Merge pull request #33967 from cnmade/PF202201250933

Translate to zh: use-case/time-serial: remove bak file
This commit is contained in:
Maksim Kita 2022-01-25 22:24:23 +01:00 committed by GitHub
commit 2c7a5e4d4e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1 +0,0 @@
../../../en/faq/use-cases/time-series.md

View File

@ -0,0 +1,21 @@
---
title: 我能把 ClickHouse 当做时序数据库来使用吗?
toc_hidden: true
toc_priority: 101
---
# 我能把 ClickHouse 当做时序数据库来使用吗? {#can-i-use-clickhouse-as-a-time-series-database}
ClickHouse是一个通用的数据存储解决方案[OLAP](../../faq/general/olap.md)的工作负载而有许多专门的时间序列数据库管理系统。然而ClickHouse的[专注于查询执行速度](../../faq/general/why-clickhouse-is-so-fast.md)使得它在许多情况下的性能优于专门的系统。关于这个话题有很多独立的基准所以我们不打算在这里进行论述。相反让我们将重点放在ClickHouse的重要功能(如果这是你的用例)上。
首先,有 **[specialized codecs](../../sql-reference/statements/create/table.md#create-query-specialized-codecs)**这是典型的时间序列。无论是常见的算法如“DoubleDelta”和“Gorilla”或特定的ClickHouse 数据类型如“T64”。
其次时间序列查询通常只访问最近的数据比如一天或一周以前的数据。使用具有快速nVME/SSD驱动器和高容量HDD驱动器的服务器是有意义的。ClickHouse [TTL](../../engines/table-engines/mergetree-family/mergetree.md#table_engine-mergetree-multiple-volumes)特性允许配置在快速硬盘上保持新鲜的热数据,并随着数据的老化逐渐移动到较慢的硬盘上。如果您的需求需要,也可以汇总或删除更旧的数据。
尽管这与ClickHouse存储和处理原始数据的理念相违背但你可以使用[materialized views](../../sql-reference/statements/create/view.md)来适应更紧迫的延迟或成本需求。