mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-11-21 23:21:59 +00:00
Merge pull request #28040 from syominsergey/patch-11
fix some typos in docs
This commit is contained in:
commit
23a2ce2019
@ -36,7 +36,7 @@ ClickHouse - полноценная колоночная СУБД. Данные
|
||||
|
||||
`IDataType` и `IColumn` слабо связаны друг с другом. Различные типы данных могут быть представлены в памяти с помощью одной реализации `IColumn`. Например, и `DataTypeUInt32`, и `DataTypeDateTime` в памяти представлены как `ColumnUInt32` или `ColumnConstUInt32`. В добавок к этому, один тип данных может быть представлен различными реализациями `IColumn`. Например, `DataTypeUInt8` может быть представлен как `ColumnUInt8` и `ColumnConstUInt8`.
|
||||
|
||||
`IDataType` хранит только метаданные. Например, `DataTypeUInt8` не хранить ничего (кроме скрытого указателя `vptr`), а `DataTypeFixedString` хранит только `N` (фиксированный размер строки).
|
||||
`IDataType` хранит только метаданные. Например, `DataTypeUInt8` не хранит ничего (кроме скрытого указателя `vptr`), а `DataTypeFixedString` хранит только `N` (фиксированный размер строки).
|
||||
|
||||
В `IDataType` есть вспомогательные методы для данных различного формата. Среди них методы сериализации значений, допускающих использование кавычек, сериализации значения в JSON или XML. Среди них нет прямого соответствия форматам данных. Например, различные форматы `Pretty` и `TabSeparated` могут использовать один вспомогательный метод `serializeTextEscaped` интерфейса `IDataType`.
|
||||
|
||||
@ -62,7 +62,7 @@ ClickHouse - полноценная колоночная СУБД. Данные
|
||||
|
||||
> Потоки блоков используют «втягивающий» (pull) подход к управлению потоком выполнения: когда вы вытягиваете блок из первого потока, он, следовательно, вытягивает необходимые блоки из вложенных потоков, так и работает весь конвейер выполнения. Ни «pull» ни «push» не имеют явного преимущества, потому что поток управления неявный, и это ограничивает в реализации различных функций, таких как одновременное выполнение нескольких запросов (слияние нескольких конвейеров вместе). Это ограничение можно преодолеть с помощью сопрограмм (coroutines) или просто запуском дополнительных потоков, которые ждут друг друга. У нас может быть больше возможностей, если мы сделаем поток управления явным: если мы локализуем логику для передачи данных из одной расчетной единицы в другую вне этих расчетных единиц. Читайте эту [статью](http://journal.stuffwithstuff.com/2013/01/13/iteration-inside-and-out/) для углубленного изучения.
|
||||
|
||||
Следует отметить, что конвейер выполнения запроса создает временные данные на каждом шаге. Мы стараемся сохранить размер блока достаточно маленьким, чтобы временные данные помещались в кэш процессора. При таком допущении запись и чтение временных данных практически бесплатны по сравнению с другими расчетами. Мы могли бы рассмотреть альтернативу, которая заключается в том, чтобы объединить многие операции в конвеере вместе. Это может сделать конвейер как можно короче и удалить большую часть временных данных, что может быть преимуществом, но у такого подхода также есть недостатки. Например, разделенный конвейер позволяет легко реализовать кэширование промежуточных данных, использование промежуточных данных из аналогичных запросов, выполняемых одновременно, и объединение конвейеров для аналогичных запросов.
|
||||
Следует отметить, что конвейер выполнения запроса создает временные данные на каждом шаге. Мы стараемся сохранить размер блока достаточно маленьким, чтобы временные данные помещались в кэш процессора. При таком допущении запись и чтение временных данных практически бесплатны по сравнению с другими расчетами. Мы могли бы рассмотреть альтернативу, которая заключается в том, чтобы объединить многие операции в конвейере вместе. Это может сделать конвейер как можно короче и удалить большую часть временных данных, что может быть преимуществом, но у такого подхода также есть недостатки. Например, разделенный конвейер позволяет легко реализовать кэширование промежуточных данных, использование промежуточных данных из аналогичных запросов, выполняемых одновременно, и объединение конвейеров для аналогичных запросов.
|
||||
|
||||
## Форматы {#formats}
|
||||
|
||||
@ -119,7 +119,7 @@ ClickHouse - полноценная колоночная СУБД. Данные
|
||||
|
||||
Существуют обычные функции и агрегатные функции. Агрегатные функции смотрите в следующем разделе.
|
||||
|
||||
Обычный функции не изменяют число строк и работают так, как если бы обрабатывали каждую строку независимо. В действительности же, функции вызываются не к отдельным строкам, а блокам данных для реализации векторизованного выполнения запросов.
|
||||
Обычные функции не изменяют число строк и работают так, как если бы обрабатывали каждую строку независимо. В действительности же, функции вызываются не к отдельным строкам, а блокам данных для реализации векторизованного выполнения запросов.
|
||||
|
||||
Некоторые функции, такие как [blockSize](../sql-reference/functions/other-functions.md#function-blocksize), [rowNumberInBlock](../sql-reference/functions/other-functions.md#function-rownumberinblock), и [runningAccumulate](../sql-reference/functions/other-functions.md#runningaccumulate), эксплуатируют блочную обработку и нарушают независимость строк.
|
||||
|
||||
@ -162,7 +162,7 @@ ClickHouse имеет сильную типизацию, поэтому нет
|
||||
|
||||
Сервера в кластере в основном независимы. Вы можете создать `Распределенную` (`Distributed`) таблицу на одном или всех серверах в кластере. Такая таблица сама по себе не хранит данные - она только предоставляет возможность "просмотра" всех локальных таблиц на нескольких узлах кластера. При выполнении `SELECT` распределенная таблица переписывает запрос, выбирает удаленные узлы в соответствии с настройками балансировки нагрузки и отправляет им запрос. Распределенная таблица просит удаленные сервера обработать запрос до той стадии, когда промежуточные результаты с разных серверов могут быть объединены. Затем он получает промежуточные результаты и объединяет их. Распределенная таблица пытается возложить как можно больше работы на удаленные серверы и сократить объем промежуточных данных, передаваемых по сети.
|
||||
|
||||
Ситуация усложняется, при использовании подзапросов в случае `IN` или `JOIN`, когда каждый из них использует таблицу `Distributed`. Есть разные стратегии для выполнения таких запросов.
|
||||
Ситуация усложняется при использовании подзапросов в случае `IN` или `JOIN`, когда каждый из них использует таблицу `Distributed`. Есть разные стратегии для выполнения таких запросов.
|
||||
|
||||
Глобального плана выполнения распределенных запросов не существует. Каждый узел имеет собственный локальный план для своей части работы. У нас есть простое однонаправленное выполнение распределенных запросов: мы отправляем запросы на удаленные узлы и затем объединяем результаты. Но это невозможно для сложных запросов `GROUP BY` высокой кардинальности или запросов с большим числом временных данных в `JOIN`: в таких случаях нам необходимо перераспределить («reshuffle») данные между серверами, что требует дополнительной координации. ClickHouse не поддерживает выполнение запросов такого рода, и нам нужно работать над этим.
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user