mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-11-28 18:42:26 +00:00
Merge branch 'master' into harmful
This commit is contained in:
commit
157c66ebdb
@ -5,9 +5,11 @@
|
||||
/// (See at http://www.boost.org/LICENSE_1_0.txt)
|
||||
|
||||
#include "throwError.h"
|
||||
#include <cmath>
|
||||
#include <cfloat>
|
||||
#include <limits>
|
||||
#include <cassert>
|
||||
#include <limits>
|
||||
|
||||
|
||||
namespace wide
|
||||
{
|
||||
@ -239,6 +241,14 @@ struct integer<Bits, Signed>::_impl
|
||||
template <class T>
|
||||
constexpr static void set_multiplier(integer<Bits, Signed> & self, T t) noexcept {
|
||||
constexpr uint64_t max_int = std::numeric_limits<uint64_t>::max();
|
||||
|
||||
/// Implementation specific behaviour on overflow (if we don't check here, stack overflow will triggered in bigint_cast).
|
||||
if (!std::isfinite(t))
|
||||
{
|
||||
self = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
const T alpha = t / max_int;
|
||||
|
||||
if (alpha <= max_int)
|
||||
|
93
base/glibc-compatibility/musl/__polevll.c
Normal file
93
base/glibc-compatibility/musl/__polevll.c
Normal file
@ -0,0 +1,93 @@
|
||||
/* origin: OpenBSD /usr/src/lib/libm/src/polevll.c */
|
||||
/*
|
||||
* Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
|
||||
*
|
||||
* Permission to use, copy, modify, and distribute this software for any
|
||||
* purpose with or without fee is hereby granted, provided that the above
|
||||
* copyright notice and this permission notice appear in all copies.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
||||
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
||||
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
||||
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||||
*/
|
||||
/*
|
||||
* Evaluate polynomial
|
||||
*
|
||||
*
|
||||
* SYNOPSIS:
|
||||
*
|
||||
* int N;
|
||||
* long double x, y, coef[N+1], polevl[];
|
||||
*
|
||||
* y = polevll( x, coef, N );
|
||||
*
|
||||
*
|
||||
* DESCRIPTION:
|
||||
*
|
||||
* Evaluates polynomial of degree N:
|
||||
*
|
||||
* 2 N
|
||||
* y = C + C x + C x +...+ C x
|
||||
* 0 1 2 N
|
||||
*
|
||||
* Coefficients are stored in reverse order:
|
||||
*
|
||||
* coef[0] = C , ..., coef[N] = C .
|
||||
* N 0
|
||||
*
|
||||
* The function p1evll() assumes that coef[N] = 1.0 and is
|
||||
* omitted from the array. Its calling arguments are
|
||||
* otherwise the same as polevll().
|
||||
*
|
||||
*
|
||||
* SPEED:
|
||||
*
|
||||
* In the interest of speed, there are no checks for out
|
||||
* of bounds arithmetic. This routine is used by most of
|
||||
* the functions in the library. Depending on available
|
||||
* equipment features, the user may wish to rewrite the
|
||||
* program in microcode or assembly language.
|
||||
*
|
||||
*/
|
||||
|
||||
#include "libm.h"
|
||||
|
||||
#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
|
||||
#else
|
||||
/*
|
||||
* Polynomial evaluator:
|
||||
* P[0] x^n + P[1] x^(n-1) + ... + P[n]
|
||||
*/
|
||||
long double __polevll(long double x, const long double *P, int n)
|
||||
{
|
||||
long double y;
|
||||
|
||||
y = *P++;
|
||||
do {
|
||||
y = y * x + *P++;
|
||||
} while (--n);
|
||||
|
||||
return y;
|
||||
}
|
||||
|
||||
/*
|
||||
* Polynomial evaluator:
|
||||
* x^n + P[0] x^(n-1) + P[1] x^(n-2) + ... + P[n]
|
||||
*/
|
||||
long double __p1evll(long double x, const long double *P, int n)
|
||||
{
|
||||
long double y;
|
||||
|
||||
n -= 1;
|
||||
y = x + *P++;
|
||||
do {
|
||||
y = y * x + *P++;
|
||||
} while (--n);
|
||||
|
||||
return y;
|
||||
}
|
||||
#endif
|
185
base/glibc-compatibility/musl/powf.c
Normal file
185
base/glibc-compatibility/musl/powf.c
Normal file
@ -0,0 +1,185 @@
|
||||
/*
|
||||
* Copyright (c) 2017-2018, Arm Limited.
|
||||
* SPDX-License-Identifier: MIT
|
||||
*/
|
||||
|
||||
#include <math.h>
|
||||
#include <stdint.h>
|
||||
#include "libm.h"
|
||||
#include "exp2f_data.h"
|
||||
#include "powf_data.h"
|
||||
|
||||
/*
|
||||
POWF_LOG2_POLY_ORDER = 5
|
||||
EXP2F_TABLE_BITS = 5
|
||||
|
||||
ULP error: 0.82 (~ 0.5 + relerr*2^24)
|
||||
relerr: 1.27 * 2^-26 (Relative error ~= 128*Ln2*relerr_log2 + relerr_exp2)
|
||||
relerr_log2: 1.83 * 2^-33 (Relative error of logx.)
|
||||
relerr_exp2: 1.69 * 2^-34 (Relative error of exp2(ylogx).)
|
||||
*/
|
||||
|
||||
#define N (1 << POWF_LOG2_TABLE_BITS)
|
||||
#define T __powf_log2_data.tab
|
||||
#define A __powf_log2_data.poly
|
||||
#define OFF 0x3f330000
|
||||
|
||||
/* Subnormal input is normalized so ix has negative biased exponent.
|
||||
Output is multiplied by N (POWF_SCALE) if TOINT_INTRINICS is set. */
|
||||
static inline double_t log2_inline(uint32_t ix)
|
||||
{
|
||||
double_t z, r, r2, r4, p, q, y, y0, invc, logc;
|
||||
uint32_t iz, top, tmp;
|
||||
int k, i;
|
||||
|
||||
/* x = 2^k z; where z is in range [OFF,2*OFF] and exact.
|
||||
The range is split into N subintervals.
|
||||
The ith subinterval contains z and c is near its center. */
|
||||
tmp = ix - OFF;
|
||||
i = (tmp >> (23 - POWF_LOG2_TABLE_BITS)) % N;
|
||||
top = tmp & 0xff800000;
|
||||
iz = ix - top;
|
||||
k = (int32_t)top >> (23 - POWF_SCALE_BITS); /* arithmetic shift */
|
||||
invc = T[i].invc;
|
||||
logc = T[i].logc;
|
||||
z = (double_t)asfloat(iz);
|
||||
|
||||
/* log2(x) = log1p(z/c-1)/ln2 + log2(c) + k */
|
||||
r = z * invc - 1;
|
||||
y0 = logc + (double_t)k;
|
||||
|
||||
/* Pipelined polynomial evaluation to approximate log1p(r)/ln2. */
|
||||
r2 = r * r;
|
||||
y = A[0] * r + A[1];
|
||||
p = A[2] * r + A[3];
|
||||
r4 = r2 * r2;
|
||||
q = A[4] * r + y0;
|
||||
q = p * r2 + q;
|
||||
y = y * r4 + q;
|
||||
return y;
|
||||
}
|
||||
|
||||
#undef N
|
||||
#undef T
|
||||
#define N (1 << EXP2F_TABLE_BITS)
|
||||
#define T __exp2f_data.tab
|
||||
#define SIGN_BIAS (1 << (EXP2F_TABLE_BITS + 11))
|
||||
|
||||
/* The output of log2 and thus the input of exp2 is either scaled by N
|
||||
(in case of fast toint intrinsics) or not. The unscaled xd must be
|
||||
in [-1021,1023], sign_bias sets the sign of the result. */
|
||||
static inline float exp2_inline(double_t xd, uint32_t sign_bias)
|
||||
{
|
||||
uint64_t ki, ski, t;
|
||||
double_t kd, z, r, r2, y, s;
|
||||
|
||||
#if TOINT_INTRINSICS
|
||||
#define C __exp2f_data.poly_scaled
|
||||
/* N*x = k + r with r in [-1/2, 1/2] */
|
||||
kd = roundtoint(xd); /* k */
|
||||
ki = converttoint(xd);
|
||||
#else
|
||||
#define C __exp2f_data.poly
|
||||
#define SHIFT __exp2f_data.shift_scaled
|
||||
/* x = k/N + r with r in [-1/(2N), 1/(2N)] */
|
||||
kd = eval_as_double(xd + SHIFT);
|
||||
ki = asuint64(kd);
|
||||
kd -= SHIFT; /* k/N */
|
||||
#endif
|
||||
r = xd - kd;
|
||||
|
||||
/* exp2(x) = 2^(k/N) * 2^r ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */
|
||||
t = T[ki % N];
|
||||
ski = ki + sign_bias;
|
||||
t += ski << (52 - EXP2F_TABLE_BITS);
|
||||
s = asdouble(t);
|
||||
z = C[0] * r + C[1];
|
||||
r2 = r * r;
|
||||
y = C[2] * r + 1;
|
||||
y = z * r2 + y;
|
||||
y = y * s;
|
||||
return eval_as_float(y);
|
||||
}
|
||||
|
||||
/* Returns 0 if not int, 1 if odd int, 2 if even int. The argument is
|
||||
the bit representation of a non-zero finite floating-point value. */
|
||||
static inline int checkint(uint32_t iy)
|
||||
{
|
||||
int e = iy >> 23 & 0xff;
|
||||
if (e < 0x7f)
|
||||
return 0;
|
||||
if (e > 0x7f + 23)
|
||||
return 2;
|
||||
if (iy & ((1 << (0x7f + 23 - e)) - 1))
|
||||
return 0;
|
||||
if (iy & (1 << (0x7f + 23 - e)))
|
||||
return 1;
|
||||
return 2;
|
||||
}
|
||||
|
||||
static inline int zeroinfnan(uint32_t ix)
|
||||
{
|
||||
return 2 * ix - 1 >= 2u * 0x7f800000 - 1;
|
||||
}
|
||||
|
||||
float powf(float x, float y)
|
||||
{
|
||||
uint32_t sign_bias = 0;
|
||||
uint32_t ix, iy;
|
||||
|
||||
ix = asuint(x);
|
||||
iy = asuint(y);
|
||||
if (predict_false(ix - 0x00800000 >= 0x7f800000 - 0x00800000 ||
|
||||
zeroinfnan(iy))) {
|
||||
/* Either (x < 0x1p-126 or inf or nan) or (y is 0 or inf or nan). */
|
||||
if (predict_false(zeroinfnan(iy))) {
|
||||
if (2 * iy == 0)
|
||||
return issignalingf_inline(x) ? x + y : 1.0f;
|
||||
if (ix == 0x3f800000)
|
||||
return issignalingf_inline(y) ? x + y : 1.0f;
|
||||
if (2 * ix > 2u * 0x7f800000 ||
|
||||
2 * iy > 2u * 0x7f800000)
|
||||
return x + y;
|
||||
if (2 * ix == 2 * 0x3f800000)
|
||||
return 1.0f;
|
||||
if ((2 * ix < 2 * 0x3f800000) == !(iy & 0x80000000))
|
||||
return 0.0f; /* |x|<1 && y==inf or |x|>1 && y==-inf. */
|
||||
return y * y;
|
||||
}
|
||||
if (predict_false(zeroinfnan(ix))) {
|
||||
float_t x2 = x * x;
|
||||
if (ix & 0x80000000 && checkint(iy) == 1)
|
||||
x2 = -x2;
|
||||
/* Without the barrier some versions of clang hoist the 1/x2 and
|
||||
thus division by zero exception can be signaled spuriously. */
|
||||
return iy & 0x80000000 ? fp_barrierf(1 / x2) : x2;
|
||||
}
|
||||
/* x and y are non-zero finite. */
|
||||
if (ix & 0x80000000) {
|
||||
/* Finite x < 0. */
|
||||
int yint = checkint(iy);
|
||||
if (yint == 0)
|
||||
return __math_invalidf(x);
|
||||
if (yint == 1)
|
||||
sign_bias = SIGN_BIAS;
|
||||
ix &= 0x7fffffff;
|
||||
}
|
||||
if (ix < 0x00800000) {
|
||||
/* Normalize subnormal x so exponent becomes negative. */
|
||||
ix = asuint(x * 0x1p23f);
|
||||
ix &= 0x7fffffff;
|
||||
ix -= 23 << 23;
|
||||
}
|
||||
}
|
||||
double_t logx = log2_inline(ix);
|
||||
double_t ylogx = y * logx; /* cannot overflow, y is single prec. */
|
||||
if (predict_false((asuint64(ylogx) >> 47 & 0xffff) >=
|
||||
asuint64(126.0 * POWF_SCALE) >> 47)) {
|
||||
/* |y*log(x)| >= 126. */
|
||||
if (ylogx > 0x1.fffffffd1d571p+6 * POWF_SCALE)
|
||||
return __math_oflowf(sign_bias);
|
||||
if (ylogx <= -150.0 * POWF_SCALE)
|
||||
return __math_uflowf(sign_bias);
|
||||
}
|
||||
return exp2_inline(ylogx, sign_bias);
|
||||
}
|
34
base/glibc-compatibility/musl/powf_data.c
Normal file
34
base/glibc-compatibility/musl/powf_data.c
Normal file
@ -0,0 +1,34 @@
|
||||
/*
|
||||
* Data definition for powf.
|
||||
*
|
||||
* Copyright (c) 2017-2018, Arm Limited.
|
||||
* SPDX-License-Identifier: MIT
|
||||
*/
|
||||
|
||||
#include "powf_data.h"
|
||||
|
||||
const struct powf_log2_data __powf_log2_data = {
|
||||
.tab = {
|
||||
{ 0x1.661ec79f8f3bep+0, -0x1.efec65b963019p-2 * POWF_SCALE },
|
||||
{ 0x1.571ed4aaf883dp+0, -0x1.b0b6832d4fca4p-2 * POWF_SCALE },
|
||||
{ 0x1.49539f0f010bp+0, -0x1.7418b0a1fb77bp-2 * POWF_SCALE },
|
||||
{ 0x1.3c995b0b80385p+0, -0x1.39de91a6dcf7bp-2 * POWF_SCALE },
|
||||
{ 0x1.30d190c8864a5p+0, -0x1.01d9bf3f2b631p-2 * POWF_SCALE },
|
||||
{ 0x1.25e227b0b8eap+0, -0x1.97c1d1b3b7afp-3 * POWF_SCALE },
|
||||
{ 0x1.1bb4a4a1a343fp+0, -0x1.2f9e393af3c9fp-3 * POWF_SCALE },
|
||||
{ 0x1.12358f08ae5bap+0, -0x1.960cbbf788d5cp-4 * POWF_SCALE },
|
||||
{ 0x1.0953f419900a7p+0, -0x1.a6f9db6475fcep-5 * POWF_SCALE },
|
||||
{ 0x1p+0, 0x0p+0 * POWF_SCALE },
|
||||
{ 0x1.e608cfd9a47acp-1, 0x1.338ca9f24f53dp-4 * POWF_SCALE },
|
||||
{ 0x1.ca4b31f026aap-1, 0x1.476a9543891bap-3 * POWF_SCALE },
|
||||
{ 0x1.b2036576afce6p-1, 0x1.e840b4ac4e4d2p-3 * POWF_SCALE },
|
||||
{ 0x1.9c2d163a1aa2dp-1, 0x1.40645f0c6651cp-2 * POWF_SCALE },
|
||||
{ 0x1.886e6037841edp-1, 0x1.88e9c2c1b9ff8p-2 * POWF_SCALE },
|
||||
{ 0x1.767dcf5534862p-1, 0x1.ce0a44eb17bccp-2 * POWF_SCALE },
|
||||
},
|
||||
.poly = {
|
||||
0x1.27616c9496e0bp-2 * POWF_SCALE, -0x1.71969a075c67ap-2 * POWF_SCALE,
|
||||
0x1.ec70a6ca7baddp-2 * POWF_SCALE, -0x1.7154748bef6c8p-1 * POWF_SCALE,
|
||||
0x1.71547652ab82bp0 * POWF_SCALE,
|
||||
}
|
||||
};
|
26
base/glibc-compatibility/musl/powf_data.h
Normal file
26
base/glibc-compatibility/musl/powf_data.h
Normal file
@ -0,0 +1,26 @@
|
||||
/*
|
||||
* Copyright (c) 2017-2018, Arm Limited.
|
||||
* SPDX-License-Identifier: MIT
|
||||
*/
|
||||
#ifndef _POWF_DATA_H
|
||||
#define _POWF_DATA_H
|
||||
|
||||
#include "libm.h"
|
||||
#include "exp2f_data.h"
|
||||
|
||||
#define POWF_LOG2_TABLE_BITS 4
|
||||
#define POWF_LOG2_POLY_ORDER 5
|
||||
#if TOINT_INTRINSICS
|
||||
#define POWF_SCALE_BITS EXP2F_TABLE_BITS
|
||||
#else
|
||||
#define POWF_SCALE_BITS 0
|
||||
#endif
|
||||
#define POWF_SCALE ((double)(1 << POWF_SCALE_BITS))
|
||||
extern hidden const struct powf_log2_data {
|
||||
struct {
|
||||
double invc, logc;
|
||||
} tab[1 << POWF_LOG2_TABLE_BITS];
|
||||
double poly[POWF_LOG2_POLY_ORDER];
|
||||
} __powf_log2_data;
|
||||
|
||||
#endif
|
525
base/glibc-compatibility/musl/powl.c
Normal file
525
base/glibc-compatibility/musl/powl.c
Normal file
@ -0,0 +1,525 @@
|
||||
/* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_powl.c */
|
||||
/*
|
||||
* Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
|
||||
*
|
||||
* Permission to use, copy, modify, and distribute this software for any
|
||||
* purpose with or without fee is hereby granted, provided that the above
|
||||
* copyright notice and this permission notice appear in all copies.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
||||
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
||||
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
||||
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||||
*/
|
||||
/* powl.c
|
||||
*
|
||||
* Power function, long double precision
|
||||
*
|
||||
*
|
||||
* SYNOPSIS:
|
||||
*
|
||||
* long double x, y, z, powl();
|
||||
*
|
||||
* z = powl( x, y );
|
||||
*
|
||||
*
|
||||
* DESCRIPTION:
|
||||
*
|
||||
* Computes x raised to the yth power. Analytically,
|
||||
*
|
||||
* x**y = exp( y log(x) ).
|
||||
*
|
||||
* Following Cody and Waite, this program uses a lookup table
|
||||
* of 2**-i/32 and pseudo extended precision arithmetic to
|
||||
* obtain several extra bits of accuracy in both the logarithm
|
||||
* and the exponential.
|
||||
*
|
||||
*
|
||||
* ACCURACY:
|
||||
*
|
||||
* The relative error of pow(x,y) can be estimated
|
||||
* by y dl ln(2), where dl is the absolute error of
|
||||
* the internally computed base 2 logarithm. At the ends
|
||||
* of the approximation interval the logarithm equal 1/32
|
||||
* and its relative error is about 1 lsb = 1.1e-19. Hence
|
||||
* the predicted relative error in the result is 2.3e-21 y .
|
||||
*
|
||||
* Relative error:
|
||||
* arithmetic domain # trials peak rms
|
||||
*
|
||||
* IEEE +-1000 40000 2.8e-18 3.7e-19
|
||||
* .001 < x < 1000, with log(x) uniformly distributed.
|
||||
* -1000 < y < 1000, y uniformly distributed.
|
||||
*
|
||||
* IEEE 0,8700 60000 6.5e-18 1.0e-18
|
||||
* 0.99 < x < 1.01, 0 < y < 8700, uniformly distributed.
|
||||
*
|
||||
*
|
||||
* ERROR MESSAGES:
|
||||
*
|
||||
* message condition value returned
|
||||
* pow overflow x**y > MAXNUM INFINITY
|
||||
* pow underflow x**y < 1/MAXNUM 0.0
|
||||
* pow domain x<0 and y noninteger 0.0
|
||||
*
|
||||
*/
|
||||
|
||||
#include "libm.h"
|
||||
|
||||
#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
|
||||
long double powl(long double x, long double y)
|
||||
{
|
||||
return pow(x, y);
|
||||
}
|
||||
#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
|
||||
|
||||
/* Table size */
|
||||
#define NXT 32
|
||||
|
||||
/* log(1+x) = x - .5x^2 + x^3 * P(z)/Q(z)
|
||||
* on the domain 2^(-1/32) - 1 <= x <= 2^(1/32) - 1
|
||||
*/
|
||||
static const long double P[] = {
|
||||
8.3319510773868690346226E-4L,
|
||||
4.9000050881978028599627E-1L,
|
||||
1.7500123722550302671919E0L,
|
||||
1.4000100839971580279335E0L,
|
||||
};
|
||||
static const long double Q[] = {
|
||||
/* 1.0000000000000000000000E0L,*/
|
||||
5.2500282295834889175431E0L,
|
||||
8.4000598057587009834666E0L,
|
||||
4.2000302519914740834728E0L,
|
||||
};
|
||||
/* A[i] = 2^(-i/32), rounded to IEEE long double precision.
|
||||
* If i is even, A[i] + B[i/2] gives additional accuracy.
|
||||
*/
|
||||
static const long double A[33] = {
|
||||
1.0000000000000000000000E0L,
|
||||
9.7857206208770013448287E-1L,
|
||||
9.5760328069857364691013E-1L,
|
||||
9.3708381705514995065011E-1L,
|
||||
9.1700404320467123175367E-1L,
|
||||
8.9735453750155359320742E-1L,
|
||||
8.7812608018664974155474E-1L,
|
||||
8.5930964906123895780165E-1L,
|
||||
8.4089641525371454301892E-1L,
|
||||
8.2287773907698242225554E-1L,
|
||||
8.0524516597462715409607E-1L,
|
||||
7.8799042255394324325455E-1L,
|
||||
7.7110541270397041179298E-1L,
|
||||
7.5458221379671136985669E-1L,
|
||||
7.3841307296974965571198E-1L,
|
||||
7.2259040348852331001267E-1L,
|
||||
7.0710678118654752438189E-1L,
|
||||
6.9195494098191597746178E-1L,
|
||||
6.7712777346844636413344E-1L,
|
||||
6.6261832157987064729696E-1L,
|
||||
6.4841977732550483296079E-1L,
|
||||
6.3452547859586661129850E-1L,
|
||||
6.2092890603674202431705E-1L,
|
||||
6.0762367999023443907803E-1L,
|
||||
5.9460355750136053334378E-1L,
|
||||
5.8186242938878875689693E-1L,
|
||||
5.6939431737834582684856E-1L,
|
||||
5.5719337129794626814472E-1L,
|
||||
5.4525386633262882960438E-1L,
|
||||
5.3357020033841180906486E-1L,
|
||||
5.2213689121370692017331E-1L,
|
||||
5.1094857432705833910408E-1L,
|
||||
5.0000000000000000000000E-1L,
|
||||
};
|
||||
static const long double B[17] = {
|
||||
0.0000000000000000000000E0L,
|
||||
2.6176170809902549338711E-20L,
|
||||
-1.0126791927256478897086E-20L,
|
||||
1.3438228172316276937655E-21L,
|
||||
1.2207982955417546912101E-20L,
|
||||
-6.3084814358060867200133E-21L,
|
||||
1.3164426894366316434230E-20L,
|
||||
-1.8527916071632873716786E-20L,
|
||||
1.8950325588932570796551E-20L,
|
||||
1.5564775779538780478155E-20L,
|
||||
6.0859793637556860974380E-21L,
|
||||
-2.0208749253662532228949E-20L,
|
||||
1.4966292219224761844552E-20L,
|
||||
3.3540909728056476875639E-21L,
|
||||
-8.6987564101742849540743E-22L,
|
||||
-1.2327176863327626135542E-20L,
|
||||
0.0000000000000000000000E0L,
|
||||
};
|
||||
|
||||
/* 2^x = 1 + x P(x),
|
||||
* on the interval -1/32 <= x <= 0
|
||||
*/
|
||||
static const long double R[] = {
|
||||
1.5089970579127659901157E-5L,
|
||||
1.5402715328927013076125E-4L,
|
||||
1.3333556028915671091390E-3L,
|
||||
9.6181291046036762031786E-3L,
|
||||
5.5504108664798463044015E-2L,
|
||||
2.4022650695910062854352E-1L,
|
||||
6.9314718055994530931447E-1L,
|
||||
};
|
||||
|
||||
#define MEXP (NXT*16384.0L)
|
||||
/* The following if denormal numbers are supported, else -MEXP: */
|
||||
#define MNEXP (-NXT*(16384.0L+64.0L))
|
||||
/* log2(e) - 1 */
|
||||
#define LOG2EA 0.44269504088896340735992L
|
||||
|
||||
#define F W
|
||||
#define Fa Wa
|
||||
#define Fb Wb
|
||||
#define G W
|
||||
#define Ga Wa
|
||||
#define Gb u
|
||||
#define H W
|
||||
#define Ha Wb
|
||||
#define Hb Wb
|
||||
|
||||
static const long double MAXLOGL = 1.1356523406294143949492E4L;
|
||||
static const long double MINLOGL = -1.13994985314888605586758E4L;
|
||||
static const long double LOGE2L = 6.9314718055994530941723E-1L;
|
||||
static const long double huge = 0x1p10000L;
|
||||
/* XXX Prevent gcc from erroneously constant folding this. */
|
||||
static const volatile long double twom10000 = 0x1p-10000L;
|
||||
|
||||
static long double reducl(long double);
|
||||
static long double powil(long double, int);
|
||||
|
||||
long double __polevll(long double x, const long double *P, int n);
|
||||
long double __p1evll(long double x, const long double *P, int n);
|
||||
|
||||
long double powl(long double x, long double y)
|
||||
{
|
||||
/* double F, Fa, Fb, G, Ga, Gb, H, Ha, Hb */
|
||||
int i, nflg, iyflg, yoddint;
|
||||
long e;
|
||||
volatile long double z=0;
|
||||
long double w=0, W=0, Wa=0, Wb=0, ya=0, yb=0, u=0;
|
||||
|
||||
/* make sure no invalid exception is raised by nan comparision */
|
||||
if (isnan(x)) {
|
||||
if (!isnan(y) && y == 0.0)
|
||||
return 1.0;
|
||||
return x;
|
||||
}
|
||||
if (isnan(y)) {
|
||||
if (x == 1.0)
|
||||
return 1.0;
|
||||
return y;
|
||||
}
|
||||
if (x == 1.0)
|
||||
return 1.0; /* 1**y = 1, even if y is nan */
|
||||
if (x == -1.0 && !isfinite(y))
|
||||
return 1.0; /* -1**inf = 1 */
|
||||
if (y == 0.0)
|
||||
return 1.0; /* x**0 = 1, even if x is nan */
|
||||
if (y == 1.0)
|
||||
return x;
|
||||
if (y >= LDBL_MAX) {
|
||||
if (x > 1.0 || x < -1.0)
|
||||
return INFINITY;
|
||||
if (x != 0.0)
|
||||
return 0.0;
|
||||
}
|
||||
if (y <= -LDBL_MAX) {
|
||||
if (x > 1.0 || x < -1.0)
|
||||
return 0.0;
|
||||
if (x != 0.0 || y == -INFINITY)
|
||||
return INFINITY;
|
||||
}
|
||||
if (x >= LDBL_MAX) {
|
||||
if (y > 0.0)
|
||||
return INFINITY;
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
w = floorl(y);
|
||||
|
||||
/* Set iyflg to 1 if y is an integer. */
|
||||
iyflg = 0;
|
||||
if (w == y)
|
||||
iyflg = 1;
|
||||
|
||||
/* Test for odd integer y. */
|
||||
yoddint = 0;
|
||||
if (iyflg) {
|
||||
ya = fabsl(y);
|
||||
ya = floorl(0.5 * ya);
|
||||
yb = 0.5 * fabsl(w);
|
||||
if( ya != yb )
|
||||
yoddint = 1;
|
||||
}
|
||||
|
||||
if (x <= -LDBL_MAX) {
|
||||
if (y > 0.0) {
|
||||
if (yoddint)
|
||||
return -INFINITY;
|
||||
return INFINITY;
|
||||
}
|
||||
if (y < 0.0) {
|
||||
if (yoddint)
|
||||
return -0.0;
|
||||
return 0.0;
|
||||
}
|
||||
}
|
||||
nflg = 0; /* (x<0)**(odd int) */
|
||||
if (x <= 0.0) {
|
||||
if (x == 0.0) {
|
||||
if (y < 0.0) {
|
||||
if (signbit(x) && yoddint)
|
||||
/* (-0.0)**(-odd int) = -inf, divbyzero */
|
||||
return -1.0/0.0;
|
||||
/* (+-0.0)**(negative) = inf, divbyzero */
|
||||
return 1.0/0.0;
|
||||
}
|
||||
if (signbit(x) && yoddint)
|
||||
return -0.0;
|
||||
return 0.0;
|
||||
}
|
||||
if (iyflg == 0)
|
||||
return (x - x) / (x - x); /* (x<0)**(non-int) is NaN */
|
||||
/* (x<0)**(integer) */
|
||||
if (yoddint)
|
||||
nflg = 1; /* negate result */
|
||||
x = -x;
|
||||
}
|
||||
/* (+integer)**(integer) */
|
||||
if (iyflg && floorl(x) == x && fabsl(y) < 32768.0) {
|
||||
w = powil(x, (int)y);
|
||||
return nflg ? -w : w;
|
||||
}
|
||||
|
||||
/* separate significand from exponent */
|
||||
x = frexpl(x, &i);
|
||||
e = i;
|
||||
|
||||
/* find significand in antilog table A[] */
|
||||
i = 1;
|
||||
if (x <= A[17])
|
||||
i = 17;
|
||||
if (x <= A[i+8])
|
||||
i += 8;
|
||||
if (x <= A[i+4])
|
||||
i += 4;
|
||||
if (x <= A[i+2])
|
||||
i += 2;
|
||||
if (x >= A[1])
|
||||
i = -1;
|
||||
i += 1;
|
||||
|
||||
/* Find (x - A[i])/A[i]
|
||||
* in order to compute log(x/A[i]):
|
||||
*
|
||||
* log(x) = log( a x/a ) = log(a) + log(x/a)
|
||||
*
|
||||
* log(x/a) = log(1+v), v = x/a - 1 = (x-a)/a
|
||||
*/
|
||||
x -= A[i];
|
||||
x -= B[i/2];
|
||||
x /= A[i];
|
||||
|
||||
/* rational approximation for log(1+v):
|
||||
*
|
||||
* log(1+v) = v - v**2/2 + v**3 P(v) / Q(v)
|
||||
*/
|
||||
z = x*x;
|
||||
w = x * (z * __polevll(x, P, 3) / __p1evll(x, Q, 3));
|
||||
w = w - 0.5*z;
|
||||
|
||||
/* Convert to base 2 logarithm:
|
||||
* multiply by log2(e) = 1 + LOG2EA
|
||||
*/
|
||||
z = LOG2EA * w;
|
||||
z += w;
|
||||
z += LOG2EA * x;
|
||||
z += x;
|
||||
|
||||
/* Compute exponent term of the base 2 logarithm. */
|
||||
w = -i;
|
||||
w /= NXT;
|
||||
w += e;
|
||||
/* Now base 2 log of x is w + z. */
|
||||
|
||||
/* Multiply base 2 log by y, in extended precision. */
|
||||
|
||||
/* separate y into large part ya
|
||||
* and small part yb less than 1/NXT
|
||||
*/
|
||||
ya = reducl(y);
|
||||
yb = y - ya;
|
||||
|
||||
/* (w+z)(ya+yb)
|
||||
* = w*ya + w*yb + z*y
|
||||
*/
|
||||
F = z * y + w * yb;
|
||||
Fa = reducl(F);
|
||||
Fb = F - Fa;
|
||||
|
||||
G = Fa + w * ya;
|
||||
Ga = reducl(G);
|
||||
Gb = G - Ga;
|
||||
|
||||
H = Fb + Gb;
|
||||
Ha = reducl(H);
|
||||
w = (Ga + Ha) * NXT;
|
||||
|
||||
/* Test the power of 2 for overflow */
|
||||
if (w > MEXP)
|
||||
return huge * huge; /* overflow */
|
||||
if (w < MNEXP)
|
||||
return twom10000 * twom10000; /* underflow */
|
||||
|
||||
e = w;
|
||||
Hb = H - Ha;
|
||||
|
||||
if (Hb > 0.0) {
|
||||
e += 1;
|
||||
Hb -= 1.0/NXT; /*0.0625L;*/
|
||||
}
|
||||
|
||||
/* Now the product y * log2(x) = Hb + e/NXT.
|
||||
*
|
||||
* Compute base 2 exponential of Hb,
|
||||
* where -0.0625 <= Hb <= 0.
|
||||
*/
|
||||
z = Hb * __polevll(Hb, R, 6); /* z = 2**Hb - 1 */
|
||||
|
||||
/* Express e/NXT as an integer plus a negative number of (1/NXT)ths.
|
||||
* Find lookup table entry for the fractional power of 2.
|
||||
*/
|
||||
if (e < 0)
|
||||
i = 0;
|
||||
else
|
||||
i = 1;
|
||||
i = e/NXT + i;
|
||||
e = NXT*i - e;
|
||||
w = A[e];
|
||||
z = w * z; /* 2**-e * ( 1 + (2**Hb-1) ) */
|
||||
z = z + w;
|
||||
z = scalbnl(z, i); /* multiply by integer power of 2 */
|
||||
|
||||
if (nflg)
|
||||
z = -z;
|
||||
return z;
|
||||
}
|
||||
|
||||
|
||||
/* Find a multiple of 1/NXT that is within 1/NXT of x. */
|
||||
static long double reducl(long double x)
|
||||
{
|
||||
long double t;
|
||||
|
||||
t = x * NXT;
|
||||
t = floorl(t);
|
||||
t = t / NXT;
|
||||
return t;
|
||||
}
|
||||
|
||||
/*
|
||||
* Positive real raised to integer power, long double precision
|
||||
*
|
||||
*
|
||||
* SYNOPSIS:
|
||||
*
|
||||
* long double x, y, powil();
|
||||
* int n;
|
||||
*
|
||||
* y = powil( x, n );
|
||||
*
|
||||
*
|
||||
* DESCRIPTION:
|
||||
*
|
||||
* Returns argument x>0 raised to the nth power.
|
||||
* The routine efficiently decomposes n as a sum of powers of
|
||||
* two. The desired power is a product of two-to-the-kth
|
||||
* powers of x. Thus to compute the 32767 power of x requires
|
||||
* 28 multiplications instead of 32767 multiplications.
|
||||
*
|
||||
*
|
||||
* ACCURACY:
|
||||
*
|
||||
* Relative error:
|
||||
* arithmetic x domain n domain # trials peak rms
|
||||
* IEEE .001,1000 -1022,1023 50000 4.3e-17 7.8e-18
|
||||
* IEEE 1,2 -1022,1023 20000 3.9e-17 7.6e-18
|
||||
* IEEE .99,1.01 0,8700 10000 3.6e-16 7.2e-17
|
||||
*
|
||||
* Returns MAXNUM on overflow, zero on underflow.
|
||||
*/
|
||||
|
||||
static long double powil(long double x, int nn)
|
||||
{
|
||||
long double ww, y;
|
||||
long double s;
|
||||
int n, e, sign, lx;
|
||||
|
||||
if (nn == 0)
|
||||
return 1.0;
|
||||
|
||||
if (nn < 0) {
|
||||
sign = -1;
|
||||
n = -nn;
|
||||
} else {
|
||||
sign = 1;
|
||||
n = nn;
|
||||
}
|
||||
|
||||
/* Overflow detection */
|
||||
|
||||
/* Calculate approximate logarithm of answer */
|
||||
s = x;
|
||||
s = frexpl( s, &lx);
|
||||
e = (lx - 1)*n;
|
||||
if ((e == 0) || (e > 64) || (e < -64)) {
|
||||
s = (s - 7.0710678118654752e-1L) / (s + 7.0710678118654752e-1L);
|
||||
s = (2.9142135623730950L * s - 0.5 + lx) * nn * LOGE2L;
|
||||
} else {
|
||||
s = LOGE2L * e;
|
||||
}
|
||||
|
||||
if (s > MAXLOGL)
|
||||
return huge * huge; /* overflow */
|
||||
|
||||
if (s < MINLOGL)
|
||||
return twom10000 * twom10000; /* underflow */
|
||||
/* Handle tiny denormal answer, but with less accuracy
|
||||
* since roundoff error in 1.0/x will be amplified.
|
||||
* The precise demarcation should be the gradual underflow threshold.
|
||||
*/
|
||||
if (s < -MAXLOGL+2.0) {
|
||||
x = 1.0/x;
|
||||
sign = -sign;
|
||||
}
|
||||
|
||||
/* First bit of the power */
|
||||
if (n & 1)
|
||||
y = x;
|
||||
else
|
||||
y = 1.0;
|
||||
|
||||
ww = x;
|
||||
n >>= 1;
|
||||
while (n) {
|
||||
ww = ww * ww; /* arg to the 2-to-the-kth power */
|
||||
if (n & 1) /* if that bit is set, then include in product */
|
||||
y *= ww;
|
||||
n >>= 1;
|
||||
}
|
||||
|
||||
if (sign < 0)
|
||||
y = 1.0/y;
|
||||
return y;
|
||||
}
|
||||
#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
|
||||
// TODO: broken implementation to make things compile
|
||||
long double powl(long double x, long double y)
|
||||
{
|
||||
return pow(x, y);
|
||||
}
|
||||
#endif
|
@ -12,6 +12,7 @@ The list of documented datasets:
|
||||
|
||||
- [GitHub Events](../../getting-started/example-datasets/github-events.md)
|
||||
- [Anonymized Yandex.Metrica Dataset](../../getting-started/example-datasets/metrica.md)
|
||||
- [Recipes](../../getting-started/example-datasets/recipes.md)
|
||||
- [Star Schema Benchmark](../../getting-started/example-datasets/star-schema.md)
|
||||
- [WikiStat](../../getting-started/example-datasets/wikistat.md)
|
||||
- [Terabyte of Click Logs from Criteo](../../getting-started/example-datasets/criteo.md)
|
||||
|
@ -15,11 +15,15 @@ then
|
||||
source "${BASE_DIR}/venv/bin/activate"
|
||||
python3 "${BASE_DIR}/build.py" ${EXTRA_BUILD_ARGS}
|
||||
rm -rf "${PUBLISH_DIR}" || true
|
||||
git clone "${GIT_TEST_URI}" "${PUBLISH_DIR}"
|
||||
cd "${PUBLISH_DIR}"
|
||||
|
||||
# Will make a repository with website content as the only commit.
|
||||
git init
|
||||
git remote add origin "${GIT_TEST_URI}"
|
||||
git config user.email "robot-clickhouse@yandex-team.ru"
|
||||
git config user.name "robot-clickhouse"
|
||||
git rm -rf *
|
||||
|
||||
# Add files.
|
||||
cp -R "${BUILD_DIR}"/* .
|
||||
echo -n "${BASE_DOMAIN}" > CNAME
|
||||
echo -n "" > README.md
|
||||
@ -27,13 +31,11 @@ then
|
||||
cp "${BASE_DIR}/../../LICENSE" .
|
||||
git add *
|
||||
git add ".nojekyll"
|
||||
git commit -a -m "add new release at $(date)"
|
||||
NEW_ROOT_COMMIT=$(git rev-parse "HEAD~${HISTORY_SIZE}")
|
||||
git checkout --orphan temp "${NEW_ROOT_COMMIT}"
|
||||
git commit -m "root commit"
|
||||
git rebase --onto temp "${NEW_ROOT_COMMIT}" master
|
||||
git branch -D temp
|
||||
git push -f origin master
|
||||
|
||||
# Push to GitHub rewriting the existing contents.
|
||||
git commit -a -m "Add new release at $(date)"
|
||||
git push --force origin master
|
||||
|
||||
if [[ ! -z "${CLOUDFLARE_TOKEN}" ]]
|
||||
then
|
||||
sleep 1m
|
||||
|
@ -89,7 +89,7 @@ void ODBCBridge::defineOptions(Poco::Util::OptionSet & options)
|
||||
{
|
||||
options.addOption(Poco::Util::Option("http-port", "", "port to listen").argument("http-port", true).binding("http-port"));
|
||||
options.addOption(
|
||||
Poco::Util::Option("listen-host", "", "hostname to listen, default localhost").argument("listen-host").binding("listen-host"));
|
||||
Poco::Util::Option("listen-host", "", "hostname or address to listen, default 127.0.0.1").argument("listen-host").binding("listen-host"));
|
||||
options.addOption(
|
||||
Poco::Util::Option("http-timeout", "", "http timeout for socket, default 1800").argument("http-timeout").binding("http-timeout"));
|
||||
|
||||
@ -161,7 +161,7 @@ void ODBCBridge::initialize(Application & self)
|
||||
BaseDaemon::logRevision();
|
||||
|
||||
log = &logger();
|
||||
hostname = config().getString("listen-host", "localhost");
|
||||
hostname = config().getString("listen-host", "127.0.0.1");
|
||||
port = config().getUInt("http-port");
|
||||
if (port > 0xFFFF)
|
||||
throw Exception("Out of range 'http-port': " + std::to_string(port), ErrorCodes::ARGUMENT_OUT_OF_BOUND);
|
||||
|
@ -376,7 +376,7 @@ bool ContextAccess::checkAccessImpl2(const AccessFlags & flags, const Args &...
|
||||
return true;
|
||||
};
|
||||
|
||||
auto access_denied = [&](const String & error_msg, int error_code)
|
||||
auto access_denied = [&](const String & error_msg, int error_code [[maybe_unused]])
|
||||
{
|
||||
if (trace_log)
|
||||
LOG_TRACE(trace_log, "Access denied: {}{}", (AccessRightsElement{flags, args...}.toString()),
|
||||
@ -558,7 +558,7 @@ bool ContextAccess::checkAdminOptionImpl2(const Container & role_ids, const GetN
|
||||
if (!std::size(role_ids) || is_full_access)
|
||||
return true;
|
||||
|
||||
auto show_error = [this](const String & msg, int error_code)
|
||||
auto show_error = [this](const String & msg, int error_code [[maybe_unused]])
|
||||
{
|
||||
UNUSED(this);
|
||||
if constexpr (throw_if_denied)
|
||||
|
@ -76,7 +76,7 @@ public:
|
||||
const Context & context;
|
||||
const Configuration & config;
|
||||
|
||||
static constexpr inline auto DEFAULT_HOST = "localhost";
|
||||
static constexpr inline auto DEFAULT_HOST = "127.0.0.1";
|
||||
static constexpr inline auto DEFAULT_PORT = BridgeHelperMixin::DEFAULT_PORT;
|
||||
static constexpr inline auto PING_HANDLER = "/ping";
|
||||
static constexpr inline auto MAIN_HANDLER = "/";
|
||||
|
@ -2,6 +2,7 @@
|
||||
|
||||
#include <string>
|
||||
#include <Columns/IColumn.h>
|
||||
#include <Dictionaries/DictionaryStructure.h>
|
||||
#include <Formats/FormatSettings.h>
|
||||
#include <Parsers/IdentifierQuotingStyle.h>
|
||||
|
||||
@ -16,11 +17,11 @@ class WriteBuffer;
|
||||
*/
|
||||
struct ExternalQueryBuilder
|
||||
{
|
||||
const DictionaryStructure & dict_struct;
|
||||
std::string db;
|
||||
std::string schema;
|
||||
std::string table;
|
||||
const std::string & where;
|
||||
const DictionaryStructure dict_struct;
|
||||
const std::string db;
|
||||
const std::string schema;
|
||||
const std::string table;
|
||||
const std::string where;
|
||||
|
||||
IdentifierQuotingStyle quoting_style;
|
||||
|
||||
|
@ -258,7 +258,6 @@ InputFormatPtr FormatFactory::getInputFormat(
|
||||
|
||||
auto format = input_getter(buf, sample, params, format_settings);
|
||||
|
||||
|
||||
/// It's a kludge. Because I cannot remove context from values format.
|
||||
if (auto * values = typeid_cast<ValuesBlockInputFormat *>(format.get()))
|
||||
values->setContext(context);
|
||||
|
@ -105,11 +105,11 @@ namespace detail
|
||||
RemoteHostFilter remote_host_filter;
|
||||
std::function<void(size_t)> next_callback;
|
||||
|
||||
std::istream * call(const Poco::URI uri_, Poco::Net::HTTPResponse & response)
|
||||
std::istream * call(Poco::URI uri_, Poco::Net::HTTPResponse & response)
|
||||
{
|
||||
// With empty path poco will send "POST HTTP/1.1" its bug.
|
||||
if (uri.getPath().empty())
|
||||
uri.setPath("/");
|
||||
if (uri_.getPath().empty())
|
||||
uri_.setPath("/");
|
||||
|
||||
Poco::Net::HTTPRequest request(method, uri_.getPathAndQuery(), Poco::Net::HTTPRequest::HTTP_1_1);
|
||||
request.setHost(uri_.getHost()); // use original, not resolved host name in header
|
||||
@ -125,7 +125,7 @@ namespace detail
|
||||
if (!credentials.getUsername().empty())
|
||||
credentials.authenticate(request);
|
||||
|
||||
LOG_TRACE((&Poco::Logger::get("ReadWriteBufferFromHTTP")), "Sending request to {}", uri.toString());
|
||||
LOG_TRACE((&Poco::Logger::get("ReadWriteBufferFromHTTP")), "Sending request to {}", uri_.toString());
|
||||
|
||||
auto sess = session->getSession();
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user