which; }
const char * getTypeName() const { return Types::toString(which); }
bool isNull() const { return which == Types::Null; }
template <typename T> T & get()
{
2014-01-08 16:33:28 +00:00
typedef typename std::remove_reference<T>::type TWithoutRef;
TWithoutRef * __attribute__((__may_alias__)) ptr = reinterpret_cast<TWithoutRef*>(storage);
return *ptr;
};
2013-02-25 23:08:25 +00:00
template <typename T> const T & get() const
{
2014-01-08 16:33:28 +00:00
typedef typename std::remove_reference<T>::type TWithoutRef;
const TWithoutRef * __attribute__((__may_alias__)) ptr = reinterpret_cast<const TWithoutRef*>(storage);
return *ptr;
2010-03-01 16:59:51 +00:00
};
template <typename T> T & safeGet()
{
2014-01-08 16:33:28 +00:00
const Types::Which requested = TypeToEnum<typename std::remove_cv<typename std::remove_reference<T>::type>::type>::value;
if (which != requested)
throw Exception("Bad get: has " + std::string(getTypeName()) + ", requested " + std::string(Types::toString(requested)), ErrorCodes::BAD_GET);
return get<T>();
}
template <typename T> const T & safeGet() const
{
2014-01-08 16:33:28 +00:00
const Types::Which requested = TypeToEnum<typename std::remove_cv<typename std::remove_reference<T>::type>::type>::value;
if (which != requested)
throw Exception("Bad get: has " + std::string(getTypeName()) + ", requested " + std::string(Types::toString(requested)), ErrorCodes::BAD_GET);
return get<T>();
}
bool operator< (const Field & rhs) const
{
if (which < rhs.which)
return true;
if (which > rhs.which)
return false;
2013-02-25 23:08:25 +00:00
switch (which)
{
case Types::Null: return false;
case Types::UInt64: return get<UInt64>() < rhs.get<UInt64>();
case Types::Int64: return get<Int64>() < rhs.get<Int64>();
case Types::Float64: return get<Float64>() < rhs.get<Float64>();
case Types::String: return get<String>() < rhs.get<String>();
case Types::Array: return get<Array>() < rhs.get<Array>();
default:
throw Exception("Bad type of Field", ErrorCodes::BAD_TYPE_OF_FIELD);
}
}
bool operator> (const Field & rhs) const
{
return rhs < *this;
}
bool operator<= (const Field & rhs) const
{
if (which < rhs.which)
return true;
if (which > rhs.which)
return false;
switch (which)
{
case Types::Null: return true;
case Types::UInt64: return get<UInt64>() <= rhs.get<UInt64>();
case Types::Int64: return get<Int64>() <= rhs.get<Int64>();
case Types::Float64: return get<Float64>() <= rhs.get<Float64>();
case Types::String: return get<String>() <= rhs.get<String>();
case Types::Array: return get<Array>() <= rhs.get<Array>();
default:
throw Exception("Bad type of Field", ErrorCodes::BAD_TYPE_OF_FIELD);
}
}
bool operator>= (const Field & rhs) const
{
return rhs <= *this;
}
bool operator== (const Field & rhs) const
{
if (which != rhs.which)
return false;
switch (which)
{
case Types::Null: return true;
case Types::UInt64:
case Types::Int64:
case Types::Float64: return get<UInt64>() == rhs.get<UInt64>();
case Types::String: return get<String>() == rhs.get<String>();
case Types::Array: return get<Array>() == rhs.get<Array>();
default:
throw Exception("Bad type of Field", ErrorCodes::BAD_TYPE_OF_FIELD);
}
}
bool operator!= (const Field & rhs) const
{
return !(*this == rhs);
}
private:
2013-01-08 21:32:16 +00:00
/// Хватает с запасом
static const size_t storage_size = DBMS_TOTAL_FIELD_SIZE - sizeof(Types::Which);
2013-02-25 23:08:25 +00:00
BOOST_STATIC_ASSERT(storage_size >= sizeof(Null));
BOOST_STATIC_ASSERT(storage_size >= sizeof(UInt64));
BOOST_STATIC_ASSERT(storage_size >= sizeof(Int64));
BOOST_STATIC_ASSERT(storage_size >= sizeof(Float64));
BOOST_STATIC_ASSERT(storage_size >= sizeof(String));
BOOST_STATIC_ASSERT(storage_size >= sizeof(Array));
char storage[storage_size] __attribute__((aligned(8)));
Types::Which which;
template <typename T>
void create(const T & x)
{
which = TypeToEnum<T>::value;
2013-01-05 21:57:11 +00:00
T * __attribute__((__may_alias__)) ptr = reinterpret_cast<T*>(storage);
new (ptr) T(x);
}
void create(const Null & x)
{
which = Types::Null;
}
void create(const Field & x)
{
switch (x.which)
{
case Types::Null: create(Null()); break;
case Types::UInt64: create(x.get<UInt64>()); break;
case Types::Int64: create(x.get<Int64>()); break;
case Types::Float64: create(x.get<Float64>()); break;
case Types::String: create(x.get<String>()); break;
case Types::Array: create(x.get<Array>()); break;
}
}
void create(const char * data, size_t size)
{
which = Types::String;
String * __attribute__((__may_alias__)) ptr = reinterpret_cast<String*>(storage);
new (ptr) String(data, size);
}
void create(const unsigned char * data, size_t size)
{
create(reinterpret_cast<const char *>(data), size);
}
2013-01-07 08:27:39 +00:00
__attribute__((__always_inline__)) void destroy()
{
if (which < Types::MIN_NON_POD)
return;
2013-02-25 23:08:25 +00:00
switch (which)
{
case Types::String:
destroy<String>();
break;
case Types::Array:
destroy<Array>();
break;
default:
break;
}
}
template <typename T>
void destroy()
{
T * __attribute__((__may_alias__)) ptr = reinterpret_cast<T*>(storage);
ptr->~T();
}
};
template <> struct Field::TypeToEnum<Null> { static const Types::Which value = Types::Null; };
template <> struct Field::TypeToEnum<UInt64> { static const Types::Which value = Types::UInt64; };
template <> struct Field::TypeToEnum<Int64> { static const Types::Which value = Types::Int64; };
template <> struct Field::TypeToEnum<Float64> { static const Types::Which value = Types::Float64; };
template <> struct Field::TypeToEnum<String> { static const Types::Which value = Types::String; };
template <> struct Field::TypeToEnum<Array> { static const Types::Which value = Types::Array; };
template <> struct Field::EnumToType<Field::Types::Null> { typedef Null Type; };
template <> struct Field::EnumToType<Field::Types::UInt64> { typedef UInt64 Type; };
template <> struct Field::EnumToType<Field::Types::Int64> { typedef Int64 Type; };
template <> struct Field::EnumToType<Field::Types::Float64> { typedef Float64 Type; };
template <> struct Field::EnumToType<Field::Types::String> { typedef String Type; };
template <> struct Field::EnumToType<Field::Types::Array> { typedef Array Type; };
template <typename T>
T get(const Field & field)
{
return field.template get<T>();
2010-03-01 16:59:51 +00:00
}
template <typename T>
T get(Field & field)
{
return field.template get<T>();
}
2010-03-01 16:59:51 +00:00
template <typename T>
T safeGet(const Field & field)
2010-03-01 16:59:51 +00:00
{
return field.template safeGet<T>();
}
2010-03-01 16:59:51 +00:00
template <typename T>
T safeGet(Field & field)
2010-03-01 16:59:51 +00:00
{
return field.template safeGet<T>();
}
/** StaticVisitor (его наследники) - класс с перегруженными для разных типов операторами ().
* Вызвать visitor для field можно с помощью функции apply_visitor.
* Также поддерживается visitor, в котором оператор () принимает два аргумента.
*/
template <typename R = void>
struct StaticVisitor
{
typedef R ResultType;
2010-03-01 16:59:51 +00:00
};
template <typename Visitor, typename F>
typename Visitor::ResultType apply_visitor_impl(Visitor & visitor, F & field)
{
switch (field.getType())
{
case Field::Types::Null: return visitor(field.template get<Null>());
case Field::Types::UInt64: return visitor(field.template get<UInt64>());
case Field::Types::Int64: return visitor(field.template get<Int64>());
case Field::Types::Float64: return visitor(field.template get<Float64>());
case Field::Types::String: return visitor(field.template get<String>());
case Field::Types::Array: return visitor(field.template get<Array>());
default:
throw Exception("Bad type of Field", ErrorCodes::BAD_TYPE_OF_FIELD);
}
}
/** Эти штуки нужны, чтобы принимать временный объект по константной ссылке.
* В шаблон выше, типы форвардятся уже с const-ом.
*/
template <typename Visitor>
typename Visitor::ResultType apply_visitor(const Visitor & visitor, Field & field)
{
return apply_visitor_impl(visitor, field);
}
template <typename Visitor>
typename Visitor::ResultType apply_visitor(const Visitor & visitor, const Field & field)
{
return apply_visitor_impl(visitor, field);
}
template <typename Visitor>
typename Visitor::ResultType apply_visitor(Visitor & visitor, Field & field)
{
return apply_visitor_impl(visitor, field);
}
template <typename Visitor>
typename Visitor::ResultType apply_visitor(Visitor & visitor, const Field & field)
{
return apply_visitor_impl(visitor, field);
}
template <typename Visitor, typename F1, typename F2>
typename Visitor::ResultType apply_binary_visitor_impl2(Visitor & visitor, F1 & field1, F2 & field2)
{
switch (field2.getType())
{
case Field::Types::Null: return visitor(field1, field2.template get<Null>());
case Field::Types::UInt64: return visitor(field1, field2.template get<UInt64>());
case Field::Types::Int64: return visitor(field1, field2.template get<Int64>());
case Field::Types::Float64: return visitor(field1, field2.template get<Float64>());
case Field::Types::String: return visitor(field1, field2.template get<String>());
case Field::Types::Array: return visitor(field1, field2.template get<Array>());
default:
throw Exception("Bad type of Field", ErrorCodes::BAD_TYPE_OF_FIELD);
}
}
template <typename Visitor, typename F1, typename F2>
typename Visitor::ResultType apply_binary_visitor_impl1(Visitor & visitor, F1 & field1, F2 & field2)
{
switch (field1.getType())
{
case Field::Types::Null: return apply_binary_visitor_impl2(visitor, field1.template get<Null>(), field2);
case Field::Types::UInt64: return apply_binary_visitor_impl2(visitor, field1.template get<UInt64>(), field2);
case Field::Types::Int64: return apply_binary_visitor_impl2(visitor, field1.template get<Int64>(), field2);
case Field::Types::Float64: return apply_binary_visitor_impl2(visitor, field1.template get<Float64>(), field2);
case Field::Types::String: return apply_binary_visitor_impl2(visitor, field1.template get<String>(), field2);
case Field::Types::Array: return apply_binary_visitor_impl2(visitor, field1.template get<Array>(), field2);
default:
throw Exception("Bad type of Field", ErrorCodes::BAD_TYPE_OF_FIELD);
}
}
template <typename Visitor>
typename Visitor::ResultType apply_visitor(Visitor & visitor, Field & field1, Field & field2)
{
return apply_binary_visitor_impl1(visitor, field1, field2);
}
template <typename Visitor>
typename Visitor::ResultType apply_visitor(Visitor & visitor, Field & field1, const Field & field2)
{
return apply_binary_visitor_impl1(visitor, field1, field2);
}
template <typename Visitor>
typename Visitor::ResultType apply_visitor(Visitor & visitor, const Field & field1, Field & field2)
{
return apply_binary_visitor_impl1(visitor, field1, field2);
}
template <typename Visitor>
typename Visitor::ResultType apply_visitor(Visitor & visitor, const Field & field1, const Field & field2)
{
return apply_binary_visitor_impl1(visitor, field1, field2);
}
template <typename Visitor>
typename Visitor::ResultType apply_visitor(const Visitor & visitor, Field & field1, Field & field2)
{
return apply_binary_visitor_impl1(visitor, field1, field2);
}
template <typename Visitor>
typename Visitor::ResultType apply_visitor(const Visitor & visitor, Field & field1, const Field & field2)
{
return apply_binary_visitor_impl1(visitor, field1, field2);
}
template <typename Visitor>
typename Visitor::ResultType apply_visitor(const Visitor & visitor, const Field & field1, Field & field2)
{
return apply_binary_visitor_impl1(visitor, field1, field2);
}
template <typename Visitor>
typename Visitor::ResultType apply_visitor(const Visitor & visitor, const Field & field1, const Field & field2)
{
return apply_binary_visitor_impl1(visitor, field1, field2);
}
template <> struct TypeName<Array> { static std::string get() { return "Array"; } };
2011-08-09 19:19:00 +00:00
/** Возвращает строковый дамп типа */
class FieldVisitorDump : public StaticVisitor<String>
2011-08-09 19:19:00 +00:00
{
private:
template <typename T>
static inline String formatQuotedWithPrefix(T x, const char * prefix)
{
String res;
WriteBufferFromString wb(res);
wb.write(prefix, strlen(prefix));
writeQuoted(x, wb);
return res;
}
2011-08-09 19:19:00 +00:00
public:
2011-09-19 01:42:16 +00:00
String operator() (const Null & x) const { return "NULL"; }
String operator() (const UInt64 & x) const { return formatQuotedWithPrefix(x, "UInt64_"); }
String operator() (const Int64 & x) const { return formatQuotedWithPrefix(x, "Int64_"); }
String operator() (const Float64 & x) const { return formatQuotedWithPrefix(x, "Float64_"); }
2011-08-09 19:19:00 +00:00
2011-09-19 01:42:16 +00:00
String operator() (const String & x) const
2011-08-09 19:19:00 +00:00
{
String res;
WriteBufferFromString wb(res);
writeQuoted(x, wb);
return res;
2011-08-09 19:19:00 +00:00
}
2011-09-19 01:42:16 +00:00
String operator() (const Array & x) const
2011-08-09 19:19:00 +00:00
{
String res;
WriteBufferFromString wb(res);
FieldVisitorDump visitor;
2011-08-09 19:19:00 +00:00
wb.write("Array_[", 7);
2011-08-09 19:19:00 +00:00
for (Array::const_iterator it = x.begin(); it != x.end(); ++it)
{
if (it != x.begin())
wb.write(", ", 2);
writeString(apply_visitor(visitor, *it), wb);
2011-08-09 19:19:00 +00:00
}
writeChar(']', wb);
return res;
2011-08-09 19:19:00 +00:00
}
};
2011-08-12 18:27:39 +00:00
/** Выводит текстовое представление типа, как литерала в SQL запросе */
class FieldVisitorToString : public StaticVisitor<String>
2011-08-12 18:27:39 +00:00
{
private:
template <typename T>
static inline String formatQuoted(T x)
2011-08-12 18:27:39 +00:00
{
String res;
WriteBufferFromString wb(res);
writeQuoted(x, wb);
return res;
2011-08-12 18:27:39 +00:00
}
/** В отличие от writeFloatText (и writeQuoted), если число после форматирования выглядит целым, всё равно добавляет десятичную точку.
* - для того, чтобы это число могло обратно распарситься как Float64 парсером запроса (иначе распарсится как целое).
*
* При этом, не оставляет завершающие нули справа.
*
* NOTE: При таком roundtrip-е, точность может теряться.
*/
static String formatFloat(const Float64 x)
{
char tmp[25];
double_conversion::StringBuilder builder{tmp, sizeof(tmp)};
const auto result = getDoubleToStringConverter().ToShortest(x, &builder);
if (!result)
throw Exception("Cannot print float or double number", ErrorCodes::CANNOT_PRINT_FLOAT_OR_DOUBLE_NUMBER);
return { tmp, tmp + builder.position() };
}
public:
String operator() (const Null & x) const { return "NULL"; }
String operator() (const UInt64 & x) const { return formatQuoted(x); }
String operator() (const Int64 & x) const { return formatQuoted(x); }
String operator() (const Float64 & x) const { return formatFloat(x); }
String operator() (const String & x) const { return formatQuoted(x); }
2011-08-12 18:27:39 +00:00
String operator() (const Array & x) const
{
String res;
WriteBufferFromString wb(res);
2011-08-12 18:27:39 +00:00
FieldVisitorToString visitor;
writeChar('[', wb);
2011-08-12 18:27:39 +00:00
for (Array::const_iterator it = x.begin(); it != x.end(); ++it)
{
if (it != x.begin())
wb.write(", ", 2);
writeString(apply_visitor(visitor, *it), wb);
2011-08-12 18:27:39 +00:00
}
writeChar(']', wb);
2011-08-12 18:27:39 +00:00
return res;
2011-08-12 18:27:39 +00:00
}
};
2011-10-10 10:05:39 +00:00
/** Числовой тип преобразует в указанный. */
template <typename T>
class FieldVisitorConvertToNumber : public StaticVisitor<T>
2011-10-10 10:05:39 +00:00
{
public:
T operator() (const Null & x) const
{
throw Exception("Cannot convert NULL to " + TypeName<T>::get(), ErrorCodes::CANNOT_CONVERT_TYPE);
}
2011-10-10 10:05:39 +00:00
T operator() (const String & x) const
{
throw Exception("Cannot convert String to " + TypeName<T>::get(), ErrorCodes::CANNOT_CONVERT_TYPE);
}
2011-10-10 10:05:39 +00:00
T operator() (const Array & x) const
{
throw Exception("Cannot convert Array to " + TypeName<T>::get(), ErrorCodes::CANNOT_CONVERT_TYPE);
}
T operator() (const UInt64 & x) const { return x; }
T operator() (const Int64 & x) const { return x; }
T operator() (const Float64 & x) const { return x; }
};
2010-03-01 16:59:51 +00:00
2010-03-18 19:32:14 +00:00
template <typename T> struct NearestFieldType;
2011-08-21 03:41:37 +00:00
template <> struct NearestFieldType<UInt8> { typedef UInt64 Type; };
template <> struct NearestFieldType<UInt16> { typedef UInt64 Type; };
template <> struct NearestFieldType<UInt32> { typedef UInt64 Type; };
template <> struct NearestFieldType<UInt64> { typedef UInt64 Type; };
template <> struct NearestFieldType<Int8> { typedef Int64 Type; };
template <> struct NearestFieldType<Int16> { typedef Int64 Type; };
template <> struct NearestFieldType<Int32> { typedef Int64 Type; };
template <> struct NearestFieldType<Int64> { typedef Int64 Type; };
template <> struct NearestFieldType<Float32> { typedef Float64 Type; };
template <> struct NearestFieldType<Float64> { typedef Float64 Type; };
template <> struct NearestFieldType<String> { typedef String Type; };
2012-08-26 06:48:39 +00:00
template <> struct NearestFieldType<Array> { typedef Array Type; };
template <> struct NearestFieldType<bool> { typedef UInt64 Type; };
template <typename T>
typename NearestFieldType<T>::Type nearestFieldType(const T & x)
{
return typename NearestFieldType<T>::Type(x);
}
2010-03-01 16:59:51 +00:00
}
/// Заглушки, чтобы DBObject-ы с полем типа Array компилировались.
namespace mysqlxx
{
inline std::ostream & operator<< (mysqlxx::EscapeManipResult res, const DB::Array & value)
{
2013-02-25 23:08:25 +00:00
return res.ostr << apply_visitor(DB::FieldVisitorToString(), value);
}
inline std::ostream & operator<< (mysqlxx::QuoteManipResult res, const DB::Array & value)
{
throw Poco::Exception("Cannot quote Array with mysqlxx::quote.");
}
inline std::istream & operator>> (mysqlxx::UnEscapeManipResult res, DB::Array & value)
{
throw Poco::Exception("Cannot unescape Array with mysqlxx::unescape.");
}
inline std::istream & operator>> (mysqlxx::UnQuoteManipResult res, DB::Array & value)
{
throw Poco::Exception("Cannot unquote Array with mysqlxx::unquote.");
}
}
namespace DB
{
class ReadBuffer;
class WriteBuffer;
/// Предполагается что у всех элементов массива одинаковый тип.
inline void readBinary(Array & x, ReadBuffer & buf)
{
size_t size;
UInt8 type;
DB::readBinary(type, buf);
DB::readBinary(size, buf);
for (size_t index = 0; index < size; ++index)
{
switch (type)
{
case Field::Types::Null:
{
x.push_back(DB::Field());
break;
}
case Field::Types::UInt64:
{
UInt64 value;
DB::readVarUInt(value, buf);
x.push_back(value);
break;
}
case Field::Types::Int64:
{
Int64 value;
DB::readVarInt(value, buf);
x.push_back(value);
break;
}
case Field::Types::Float64:
{
Float64 value;
DB::readFloatBinary(value, buf);
x.push_back(value);
break;
}
case Field::Types::String:
{
std::string value;
DB::readStringBinary(value, buf);
x.push_back(value);
break;
}
case Field::Types::Array:
{
Array value;
DB::readBinary(value, buf);
x.push_back(value);
break;
}
};
}
}
inline void readText(Array & x, ReadBuffer & buf) { throw Exception("Cannot read Array.", ErrorCodes::NOT_IMPLEMENTED); }
inline void readQuoted(Array & x, ReadBuffer & buf) { throw Exception("Cannot read Array.", ErrorCodes::NOT_IMPLEMENTED); }
/// Предполагается что у всех элементов массива одинаковый тип.
inline void writeBinary(const Array & x, WriteBuffer & buf)
{
UInt8 type = Field::Types::Null;
size_t size = x.size();
if (size)
type = x.front().getType();
DB::writeBinary(type, buf);
DB::writeBinary(size, buf);
for (Array::const_iterator it = x.begin(); it != x.end(); ++it)
{
switch (type)
{
case Field::Types::Null: break;
case Field::Types::UInt64:
{
DB::writeVarUInt(get<UInt64>(*it), buf);
break;
}
case Field::Types::Int64:
{
DB::writeVarInt(get<Int64>(*it), buf);
break;
}
case Field::Types::Float64:
{
DB::writeFloatBinary(get<Float64>(*it), buf);
break;
}
case Field::Types::String:
{
DB::writeStringBinary(get<std::string>(*it), buf);
break;
}
case Field::Types::Array:
{
DB::writeBinary(get<Array>(*it), buf);
break;
}
};
}
}
inline void writeText(const Array & x, WriteBuffer & buf)
{
DB::String res = apply_visitor(DB::FieldVisitorToString(), DB::Field(x));
buf.write(res.data(), res.size());
}
inline void writeQuoted(const Array & x, WriteBuffer & buf) { throw Exception("Cannot write Array quoted.", ErrorCodes::NOT_IMPLEMENTED); }
}
2013-01-08 21:32:16 +00:00
#undef DBMS_TOTAL_FIELD_SIZE