Updated zstd library to v0.1.1 [#METR-2807].

This commit is contained in:
Alexey Milovidov 2015-09-10 02:51:17 +03:00
parent 217ef544c2
commit 34a5cf045f
7 changed files with 2490 additions and 1630 deletions

View File

@ -1 +1,5 @@
https://github.com/Cyan4973/zstd/tree/1eca5f52994434d3b0427c9014403cf01495f54a/
https://github.com/Cyan4973/zstd/tree/v0.1.1
Added
#pragma GCC diagnostic ignored "-Warray-bounds"
as noted here: http://fastcompression.blogspot.ru/2015/08/fuzz-testing-zstandard.html?showComment=1441763002674#c8204923539141394992

File diff suppressed because it is too large Load Diff

View File

@ -55,12 +55,11 @@ size_t FSE_decompress(void* dst, size_t maxDstSize,
/*
FSE_compress():
Compress content of buffer 'src', of size 'srcSize', into destination buffer 'dst'.
'dst' buffer must be already allocated, and sized to handle worst case situations.
Worst case size evaluation is provided by FSE_compressBound().
return : size of compressed data
Special values : if return == 0, srcData is not compressible => Nothing is stored within cSrc !!!
if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression.
if FSE_isError(return), it's an error code.
'dst' buffer must be already allocated. Compression runs faster is maxDstSize >= FSE_compressBound(srcSize)
return : size of compressed data (<= maxDstSize)
Special values : if return == 0, srcData is not compressible => Nothing is stored within dst !!!
if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression instead.
if FSE_isError(return), compression failed (more details using FSE_getErrorName())
FSE_decompress():
Decompress FSE data from buffer 'cSrc', of size 'cSrcSize',
@ -70,7 +69,33 @@ FSE_decompress():
** Important ** : FSE_decompress() doesn't decompress non-compressible nor RLE data !!!
Why ? : making this distinction requires a header.
FSE library doesn't manage headers, which are intentionally left to the user layer.
Header management is intentionally delegated to the user layer, which can better manage special cases.
*/
/******************************************
* Huff0 simple functions
******************************************/
size_t HUF_compress(void* dst, size_t maxDstSize,
const void* src, size_t srcSize);
size_t HUF_decompress(void* dst, size_t maxDstSize,
const void* cSrc, size_t cSrcSize);
/*
HUF_compress():
Compress content of buffer 'src', of size 'srcSize', into destination buffer 'dst'.
'dst' buffer must be already allocated. Compression runs faster is maxDstSize >= HUF_compressBound(srcSize)
return : size of compressed data (<= maxDstSize)
Special values : if return == 0, srcData is not compressible => Nothing is stored within dst !!!
if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression.
if FSE_isError(return), compression failed (more details using FSE_getErrorName())
HUF_decompress():
Decompress Huff0 data from buffer 'cSrc', of size 'cSrcSize',
into already allocated destination buffer 'dst', of size 'maxDstSize'.
return : size of regenerated data (<= maxDstSize)
or an error code, which can be tested using FSE_isError()
** Important ** : HUF_decompress() doesn't decompress non-compressible nor RLE data !!!
*/
@ -98,6 +123,8 @@ FSE_compress2():
*/
size_t FSE_compress2 (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog);
size_t HUF_compress2 (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog);
/******************************************
* FSE detailed API
@ -106,18 +133,18 @@ size_t FSE_compress2 (void* dst, size_t dstSize, const void* src, size_t srcSize
FSE_compress() does the following:
1. count symbol occurrence from source[] into table count[]
2. normalize counters so that sum(count[]) == Power_of_2 (2^tableLog)
3. save normalized counters to memory buffer using writeHeader()
3. save normalized counters to memory buffer using writeNCount()
4. build encoding table 'CTable' from normalized counters
5. encode the data stream using encoding table 'CTable'
FSE_decompress() does the following:
1. read normalized counters with readHeader()
1. read normalized counters with readNCount()
2. build decoding table 'DTable' from normalized counters
3. decode the data stream using decoding table 'DTable'
The following API allows to trigger specific sub-functions for advanced tasks.
The following API allows targeting specific sub-functions for advanced tasks.
For example, it's possible to compress several blocks using the same 'CTable',
or to save and provide normalized distribution using one's own method.
or to save and provide normalized distribution using external method.
*/
/* *** COMPRESSION *** */
@ -163,8 +190,8 @@ size_t FSE_writeNCount (void* buffer, size_t bufferSize, const short* normalized
/*
Constructor and Destructor of type FSE_CTable
Not that its size depends on parameters 'tableLog' and 'maxSymbolValue' */
typedef unsigned FSE_CTable; /* don't allocate that. It's just a way to be more restrictive than void */
Note that its size depends on 'tableLog' and 'maxSymbolValue' */
typedef unsigned FSE_CTable; /* don't allocate that. It's just a way to be more restrictive than void* */
FSE_CTable* FSE_createCTable (unsigned tableLog, unsigned maxSymbolValue);
void FSE_freeCTable (FSE_CTable* ct);
@ -173,30 +200,32 @@ FSE_buildCTable():
Builds 'ct', which must be already allocated, using FSE_createCTable()
return : 0
or an errorCode, which can be tested using FSE_isError() */
size_t FSE_buildCTable(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
size_t FSE_buildCTable(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
/*
FSE_compress_usingCTable():
Compress 'src' using 'ct' into 'dst' which must be already allocated
return : size of compressed data
return : size of compressed data (<= maxDstSize)
or 0 if compressed data could not fit into 'dst'
or an errorCode, which can be tested using FSE_isError() */
size_t FSE_compress_usingCTable (void* dst, size_t dstSize, const void* src, size_t srcSize, const FSE_CTable* ct);
size_t FSE_compress_usingCTable (void* dst, size_t maxDstSize, const void* src, size_t srcSize, const FSE_CTable* ct);
/*
Tutorial :
----------
The first step is to count all symbols. FSE_count() provides one quick way to do this job.
The first step is to count all symbols. FSE_count() does this job very fast.
Result will be saved into 'count', a table of unsigned int, which must be already allocated, and have 'maxSymbolValuePtr[0]+1' cells.
'src' is a table of bytes of size 'srcSize'. All values within 'src' MUST be <= maxSymbolValuePtr[0]
maxSymbolValuePtr[0] will be updated, with its real value (necessarily <= original value)
FSE_count() will return the number of occurrence of the most frequent symbol.
This can be used to know if there is a single symbol within 'src', and to quickly evaluate its compressibility.
If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
The next step is to normalize the frequencies.
FSE_normalizeCount() will ensure that sum of frequencies is == 2 ^'tableLog'.
It also guarantees a minimum of 1 to any Symbol which frequency is >= 1.
You can use input 'tableLog'==0 to mean "use default tableLog value".
If you are unsure of which tableLog value to use, you can optionally call FSE_optimalTableLog(),
It also guarantees a minimum of 1 to any Symbol with frequency >= 1.
You can use 'tableLog'==0 to mean "use default tableLog value".
If you are unsure of which tableLog value to use, you can ask FSE_optimalTableLog(),
which will provide the optimal valid tableLog given sourceSize, maxSymbolValue, and a user-defined maximum (0 means "default").
The result of FSE_normalizeCount() will be saved into a table,
@ -204,23 +233,23 @@ called 'normalizedCounter', which is a table of signed short.
'normalizedCounter' must be already allocated, and have at least 'maxSymbolValue+1' cells.
The return value is tableLog if everything proceeded as expected.
It is 0 if there is a single symbol within distribution.
If there is an error(typically, invalid tableLog value), the function will return an ErrorCode (which can be tested using FSE_isError()).
If there is an error (ex: invalid tableLog value), the function will return an ErrorCode (which can be tested using FSE_isError()).
'normalizedCounter' can be saved in a compact manner to a memory area using FSE_writeHeader().
'header' buffer must be already allocated.
'normalizedCounter' can be saved in a compact manner to a memory area using FSE_writeNCount().
'buffer' must be already allocated.
For guaranteed success, buffer size must be at least FSE_headerBound().
The result of the function is the number of bytes written into 'header'.
If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()) (for example, buffer size too small).
The result of the function is the number of bytes written into 'buffer'.
If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError(); ex : buffer size too small).
'normalizedCounter' can then be used to create the compression table 'CTable'.
The space required by 'CTable' must be already allocated. Its size is provided by FSE_sizeof_CTable().
'CTable' must be aligned of 4 bytes boundaries.
The space required by 'CTable' must be already allocated, using FSE_createCTable().
You can then use FSE_buildCTable() to fill 'CTable'.
In both cases, if there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
If there is an error, both functions will return an ErrorCode (which can be tested using FSE_isError()).
'CTable' can then be used to compress 'src', with FSE_compress_usingCTable().
Similar to FSE_count(), the convention is that 'src' is assumed to be a table of char of size 'srcSize'
The function returns the size of compressed data (without header).
The function returns the size of compressed data (without header), necessarily <= maxDstSize.
If it returns '0', compressed data could not fit into 'dst'.
If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
*/
@ -237,26 +266,25 @@ size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSymbolValuePtr, un
/*
Constructor and Destructor of type FSE_DTable
Note that its size depends on parameters 'tableLog' */
typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void */
Note that its size depends on 'tableLog' */
typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */
FSE_DTable* FSE_createDTable(unsigned tableLog);
void FSE_freeDTable(FSE_DTable* dt);
/*
FSE_buildDTable():
Builds 'dt', which must be already allocated, using FSE_createDTable()
return : 1 if 'dt' is compatible with fast mode, 0 otherwise,
return : 0,
or an errorCode, which can be tested using FSE_isError() */
size_t FSE_buildDTable (FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
/*
FSE_decompress_usingDTable():
Decompress compressed source 'cSrc' of size 'cSrcSize'
using 'dt' into 'dst' which must be already allocated.
Use fastMode==1 only if authorized by result of FSE_buildDTable().
Decompress compressed source 'cSrc' of size 'cSrcSize' using 'dt'
into 'dst' which must be already allocated.
return : size of regenerated data (necessarily <= maxDstSize)
or an errorCode, which can be tested using FSE_isError() */
size_t FSE_decompress_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const FSE_DTable* dt, size_t fastMode);
size_t FSE_decompress_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const FSE_DTable* dt);
/*
Tutorial :
@ -266,26 +294,24 @@ Tutorial :
If block is a single repeated byte, use memset() instead )
The first step is to obtain the normalized frequencies of symbols.
This can be performed by reading a header with FSE_readHeader().
'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of short.
This can be performed by FSE_readNCount() if it was saved using FSE_writeNCount().
'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short.
In practice, that means it's necessary to know 'maxSymbolValue' beforehand,
or size the table to handle worst case situations (typically 256).
FSE_readHeader will provide 'tableLog' and 'maxSymbolValue' stored into the header.
The result of FSE_readHeader() is the number of bytes read from 'header'.
Note that 'headerSize' must be at least 4 bytes, even if useful information is less than that.
FSE_readNCount() will provide 'tableLog' and 'maxSymbolValue'.
The result of FSE_readNCount() is the number of bytes read from 'rBuffer'.
Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that.
If there is an error, the function will return an error code, which can be tested using FSE_isError().
The next step is to create the decompression tables 'FSE_DTable' from 'normalizedCounter'.
The next step is to build the decompression tables 'FSE_DTable' from 'normalizedCounter'.
This is performed by the function FSE_buildDTable().
The space required by 'FSE_DTable' must be already allocated using FSE_createDTable().
The function will return 1 if FSE_DTable is compatible with fastMode, 0 otherwise.
If there is an error, the function will return an error code, which can be tested using FSE_isError().
'FSE_DTable' can then be used to decompress 'cSrc', with FSE_decompress_usingDTable().
Only trigger fastMode if it was authorized by the result of FSE_buildDTable(), otherwise decompression will fail.
cSrcSize must be correct, otherwise decompression will fail.
FSE_decompress_usingDTable() result will tell how many bytes were regenerated.
If there is an error, the function will return an error code, which can be tested using FSE_isError().
'cSrcSize' must be strictly correct, otherwise decompression will fail.
FSE_decompress_usingDTable() result will tell how many bytes were regenerated (<=maxDstSize).
If there is an error, the function will return an error code, which can be tested using FSE_isError(). (ex: dst buffer too small)
*/

View File

@ -48,12 +48,25 @@ extern "C" {
/******************************************
* Static allocation
******************************************/
#define FSE_MAX_HEADERSIZE 512
#define FSE_COMPRESSBOUND(size) (size + (size>>7) + FSE_MAX_HEADERSIZE) /* Macro can be useful for static allocation */
/* You can statically allocate a CTable as a table of unsigned using below macro */
/* FSE buffer bounds */
#define FSE_NCOUNTBOUND 512
#define FSE_BLOCKBOUND(size) (size + (size>>7))
#define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
/* You can statically allocate FSE CTable/DTable as a table of unsigned using below macro */
#define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) (1 + (1<<(maxTableLog-1)) + ((maxSymbolValue+1)*2))
#define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1<<maxTableLog))
/* Huff0 buffer bounds */
#define HUF_CTABLEBOUND 129
#define HUF_BLOCKBOUND(size) (size + (size>>8) + 8) /* only true if pre-filtered with fast heuristic */
#define HUF_COMPRESSBOUND(size) (HUF_CTABLEBOUND + HUF_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
/* You can statically allocate Huff0 DTable as a table of unsigned short using below macro */
#define HUF_DTABLE_SIZE_U16(maxTableLog) (1 + (1<<maxTableLog))
#define HUF_CREATE_STATIC_DTABLE(DTable, maxTableLog) \
unsigned short DTable[HUF_DTABLE_SIZE_U16(maxTableLog)] = { maxTableLog }
/******************************************
* Error Management
@ -96,6 +109,7 @@ size_t FSE_buildDTable_rle (FSE_DTable* dt, unsigned char symbolValue);
You will want to enable link-time-optimization to ensure these functions are properly inlined in your binary.
Visual seems to do it automatically.
For gcc or clang, you'll need to add -flto flag at compilation and linking stages.
If none of these solutions is applicable, include "fse.c" directly.
*/
typedef struct
@ -104,6 +118,7 @@ typedef struct
int bitPos;
char* startPtr;
char* ptr;
char* endPtr;
} FSE_CStream_t;
typedef struct
@ -114,10 +129,10 @@ typedef struct
unsigned stateLog;
} FSE_CState_t;
void FSE_initCStream(FSE_CStream_t* bitC, void* dstBuffer);
size_t FSE_initCStream(FSE_CStream_t* bitC, void* dstBuffer, size_t maxDstSize);
void FSE_initCState(FSE_CState_t* CStatePtr, const FSE_CTable* ct);
void FSE_encodeSymbol(FSE_CStream_t* bitC, FSE_CState_t* CStatePtr, unsigned char symbol);
void FSE_encodeSymbol(FSE_CStream_t* bitC, FSE_CState_t* CStatePtr, unsigned symbol);
void FSE_addBits(FSE_CStream_t* bitC, size_t value, unsigned nbBits);
void FSE_flushBits(FSE_CStream_t* bitC);
@ -133,17 +148,18 @@ So the first symbol you will encode is the last you will decode, like a LIFO sta
You will need a few variables to track your CStream. They are :
FSE_CTable ct; // Provided by FSE_buildCTable()
FSE_CStream_t bitC; // bitStream tracking structure
FSE_CState_t state; // State tracking structure (can have several)
FSE_CTable ct; // Provided by FSE_buildCTable()
FSE_CStream_t bitStream; // bitStream tracking structure
FSE_CState_t state; // State tracking structure (can have several)
The first thing to do is to init bitStream and state.
FSE_initCStream(&bitC, dstBuffer);
size_t errorCode = FSE_initCStream(&bitStream, dstBuffer, maxDstSize);
FSE_initCState(&state, ct);
Note that FSE_initCStream() can produce an error code, so its result should be tested, using FSE_isError();
You can then encode your input data, byte after byte.
FSE_encodeByte() outputs a maximum of 'tableLog' bits at a time.
FSE_encodeSymbol() outputs a maximum of 'tableLog' bits at a time.
Remember decoding will be done in reverse direction.
FSE_encodeByte(&bitStream, &state, symbol);
@ -159,8 +175,9 @@ Writing data to memory is a manual operation, performed by the flushBits functio
Your last FSE encoding operation shall be to flush your last state value(s).
FSE_flushState(&bitStream, &state);
Finally, you must then close the bitStream.
The function returns the size in bytes of CStream.
Finally, you must close the bitStream.
The function returns the size of CStream in bytes.
If data couldn't fit into dstBuffer, it will return a 0 ( == not compressible)
If there is an error, it returns an errorCode (which can be tested using FSE_isError()).
size_t size = FSE_closeCStream(&bitStream);
*/
@ -194,6 +211,12 @@ unsigned int FSE_reloadDStream(FSE_DStream_t* bitD);
unsigned FSE_endOfDStream(const FSE_DStream_t* bitD);
unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr);
typedef enum { FSE_DStream_unfinished = 0,
FSE_DStream_endOfBuffer = 1,
FSE_DStream_completed = 2,
FSE_DStream_tooFar = 3 } FSE_DStream_status; /* result of FSE_reloadDStream() */
/* 1,2,4,8 would be better for bitmap combinations, but slows down performance a bit ... ?! */
/*
Let's now decompose FSE_decompress_usingDTable() into its unitary components.
You will decode FSE-encoded symbols from the bitStream,
@ -201,16 +224,16 @@ and also any other bitFields you put in, **in reverse order**.
You will need a few variables to track your bitStream. They are :
FSE_DStream_t DStream; // Stream context
FSE_DState_t DState; // State context. Multiple ones are possible
FSE_DTable dt; // Decoding table, provided by FSE_buildDTable()
U32 tableLog; // Provided by FSE_readHeader()
FSE_DStream_t DStream; // Stream context
FSE_DState_t DState; // State context. Multiple ones are possible
FSE_DTable* DTablePtr; // Decoding table, provided by FSE_buildDTable()
The first thing to do is to init the bitStream.
errorCode = FSE_initDStream(&DStream, &optionalId, srcBuffer, srcSize);
errorCode = FSE_initDStream(&DStream, srcBuffer, srcSize);
You should then retrieve your initial state(s) :
errorCode = FSE_initDState(&DState, &DStream, dt, tableLog);
You should then retrieve your initial state(s)
(in reverse flushing order if you have several ones) :
errorCode = FSE_initDState(&DState, &DStream, DTablePtr);
You can then decode your data, symbol after symbol.
For information the maximum number of bits read by FSE_decodeSymbol() is 'tableLog'.
@ -218,28 +241,28 @@ Keep in mind that symbols are decoded in reverse order, like a LIFO stack (last
unsigned char symbol = FSE_decodeSymbol(&DState, &DStream);
You can retrieve any bitfield you eventually stored into the bitStream (in reverse order)
Note : maximum allowed nbBits is 25
unsigned int bitField = FSE_readBits(&DStream, nbBits);
Note : maximum allowed nbBits is 25, for 32-bits compatibility
size_t bitField = FSE_readBits(&DStream, nbBits);
All above operations only read from local register (which size is controlled by bitD_t==32 bits).
All above operations only read from local register (which size depends on size_t).
Refueling the register from memory is manually performed by the reload method.
endSignal = FSE_reloadDStream(&DStream);
FSE_reloadDStream() result tells if there is still some more data to read from DStream.
0 : there is still some data left into the DStream.
1 : Dstream reached end of buffer, but is not yet fully extracted. It will not load data from memory any more.
2 : Dstream reached its exact end, corresponding in general to decompression completed.
3 : Dstream went too far. Decompression result is corrupted.
FSE_DStream_unfinished : there is still some data left into the DStream.
FSE_DStream_endOfBuffer : Dstream reached end of buffer. Its container may no longer be completely filled.
FSE_DStream_completed : Dstream reached its exact end, corresponding in general to decompression completed.
FSE_DStream_tooFar : Dstream went too far. Decompression result is corrupted.
When reaching end of buffer(1), progress slowly, notably if you decode multiple symbols per loop,
When reaching end of buffer (FSE_DStream_endOfBuffer), progress slowly, notably if you decode multiple symbols per loop,
to properly detect the exact end of stream.
After each decoded symbol, check if DStream is fully consumed using this simple test :
FSE_reloadDStream(&DStream) >= 2
FSE_reloadDStream(&DStream) >= FSE_DStream_completed
When it's done, verify decompression is fully completed, by checking both DStream and the relevant states.
Checking if DStream has reached its end is performed by :
FSE_endOfDStream(&DStream);
Check also the states. There might be some entropy left there, able to decode some high probability (>50%) symbol.
Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible.
FSE_endOfDState(&DState);
*/
@ -251,7 +274,7 @@ size_t FSE_readBitsFast(FSE_DStream_t* bitD, unsigned nbBits);
/* faster, but works only if nbBits >= 1 (otherwise, result will be corrupted) */
unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, FSE_DStream_t* bitD);
/* faster, but works only if nbBits >= 1 (otherwise, result will be corrupted) */
/* faster, but works only if allways nbBits >= 1 (otherwise, result will be corrupted) */
#if defined (__cplusplus)

File diff suppressed because it is too large Load Diff

View File

@ -46,8 +46,8 @@ extern "C" {
* Version
**************************************/
#define ZSTD_VERSION_MAJOR 0 /* for breaking interface changes */
#define ZSTD_VERSION_MINOR 0 /* for new (non-breaking) interface capabilities */
#define ZSTD_VERSION_RELEASE 2 /* for tweaks, bug-fixes, or development */
#define ZSTD_VERSION_MINOR 1 /* for new (non-breaking) interface capabilities */
#define ZSTD_VERSION_RELEASE 0 /* for tweaks, bug-fixes, or development */
#define ZSTD_VERSION_NUMBER (ZSTD_VERSION_MAJOR *100*100 + ZSTD_VERSION_MINOR *100 + ZSTD_VERSION_RELEASE)
unsigned ZSTD_versionNumber (void);
@ -64,8 +64,8 @@ size_t ZSTD_decompress( void* dst, size_t maxOriginalSize,
/*
ZSTD_compress() :
Compresses 'srcSize' bytes from buffer 'src' into buffer 'dst', of maximum size 'dstSize'.
Destination buffer should be sized to handle worst cases situations (input data not compressible).
Worst case size evaluation is provided by function ZSTD_compressBound().
Destination buffer must be already allocated.
Compression runs faster if maxDstSize >= ZSTD_compressBound(srcSize).
return : the number of bytes written into buffer 'dst'
or an error code if it fails (which can be tested using ZSTD_isError())

View File

@ -74,9 +74,9 @@ size_t ZSTD_decompressContinue(ZSTD_Dctx* dctx, void* dst, size_t maxDstSize, co
**************************************/
#define ZSTD_LIST_ERRORS(ITEM) \
ITEM(ZSTD_OK_NoError) ITEM(ZSTD_ERROR_GENERIC) \
ITEM(ZSTD_ERROR_wrongMagicNumber) \
ITEM(ZSTD_ERROR_wrongSrcSize) ITEM(ZSTD_ERROR_maxDstSize_tooSmall) \
ITEM(ZSTD_ERROR_wrongLBlockSize) \
ITEM(ZSTD_ERROR_MagicNumber) \
ITEM(ZSTD_ERROR_SrcSize) ITEM(ZSTD_ERROR_maxDstSize_tooSmall) \
ITEM(ZSTD_ERROR_corruption) \
ITEM(ZSTD_ERROR_maxCode)
#define ZSTD_GENERATE_ENUM(ENUM) ENUM,