Merge pull request #72390 from den-crane/Docs/leadInFrame

Doc. Add a warning to lagInFrame/leadInFrame
This commit is contained in:
Alexey Milovidov 2024-11-26 22:45:10 +00:00 committed by GitHub
commit 0c02222173
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 40 additions and 14 deletions

View File

@ -8,11 +8,17 @@ sidebar_position: 9
Returns a value evaluated at the row that is at a specified physical offset row before the current row within the ordered frame.
:::warning
`lagInFrame` behavior differs from the standard SQL `lag` window function.
Clickhouse window function `lagInFrame` respects the window frame.
To get behavior identical to the `lag`, use `ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING`.
:::
**Syntax**
```sql
lagInFrame(x[, offset[, default]])
OVER ([[PARTITION BY grouping_column] [ORDER BY sorting_column]
OVER ([[PARTITION BY grouping_column] [ORDER BY sorting_column]
[ROWS or RANGE expression_to_bound_rows_withing_the_group]] | [window_name])
FROM table_name
WINDOW window_name as ([[PARTITION BY grouping_column] [ORDER BY sorting_column])
@ -21,7 +27,7 @@ WINDOW window_name as ([[PARTITION BY grouping_column] [ORDER BY sorting_column]
For more detail on window function syntax see: [Window Functions - Syntax](./index.md/#syntax).
**Parameters**
- `x` — Column name.
- `x` — Column name.
- `offset` — Offset to apply. [(U)Int*](../data-types/int-uint.md). (Optional - `1` by default).
- `default` — Value to return if calculated row exceeds the boundaries of the window frame. (Optional - default value of column type when omitted).
@ -59,11 +65,13 @@ INSERT INTO stock_prices FORMAT Values
SELECT
date,
close,
lagInFrame(close, 1, close) OVER (ORDER BY date ASC) AS previous_day_close,
lagInFrame(close, 1, close) OVER (ORDER BY date ASC
ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
) AS previous_day_close,
COALESCE(ROUND(close - previous_day_close, 2)) AS delta,
COALESCE(ROUND((delta / previous_day_close) * 100, 2)) AS percent_change
FROM stock_prices
ORDER BY date DESC;
ORDER BY date DESC
```
Result:
@ -76,4 +84,4 @@ Result:
4. │ 2024-06-04 │ 116.44 │ 115 │ 1.44 │ 1.25 │
5. │ 2024-06-03 │ 115 │ 115 │ 0 │ 0 │
└────────────┴────────┴────────────────────┴───────┴────────────────┘
```
```

View File

@ -8,11 +8,17 @@ sidebar_position: 10
Returns a value evaluated at the row that is offset rows after the current row within the ordered frame.
:::warning
`leadInFrame` behavior differs from the standard SQL `lead` window function.
Clickhouse window function `leadInFrame` respects the window frame.
To get behavior identical to the `lead`, use `ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING`.
:::
**Syntax**
```sql
leadInFrame(x[, offset[, default]])
OVER ([[PARTITION BY grouping_column] [ORDER BY sorting_column]
OVER ([[PARTITION BY grouping_column] [ORDER BY sorting_column]
[ROWS or RANGE expression_to_bound_rows_withing_the_group]] | [window_name])
FROM table_name
WINDOW window_name as ([[PARTITION BY grouping_column] [ORDER BY sorting_column])
@ -36,25 +42,37 @@ This example looks at [historical data](https://www.kaggle.com/datasets/sazidthe
Query:
```sql
CREATE OR REPLACE VIEW nobel_prize_laureates AS FROM file('nobel_laureates_data.csv') SELECT *;
CREATE OR REPLACE VIEW nobel_prize_laureates
AS SELECT *
FROM file('nobel_laureates_data.csv');
```
```sql
FROM nobel_prize_laureates SELECT fullName, leadInFrame(year, 1, year) OVER (PARTITION BY category ORDER BY year) AS year, category, motivation WHERE category == 'physics' ORDER BY year DESC LIMIT 9;
SELECT
fullName,
leadInFrame(year, 1, year) OVER (PARTITION BY category ORDER BY year ASC
ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
) AS year,
category,
motivation
FROM nobel_prize_laureates
WHERE category = 'physics'
ORDER BY year DESC
LIMIT 9
```
Result:
```response
┌─fullName─────────┬─year─┬─category─┬─motivation─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┐
1. │ Pierre Agostini │ 2023 │ physics │ for experimental methods that generate attosecond pulses of light for the study of electron dynamics in matter │
2. │ Ferenc Krausz │ 2023 │ physics │ for experimental methods that generate attosecond pulses of light for the study of electron dynamics in matter │
3. │ Anne L Huillier │ 2023 │ physics │ for experimental methods that generate attosecond pulses of light for the study of electron dynamics in matter │
1. │ Anne L Huillier │ 2023 │ physics │ for experimental methods that generate attosecond pulses of light for the study of electron dynamics in matter │
2. │ Pierre Agostini │ 2023 │ physics │ for experimental methods that generate attosecond pulses of light for the study of electron dynamics in matter │
3. │ Ferenc Krausz │ 2023 │ physics │ for experimental methods that generate attosecond pulses of light for the study of electron dynamics in matter │
4. │ Alain Aspect │ 2022 │ physics │ for experiments with entangled photons establishing the violation of Bell inequalities and pioneering quantum information science │
5. │ Anton Zeilinger │ 2022 │ physics │ for experiments with entangled photons establishing the violation of Bell inequalities and pioneering quantum information science │
6. │ John Clauser │ 2022 │ physics │ for experiments with entangled photons establishing the violation of Bell inequalities and pioneering quantum information science │
7. │ Syukuro Manabe │ 2021 │ physics │ for the physical modelling of Earths climate quantifying variability and reliably predicting global warming
7. │ Giorgio Parisi │ 2021 │ physics │ for the discovery of the interplay of disorder and fluctuations in physical systems from atomic to planetary scales
8. │ Klaus Hasselmann │ 2021 │ physics │ for the physical modelling of Earths climate quantifying variability and reliably predicting global warming │
9. │ Giorgio Parisi │ 2021 │ physics │ for the discovery of the interplay of disorder and fluctuations in physical systems from atomic to planetary scales
9. │ Syukuro Manabe │ 2021 │ physics │ for the physical modelling of Earths climate quantifying variability and reliably predicting global warming
└──────────────────┴──────┴──────────┴────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┘
```
```