Функция реализует стохастическую линейную регрессию. Поддерживает пользовательские параметры для скорости обучения, коэффициента регуляризации L2, размера mini-batch и имеет несколько методов обновления весов ([Adam](https://en.wikipedia.org/wiki/Stochastic_gradient_descent#Adam) (по умолчанию), [simple SGD](https://en.wikipedia.org/wiki/Stochastic_gradient_descent), [Momentum](https://en.wikipedia.org/wiki/Stochastic_gradient_descent#Momentum), [Nesterov](https://mipt.ru/upload/medialibrary/d7e/41-91.pdf)).
Есть 4 настраиваемых параметра. Они передаются в функцию последовательно, однако не обязательно указывать все, используются значения по умолчанию, однако хорошая модель требует некоторой настройки параметров.
``` text
stochasticLinearRegression(1.0, 1.0, 10, 'SGD')
```
1. Скорость обучения — коэффициент длины шага, при выполнении градиентного спуска. Слишком большая скорость обучения может привести к бесконечным весам модели. По умолчанию `0.00001`.
2. Коэффициент регуляризации l2. Помогает предотвратить подгонку. По умолчанию `0.1`.
3. Размер mini-batch задаёт количество элементов, чьи градиенты будут вычислены и просуммированы при выполнении одного шага градиентного спуска. Чистый стохастический спуск использует один элемент, однако использование mini-batch (около 10 элементов) делает градиентные шаги более стабильными. По умолчанию `15`.
4. Метод обновления весов, можно выбрать один из следующих: `Adam` (по умолчанию), `SGD`, `Momentum`, `Nesterov`. `Momentum` и `Nesterov` более требовательные к вычислительным ресурсам и памяти, однако они имеют высокую скорость схождения и устойчивости методов стохастического градиента.
### Использование {#agg_functions-stochasticlinearregression-usage}
`stochasticLinearRegression` используется на двух этапах: построение модели и предсказание новых данных. Чтобы построить модель и сохранить её состояние для дальнейшего использования, мы используем комбинатор `-State`.
Для прогнозирования мы используем функцию [evalMLMethod](../../functions/machine-learning-functions.md#machine_learning_methods-evalmlmethod), которая принимает в качестве аргументов состояние и свойства для прогнозирования.
Здесь нам также нужно вставить данные в таблицу `train_data`. Количество параметров не фиксировано, оно зависит только от количества аргументов, перешедших в `linearRegressionState`. Все они должны быть числовыми значениями.
Обратите внимание, что столбец с целевым значением (которое мы хотели бы научиться предсказывать) вставляется в качестве первого аргумента.
**2.** Прогнозирование
После сохранения состояния в таблице мы можем использовать его несколько раз для прогнозирования или смёржить с другими состояниями и создать новые, улучшенные модели.
WITH (SELECT state FROM your_model) AS model SELECT
evalMLMethod(model, param1, param2) FROM test_data
```
Запрос возвращает столбец прогнозируемых значений. Обратите внимание, что первый аргумент `evalMLMethod` это объект `AggregateFunctionState`, далее идут столбцы свойств.
`test_data` — это таблица, подобная `train_data`, но при этом может не содержать целевое значение.
Подобный запрос строит модель и возвращает её веса, отвечающие параметрам моделей и смещение. Таким образом, в приведенном выше примере запрос вернет столбец с тремя значениями.