Merge remote-tracking branch 'upstream/master'

This commit is contained in:
BayoNet 2017-11-22 09:28:31 +03:00
commit 411f60924f
270 changed files with 1679 additions and 32811 deletions

3
.gitmodules vendored
View File

@ -16,3 +16,6 @@
[submodule "contrib/cctz"]
path = contrib/cctz
url = https://github.com/google/cctz.git
[submodule "contrib/zlib-ng"]
path = contrib/zlib-ng
url = https://github.com/Dead2/zlib-ng.git

View File

@ -64,6 +64,13 @@ option (ENABLE_TESTS "Enables tests" ON)
option (USE_STATIC_LIBRARIES "Set to FALSE to use shared libraries" ON)
option (MAKE_STATIC_LIBRARIES "Set to FALSE to make shared libraries" ${USE_STATIC_LIBRARIES})
if (NOT MAKE_STATIC_LIBRARIES)
option (SPLIT_SHARED_LIBRARIES "DEV ONLY. Keep all internal libs as separate .so for faster linking" OFF)
endif ()
if (SPLIT_SHARED_LIBRARIES)
set (SPLIT_SHARED SHARED)
endif ()
if (USE_STATIC_LIBRARIES)
list(REVERSE CMAKE_FIND_LIBRARY_SUFFIXES)
endif ()
@ -116,11 +123,13 @@ if (ARCHNATIVE)
set (COMPILER_FLAGS "${COMPILER_FLAGS} -march=native")
endif ()
option (USE_LIBCXX "Use libc++ and libc++abi instead of libstdc++ (only make sense on Linux with Clang)" OFF)
if (USE_LIBCXX)
set (COMPILER_FLAGS "${COMPILER_FLAGS} -pthread") # NOTE: Why this is not the default and why this is needed only with libc++?
set (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -stdlib=libc++")
set (CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -D_LIBCPP_DEBUG=1") # More checks in debug build.
if (CMAKE_SYSTEM MATCHES "Linux" AND CMAKE_CXX_COMPILER_ID STREQUAL "Clang")
option (USE_LIBCXX "Use libc++ and libc++abi instead of libstdc++ (only make sense on Linux with Clang)" ON)
if (USE_LIBCXX)
set (COMPILER_FLAGS "${COMPILER_FLAGS} -pthread") # NOTE: Why this is not the default and why this is needed only with libc++?
set (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -stdlib=libc++")
set (CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -D_LIBCPP_DEBUG=1") # More checks in debug build.
endif ()
endif ()
# Special options for better optimized code with clang

View File

@ -6,6 +6,7 @@ endif ()
if (NOT ZLIB_FOUND)
set (USE_INTERNAL_ZLIB_LIBRARY 1)
set (ZLIB_COMPAT 1) # for zlib-ng, also enables WITH_GZFILEOP
set (ZLIB_INCLUDE_DIR "${ClickHouse_SOURCE_DIR}/contrib/libzlib-ng" "${ClickHouse_BINARY_DIR}/contrib/libzlib-ng") # generated zconf.h
set (ZLIB_INCLUDE_DIRS ${ZLIB_INCLUDE_DIR}) # for poco
set (ZLIB_FOUND 1) # for poco

View File

@ -4,6 +4,9 @@
get_property (dirs1 TARGET dbms PROPERTY INCLUDE_DIRECTORIES)
list(APPEND dirs ${dirs1})
get_property (dirs1 TARGET clickhouse_common_io PROPERTY INCLUDE_DIRECTORIES)
list(APPEND dirs ${dirs1})
get_property (dirs1 TARGET common PROPERTY INCLUDE_DIRECTORIES)
list(APPEND dirs ${dirs1})

View File

@ -45,7 +45,11 @@ if (USE_INTERNAL_UNWIND_LIBRARY)
endif ()
if (USE_INTERNAL_ZLIB_LIBRARY)
add_subdirectory (libzlib-ng)
add_subdirectory (zlib-ng)
# todo: make pull to Dead2/zlib-ng and remove:
# We should use same defines when including zlib.h as used when zlib compiled
target_compile_definitions (zlib PUBLIC ZLIB_COMPAT WITH_GZFILEOP)
target_compile_definitions (zlibstatic PUBLIC ZLIB_COMPAT WITH_GZFILEOP)
endif ()
if (USE_INTERNAL_CCTZ_LIBRARY)

View File

@ -1,52 +0,0 @@
*.diff
*.patch
*.orig
*.rej
*~
*.a
*.lo
*.o
*.dylib
*.gcda
*.gcno
*.gcov
/example
/example64
/examplesh
/libz.so*
/minigzip
/minigzip64
/minigzipsh
/zlib.pc
/CVE-2003-0107
.DS_Store
*.obj
*.exe
*.pdb
*.exp
*.lib
*.dll
*.res
foo.gz
*.manifest
CMakeCache.txt
CMakeFiles
Testing
*.cmake
*.stackdump
zconf.h
zconf.h.cmakein
zconf.h.included
ztest*
configure.log
a.out
/arch/arm/Makefile
/arch/generic/Makefile
/arch/x86/Makefile

View File

@ -1,12 +0,0 @@
language: c
compiler:
- gcc
- clang
env:
- BUILDDIR=. TOOL="./configure --zlib-compat"
- BUILDDIR=../build TOOL="../zlib-ng/configure --zlib-compat"
- BUILDDIR=. TOOL="./configure --zlib-compat --without-optimizations --without-new-strategies"
- BUILDDIR=. TOOL="cmake ."
- BUILDDIR=../build TOOL="cmake ../zlib-ng"
script: mkdir -p $BUILDDIR && cd $BUILDDIR &&
$TOOL && make && make test

View File

@ -1,563 +0,0 @@
cmake_minimum_required(VERSION 2.8.4)
set(CMAKE_ALLOW_LOOSE_LOOP_CONSTRUCTS ON)
project(zlib C)
set(VERSION "1.2.8")
set(INSTALL_BIN_DIR "${CMAKE_INSTALL_PREFIX}/bin" CACHE PATH "Installation directory for executables")
set(INSTALL_LIB_DIR "${CMAKE_INSTALL_PREFIX}/lib" CACHE PATH "Installation directory for libraries")
set(INSTALL_INC_DIR "${CMAKE_INSTALL_PREFIX}/include" CACHE PATH "Installation directory for headers")
set(INSTALL_MAN_DIR "${CMAKE_INSTALL_PREFIX}/share/man" CACHE PATH "Installation directory for manual pages")
set(INSTALL_PKGCONFIG_DIR "${CMAKE_INSTALL_PREFIX}/share/pkgconfig" CACHE PATH "Installation directory for pkgconfig (.pc) files")
include(CheckTypeSize)
include(CheckSymbolExists)
include(CheckFunctionExists)
include(CheckIncludeFile)
include(CheckCSourceCompiles)
include(CheckCSourceRuns)
include(CheckLibraryExists)
include(FeatureSummary)
# make sure we use an appropriate BUILD_TYPE by default, "Release" to be exact
# this should select the maximum generic optimisation on the current platform (i.e. -O3 for gcc/clang)
if(NOT CMAKE_BUILD_TYPE)
set(CMAKE_BUILD_TYPE "Release" CACHE STRING
"Choose the type of build, standard options are: Debug Release RelWithDebInfo MinSizeRel."
FORCE)
add_feature_info(CMAKE_BUILD_TYPE 1 "Build type: ${CMAKE_BUILD_TYPE} (default)")
else()
add_feature_info(CMAKE_BUILD_TYPE 1 "Build type: ${CMAKE_BUILD_TYPE} (selected)")
endif()
enable_testing()
check_include_file(sys/types.h HAVE_SYS_TYPES_H)
check_include_file(stdint.h HAVE_STDINT_H)
check_include_file(stddef.h HAVE_STDDEF_H)
#
# Options parsing
#
set(ARCH ${CMAKE_HOST_SYSTEM_PROCESSOR})
message(STATUS "Architecture: ${ARCH}")
option (ZLIB_COMPAT "Compile with zlib compatible API" OFF)
if (ZLIB_COMPAT)
add_definitions(-DZLIB_COMPAT)
set (WITH_GZFILEOP ON)
endif (ZLIB_COMPAT)
option (WITH_GZFILEOP "Compile with support for gzFile related functions" OFF)
if (WITH_GZFILEOP)
add_definitions(-DWITH_GZFILEOP)
endif (WITH_GZFILEOP)
option(WITH_OPTIM "Build with optimisation" ON)
option(WITH_NEW_QUICK_STRATEGY "Use new quick strategy for compression level 1" OFF) # this option produces corrupt gzip stream so turn it off for now.
option(WITH_NEW_MEDIUM_STRATEGY "Use new medium strategy for compression levels 4-6" ON)
option(WITH_NATIVE_INSTRUCTIONS
"Instruct the compiler to use the full instruction set on this host (gcc/clang -march=native)" OFF)
if(${CMAKE_C_COMPILER} MATCHES "icc" OR ${CMAKE_C_COMPILER} MATCHES "icpc" OR ${CMAKE_C_COMPILER} MATCHES "icl")
if(WITH_NATIVE_INSTRUCTIONS)
message(STATUS "Ignoring WITH_NATIVE_INSTRUCTIONS; not supported on this configuration")
endif()
if(CMAKE_HOST_UNIX)
if(NOT SSE2FLAG)
set(SSE2FLAG "-msse2")
endif()
if(NOT SSE4FLAG)
set(SSE4FLAG "-msse4.2")
endif()
else()
if(NOT SSE2FLAG)
set(SSE2FLAG "/arch:SSE2")
endif()
if(NOT SSE4FLAG)
set(SSE4FLAG "/arch:SSE4.2")
endif()
endif()
elseif(MSVC)
# TODO. ICC can be used through MSVC. I'm not sure if we'd ever see that combination
# (who'd use cmake from an IDE...) but checking for ICC before checking for MSVC should
# avoid mistakes.
# /Oi ?
if(NOT ${ARCH} MATCHES "AMD64")
set(SSE2FLAG "/arch:SSE2")
endif()
if(WITH_NATIVE_INSTRUCTIONS)
message(STATUS "Ignoring WITH_NATIVE_INSTRUCTIONS; not supported on this configuration")
endif()
else()
execute_process(COMMAND ${CMAKE_C_COMPILER} --version OUTPUT_VARIABLE COMPILER_VERSION)
if("${COMPILER_VERSION}" MATCHES "gcc" OR "${COMPILER_VERSION}" MATCHES "clang")
set(__GNUC__ ON)
endif()
if(WITH_NATIVE_INSTRUCTIONS)
if(__GNUC__)
set(NATIVEFLAG "-march=native")
else()
message(STATUS "Ignoring WITH_NATIVE_INSTRUCTIONS; not implemented yet on this configuration")
endif()
endif()
if(NOT NATIVEFLAG)
if(NOT SSE2FLAG)
if(__GNUC__)
set(SSE2FLAG "-msse2")
endif()
endif()
if(NOT SSE4FLAG)
if(__GNUC__)
set(SSE4FLAG "-msse4")
endif()
endif()
if(NOT PCLMULFLAG)
if(__GNUC__)
set(PCLMULFLAG "-mpclmul")
endif()
endif()
else(NOT NATIVEFLAG)
set(SSE2FLAG ${NATIVEFLAG})
set(SSE4FLAG ${NATIVEFLAG})
set(PCLMULFLAG ${NATIVEFLAG})
endif(NOT NATIVEFLAG)
endif()
add_feature_info(ZLIB_COMPAT ZLIB_COMPAT "Provide a zlib-compatible API")
add_feature_info(WITH_GZFILEOP WITH_GZFILEOP "Compile with support for gzFile-related functions")
add_feature_info(WITH_OPTIM WITH_OPTIM "Build with optimisation")
add_feature_info(WITH_NEW_QUICK_STRATEGY WITH_NEW_QUICK_STRATEGY "Use new quick strategy for compression level 1")
add_feature_info(WITH_NEW_MEDIUM_STRATEGY WITH_NEW_MEDIUM_STRATEGY "Use new medium strategy for compression levels 4-6")
#
# Check to see if we have large file support
#
set(CMAKE_REQUIRED_DEFINITIONS -D_LARGEFILE64_SOURCE=1)
# We add these other definitions here because CheckTypeSize.cmake
# in CMake 2.4.x does not automatically do so and we want
# compatibility with CMake 2.4.x.
if(HAVE_SYS_TYPES_H)
list(APPEND CMAKE_REQUIRED_DEFINITIONS -DHAVE_SYS_TYPES_H)
endif()
if(HAVE_STDINT_H)
list(APPEND CMAKE_REQUIRED_DEFINITIONS -DHAVE_STDINT_H)
endif()
if(HAVE_STDDEF_H)
list(APPEND CMAKE_REQUIRED_DEFINITIONS -DHAVE_STDDEF_H)
endif()
check_type_size(off64_t OFF64_T)
if(HAVE_OFF64_T)
add_definitions(-D_LARGEFILE64_SOURCE=1)
else()
check_type_size(_off64_t _OFF64_T)
if (HAVE__OFF64_T)
add_definitions(-D_LARGEFILE64_SOURCE=1)
endif()
endif()
set(CMAKE_REQUIRED_DEFINITIONS) # clear variable
#
# Check for fseeko and other optional functions
#
check_function_exists(fseeko HAVE_FSEEKO)
if(NOT HAVE_FSEEKO)
add_definitions(-DNO_FSEEKO)
endif()
check_function_exists(strerror HAVE_STRERROR)
if(NOT HAVE_STRERROR)
add_definitions(-DNO_STRERROR)
endif()
#
# Check for unistd.h and stdarg.h
#
check_include_file(unistd.h Z_HAVE_UNISTD_H)
check_include_file(stdarg.h Z_HAVE_STDARG_H)
#
# Check if we can hide zlib internal symbols that are linked between separate source files using hidden
#
check_c_source_compiles(
"#define ZLIB_INTERNAL __attribute__((visibility (\"hidden\")))
int ZLIB_INTERNAL foo;
int main()
{
return 0;
}"
HAVE_ATTRIBUTE_VISIBILITY_HIDDEN FAIL_REGEX "not supported")
if(HAVE_ATTRIBUTE_VISIBILITY_HIDDEN)
add_definitions(-DHAVE_HIDDEN)
endif()
#
# Check if we can hide zlib internal symbols that are linked between separate source files using internal
#
check_c_source_compiles(
"#define ZLIB_INTERNAL __attribute__((visibility (\"internal\")))
int ZLIB_INTERNAL foo;
int main()
{
return 0;
}"
HAVE_ATTRIBUTE_VISIBILITY_INTERNAL FAIL_REGEX "not supported")
if(HAVE_ATTRIBUTE_VISIBILITY_INTERNAL)
add_definitions(-DHAVE_INTERNAL)
endif()
#
# check for __builtin_ctzl() support in the compiler
#
check_c_source_compiles(
"int main(void)
{
unsigned int zero = 0;
long test = __builtin_ctzl(zero);
(void)test;
return 0;
}"
HAVE_BUILTIN_CTZL
)
if(HAVE_BUILTIN_CTZL)
add_definitions(-DHAVE_BUILTIN_CTZL)
endif()
# Macro to check if source compiles when cross-compiling
# or runs when compiling natively
macro(check_c_source_compile_or_run source flag)
if(CMAKE_CROSSCOMPILING)
check_c_source_compiles("${source}" ${flag})
else()
check_c_source_runs("${source}" ${flag})
endif()
endmacro(check_c_source_compile_or_run)
if(MSVC)
set(CMAKE_DEBUG_POSTFIX "d")
add_definitions(-D_CRT_SECURE_NO_DEPRECATE)
add_definitions(-D_CRT_NONSTDC_NO_DEPRECATE)
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
else()
#
# not MSVC, so we need to check if we have the MS-style SSE etc. intrinsics
#
if(WITH_NATIVE_INSTRUCTIONS)
set(CMAKE_REQUIRED_FLAGS "${NATIVEFLAG}")
else()
set(CMAKE_REQUIRED_FLAGS "${SSE2FLAG}")
endif()
check_c_source_compile_or_run(
"#include <immintrin.h>
int main(void)
{
__m128i zero = _mm_setzero_si128();
(void)zero;
return 0;
}"
HAVE_SSE2_INTRIN
)
if(WITH_NATIVE_INSTRUCTIONS)
set(CMAKE_REQUIRED_FLAGS "${NATIVEFLAG}")
else()
# use the generic SSE4 enabler option to check for the SSE4.2 instruction we require:
set(CMAKE_REQUIRED_FLAGS "${SSE4FLAG}")
endif()
check_c_source_compile_or_run(
"int main(void)
{
unsigned val = 0, h = 0;
__asm__ __volatile__ ( \"crc32 %1,%0\" : \"+r\" (h) : \"r\" (val) );
return (int) h;
}"
HAVE_SSE42_INTRIN
)
if(WITH_NATIVE_INSTRUCTIONS)
set(CMAKE_REQUIRED_FLAGS "${NATIVEFLAG}")
else()
# the PCLMUL instruction we use also requires an SSE4.1 instruction check for both
set(CMAKE_REQUIRED_FLAGS "${SSE4FLAG} ${PCLMULFLAG}")
endif()
check_c_source_compile_or_run(
"#include <immintrin.h>
#include <smmintrin.h>
#include <wmmintrin.h>
int main(void)
{
__m128i a = _mm_setzero_si128();
__m128i b = _mm_setzero_si128();
__m128i c = _mm_clmulepi64_si128(a, b, 0x10);
int d = _mm_extract_epi32(c, 2);
return d;
}"
HAVE_PCLMULQDQ_INTRIN
)
endif()
#
# Enable deflate_medium at level 4-6
#
if(WITH_NEW_MEDIUM_STRATEGY)
add_definitions(-DMEDIUM_STRATEGY)
endif()
#
# macro to add either the given intrinsics option to the global compiler options,
# or ${NATIVEFLAG} (-march=native) if that is appropriate and possible.
# An alternative version of this macro would take a file argument, and set ${flag}
# only for that file as opposed to ${NATIVEFLAG} globally, to limit side-effect of
# using ${flag} globally.
#
macro(add_intrinsics_option flag)
if(WITH_NATIVE_INSTRUCTIONS AND NATIVEFLAG)
if (NOT "${CMAKE_C_FLAGS} " MATCHES ".*${NATIVEFLAG} .*")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${NATIVEFLAG}")
endif()
else()
if (NOT "${CMAKE_C_FLAGS} " MATCHES ".*${flag} .*")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${flag}")
endif()
endif()
endmacro(add_intrinsics_option)
set(ZLIB_ARCH_SRCS)
set(ARCHDIR "arch/generic")
if("${ARCH}" MATCHES "x86_64" OR "${ARCH}" MATCHES "AMD64")
set(ARCHDIR "arch/x86")
add_definitions(-DX86_64 -DX86_NOCHECK_SSE2 -DUNALIGNED_OK -DUNROLL_LESS -DX86_CPUID)
add_feature_info(SSE2 1 "Use the SSE2 instruction set, using \"${SSE2FLAG}\"")
elseif("${ARCH}" MATCHES "arm" OR "${ARCH}" MATCHES "aarch64")
set(ARCHDIR "arch/arm")
add_definitions(-DUNALIGNED_OK -DUNROLL_LESS)
else()
set(ARCHDIR "arch/x86")
add_definitions(-DX86 -DUNALIGNED_OK -DUNROLL_LESS -DX86_CPUID)
add_feature_info(SSE2 1 "Support the SSE2 instruction set, using \"${SSE2FLAG}\"")
endif()
if(WITH_OPTIM)
if(NOT CMAKE_SYSTEM_PROCESSOR MATCHES "arm" AND NOT CMAKE_SYSTEM_PROCESSOR MATCHES "aarch64")
set(ZLIB_ARCH_SRCS ${ZLIB_ARCH_SRCS} ${ARCHDIR}/x86.c)
endif()
if(HAVE_SSE42_INTRIN)
add_definitions(-DX86_SSE4_2_CRC_HASH)
set(ZLIB_ARCH_SRCS ${ZLIB_ARCH_SRCS} ${ARCHDIR}/insert_string_sse.c)
add_feature_info(SSE4_CRC 1 "Support CRC hash generation using the SSE4.2 instruction set, using \"${SSE4FLAG}\"")
add_intrinsics_option("${SSE4FLAG}")
if(WITH_NEW_QUICK_STRATEGY)
add_definitions(-DX86_QUICK_STRATEGY)
set(ZLIB_ARCH_SRCS ${ZLIB_ARCH_SRCS} ${ARCHDIR}/deflate_quick.c)
add_feature_info(SSE4DEFLATE 1 "Support SSE4.2-accelerated quick decompression")
endif()
endif()
if(HAVE_SSE2_INTRIN)
add_definitions(-DX86_SSE2_FILL_WINDOW)
set(ZLIB_ARCH_SRCS ${ZLIB_ARCH_SRCS} ${ARCHDIR}/fill_window_sse.c)
if(NOT ${ARCH} MATCHES "x86_64")
add_intrinsics_option("${SSE2FLAG}")
endif()
endif()
if(HAVE_PCLMULQDQ_INTRIN)
if (CMAKE_SYSTEM_PROCESSOR MATCHES "^x86")
add_definitions(-DX86_PCLMULQDQ_CRC)
endif()
set(ZLIB_ARCH_SRCS ${ZLIB_ARCH_SRCS} ${ARCHDIR}/crc_folding.c)
add_feature_info(PCLMUL_CRC 1 "Support CRC hash generation using PCLMULQDQ, using \"${SSE4FLAG} ${PCLMULFLAG}\"")
add_intrinsics_option("${PCLMULFLAG}")
if(NOT HAVE_SSE42_INTRIN)
add_intrinsics_option("${SSE4FLAG}")
endif()
endif()
endif()
message(STATUS "Architecture-specific source files: ${ZLIB_ARCH_SRCS}")
#============================================================================
# zconf.h
#============================================================================
macro(generate_cmakein input output)
execute_process(COMMAND sed "/#define ZCONF_H/ a\\\n#cmakedefine Z_HAVE_UNISTD_H\\\n#cmakedefine Z_HAVE_STDARG_H\n"
INPUT_FILE ${input}
OUTPUT_FILE ${output}
)
endmacro(generate_cmakein)
generate_cmakein( ${CMAKE_CURRENT_SOURCE_DIR}/zconf.h.in ${CMAKE_CURRENT_BINARY_DIR}/zconf.h.cmakein )
if(NOT CMAKE_CURRENT_SOURCE_DIR STREQUAL CMAKE_CURRENT_BINARY_DIR)
# If we're doing an out of source build and the user has a zconf.h
# in their source tree...
if(EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/zconf.h)
message(STATUS "Renaming")
message(STATUS " ${CMAKE_CURRENT_SOURCE_DIR}/zconf.h")
message(STATUS "to 'zconf.h.included' because this file is included with zlib")
message(STATUS "but CMake generates it automatically in the build directory.")
file(RENAME ${CMAKE_CURRENT_SOURCE_DIR}/zconf.h ${CMAKE_CURRENT_SOURCE_DIR}/zconf.h.included)
endif()
# If we're doing an out of source build and the user has a zconf.h.cmakein
# in their source tree...
if(EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/zconf.h.cmakein)
message(STATUS "Renaming")
message(STATUS " ${CMAKE_CURRENT_SOURCE_DIR}/zconf.h.cmakein")
message(STATUS "to 'zconf.h.cmakeincluded' because this file is included with zlib")
message(STATUS "but CMake generates it automatically in the build directory.")
file(RENAME ${CMAKE_CURRENT_SOURCE_DIR}/zconf.h.cmakein ${CMAKE_CURRENT_SOURCE_DIR}/zconf.h.cmakeincluded)
endif()
endif()
set(ZLIB_PC ${CMAKE_CURRENT_BINARY_DIR}/zlib.pc)
configure_file( ${CMAKE_CURRENT_SOURCE_DIR}/zlib.pc.cmakein
${ZLIB_PC} @ONLY)
configure_file( ${CMAKE_CURRENT_BINARY_DIR}/zconf.h.cmakein
${CMAKE_CURRENT_BINARY_DIR}/zconf.h @ONLY)
include_directories(${CMAKE_CURRENT_BINARY_DIR} ${CMAKE_CURRENT_SOURCE_DIR})
#============================================================================
# zlib
#============================================================================
set(ZLIB_PUBLIC_HDRS
${CMAKE_CURRENT_BINARY_DIR}/zconf.h
zlib.h
)
set(ZLIB_PRIVATE_HDRS
crc32.h
deflate.h
gzguts.h
inffast.h
inffixed.h
inflate.h
inftrees.h
trees.h
zutil.h
)
set(ZLIB_SRCS
adler32.c
compress.c
crc32.c
deflate.c
deflate_fast.c
deflate_medium.c
deflate_slow.c
inflate.c
infback.c
inftrees.c
inffast.c
match.c
trees.c
uncompr.c
zutil.c
)
if (WITH_GZFILEOP)
set(ZLIB_GZFILE_SRCS
gzclose.c
gzlib.c
gzread.c
gzwrite.c
)
else (WITH_GZFILEOP)
set(ZLIB_GZFILE_SRCS
)
endif (WITH_GZFILEOP)
if(NOT MINGW AND NOT MSYS)
set(ZLIB_DLL_SRCS
win32/zlib1.rc # If present will override custom build rule below.
)
endif()
# parse the full version number from zlib.h and include in ZLIB_FULL_VERSION
file(READ ${CMAKE_CURRENT_SOURCE_DIR}/zlib.h _zlib_h_contents)
string(REGEX REPLACE ".*#define[ \t]+ZLIB_VERSION[ \t]+\"([-0-9A-Za-z.]+)\".*"
"\\1" ZLIB_FULL_VERSION ${_zlib_h_contents})
if(MINGW OR MSYS)
# This gets us DLL resource information when compiling on MinGW.
if(NOT CMAKE_RC_COMPILER)
set(CMAKE_RC_COMPILER windres.exe)
endif()
add_custom_command(OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/zlib1rc.obj
COMMAND ${CMAKE_RC_COMPILER}
-D GCC_WINDRES
-I ${CMAKE_CURRENT_SOURCE_DIR}
-I ${CMAKE_CURRENT_BINARY_DIR}
-o ${CMAKE_CURRENT_BINARY_DIR}/zlib1rc.obj
-i ${CMAKE_CURRENT_SOURCE_DIR}/win32/zlib1.rc)
set(ZLIB_DLL_SRCS ${CMAKE_CURRENT_BINARY_DIR}/zlib1rc.obj)
endif(MINGW OR MSYS)
add_library(zlib SHARED ${ZLIB_SRCS} ${ZLIB_GZFILE_SRCS} ${ZLIB_ARCH_SRCS} ${ZLIB_ASMS} ${ZLIB_DLL_SRCS} ${ZLIB_PUBLIC_HDRS} ${ZLIB_PRIVATE_HDRS})
add_library(zlibstatic STATIC ${ZLIB_SRCS} ${ZLIB_GZFILE_SRCS} ${ZLIB_ARCH_SRCS} ${ZLIB_ASMS} ${ZLIB_PUBLIC_HDRS} ${ZLIB_PRIVATE_HDRS})
set_target_properties(zlib PROPERTIES DEFINE_SYMBOL ZLIB_DLL)
set_target_properties(zlib PROPERTIES SOVERSION 1)
if(NOT CYGWIN)
# This property causes shared libraries on Linux to have the full version
# encoded into their final filename. We disable this on Cygwin because
# it causes cygz-${ZLIB_FULL_VERSION}.dll to be created when cygz.dll
# seems to be the default.
#
# This has no effect with MSVC, on that platform the version info for
# the DLL comes from the resource file win32/zlib1.rc
set_target_properties(zlib PROPERTIES VERSION ${ZLIB_FULL_VERSION})
endif()
if(UNIX)
# On unix-like platforms the library is almost always called libz
set_target_properties(zlib zlibstatic PROPERTIES OUTPUT_NAME z)
if(NOT APPLE)
set_target_properties(zlib PROPERTIES LINK_FLAGS "-Wl,--version-script,\"${CMAKE_CURRENT_SOURCE_DIR}/zlib.map\"")
endif()
elseif(MSYS)
# Suppress version number from shared library name
set(CMAKE_SHARED_LIBRARY_NAME_WITH_VERSION 0)
elseif(BUILD_SHARED_LIBS AND WIN32)
# Creates zlib1.dll when building shared library version
set_target_properties(zlib PROPERTIES SUFFIX "1.dll")
endif()
if(NOT SKIP_INSTALL_LIBRARIES AND NOT SKIP_INSTALL_ALL )
install(TARGETS zlib zlibstatic
RUNTIME DESTINATION "${INSTALL_BIN_DIR}"
ARCHIVE DESTINATION "${INSTALL_LIB_DIR}"
LIBRARY DESTINATION "${INSTALL_LIB_DIR}" )
endif()
if(NOT SKIP_INSTALL_HEADERS AND NOT SKIP_INSTALL_ALL )
install(FILES ${ZLIB_PUBLIC_HDRS} DESTINATION "${INSTALL_INC_DIR}")
endif()
if(NOT SKIP_INSTALL_FILES AND NOT SKIP_INSTALL_ALL )
install(FILES zlib.3 DESTINATION "${INSTALL_MAN_DIR}/man3")
endif()
if(NOT SKIP_INSTALL_FILES AND NOT SKIP_INSTALL_ALL )
install(FILES ${ZLIB_PC} DESTINATION "${INSTALL_PKGCONFIG_DIR}")
endif()
#============================================================================
# Example binaries
#============================================================================
if (CMAKE_CXX_COMPILER_ID STREQUAL "Clang")
set (CMAKE_EXE_LINKER_FLAGS "")
endif ()
add_executable(example test/example.c)
target_link_libraries(example zlib)
add_test(example example)
add_executable(minigzip test/minigzip.c)
target_link_libraries(minigzip zlib)
if(HAVE_OFF64_T)
add_executable(example64 test/example.c)
target_link_libraries(example64 zlib)
set_target_properties(example64 PROPERTIES COMPILE_FLAGS "-D_FILE_OFFSET_BITS=64")
add_test(example64 example64)
add_executable(minigzip64 test/minigzip.c)
target_link_libraries(minigzip64 zlib)
set_target_properties(minigzip64 PROPERTIES COMPILE_FLAGS "-D_FILE_OFFSET_BITS=64")
endif()

File diff suppressed because it is too large Load Diff

View File

@ -1,374 +0,0 @@
##
# THIS IS AN UNMAINTAINED COPY OF THE ORIGINAL FILE DISTRIBUTED WITH ZLIB 1.2.8
##
Frequently Asked Questions about zlib
If your question is not there, please check the zlib home page
http://zlib.net/ which may have more recent information.
The lastest zlib FAQ is at http://zlib.net/zlib_faq.html
1. Is zlib Y2K-compliant?
Yes. zlib doesn't handle dates.
2. Where can I get a Windows DLL version?
The zlib sources can be compiled without change to produce a DLL. See the
file win32/DLL_FAQ.txt in the zlib distribution. Pointers to the
precompiled DLL are found in the zlib web site at http://zlib.net/ .
3. Where can I get a Visual Basic interface to zlib?
See
* http://marknelson.us/1997/01/01/zlib-engine/
* win32/DLL_FAQ.txt in the zlib distribution
4. compress() returns Z_BUF_ERROR.
Make sure that before the call of compress(), the length of the compressed
buffer is equal to the available size of the compressed buffer and not
zero. For Visual Basic, check that this parameter is passed by reference
("as any"), not by value ("as long").
5. deflate() or inflate() returns Z_BUF_ERROR.
Before making the call, make sure that avail_in and avail_out are not zero.
When setting the parameter flush equal to Z_FINISH, also make sure that
avail_out is big enough to allow processing all pending input. Note that a
Z_BUF_ERROR is not fatal--another call to deflate() or inflate() can be
made with more input or output space. A Z_BUF_ERROR may in fact be
unavoidable depending on how the functions are used, since it is not
possible to tell whether or not there is more output pending when
strm.avail_out returns with zero. See http://zlib.net/zlib_how.html for a
heavily annotated example.
6. Where's the zlib documentation (man pages, etc.)?
It's in zlib.h . Examples of zlib usage are in the files test/example.c
and test/minigzip.c, with more in examples/ .
7. Why don't you use GNU autoconf or libtool or ...?
Because we would like to keep zlib as a very small and simple package.
zlib is rather portable and doesn't need much configuration.
8. I found a bug in zlib.
Most of the time, such problems are due to an incorrect usage of zlib.
Please try to reproduce the problem with a small program and send the
corresponding source to us at zlib@gzip.org . Do not send multi-megabyte
data files without prior agreement.
9. Why do I get "undefined reference to gzputc"?
If "make test" produces something like
example.o(.text+0x154): undefined reference to `gzputc'
check that you don't have old files libz.* in /usr/lib, /usr/local/lib or
/usr/X11R6/lib. Remove any old versions, then do "make install".
10. I need a Delphi interface to zlib.
See the contrib/delphi directory in the zlib distribution.
11. Can zlib handle .zip archives?
Not by itself, no. See the directory contrib/minizip in the zlib
distribution.
12. Can zlib handle .Z files?
No, sorry. You have to spawn an uncompress or gunzip subprocess, or adapt
the code of uncompress on your own.
13. How can I make a Unix shared library?
By default a shared (and a static) library is built for Unix. So:
make distclean
./configure
make
14. How do I install a shared zlib library on Unix?
After the above, then:
make install
However, many flavors of Unix come with a shared zlib already installed.
Before going to the trouble of compiling a shared version of zlib and
trying to install it, you may want to check if it's already there! If you
can #include <zlib.h>, it's there. The -lz option will probably link to
it. You can check the version at the top of zlib.h or with the
ZLIB_VERSION symbol defined in zlib.h .
15. I have a question about OttoPDF.
We are not the authors of OttoPDF. The real author is on the OttoPDF web
site: Joel Hainley, jhainley@myndkryme.com.
16. Can zlib decode Flate data in an Adobe PDF file?
Yes. See http://www.pdflib.com/ . To modify PDF forms, see
http://sourceforge.net/projects/acroformtool/ .
17. Why am I getting this "register_frame_info not found" error on Solaris?
After installing zlib 1.1.4 on Solaris 2.6, running applications using zlib
generates an error such as:
ld.so.1: rpm: fatal: relocation error: file /usr/local/lib/libz.so:
symbol __register_frame_info: referenced symbol not found
The symbol __register_frame_info is not part of zlib, it is generated by
the C compiler (cc or gcc). You must recompile applications using zlib
which have this problem. This problem is specific to Solaris. See
http://www.sunfreeware.com for Solaris versions of zlib and applications
using zlib.
18. Why does gzip give an error on a file I make with compress/deflate?
The compress and deflate functions produce data in the zlib format, which
is different and incompatible with the gzip format. The gz* functions in
zlib on the other hand use the gzip format. Both the zlib and gzip formats
use the same compressed data format internally, but have different headers
and trailers around the compressed data.
19. Ok, so why are there two different formats?
The gzip format was designed to retain the directory information about a
single file, such as the name and last modification date. The zlib format
on the other hand was designed for in-memory and communication channel
applications, and has a much more compact header and trailer and uses a
faster integrity check than gzip.
20. Well that's nice, but how do I make a gzip file in memory?
You can request that deflate write the gzip format instead of the zlib
format using deflateInit2(). You can also request that inflate decode the
gzip format using inflateInit2(). Read zlib.h for more details.
21. Is zlib thread-safe?
Yes. However any library routines that zlib uses and any application-
provided memory allocation routines must also be thread-safe. zlib's gz*
functions use stdio library routines, and most of zlib's functions use the
library memory allocation routines by default. zlib's *Init* functions
allow for the application to provide custom memory allocation routines.
Of course, you should only operate on any given zlib or gzip stream from a
single thread at a time.
22. Can I use zlib in my commercial application?
Yes. Please read the license in zlib.h.
23. Is zlib under the GNU license?
No. Please read the license in zlib.h.
24. The license says that altered source versions must be "plainly marked". So
what exactly do I need to do to meet that requirement?
You need to change the ZLIB_VERSION and ZLIB_VERNUM #defines in zlib.h. In
particular, the final version number needs to be changed to "f", and an
identification string should be appended to ZLIB_VERSION. Version numbers
x.x.x.f are reserved for modifications to zlib by others than the zlib
maintainers. For example, if the version of the base zlib you are altering
is "1.2.3.4", then in zlib.h you should change ZLIB_VERNUM to 0x123f, and
ZLIB_VERSION to something like "1.2.3.f-zachary-mods-v3". You can also
update the version strings in deflate.c and inftrees.c.
For altered source distributions, you should also note the origin and
nature of the changes in zlib.h, as well as in ChangeLog and README, along
with the dates of the alterations. The origin should include at least your
name (or your company's name), and an email address to contact for help or
issues with the library.
Note that distributing a compiled zlib library along with zlib.h and
zconf.h is also a source distribution, and so you should change
ZLIB_VERSION and ZLIB_VERNUM and note the origin and nature of the changes
in zlib.h as you would for a full source distribution.
25. Will zlib work on a big-endian or little-endian architecture, and can I
exchange compressed data between them?
Yes and yes.
26. Will zlib work on a 64-bit machine?
Yes. It has been tested on 64-bit machines, and has no dependence on any
data types being limited to 32-bits in length. If you have any
difficulties, please provide a complete problem report to zlib@gzip.org
27. Will zlib decompress data from the PKWare Data Compression Library?
No. The PKWare DCL uses a completely different compressed data format than
does PKZIP and zlib. However, you can look in zlib's contrib/blast
directory for a possible solution to your problem.
28. Can I access data randomly in a compressed stream?
No, not without some preparation. If when compressing you periodically use
Z_FULL_FLUSH, carefully write all the pending data at those points, and
keep an index of those locations, then you can start decompression at those
points. You have to be careful to not use Z_FULL_FLUSH too often, since it
can significantly degrade compression. Alternatively, you can scan a
deflate stream once to generate an index, and then use that index for
random access. See examples/zran.c .
29. Does zlib work on MVS, OS/390, CICS, etc.?
It has in the past, but we have not heard of any recent evidence. There
were working ports of zlib 1.1.4 to MVS, but those links no longer work.
If you know of recent, successful applications of zlib on these operating
systems, please let us know. Thanks.
30. Is there some simpler, easier to read version of inflate I can look at to
understand the deflate format?
First off, you should read RFC 1951. Second, yes. Look in zlib's
contrib/puff directory.
31. Does zlib infringe on any patents?
As far as we know, no. In fact, that was originally the whole point behind
zlib. Look here for some more information:
http://www.gzip.org/#faq11
32. Can zlib work with greater than 4 GB of data?
Yes. inflate() and deflate() will process any amount of data correctly.
Each call of inflate() or deflate() is limited to input and output chunks
of the maximum value that can be stored in the compiler's "unsigned int"
type, but there is no limit to the number of chunks. Note however that the
strm.total_in and strm_total_out counters may be limited to 4 GB. These
counters are provided as a convenience and are not used internally by
inflate() or deflate(). The application can easily set up its own counters
updated after each call of inflate() or deflate() to count beyond 4 GB.
compress() and uncompress() may be limited to 4 GB, since they operate in a
single call. gzseek() and gztell() may be limited to 4 GB depending on how
zlib is compiled. See the zlibCompileFlags() function in zlib.h.
The word "may" appears several times above since there is a 4 GB limit only
if the compiler's "long" type is 32 bits. If the compiler's "long" type is
64 bits, then the limit is 16 exabytes.
33. Does zlib have any security vulnerabilities?
The only one that we are aware of is potentially in gzprintf(). If zlib is
compiled to use sprintf() or vsprintf(), then there is no protection
against a buffer overflow of an 8K string space (or other value as set by
gzbuffer()), other than the caller of gzprintf() assuring that the output
will not exceed 8K. On the other hand, if zlib is compiled to use
snprintf() or vsnprintf(), which should normally be the case, then there is
no vulnerability. The ./configure script will display warnings if an
insecure variation of sprintf() will be used by gzprintf(). Also the
zlibCompileFlags() function will return information on what variant of
sprintf() is used by gzprintf().
If you don't have snprintf() or vsnprintf() and would like one, you can
find a portable implementation here:
http://www.ijs.si/software/snprintf/
Note that you should be using the most recent version of zlib. Versions
1.1.3 and before were subject to a double-free vulnerability, and versions
1.2.1 and 1.2.2 were subject to an access exception when decompressing
invalid compressed data.
34. Is there a Java version of zlib?
Probably what you want is to use zlib in Java. zlib is already included
as part of the Java SDK in the java.util.zip package. If you really want
a version of zlib written in the Java language, look on the zlib home
page for links: http://zlib.net/ .
35. I get this or that compiler or source-code scanner warning when I crank it
up to maximally-pedantic. Can't you guys write proper code?
Many years ago, we gave up attempting to avoid warnings on every compiler
in the universe. It just got to be a waste of time, and some compilers
were downright silly as well as contradicted each other. So now, we simply
make sure that the code always works.
36. Valgrind (or some similar memory access checker) says that deflate is
performing a conditional jump that depends on an uninitialized value.
Isn't that a bug?
No. That is intentional for performance reasons, and the output of deflate
is not affected. This only started showing up recently since zlib 1.2.x
uses malloc() by default for allocations, whereas earlier versions used
calloc(), which zeros out the allocated memory. Even though the code was
correct, versions 1.2.4 and later was changed to not stimulate these
checkers.
37. Will zlib read the (insert any ancient or arcane format here) compressed
data format?
Probably not. Look in the comp.compression FAQ for pointers to various
formats and associated software.
38. How can I encrypt/decrypt zip files with zlib?
zlib doesn't support encryption. The original PKZIP encryption is very
weak and can be broken with freely available programs. To get strong
encryption, use GnuPG, http://www.gnupg.org/ , which already includes zlib
compression. For PKZIP compatible "encryption", look at
http://www.info-zip.org/
39. What's the difference between the "gzip" and "deflate" HTTP 1.1 encodings?
"gzip" is the gzip format, and "deflate" is the zlib format. They should
probably have called the second one "zlib" instead to avoid confusion with
the raw deflate compressed data format. While the HTTP 1.1 RFC 2616
correctly points to the zlib specification in RFC 1950 for the "deflate"
transfer encoding, there have been reports of servers and browsers that
incorrectly produce or expect raw deflate data per the deflate
specification in RFC 1951, most notably Microsoft. So even though the
"deflate" transfer encoding using the zlib format would be the more
efficient approach (and in fact exactly what the zlib format was designed
for), using the "gzip" transfer encoding is probably more reliable due to
an unfortunate choice of name on the part of the HTTP 1.1 authors.
Bottom line: use the gzip format for HTTP 1.1 encoding.
40. Does zlib support the new "Deflate64" format introduced by PKWare?
No. PKWare has apparently decided to keep that format proprietary, since
they have not documented it as they have previous compression formats. In
any case, the compression improvements are so modest compared to other more
modern approaches, that it's not worth the effort to implement.
41. I'm having a problem with the zip functions in zlib, can you help?
There are no zip functions in zlib. You are probably using minizip by
Giles Vollant, which is found in the contrib directory of zlib. It is not
part of zlib. In fact none of the stuff in contrib is part of zlib. The
files in there are not supported by the zlib authors. You need to contact
the authors of the respective contribution for help.
42. The match.asm code in contrib is under the GNU General Public License.
Since it's part of zlib, doesn't that mean that all of zlib falls under the
GNU GPL?
No. The files in contrib are not part of zlib. They were contributed by
other authors and are provided as a convenience to the user within the zlib
distribution. Each item in contrib has its own license.
43. Is zlib subject to export controls? What is its ECCN?
zlib is not subject to export controls, and so is classified as EAR99.
44. Can you please sign these lengthy legal documents and fax them back to us
so that we can use your software in our product?
No. Go away. Shoo.

View File

@ -1,55 +0,0 @@
CMakeLists.txt cmake build file
ChangeLog.zlib history of changes up to the fork from zlib 1.2.8
FAQ.zlib Frequently Asked Questions about zlib, as distributed in zlib 1.2.8
INDEX this file
Makefile dummy Makefile that tells you to ./configure
Makefile.in template for Unix Makefile
README guess what
README.zlib Copy of the original README file distributed in zlib 1.2.8
configure configure script for Unix
test/example.c zlib usages examples for build testing
test/minigzip.c minimal gzip-like functionality for build testing
test/infcover.c inf*.c code coverage for build coverage testing
treebuild.xml XML description of source file dependencies
zconf.h.cmakein zconf.h template for cmake
zconf.h.in zconf.h template for configure
zlib.3 Man page for zlib
zlib.3.pdf Man page in PDF format
zlib.map Linux symbol information
zlib.pc.in Template for pkg-config descriptor
zlib.pc.cmakein zlib.pc template for cmake
zlib2ansi perl script to convert source files for C++ compilation
arch/ architecture-specific code
doc/ documentation for formats and algorithms
win32/ makefiles for Windows
zlib public header files (required for library use):
zconf.h
zlib.h
private source files used to build the zlib library:
adler32.c
compress.c
crc32.c
crc32.h
deflate.c
deflate.h
gzclose.c
gzguts.h
gzlib.c
gzread.c
gzwrite.c
infback.c
inffast.c
inffast.h
inffixed.h
inflate.c
inflate.h
inftrees.c
inftrees.h
trees.c
trees.h
uncompr.c
zutil.c
zutil.h

View File

@ -1,19 +0,0 @@
(C) 1995-2013 Jean-loup Gailly and Mark Adler
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.

View File

@ -1,329 +0,0 @@
# Makefile for zlib
# Copyright (C) 1995-2013 Jean-loup Gailly, Mark Adler
# For conditions of distribution and use, see copyright notice in zlib.h
# To compile and test, type:
# ./configure; make test
# Normally configure builds both a static and a shared library.
# If you want to build just a static library, use: ./configure --static
# To install /usr/local/lib/libz.* and /usr/local/include/zlib.h, type:
# make install
# To install in $HOME instead of /usr/local, use:
# make install prefix=$HOME
CC=cc
CFLAGS=-O
#CFLAGS=-O -DMAX_WBITS=14 -DMAX_MEM_LEVEL=7
#CFLAGS=-g -DDEBUG
#CFLAGS=-O3 -Wall -Wwrite-strings -Wpointer-arith -Wconversion \
# -Wstrict-prototypes -Wmissing-prototypes
SFLAGS=-O
LDFLAGS=
TEST_LDFLAGS=-L. libz.a
LDSHARED=$(CC)
STATICLIB=libz.a
SHAREDLIB=libz.so
SHAREDLIBV=libz.so.1.2.8
SHAREDLIBM=libz.so.1
IMPORTLIB=
SHAREDTARGET=libz.so.1.2.8
LIBS=$(STATICLIB) $(SHAREDTARGET)
AR=ar
ARFLAGS=rc
DEFFILE=
RC=
RCFLAGS=
RCOBJS=
STRIP=
RANLIB=ranlib
LDCONFIG=ldconfig
LDSHAREDLIBC=-lc
TAR=tar
SHELL=/bin/sh
EXE=
SRCDIR=.
INCLUDES=-I$(SRCDIR)
ARCHDIR=arch/generic
ARCH_STATIC_OBJS=
ARCH_SHARED_OBJS=
prefix = /usr/local
exec_prefix = ${prefix}
bindir = ${exec_prefix}/bin
libdir = ${exec_prefix}/lib
sharedlibdir = ${libdir}
includedir = ${prefix}/include
mandir = ${prefix}/share/man
man3dir = ${mandir}/man3
pkgconfigdir = ${libdir}/pkgconfig
OBJZ = adler32.o compress.o crc32.o deflate.o deflate_fast.o deflate_medium.o deflate_slow.o match.o infback.o inffast.o inflate.o inftrees.o trees.o uncompr.o zutil.o $(ARCH_STATIC_OBJS)
OBJG = gzclose.o gzlib.o gzread.o gzwrite.o
OBJC = $(OBJZ) $(OBJG)
PIC_OBJZ = adler32.lo compress.lo crc32.lo deflate.lo deflate_fast.lo deflate_medium.lo deflate_slow.lo match.lo infback.lo inffast.lo inflate.lo inftrees.lo trees.lo uncompr.lo zutil.lo $(ARCH_SHARED_OBJS)
PIC_OBJG = gzclose.lo gzlib.lo gzread.lo gzwrite.lo
PIC_OBJC = $(PIC_OBJZ) $(PIC_OBJG)
OBJS = $(OBJC)
PIC_OBJS = $(PIC_OBJC)
all: static shared
static: example$(EXE) minigzip$(EXE)
shared: examplesh$(EXE) minigzipsh$(EXE)
all64: example64$(EXE) minigzip64$(EXE)
check: test
$(ARCHDIR)/%.o: $(SRCDIR)/$(ARCHDIR)/%.c
$(MAKE) -C $(ARCHDIR) $(notdir $@)
$(ARCHDIR)/%.lo: $(SRCDIR)/$(ARCHDIR)/%.c
$(MAKE) -C $(ARCHDIR) $(notdir $@)
%.o: $(ARCHDIR)/%.o
-cp $< $@
%.lo: $(ARCHDIR)/%.lo
-cp $< $@
test: all
$(MAKE) -C test
infcover.o: $(SRCDIR)/test/infcover.c $(SRCDIR)/zlib.h zconf.h
$(CC) $(CFLAGS) $(INCLUDES) -c -o $@ $(SRCDIR)/test/infcover.c
infcover$(EXE): infcover.o $(STATICLIB)
$(CC) $(CFLAGS) -o $@ infcover.o $(STATICLIB)
ifneq ($(STRIP),)
$(STRIP) $@
endif
cover: infcover$(EXE)
rm -f *.gcda
./infcover
gcov inf*.c
$(STATICLIB): $(OBJS)
$(AR) $(ARFLAGS) $@ $(OBJS)
-@ ($(RANLIB) $@ || true) >/dev/null 2>&1
example.o: $(SRCDIR)/test/example.c $(SRCDIR)/zlib.h zconf.h
$(CC) $(CFLAGS) $(INCLUDES) -c -o $@ $(SRCDIR)/test/example.c
minigzip.o: $(SRCDIR)/test/minigzip.c $(SRCDIR)/zlib.h zconf.h
$(CC) $(CFLAGS) $(INCLUDES) -c -o $@ $(SRCDIR)/test/minigzip.c
example64.o: $(SRCDIR)/test/example.c $(SRCDIR)/zlib.h zconf.h
$(CC) $(CFLAGS) $(INCLUDES) -D_FILE_OFFSET_BITS=64 -c -o $@ $(SRCDIR)/test/example.c
minigzip64.o: $(SRCDIR)/test/minigzip.c $(SRCDIR)/zlib.h zconf.h
$(CC) $(CFLAGS) $(INCLUDES) -D_FILE_OFFSET_BITS=64 -c -o $@ $(SRCDIR)/test/minigzip.c
zlibrc.o: win32/zlib1.rc
$(RC) $(RCFLAGS) -o $@ win32/zlib1.rc
.SUFFIXES: .lo
%.o: $(SRCDIR)/%.c
$(CC) $(INCLUDES) $(CFLAGS) -c -o $@ $<
%.lo: $(SRCDIR)/%.c
$(CC) $(INCLUDES) $(SFLAGS) -DPIC -c -o $@ $<
$(SHAREDTARGET): $(PIC_OBJS) $(DEFFILE) $(RCOBJS)
ifneq ($(SHAREDTARGET),)
$(LDSHARED) $(SFLAGS) -o $@ $(DEFFILE) $(PIC_OBJS) $(RCOBJS) $(LDSHAREDLIBC) $(LDFLAGS)
ifneq ($(STRIP),)
$(STRIP) $@
endif
ifneq ($(SHAREDLIB),$(SHAREDTARGET))
rm -f $(SHAREDLIB) $(SHAREDLIBM)
ln -s $@ $(SHAREDLIB)
ln -s $@ $(SHAREDLIBM)
endif
endif
example$(EXE): example.o $(STATICLIB)
$(CC) $(CFLAGS) -o $@ example.o $(TEST_LDFLAGS)
ifneq ($(STRIP),)
$(STRIP) $@
endif
minigzip$(EXE): minigzip.o $(STATICLIB)
$(CC) $(CFLAGS) -o $@ minigzip.o $(TEST_LDFLAGS)
ifneq ($(STRIP),)
$(STRIP) $@
endif
examplesh$(EXE): example.o $(SHAREDTARGET)
$(CC) $(CFLAGS) -o $@ example.o -L. $(SHAREDTARGET)
ifneq ($(STRIP),)
$(STRIP) $@
endif
minigzipsh$(EXE): minigzip.o $(SHAREDTARGET)
$(CC) $(CFLAGS) -o $@ minigzip.o -L. $(SHAREDTARGET)
ifneq ($(STRIP),)
$(STRIP) $@
endif
example64$(EXE): example64.o $(STATICLIB)
$(CC) $(CFLAGS) -o $@ example64.o $(TEST_LDFLAGS)
ifneq ($(STRIP),)
$(STRIP) $@
endif
minigzip64$(EXE): minigzip64.o $(STATICLIB)
$(CC) $(CFLAGS) -o $@ minigzip64.o $(TEST_LDFLAGS)
ifneq ($(STRIP),)
$(STRIP) $@
endif
install-shared: $(SHAREDTARGET)
ifneq ($(SHAREDTARGET),)
-@if [ ! -d $(DESTDIR)$(sharedlibdir) ]; then mkdir -p $(DESTDIR)$(sharedlibdir); fi
cp $(SHAREDTARGET) $(DESTDIR)$(sharedlibdir)
chmod 644 $(DESTDIR)$(sharedlibdir)/$(SHAREDTARGET)
ifneq ($(SHAREDLIB),$(SHAREDTARGET))
rm -f $(DESTDIR)$(sharedlibdir)/$(SHAREDLIB) $(DESTDIR)$(sharedlibdir)/$(SHAREDLIBM)
ln -s $(SHAREDLIBV) $(DESTDIR)$(sharedlibdir)/$(SHAREDLIB)
ln -s $(SHAREDLIBV) $(DESTDIR)$(sharedlibdir)/$(SHAREDLIBM)
($(LDCONFIG) || true) >/dev/null 2>&1
# ldconfig is for Linux
endif
ifneq ($(IMPORTLIB),)
cp $(IMPORTLIB) $(DESTDIR)$(sharedlibdir)
chmod 644 $(DESTDIR)$(sharedlibdir)/$(IMPORTLIB)
endif
endif
install-static: $(STATICLIB)
-@if [ ! -d $(DESTDIR)$(libdir) ]; then mkdir -p $(DESTDIR)$(libdir); fi
cp $(STATICLIB) $(DESTDIR)$(libdir)
chmod 644 $(DESTDIR)$(libdir)/$(STATICLIB)
-@($(RANLIB) $(DESTDIR)$(libdir)/$(STATICLIB) || true) >/dev/null 2>&1
# The ranlib in install-static is needed on NeXTSTEP which checks file times
install-libs: install-shared install-static
-@if [ ! -d $(DESTDIR)$(man3dir) ]; then mkdir -p $(DESTDIR)$(man3dir); fi
-@if [ ! -d $(DESTDIR)$(pkgconfigdir) ]; then mkdir -p $(DESTDIR)$(pkgconfigdir); fi
cp $(SRCDIR)/zlib.3 $(DESTDIR)$(man3dir)
chmod 644 $(DESTDIR)$(man3dir)/zlib.3
cp zlib.pc $(DESTDIR)$(pkgconfigdir)
chmod 644 $(DESTDIR)$(pkgconfigdir)/zlib.pc
install: install-libs
-@if [ ! -d $(DESTDIR)$(includedir) ]; then mkdir -p $(DESTDIR)$(includedir); fi
cp $(SRCDIR)/zlib.h zconf.h $(DESTDIR)$(includedir)
chmod 644 $(DESTDIR)$(includedir)/zlib.h $(DESTDIR)$(includedir)/zconf.h
uninstall-static:
cd $(DESTDIR)$(libdir) && rm -f $(STATICLIB)
uninstall-shared:
ifneq ($(SHAREDLIB),)
cd $(DESTDIR)$(sharedlibdir) && rm -f $(SHAREDLIBV) $(SHAREDLIB) $(SHAREDLIBM)
endif
ifneq ($(IMPORTLIB),)
cd $(DESTDIR)$(sharedlibdir) && rm -f $(IMPORTLIB)
endif
uninstall: uninstall-static uninstall-shared
cd $(DESTDIR)$(includedir) && rm -f zlib.h zconf.h
cd $(DESTDIR)$(man3dir) && rm -f zlib.3
cd $(DESTDIR)$(pkgconfigdir) && rm -f zlib.pc
docs: zlib.3.pdf
zlib.3.pdf: $(SRCDIR)/zlib.3
groff -mandoc -f H -T ps $(SRCDIR)/zlib.3 | ps2pdf - zlib.3.pdf
mostlyclean: clean
clean:
@if [ -f $(ARCHDIR)/Makefile ]; then $(MAKE) -C $(ARCHDIR) clean; fi
@if [ -f test/Makefile ]; then $(MAKE) -C test clean; fi
rm -f *.o *.lo *~ \
example$(EXE) minigzip$(EXE) examplesh$(EXE) minigzipsh$(EXE) \
example64$(EXE) minigzip64$(EXE) \
infcover \
$(STATICLIB) $(IMPORTLIB) $(SHAREDLIB) $(SHAREDLIBV) $(SHAREDLIBM) \
foo.gz so_locations \
_match.s maketree
rm -rf objs
rm -f *.gcda *.gcno *.gcov
rm -f a.out
maintainer-clean: distclean
distclean: clean
@if [ -f $(ARCHDIR)/Makefile ]; then $(MAKE) -C $(ARCHDIR) distclean; fi
@if [ -f test/Makefile ]; then $(MAKE) -C test distclean; fi
rm -f zlib.pc configure.log zconf.h zconf.h.cmakein
-@rm -f .DS_Store
# Reset Makefile if building inside source tree
@if [ -f Makefile.in ]; then \
printf 'all:\n\t-@echo "Please use ./configure first. Thank you."\n' > Makefile ; \
printf '\ndistclean:\n\tmake -f Makefile.in distclean\n' >> Makefile ; \
touch -r $(SRCDIR)/Makefile.in Makefile ; fi
# Reset zconf.h and zconf.h.cmakein if building inside source tree
@if [ -f zconf.h.in ]; then \
cp -p $(SRCDIR)/zconf.h.in zconf.h ; \
TEMPFILE=zconfh_$$ ; \
echo "/#define ZCONF_H/ a\\\\\n#cmakedefine Z_HAVE_UNISTD_H\n" >> $$TEMPFILE &&\
sed -f $$TEMPFILE $(SRCDIR)/zconf.h.in > zconf.h.cmakein &&\
touch -r $(SRCDIR)/zconf.h.in zconf.h.cmakein &&\
rm $$TEMPFILE ; fi
# Cleanup these files if building outside source tree
@if [ ! -f zlib.3 ]; then rm -f zlib.3.pdf Makefile; fi
# Remove arch and test directory if building outside source tree
@if [ ! -f $(ARCHDIR)/Makefile.in ]; then rm -rf arch; fi
@if [ ! -f test/Makefile.in ]; then rm -rf test; fi
tags:
etags $(SRCDIR)/*.[ch]
depend:
makedepend -- $(CFLAGS) -- $(SRCDIR)/*.[ch]
makedepend -a -o.lo -- $(SFLAGS) -- $(SRCDIR)/*.[ch]
@sed "s=^$(SRCDIR)/\([a-zA-Z0-9_]*\.\(lo\|o\):\)=\1=g" < Makefile > Makefile.tmp
@mv -f Makefile.tmp Makefile
# DO NOT DELETE THIS LINE -- make depend depends on it.
adler32.o zutil.o: $(SRCDIR)/zutil.h $(SRCDIR)/zlib.h zconf.h
gzclose.o gzlib.o gzread.o gzwrite.o: $(SRCDIR)/zlib.h zconf.h $(SRCDIR)/gzguts.h
compress.o example.o minigzip.o uncompr.o: $(SRCDIR)/zlib.h zconf.h
crc32.o: $(SRCDIR)/zutil.h $(SRCDIR)/zlib.h zconf.h $(SRCDIR)/crc32.h
deflate.o: $(SRCDIR)/deflate.h $(SRCDIR)/deflate_p.h $(SRCDIR)/match.h $(SRCDIR)/zutil.h $(SRCDIR)/zlib.h zconf.h
deflate_fast.o: $(SRCDIR)/deflate.h $(SRCDIR)/deflate_p.h $(SRCDIR)/match.h
deflate_medium.o: $(SRCDIR)/deflate.h $(SRCDIR)/deflate_p.h $(SRCDIR)/match.h
deflate_slow.o: $(SRCDIR)/deflate.h $(SRCDIR)/deflate_p.h $(SRCDIR)/match.h
infback.o inflate.o: $(SRCDIR)/zutil.h $(SRCDIR)/zlib.h zconf.h $(SRCDIR)/inftrees.h $(SRCDIR)/inflate.h $(SRCDIR)/inffast.h $(SRCDIR)/inffixed.h
inffast.o: $(SRCDIR)/zutil.h $(SRCDIR)/zlib.h zconf.h $(SRCDIR)/inftrees.h $(SRCDIR)/inflate.h $(SRCDIR)/inffast.h
inftrees.o: $(SRCDIR)/zutil.h $(SRCDIR)/zlib.h zconf.h $(SRCDIR)/inftrees.h
trees.o: $(SRCDIR)/deflate.h $(SRCDIR)/zutil.h $(SRCDIR)/zlib.h zconf.h $(SRCDIR)/trees.h
adler32.lo zutil.lo: $(SRCDIR)/zutil.h $(SRCDIR)/zlib.h zconf.h
gzclose.lo gzlib.lo gzread.lo gzwrite.lo: $(SRCDIR)/zlib.h zconf.h $(SRCDIR)/gzguts.h
compress.lo example.lo minigzip.lo uncompr.lo: $(SRCDIR)/zlib.h zconf.h
crc32.lo: $(SRCDIR)/zutil.h $(SRCDIR)/zlib.h zconf.h $(SRCDIR)/crc32.h
deflate.lo: $(SRCDIR)/deflate.h $(SRCDIR)/deflate_p.h $(SRCDIR)/match.h $(SRCDIR)/zutil.h $(SRCDIR)/zlib.h zconf.h
deflate_fast.lo: $(SRCDIR)/deflate.h $(SRCDIR)/deflate_p.h $(SRCDIR)/match.h
deflate_medium.lo: $(SRCDIR)/deflate.h $(SRCDIR)/deflate_p.h $(SRCDIR)/match.h
deflate_slow.lo: $(SRCDIR)/deflate.h $(SRCDIR)/deflate_p.h $(SRCDIR)/match.h
infback.lo inflate.lo: $(SRCDIR)/zutil.h $(SRCDIR)/zlib.h zconf.h $(SRCDIR)/inftrees.h $(SRCDIR)/inflate.h $(SRCDIR)/inffast.h $(SRCDIR)/inffixed.h
inffast.lo: $(SRCDIR)/zutil.h $(SRCDIR)/zlib.h zconf.h $(SRCDIR)/inftrees.h $(SRCDIR)/inflate.h $(SRCDIR)/inffast.h
inftrees.lo: $(SRCDIR)/zutil.h $(SRCDIR)/zlib.h zconf.h $(SRCDIR)/inftrees.h
trees.lo: $(SRCDIR)/deflate.h $(SRCDIR)/zutil.h $(SRCDIR)/zlib.h zconf.h $(SRCDIR)/trees.h

View File

@ -1,63 +0,0 @@
zlib-ng - zlib for the next generation systems
Maintained by Hans Kristian Rosbach
aka Dead2 (zlib-ng àt circlestorm dót org)
Fork Motivation and History
---------------------------
The motivation for this fork was due to seeing several 3rd party
contributions containing new optimizations not getting implemented
into the official zlib repository.
Mark Adler has been maintaining zlib for a very long time, and he has
done a great job and hopefully he will continue for a long time yet.
The idea of zlib-ng is not to replace zlib, but to co-exist as a
drop-in replacement with a lower threshold for code change.
zlib has a long history and is incredibly portable, even supporting
lots of systems that predate the Internet. This is great, but it does
complicate further development and maintainability.
The zlib code has to make numerous workarounds for old compilers that
do not understand ANSI-C or to accommodate systems with limitations
such as operating in a 16-bit environment.
Many of these workarounds are only maintenance burdens, some of them
are pretty huge code-wise. For example, the [v]s[n]printf workaround
code has a whopping 8 different implementations just to cater to
various old compilers. With this many workarounds cluttered throughout
the code, new programmers with an idea/interest for zlib will need
to take some time to figure out why all of these seemingly strange
things are used, and how to work within those confines.
So I decided to make a fork, merge all the Intel optimizations, merge
the Cloudflare optimizations that did not conflict, plus a couple
of other smaller patches. Then I started cleaning out workarounds,
various dead code, all contrib and example code as there is little
point in having those in this fork for different reasons.
Lastly I have been cleaning up the handling of different arches,
so that it will be easier to implement arch-specific code without
cluttering up the main code too much.
Now, there is still a lot to do and I am sure there are better ways
of doing several of the changes I have done. And I would be delighted
to receive patches, preferably as pull requests on github.
Just remember that any code you submit must be your own and it must
be zlib licensed.
Please read LICENSE.md, it is very simple and very liberal.
Acknowledgments
----------------
Big thanks to Raske Sider AS / raskesider.no for sponsoring my
maintainership of zlib-ng.
The deflate format used by zlib was defined by Phil Katz.
The deflate and zlib specifications were written by L. Peter Deutsch.
zlib was originally created by Jean-loup Gailly (compression)
and Mark Adler (decompression).

View File

@ -1,12 +0,0 @@
Sources imported from https://github.com/Dead2/zlib-ng/tree/343c4c549107d31f6eeabfb4b31bec4502a2ea0e
CMakeLists.txt taken from https://github.com/mtl1979/zlib-ng/tree/ad8868ab0e78a87fb0485d4bc67b8cfe96e00891
Zlib with CloudFlare patches provides slightly better performance for decompression and compression
with level > 1. Unfortunately, we can't use that version due to GPL-licensed code. If you still
want to use it, replace contents of this directory with contents of https://github.com/cloudflare/zlib
and add the following lines at the beginning of CMakeLists.txt:
set (CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -Wno-unused-variable -DHAS_PCLMUL")
set (ZLIB_ASMS
contrib/amd64/crc32-pclmul_asm.S
)

View File

@ -1,65 +0,0 @@
Travis CI: [![build status](https://api.travis-ci.org/Dead2/zlib-ng.svg)](https://travis-ci.org/Dead2/zlib-ng/)
zlib-ng - zlib for the next generation systems
Maintained by Hans Kristian Rosbach
aka Dead2 (zlib-ng àt circlestorm dót org)
Fork Motivation and History
---------------------------
The motivation for this fork was due to seeing several 3rd party
contributions containing new optimizations not getting implemented
into the official zlib repository.
Mark Adler has been maintaining zlib for a very long time, and he has
done a great job and hopefully he will continue for a long time yet.
The idea of zlib-ng is not to replace zlib, but to co-exist as a
drop-in replacement with a lower threshold for code change.
zlib has a long history and is incredibly portable, even supporting
lots of systems that predate the Internet. This is great, but it does
complicate further development and maintainability.
The zlib code has to make numerous workarounds for old compilers that
do not understand ANSI-C or to accommodate systems with limitations
such as operating in a 16-bit environment.
Many of these workarounds are only maintenance burdens, some of them
are pretty huge code-wise. For example, the [v]s[n]printf workaround
code has a whopping 8 different implementations just to cater to
various old compilers. With this many workarounds cluttered throughout
the code, new programmers with an idea/interest for zlib will need
to take some time to figure out why all of these seemingly strange
things are used, and how to work within those confines.
So I decided to make a fork, merge all the Intel optimizations, merge
the Cloudflare optimizations that did not conflict, plus a couple
of other smaller patches. Then I started cleaning out workarounds,
various dead code, all contrib and example code as there is little
point in having those in this fork for different reasons.
Lastly I have been cleaning up the handling of different arches,
so that it will be easier to implement arch-specific code without
cluttering up the main code too much.
Now, there is still a lot to do and I am sure there are better ways
of doing several of the changes I have done. And I would be delighted
to receive patches, preferably as pull requests on github.
Just remember that any code you submit must be your own and it must
be zlib licensed.
Please read LICENSE.md, it is very simple and very liberal.
Acknowledgments
----------------
Big thanks to Raske Sider AS / raskesider.no for sponsoring my
maintainership of zlib-ng.
The deflate format used by zlib was defined by Phil Katz.
The deflate and zlib specifications were written by L. Peter Deutsch.
zlib was originally created by Jean-loup Gailly (compression)
and Mark Adler (decompression).

View File

@ -1,121 +0,0 @@
##
# THIS IS AN UNMAINTAINED COPY OF THE ORIGINAL FILE DISTRIBUTED WITH ZLIB 1.2.8
##
ZLIB DATA COMPRESSION LIBRARY
zlib 1.2.8 is a general purpose data compression library. All the code is
thread safe. The data format used by the zlib library is described by RFCs
(Request for Comments) 1950 to 1952 in the files
http://tools.ietf.org/html/rfc1950 (zlib format), rfc1951 (deflate format) and
rfc1952 (gzip format).
All functions of the compression library are documented in the file zlib.h
(volunteer to write man pages welcome, contact zlib@gzip.org). A usage example
of the library is given in the file test/example.c which also tests that
the library is working correctly. Another example is given in the file
test/minigzip.c. The compression library itself is composed of all source
files in the root directory.
To compile all files and run the test program, follow the instructions given at
the top of Makefile.in. In short "./configure; make test", and if that goes
well, "make install" should work for most flavors of Unix. For Windows, use
one of the special makefiles in win32/ or contrib/vstudio/ . For VMS, use
make_vms.com.
Questions about zlib should be sent to <zlib@gzip.org>, or to Gilles Vollant
<info@winimage.com> for the Windows DLL version. The zlib home page is
http://zlib.net/ . Before reporting a problem, please check this site to
verify that you have the latest version of zlib; otherwise get the latest
version and check whether the problem still exists or not.
PLEASE read the zlib FAQ http://zlib.net/zlib_faq.html before asking for help.
Mark Nelson <markn@ieee.org> wrote an article about zlib for the Jan. 1997
issue of Dr. Dobb's Journal; a copy of the article is available at
http://marknelson.us/1997/01/01/zlib-engine/ .
The changes made in version 1.2.8 are documented in the file ChangeLog.
Unsupported third party contributions are provided in directory contrib/ .
zlib is available in Java using the java.util.zip package, documented at
http://java.sun.com/developer/technicalArticles/Programming/compression/ .
A Perl interface to zlib written by Paul Marquess <pmqs@cpan.org> is available
at CPAN (Comprehensive Perl Archive Network) sites, including
http://search.cpan.org/~pmqs/IO-Compress-Zlib/ .
A Python interface to zlib written by A.M. Kuchling <amk@amk.ca> is
available in Python 1.5 and later versions, see
http://docs.python.org/library/zlib.html .
zlib is built into tcl: http://wiki.tcl.tk/4610 .
An experimental package to read and write files in .zip format, written on top
of zlib by Gilles Vollant <info@winimage.com>, is available in the
contrib/minizip directory of zlib.
Notes for some targets:
- For Windows DLL versions, please see win32/DLL_FAQ.txt
- For 64-bit Irix, deflate.c must be compiled without any optimization. With
-O, one libpng test fails. The test works in 32 bit mode (with the -n32
compiler flag). The compiler bug has been reported to SGI.
- zlib doesn't work with gcc 2.6.3 on a DEC 3000/300LX under OSF/1 2.1 it works
when compiled with cc.
- On Digital Unix 4.0D (formely OSF/1) on AlphaServer, the cc option -std1 is
necessary to get gzprintf working correctly. This is done by configure.
- zlib doesn't work on HP-UX 9.05 with some versions of /bin/cc. It works with
other compilers. Use "make test" to check your compiler.
- gzdopen is not supported on RISCOS or BEOS.
- For PalmOs, see http://palmzlib.sourceforge.net/
Acknowledgments:
The deflate format used by zlib was defined by Phil Katz. The deflate and
zlib specifications were written by L. Peter Deutsch. Thanks to all the
people who reported problems and suggested various improvements in zlib; they
are too numerous to cite here.
Copyright notice:
(C) 1995-2013 Jean-loup Gailly and Mark Adler
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu
If you use the zlib library in a product, we would appreciate *not* receiving
lengthy legal documents to sign. The sources are provided for free but without
warranty of any kind. The library has been entirely written by Jean-loup
Gailly and Mark Adler; it does not include third-party code.
If you redistribute modified sources, we would appreciate that you include in
the file ChangeLog history information documenting your changes. Please read
the FAQ for more information on the distribution of modified source versions.

View File

@ -1,177 +0,0 @@
/* adler32.c -- compute the Adler-32 checksum of a data stream
* Copyright (C) 1995-2011 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/
/* @(#) $Id$ */
#include "zutil.h"
static uint32_t adler32_combine_(uint32_t adler1, uint32_t adler2, z_off64_t len2);
#define BASE 65521U /* largest prime smaller than 65536 */
#define NMAX 5552
/* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
#define DO1(buf, i) {adler += (buf)[i]; sum2 += adler;}
#define DO2(buf, i) DO1(buf, i); DO1(buf, i+1);
#define DO4(buf, i) DO2(buf, i); DO2(buf, i+2);
#define DO8(buf, i) DO4(buf, i); DO4(buf, i+4);
#define DO16(buf) DO8(buf, 0); DO8(buf, 8);
/* use NO_DIVIDE if your processor does not do division in hardware --
try it both ways to see which is faster */
#ifdef NO_DIVIDE
/* note that this assumes BASE is 65521, where 65536 % 65521 == 15
(thank you to John Reiser for pointing this out) */
# define CHOP(a) \
do { \
uint32_t tmp = a >> 16; \
a &= 0xffff; \
a += (tmp << 4) - tmp; \
} while (0)
# define MOD28(a) \
do { \
CHOP(a); \
if (a >= BASE) a -= BASE; \
} while (0)
# define MOD(a) \
do { \
CHOP(a); \
MOD28(a); \
} while (0)
# define MOD63(a) \
do { /* this assumes a is not negative */ \
z_off64_t tmp = a >> 32; \
a &= 0xffffffffL; \
a += (tmp << 8) - (tmp << 5) + tmp; \
tmp = a >> 16; \
a &= 0xffffL; \
a += (tmp << 4) - tmp; \
tmp = a >> 16; \
a &= 0xffffL; \
a += (tmp << 4) - tmp; \
if (a >= BASE) a -= BASE; \
} while (0)
#else
# define MOD(a) a %= BASE
# define MOD28(a) a %= BASE
# define MOD63(a) a %= BASE
#endif
/* ========================================================================= */
uint32_t ZEXPORT adler32(uint32_t adler, const unsigned char *buf, uint32_t len) {
uint32_t sum2;
unsigned n;
/* split Adler-32 into component sums */
sum2 = (adler >> 16) & 0xffff;
adler &= 0xffff;
/* in case user likes doing a byte at a time, keep it fast */
if (len == 1) {
adler += buf[0];
if (adler >= BASE)
adler -= BASE;
sum2 += adler;
if (sum2 >= BASE)
sum2 -= BASE;
return adler | (sum2 << 16);
}
/* initial Adler-32 value (deferred check for len == 1 speed) */
if (buf == Z_NULL)
return 1L;
/* in case short lengths are provided, keep it somewhat fast */
if (len < 16) {
while (len--) {
adler += *buf++;
sum2 += adler;
}
if (adler >= BASE)
adler -= BASE;
MOD28(sum2); /* only added so many BASE's */
return adler | (sum2 << 16);
}
/* do length NMAX blocks -- requires just one modulo operation */
while (len >= NMAX) {
len -= NMAX;
#ifndef UNROLL_LESS
n = NMAX / 16; /* NMAX is divisible by 16 */
#else
n = NMAX / 8; /* NMAX is divisible by 8 */
#endif
do {
#ifndef UNROLL_LESS
DO16(buf); /* 16 sums unrolled */
buf += 16;
#else
DO8(buf, 0); /* 8 sums unrolled */
buf += 8;
#endif
} while (--n);
MOD(adler);
MOD(sum2);
}
/* do remaining bytes (less than NMAX, still just one modulo) */
if (len) { /* avoid modulos if none remaining */
#ifndef UNROLL_LESS
while (len >= 16) {
len -= 16;
DO16(buf);
buf += 16;
#else
while (len >= 8) {
len -= 8;
DO8(buf, 0);
buf += 8;
#endif
}
while (len--) {
adler += *buf++;
sum2 += adler;
}
MOD(adler);
MOD(sum2);
}
/* return recombined sums */
return adler | (sum2 << 16);
}
/* ========================================================================= */
static uint32_t adler32_combine_(uint32_t adler1, uint32_t adler2, z_off64_t len2) {
uint32_t sum1;
uint32_t sum2;
unsigned rem;
/* for negative len, return invalid adler32 as a clue for debugging */
if (len2 < 0)
return 0xffffffff;
/* the derivation of this formula is left as an exercise for the reader */
MOD63(len2); /* assumes len2 >= 0 */
rem = (unsigned)len2;
sum1 = adler1 & 0xffff;
sum2 = rem * sum1;
MOD(sum2);
sum1 += (adler2 & 0xffff) + BASE - 1;
sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
if (sum1 >= BASE) sum1 -= BASE;
if (sum1 >= BASE) sum1 -= BASE;
if (sum2 >= ((unsigned long)BASE << 1)) sum2 -= ((unsigned long)BASE << 1);
if (sum2 >= BASE) sum2 -= BASE;
return sum1 | (sum2 << 16);
}
/* ========================================================================= */
uint32_t ZEXPORT adler32_combine(uint32_t adler1, uint32_t adler2, z_off_t len2) {
return adler32_combine_(adler1, adler2, len2);
}
uint32_t ZEXPORT adler32_combine64(uint32_t adler1, uint32_t adler2, z_off64_t len2) {
return adler32_combine_(adler1, adler2, len2);
}

View File

@ -1,2 +0,0 @@
# ignore Makefiles; they're all automatically generated
Makefile

View File

@ -1,20 +0,0 @@
# Makefile for zlib
# Copyright (C) 1995-2013 Jean-loup Gailly, Mark Adler
# For conditions of distribution and use, see copyright notice in zlib.h
CC=
CFLAGS=
SFLAGS=
INCLUDES=
SRCDIR=
SRCTOP=
all:
mostlyclean: clean
clean:
rm -f *.o *.lo *~ \
rm -rf objs
rm -f *.gcda *.gcno *.gcov

View File

@ -1,20 +0,0 @@
# Makefile for zlib
# Copyright (C) 1995-2013 Jean-loup Gailly, Mark Adler
# For conditions of distribution and use, see copyright notice in zlib.h
CC=
CFLAGS=
SFLAGS=
INCLUDES=
SRCDIR=
SRCTOP=
all:
mostlyclean: clean
clean:
rm -f *.o *.lo *~ \
rm -rf objs
rm -f *.gcda *.gcno *.gcov

View File

@ -1,3 +0,0 @@
fill_window_sse.c SSE2 optimized fill_window
deflate_quick.c SSE4 optimized deflate strategy for use as level 1
crc_folding.c SSE4 + PCLMULQDQ optimized CRC folding implementation

View File

@ -1,53 +0,0 @@
# Makefile for zlib
# Copyright (C) 1995-2013 Jean-loup Gailly, Mark Adler
# For conditions of distribution and use, see copyright notice in zlib.h
CC=
CFLAGS=
SFLAGS=
INCLUDES=
SRCDIR=
SRCTOP=
all: x86.o x86.lo fill_window_sse.o fill_window_sse.lo deflate_quick.o deflate_quick.lo insert_string_sse.o insert_string_sse.lo crc_folding.o crc_folding.lo
x86.o:
$(CC) $(CFLAGS) $(INCLUDES) -c -o $@ $(SRCDIR)/x86.c
x86.lo:
$(CC) $(SFLAGS) $(INCLUDES) -c -o $@ $(SRCDIR)/x86.c
fill_window_sse.o:
$(CC) $(CFLAGS) -msse2 $(INCLUDES) -c -o $@ $(SRCDIR)/fill_window_sse.c
fill_window_sse.lo:
$(CC) $(SFLAGS) -msse2 -DPIC $(INCLUDES) -c -o $@ $(SRCDIR)/fill_window_sse.c
deflate_quick.o:
$(CC) $(CFLAGS) -msse4 $(INCLUDES) -c -o $@ $(SRCDIR)/deflate_quick.c
deflate_quick.lo:
$(CC) $(SFLAGS) -msse4 -DPIC $(INCLUDES) -c -o $@ $(SRCDIR)/deflate_quick.c
insert_string_sse.o:
$(CC) $(CFLAGS) -msse4 $(INCLUDES) -c -o $@ $(SRCDIR)/insert_string_sse.c
insert_string_sse.lo:
$(CC) $(SFLAGS) -msse4 -DPIC $(INCLUDES) -c -o $@ $(SRCDIR)/insert_string_sse.c
crc_folding.o:
$(CC) $(CFLAGS) -mpclmul -msse4 $(INCLUDES) -c -o $@ $(SRCDIR)/crc_folding.c
crc_folding.lo:
$(CC) $(SFLAGS) -mpclmul -msse4 -DPIC $(INCLUDES) -c -o $@ $(SRCDIR)/crc_folding.c
mostlyclean: clean
clean:
rm -f *.o *.lo *~ \
rm -rf objs
rm -f *.gcda *.gcno *.gcov
distclean:
rm -f Makefile

View File

@ -1,465 +0,0 @@
/*
* Compute the CRC32 using a parallelized folding approach with the PCLMULQDQ
* instruction.
*
* A white paper describing this algorithm can be found at:
* http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
*
* Copyright (C) 2013 Intel Corporation. All rights reserved.
* Authors:
* Wajdi Feghali <wajdi.k.feghali@intel.com>
* Jim Guilford <james.guilford@intel.com>
* Vinodh Gopal <vinodh.gopal@intel.com>
* Erdinc Ozturk <erdinc.ozturk@intel.com>
* Jim Kukunas <james.t.kukunas@linux.intel.com>
*
* For conditions of distribution and use, see copyright notice in zlib.h
*/
#ifdef X86_PCLMULQDQ_CRC
#include <inttypes.h>
#include <immintrin.h>
#include <wmmintrin.h>
#include "deflate.h"
#define CRC_LOAD(s) \
do { \
__m128i xmm_crc0 = _mm_loadu_si128((__m128i *)s->crc0 + 0);\
__m128i xmm_crc1 = _mm_loadu_si128((__m128i *)s->crc0 + 1);\
__m128i xmm_crc2 = _mm_loadu_si128((__m128i *)s->crc0 + 2);\
__m128i xmm_crc3 = _mm_loadu_si128((__m128i *)s->crc0 + 3);\
__m128i xmm_crc_part = _mm_loadu_si128((__m128i *)s->crc0 + 4);
#define CRC_SAVE(s) \
_mm_storeu_si128((__m128i *)s->crc0 + 0, xmm_crc0);\
_mm_storeu_si128((__m128i *)s->crc0 + 1, xmm_crc1);\
_mm_storeu_si128((__m128i *)s->crc0 + 2, xmm_crc2);\
_mm_storeu_si128((__m128i *)s->crc0 + 3, xmm_crc3);\
_mm_storeu_si128((__m128i *)s->crc0 + 4, xmm_crc_part);\
} while (0);
ZLIB_INTERNAL void crc_fold_init(deflate_state *const s) {
CRC_LOAD(s)
xmm_crc0 = _mm_cvtsi32_si128(0x9db42487);
xmm_crc1 = _mm_setzero_si128();
xmm_crc2 = _mm_setzero_si128();
xmm_crc3 = _mm_setzero_si128();
CRC_SAVE(s)
s->strm->adler = 0;
}
local void fold_1(deflate_state *const s, __m128i *xmm_crc0, __m128i *xmm_crc1, __m128i *xmm_crc2, __m128i *xmm_crc3) {
const __m128i xmm_fold4 = _mm_set_epi32(
0x00000001, 0x54442bd4,
0x00000001, 0xc6e41596);
__m128i x_tmp3;
__m128 ps_crc0, ps_crc3, ps_res;
x_tmp3 = *xmm_crc3;
*xmm_crc3 = *xmm_crc0;
*xmm_crc0 = _mm_clmulepi64_si128(*xmm_crc0, xmm_fold4, 0x01);
*xmm_crc3 = _mm_clmulepi64_si128(*xmm_crc3, xmm_fold4, 0x10);
ps_crc0 = _mm_castsi128_ps(*xmm_crc0);
ps_crc3 = _mm_castsi128_ps(*xmm_crc3);
ps_res = _mm_xor_ps(ps_crc0, ps_crc3);
*xmm_crc0 = *xmm_crc1;
*xmm_crc1 = *xmm_crc2;
*xmm_crc2 = x_tmp3;
*xmm_crc3 = _mm_castps_si128(ps_res);
}
local void fold_2(deflate_state *const s, __m128i *xmm_crc0, __m128i *xmm_crc1, __m128i *xmm_crc2, __m128i *xmm_crc3) {
const __m128i xmm_fold4 = _mm_set_epi32(
0x00000001, 0x54442bd4,
0x00000001, 0xc6e41596);
__m128i x_tmp3, x_tmp2;
__m128 ps_crc0, ps_crc1, ps_crc2, ps_crc3, ps_res31, ps_res20;
x_tmp3 = *xmm_crc3;
x_tmp2 = *xmm_crc2;
*xmm_crc3 = *xmm_crc1;
*xmm_crc1 = _mm_clmulepi64_si128(*xmm_crc1, xmm_fold4, 0x01);
*xmm_crc3 = _mm_clmulepi64_si128(*xmm_crc3, xmm_fold4, 0x10);
ps_crc3 = _mm_castsi128_ps(*xmm_crc3);
ps_crc1 = _mm_castsi128_ps(*xmm_crc1);
ps_res31 = _mm_xor_ps(ps_crc3, ps_crc1);
*xmm_crc2 = *xmm_crc0;
*xmm_crc0 = _mm_clmulepi64_si128(*xmm_crc0, xmm_fold4, 0x01);
*xmm_crc2 = _mm_clmulepi64_si128(*xmm_crc2, xmm_fold4, 0x10);
ps_crc0 = _mm_castsi128_ps(*xmm_crc0);
ps_crc2 = _mm_castsi128_ps(*xmm_crc2);
ps_res20 = _mm_xor_ps(ps_crc0, ps_crc2);
*xmm_crc0 = x_tmp2;
*xmm_crc1 = x_tmp3;
*xmm_crc2 = _mm_castps_si128(ps_res20);
*xmm_crc3 = _mm_castps_si128(ps_res31);
}
local void fold_3(deflate_state *const s, __m128i *xmm_crc0, __m128i *xmm_crc1, __m128i *xmm_crc2, __m128i *xmm_crc3) {
const __m128i xmm_fold4 = _mm_set_epi32(
0x00000001, 0x54442bd4,
0x00000001, 0xc6e41596);
__m128i x_tmp3;
__m128 ps_crc0, ps_crc1, ps_crc2, ps_crc3, ps_res32, ps_res21, ps_res10;
x_tmp3 = *xmm_crc3;
*xmm_crc3 = *xmm_crc2;
*xmm_crc2 = _mm_clmulepi64_si128(*xmm_crc2, xmm_fold4, 0x01);
*xmm_crc3 = _mm_clmulepi64_si128(*xmm_crc3, xmm_fold4, 0x10);
ps_crc2 = _mm_castsi128_ps(*xmm_crc2);
ps_crc3 = _mm_castsi128_ps(*xmm_crc3);
ps_res32 = _mm_xor_ps(ps_crc2, ps_crc3);
*xmm_crc2 = *xmm_crc1;
*xmm_crc1 = _mm_clmulepi64_si128(*xmm_crc1, xmm_fold4, 0x01);
*xmm_crc2 = _mm_clmulepi64_si128(*xmm_crc2, xmm_fold4, 0x10);
ps_crc1 = _mm_castsi128_ps(*xmm_crc1);
ps_crc2 = _mm_castsi128_ps(*xmm_crc2);
ps_res21 = _mm_xor_ps(ps_crc1, ps_crc2);
*xmm_crc1 = *xmm_crc0;
*xmm_crc0 = _mm_clmulepi64_si128(*xmm_crc0, xmm_fold4, 0x01);
*xmm_crc1 = _mm_clmulepi64_si128(*xmm_crc1, xmm_fold4, 0x10);
ps_crc0 = _mm_castsi128_ps(*xmm_crc0);
ps_crc1 = _mm_castsi128_ps(*xmm_crc1);
ps_res10 = _mm_xor_ps(ps_crc0, ps_crc1);
*xmm_crc0 = x_tmp3;
*xmm_crc1 = _mm_castps_si128(ps_res10);
*xmm_crc2 = _mm_castps_si128(ps_res21);
*xmm_crc3 = _mm_castps_si128(ps_res32);
}
local void fold_4(deflate_state *const s, __m128i *xmm_crc0, __m128i *xmm_crc1, __m128i *xmm_crc2, __m128i *xmm_crc3) {
const __m128i xmm_fold4 = _mm_set_epi32(
0x00000001, 0x54442bd4,
0x00000001, 0xc6e41596);
__m128i x_tmp0, x_tmp1, x_tmp2, x_tmp3;
__m128 ps_crc0, ps_crc1, ps_crc2, ps_crc3;
__m128 ps_t0, ps_t1, ps_t2, ps_t3;
__m128 ps_res0, ps_res1, ps_res2, ps_res3;
x_tmp0 = *xmm_crc0;
x_tmp1 = *xmm_crc1;
x_tmp2 = *xmm_crc2;
x_tmp3 = *xmm_crc3;
*xmm_crc0 = _mm_clmulepi64_si128(*xmm_crc0, xmm_fold4, 0x01);
x_tmp0 = _mm_clmulepi64_si128(x_tmp0, xmm_fold4, 0x10);
ps_crc0 = _mm_castsi128_ps(*xmm_crc0);
ps_t0 = _mm_castsi128_ps(x_tmp0);
ps_res0 = _mm_xor_ps(ps_crc0, ps_t0);
*xmm_crc1 = _mm_clmulepi64_si128(*xmm_crc1, xmm_fold4, 0x01);
x_tmp1 = _mm_clmulepi64_si128(x_tmp1, xmm_fold4, 0x10);
ps_crc1 = _mm_castsi128_ps(*xmm_crc1);
ps_t1 = _mm_castsi128_ps(x_tmp1);
ps_res1 = _mm_xor_ps(ps_crc1, ps_t1);
*xmm_crc2 = _mm_clmulepi64_si128(*xmm_crc2, xmm_fold4, 0x01);
x_tmp2 = _mm_clmulepi64_si128(x_tmp2, xmm_fold4, 0x10);
ps_crc2 = _mm_castsi128_ps(*xmm_crc2);
ps_t2 = _mm_castsi128_ps(x_tmp2);
ps_res2 = _mm_xor_ps(ps_crc2, ps_t2);
*xmm_crc3 = _mm_clmulepi64_si128(*xmm_crc3, xmm_fold4, 0x01);
x_tmp3 = _mm_clmulepi64_si128(x_tmp3, xmm_fold4, 0x10);
ps_crc3 = _mm_castsi128_ps(*xmm_crc3);
ps_t3 = _mm_castsi128_ps(x_tmp3);
ps_res3 = _mm_xor_ps(ps_crc3, ps_t3);
*xmm_crc0 = _mm_castps_si128(ps_res0);
*xmm_crc1 = _mm_castps_si128(ps_res1);
*xmm_crc2 = _mm_castps_si128(ps_res2);
*xmm_crc3 = _mm_castps_si128(ps_res3);
}
local const unsigned ALIGNED_(32) pshufb_shf_table[60] = {
0x84838281, 0x88878685, 0x8c8b8a89, 0x008f8e8d, /* shl 15 (16 - 1)/shr1 */
0x85848382, 0x89888786, 0x8d8c8b8a, 0x01008f8e, /* shl 14 (16 - 3)/shr2 */
0x86858483, 0x8a898887, 0x8e8d8c8b, 0x0201008f, /* shl 13 (16 - 4)/shr3 */
0x87868584, 0x8b8a8988, 0x8f8e8d8c, 0x03020100, /* shl 12 (16 - 4)/shr4 */
0x88878685, 0x8c8b8a89, 0x008f8e8d, 0x04030201, /* shl 11 (16 - 5)/shr5 */
0x89888786, 0x8d8c8b8a, 0x01008f8e, 0x05040302, /* shl 10 (16 - 6)/shr6 */
0x8a898887, 0x8e8d8c8b, 0x0201008f, 0x06050403, /* shl 9 (16 - 7)/shr7 */
0x8b8a8988, 0x8f8e8d8c, 0x03020100, 0x07060504, /* shl 8 (16 - 8)/shr8 */
0x8c8b8a89, 0x008f8e8d, 0x04030201, 0x08070605, /* shl 7 (16 - 9)/shr9 */
0x8d8c8b8a, 0x01008f8e, 0x05040302, 0x09080706, /* shl 6 (16 -10)/shr10*/
0x8e8d8c8b, 0x0201008f, 0x06050403, 0x0a090807, /* shl 5 (16 -11)/shr11*/
0x8f8e8d8c, 0x03020100, 0x07060504, 0x0b0a0908, /* shl 4 (16 -12)/shr12*/
0x008f8e8d, 0x04030201, 0x08070605, 0x0c0b0a09, /* shl 3 (16 -13)/shr13*/
0x01008f8e, 0x05040302, 0x09080706, 0x0d0c0b0a, /* shl 2 (16 -14)/shr14*/
0x0201008f, 0x06050403, 0x0a090807, 0x0e0d0c0b /* shl 1 (16 -15)/shr15*/
};
local void partial_fold(deflate_state *const s, const size_t len, __m128i *xmm_crc0, __m128i *xmm_crc1,
__m128i *xmm_crc2, __m128i *xmm_crc3, __m128i *xmm_crc_part) {
const __m128i xmm_fold4 = _mm_set_epi32(
0x00000001, 0x54442bd4,
0x00000001, 0xc6e41596);
const __m128i xmm_mask3 = _mm_set1_epi32(0x80808080);
__m128i xmm_shl, xmm_shr, xmm_tmp1, xmm_tmp2, xmm_tmp3;
__m128i xmm_a0_0, xmm_a0_1;
__m128 ps_crc3, psa0_0, psa0_1, ps_res;
xmm_shl = _mm_load_si128((__m128i *)pshufb_shf_table + (len - 1));
xmm_shr = xmm_shl;
xmm_shr = _mm_xor_si128(xmm_shr, xmm_mask3);
xmm_a0_0 = _mm_shuffle_epi8(*xmm_crc0, xmm_shl);
*xmm_crc0 = _mm_shuffle_epi8(*xmm_crc0, xmm_shr);
xmm_tmp1 = _mm_shuffle_epi8(*xmm_crc1, xmm_shl);
*xmm_crc0 = _mm_or_si128(*xmm_crc0, xmm_tmp1);
*xmm_crc1 = _mm_shuffle_epi8(*xmm_crc1, xmm_shr);
xmm_tmp2 = _mm_shuffle_epi8(*xmm_crc2, xmm_shl);
*xmm_crc1 = _mm_or_si128(*xmm_crc1, xmm_tmp2);
*xmm_crc2 = _mm_shuffle_epi8(*xmm_crc2, xmm_shr);
xmm_tmp3 = _mm_shuffle_epi8(*xmm_crc3, xmm_shl);
*xmm_crc2 = _mm_or_si128(*xmm_crc2, xmm_tmp3);
*xmm_crc3 = _mm_shuffle_epi8(*xmm_crc3, xmm_shr);
*xmm_crc_part = _mm_shuffle_epi8(*xmm_crc_part, xmm_shl);
*xmm_crc3 = _mm_or_si128(*xmm_crc3, *xmm_crc_part);
xmm_a0_1 = _mm_clmulepi64_si128(xmm_a0_0, xmm_fold4, 0x10);
xmm_a0_0 = _mm_clmulepi64_si128(xmm_a0_0, xmm_fold4, 0x01);
ps_crc3 = _mm_castsi128_ps(*xmm_crc3);
psa0_0 = _mm_castsi128_ps(xmm_a0_0);
psa0_1 = _mm_castsi128_ps(xmm_a0_1);
ps_res = _mm_xor_ps(ps_crc3, psa0_0);
ps_res = _mm_xor_ps(ps_res, psa0_1);
*xmm_crc3 = _mm_castps_si128(ps_res);
}
ZLIB_INTERNAL void crc_fold_copy(deflate_state *const s, unsigned char *dst, const unsigned char *src, long len) {
unsigned long algn_diff;
__m128i xmm_t0, xmm_t1, xmm_t2, xmm_t3;
CRC_LOAD(s)
if (len < 16) {
if (len == 0)
return;
xmm_crc_part = _mm_loadu_si128((__m128i *)src);
goto partial;
}
algn_diff = (0 - (uintptr_t)src) & 0xF;
if (algn_diff) {
xmm_crc_part = _mm_loadu_si128((__m128i *)src);
_mm_storeu_si128((__m128i *)dst, xmm_crc_part);
dst += algn_diff;
src += algn_diff;
len -= algn_diff;
partial_fold(s, algn_diff, &xmm_crc0, &xmm_crc1, &xmm_crc2, &xmm_crc3,
&xmm_crc_part);
}
while ((len -= 64) >= 0) {
xmm_t0 = _mm_load_si128((__m128i *)src);
xmm_t1 = _mm_load_si128((__m128i *)src + 1);
xmm_t2 = _mm_load_si128((__m128i *)src + 2);
xmm_t3 = _mm_load_si128((__m128i *)src + 3);
fold_4(s, &xmm_crc0, &xmm_crc1, &xmm_crc2, &xmm_crc3);
_mm_storeu_si128((__m128i *)dst, xmm_t0);
_mm_storeu_si128((__m128i *)dst + 1, xmm_t1);
_mm_storeu_si128((__m128i *)dst + 2, xmm_t2);
_mm_storeu_si128((__m128i *)dst + 3, xmm_t3);
xmm_crc0 = _mm_xor_si128(xmm_crc0, xmm_t0);
xmm_crc1 = _mm_xor_si128(xmm_crc1, xmm_t1);
xmm_crc2 = _mm_xor_si128(xmm_crc2, xmm_t2);
xmm_crc3 = _mm_xor_si128(xmm_crc3, xmm_t3);
src += 64;
dst += 64;
}
/*
* len = num bytes left - 64
*/
if (len + 16 >= 0) {
len += 16;
xmm_t0 = _mm_load_si128((__m128i *)src);
xmm_t1 = _mm_load_si128((__m128i *)src + 1);
xmm_t2 = _mm_load_si128((__m128i *)src + 2);
fold_3(s, &xmm_crc0, &xmm_crc1, &xmm_crc2, &xmm_crc3);
_mm_storeu_si128((__m128i *)dst, xmm_t0);
_mm_storeu_si128((__m128i *)dst + 1, xmm_t1);
_mm_storeu_si128((__m128i *)dst + 2, xmm_t2);
xmm_crc1 = _mm_xor_si128(xmm_crc1, xmm_t0);
xmm_crc2 = _mm_xor_si128(xmm_crc2, xmm_t1);
xmm_crc3 = _mm_xor_si128(xmm_crc3, xmm_t2);
if (len == 0)
goto done;
dst += 48;
xmm_crc_part = _mm_load_si128((__m128i *)src + 3);
} else if (len + 32 >= 0) {
len += 32;
xmm_t0 = _mm_load_si128((__m128i *)src);
xmm_t1 = _mm_load_si128((__m128i *)src + 1);
fold_2(s, &xmm_crc0, &xmm_crc1, &xmm_crc2, &xmm_crc3);
_mm_storeu_si128((__m128i *)dst, xmm_t0);
_mm_storeu_si128((__m128i *)dst + 1, xmm_t1);
xmm_crc2 = _mm_xor_si128(xmm_crc2, xmm_t0);
xmm_crc3 = _mm_xor_si128(xmm_crc3, xmm_t1);
if (len == 0)
goto done;
dst += 32;
xmm_crc_part = _mm_load_si128((__m128i *)src + 2);
} else if (len + 48 >= 0) {
len += 48;
xmm_t0 = _mm_load_si128((__m128i *)src);
fold_1(s, &xmm_crc0, &xmm_crc1, &xmm_crc2, &xmm_crc3);
_mm_storeu_si128((__m128i *)dst, xmm_t0);
xmm_crc3 = _mm_xor_si128(xmm_crc3, xmm_t0);
if (len == 0)
goto done;
dst += 16;
xmm_crc_part = _mm_load_si128((__m128i *)src + 1);
} else {
len += 64;
if (len == 0)
goto done;
xmm_crc_part = _mm_load_si128((__m128i *)src);
}
partial:
_mm_storeu_si128((__m128i *)dst, xmm_crc_part);
partial_fold(s, len, &xmm_crc0, &xmm_crc1, &xmm_crc2, &xmm_crc3,
&xmm_crc_part);
done:
CRC_SAVE(s)
}
local const unsigned ALIGNED_(16) crc_k[] = {
0xccaa009e, 0x00000000, /* rk1 */
0x751997d0, 0x00000001, /* rk2 */
0xccaa009e, 0x00000000, /* rk5 */
0x63cd6124, 0x00000001, /* rk6 */
0xf7011640, 0x00000001, /* rk7 */
0xdb710640, 0x00000001 /* rk8 */
};
local const unsigned ALIGNED_(16) crc_mask[4] = {
0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000
};
local const unsigned ALIGNED_(16) crc_mask2[4] = {
0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF
};
uint32_t ZLIB_INTERNAL crc_fold_512to32(deflate_state *const s) {
const __m128i xmm_mask = _mm_load_si128((__m128i *)crc_mask);
const __m128i xmm_mask2 = _mm_load_si128((__m128i *)crc_mask2);
uint32_t crc;
__m128i x_tmp0, x_tmp1, x_tmp2, crc_fold;
CRC_LOAD(s)
/*
* k1
*/
crc_fold = _mm_load_si128((__m128i *)crc_k);
x_tmp0 = _mm_clmulepi64_si128(xmm_crc0, crc_fold, 0x10);
xmm_crc0 = _mm_clmulepi64_si128(xmm_crc0, crc_fold, 0x01);
xmm_crc1 = _mm_xor_si128(xmm_crc1, x_tmp0);
xmm_crc1 = _mm_xor_si128(xmm_crc1, xmm_crc0);
x_tmp1 = _mm_clmulepi64_si128(xmm_crc1, crc_fold, 0x10);
xmm_crc1 = _mm_clmulepi64_si128(xmm_crc1, crc_fold, 0x01);
xmm_crc2 = _mm_xor_si128(xmm_crc2, x_tmp1);
xmm_crc2 = _mm_xor_si128(xmm_crc2, xmm_crc1);
x_tmp2 = _mm_clmulepi64_si128(xmm_crc2, crc_fold, 0x10);
xmm_crc2 = _mm_clmulepi64_si128(xmm_crc2, crc_fold, 0x01);
xmm_crc3 = _mm_xor_si128(xmm_crc3, x_tmp2);
xmm_crc3 = _mm_xor_si128(xmm_crc3, xmm_crc2);
/*
* k5
*/
crc_fold = _mm_load_si128((__m128i *)crc_k + 1);
xmm_crc0 = xmm_crc3;
xmm_crc3 = _mm_clmulepi64_si128(xmm_crc3, crc_fold, 0);
xmm_crc0 = _mm_srli_si128(xmm_crc0, 8);
xmm_crc3 = _mm_xor_si128(xmm_crc3, xmm_crc0);
xmm_crc0 = xmm_crc3;
xmm_crc3 = _mm_slli_si128(xmm_crc3, 4);
xmm_crc3 = _mm_clmulepi64_si128(xmm_crc3, crc_fold, 0x10);
xmm_crc3 = _mm_xor_si128(xmm_crc3, xmm_crc0);
xmm_crc3 = _mm_and_si128(xmm_crc3, xmm_mask2);
/*
* k7
*/
xmm_crc1 = xmm_crc3;
xmm_crc2 = xmm_crc3;
crc_fold = _mm_load_si128((__m128i *)crc_k + 2);
xmm_crc3 = _mm_clmulepi64_si128(xmm_crc3, crc_fold, 0);
xmm_crc3 = _mm_xor_si128(xmm_crc3, xmm_crc2);
xmm_crc3 = _mm_and_si128(xmm_crc3, xmm_mask);
xmm_crc2 = xmm_crc3;
xmm_crc3 = _mm_clmulepi64_si128(xmm_crc3, crc_fold, 0x10);
xmm_crc3 = _mm_xor_si128(xmm_crc3, xmm_crc2);
xmm_crc3 = _mm_xor_si128(xmm_crc3, xmm_crc1);
crc = _mm_extract_epi32(xmm_crc3, 2);
return ~crc;
CRC_SAVE(s)
}
#endif

File diff suppressed because it is too large Load Diff

View File

@ -1,165 +0,0 @@
/*
* Fill Window with SSE2-optimized hash shifting
*
* Copyright (C) 2013 Intel Corporation
* Authors:
* Arjan van de Ven <arjan@linux.intel.com>
* Jim Kukunas <james.t.kukunas@linux.intel.com>
*
* For conditions of distribution and use, see copyright notice in zlib.h
*/
#ifdef X86_SSE2_FILL_WINDOW
#include <immintrin.h>
#include "deflate.h"
extern int read_buf(z_stream *strm, unsigned char *buf, unsigned size);
ZLIB_INTERNAL void fill_window_sse(deflate_state *s) {
const __m128i xmm_wsize = _mm_set1_epi16(s->w_size);
register unsigned n;
register Pos *p;
unsigned more; /* Amount of free space at the end of the window. */
unsigned int wsize = s->w_size;
Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
do {
more = (unsigned)(s->window_size -(unsigned long)s->lookahead -(unsigned long)s->strstart);
/* Deal with !@#$% 64K limit: */
if (sizeof(int) <= 2) {
if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
more = wsize;
} else if (more == (unsigned)(-1)) {
/* Very unlikely, but possible on 16 bit machine if
* strstart == 0 && lookahead == 1 (input done a byte at time)
*/
more--;
}
}
/* If the window is almost full and there is insufficient lookahead,
* move the upper half to the lower one to make room in the upper half.
*/
if (s->strstart >= wsize+MAX_DIST(s)) {
memcpy(s->window, s->window+wsize, (unsigned)wsize);
s->match_start -= wsize;
s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
s->block_start -= (long) wsize;
/* Slide the hash table (could be avoided with 32 bit values
at the expense of memory usage). We slide even when level == 0
to keep the hash table consistent if we switch back to level > 0
later. (Using level 0 permanently is not an optimal usage of
zlib, so we don't care about this pathological case.)
*/
n = s->hash_size;
p = &s->head[n];
p -= 8;
do {
__m128i value, result;
value = _mm_loadu_si128((__m128i *)p);
result = _mm_subs_epu16(value, xmm_wsize);
_mm_storeu_si128((__m128i *)p, result);
p -= 8;
n -= 8;
} while (n > 0);
n = wsize;
p = &s->prev[n];
p -= 8;
do {
__m128i value, result;
value = _mm_loadu_si128((__m128i *)p);
result = _mm_subs_epu16(value, xmm_wsize);
_mm_storeu_si128((__m128i *)p, result);
p -= 8;
n -= 8;
} while (n > 0);
more += wsize;
}
if (s->strm->avail_in == 0) break;
/* If there was no sliding:
* strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
* more == window_size - lookahead - strstart
* => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
* => more >= window_size - 2*WSIZE + 2
* In the BIG_MEM or MMAP case (not yet supported),
* window_size == input_size + MIN_LOOKAHEAD &&
* strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
* Otherwise, window_size == 2*WSIZE so more >= 2.
* If there was sliding, more >= WSIZE. So in all cases, more >= 2.
*/
Assert(more >= 2, "more < 2");
n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
s->lookahead += n;
/* Initialize the hash value now that we have some input: */
if (s->lookahead + s->insert >= MIN_MATCH) {
unsigned int str = s->strstart - s->insert;
s->ins_h = s->window[str];
if (str >= 1)
UPDATE_HASH(s, s->ins_h, str + 1 - (MIN_MATCH-1));
#if MIN_MATCH != 3
Call UPDATE_HASH() MIN_MATCH-3 more times
#endif
while (s->insert) {
UPDATE_HASH(s, s->ins_h, str);
s->prev[str & s->w_mask] = s->head[s->ins_h];
s->head[s->ins_h] = (Pos)str;
str++;
s->insert--;
if (s->lookahead + s->insert < MIN_MATCH)
break;
}
}
/* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
* but this is not important since only literal bytes will be emitted.
*/
} while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
/* If the WIN_INIT bytes after the end of the current data have never been
* written, then zero those bytes in order to avoid memory check reports of
* the use of uninitialized (or uninitialised as Julian writes) bytes by
* the longest match routines. Update the high water mark for the next
* time through here. WIN_INIT is set to MAX_MATCH since the longest match
* routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
*/
if (s->high_water < s->window_size) {
unsigned long curr = s->strstart + (unsigned long)(s->lookahead);
unsigned long init;
if (s->high_water < curr) {
/* Previous high water mark below current data -- zero WIN_INIT
* bytes or up to end of window, whichever is less.
*/
init = s->window_size - curr;
if (init > WIN_INIT)
init = WIN_INIT;
memset(s->window + curr, 0, (unsigned)init);
s->high_water = curr + init;
} else if (s->high_water < (unsigned long)curr + WIN_INIT) {
/* High water mark at or above current data, but below current data
* plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
* to end of window, whichever is less.
*/
init = (unsigned long)curr + WIN_INIT - s->high_water;
if (init > s->window_size - s->high_water)
init = s->window_size - s->high_water;
memset(s->window + s->high_water, 0, (unsigned)init);
s->high_water += init;
}
}
Assert((unsigned long)s->strstart <= s->window_size - MIN_LOOKAHEAD, "not enough room for search");
}
#endif

View File

@ -1,50 +0,0 @@
/* insert_string_sse -- insert_string variant using SSE4.2's CRC instructions
*
* Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*
*/
#include "deflate.h"
/* ===========================================================================
* Insert string str in the dictionary and set match_head to the previous head
* of the hash chain (the most recent string with same hash key). Return
* the previous length of the hash chain.
* IN assertion: all calls to to INSERT_STRING are made with consecutive
* input characters and the first MIN_MATCH bytes of str are valid
* (except for the last MIN_MATCH-1 bytes of the input file).
*/
#ifdef X86_SSE4_2_CRC_HASH
Pos insert_string_sse(deflate_state *const s, const Pos str, unsigned int count) {
Pos ret = 0;
unsigned int idx;
unsigned *ip, val, h = 0;
for (idx = 0; idx < count; idx++) {
ip = (unsigned *)&s->window[str+idx];
val = *ip;
h = 0;
if (s->level >= 6)
val &= 0xFFFFFF;
#ifdef _MSC_VER
h = _mm_crc32_u32(h, val);
#else
__asm__ __volatile__ (
"crc32 %1,%0\n\t"
: "+r" (h)
: "r" (val)
);
#endif
if (s->head[h & s->hash_mask] != str+idx) {
s->prev[(str+idx) & s->w_mask] = s->head[h & s->hash_mask];
s->head[h & s->hash_mask] = str+idx;
}
}
ret = s->prev[(str+count-1) & s->w_mask];
return ret;
}
#endif

View File

@ -1,53 +0,0 @@
/*
* x86 feature check
*
* Copyright (C) 2013 Intel Corporation. All rights reserved.
* Author:
* Jim Kukunas
*
* For conditions of distribution and use, see copyright notice in zlib.h
*/
#include "x86.h"
ZLIB_INTERNAL int x86_cpu_has_sse2;
ZLIB_INTERNAL int x86_cpu_has_sse42;
ZLIB_INTERNAL int x86_cpu_has_pclmulqdq;
#ifdef _MSC_VER
#include <intrin.h>
#else
// Newer versions of GCC and clang come with cpuid.h
#include <cpuid.h>
#endif
static void cpuid(int info, unsigned* eax, unsigned* ebx, unsigned* ecx, unsigned* edx) {
#ifdef _MSC_VER
unsigned int registers[4];
__cpuid(registers, info);
*eax = registers[0];
*ebx = registers[1];
*ecx = registers[2];
*edx = registers[3];
#else
unsigned int _eax;
unsigned int _ebx;
unsigned int _ecx;
unsigned int _edx;
__cpuid(info, _eax, _ebx, _ecx, _edx);
*eax = _eax;
*ebx = _ebx;
*ecx = _ecx;
*edx = _edx;
#endif
}
void ZLIB_INTERNAL x86_check_features(void) {
unsigned eax, ebx, ecx, edx;
cpuid(1 /*CPU_PROCINFO_AND_FEATUREBITS*/, &eax, &ebx, &ecx, &edx);
x86_cpu_has_sse2 = edx & 0x4000000;
x86_cpu_has_sse42 = ecx & 0x100000;
x86_cpu_has_pclmulqdq = ecx & 0x2;
}

View File

@ -1,23 +0,0 @@
/* cpu.h -- check for CPU features
* Copyright (C) 2013 Intel Corporation Jim Kukunas
* For conditions of distribution and use, see copyright notice in zlib.h
*/
#ifndef CPU_H_
#define CPU_H_
#if defined(HAVE_INTERNAL)
# define ZLIB_INTERNAL __attribute__((visibility ("internal")))
#elif defined(HAVE_HIDDEN)
# define ZLIB_INTERNAL __attribute__((visibility ("hidden")))
#else
# define ZLIB_INTERNAL
#endif
extern int x86_cpu_has_sse2;
extern int x86_cpu_has_sse42;
extern int x86_cpu_has_pclmulqdq;
void ZLIB_INTERNAL x86_check_features(void);
#endif /* CPU_H_ */

View File

@ -1,74 +0,0 @@
/* compress.c -- compress a memory buffer
* Copyright (C) 1995-2005, 2014 Jean-loup Gailly, Mark Adler.
* For conditions of distribution and use, see copyright notice in zlib.h
*/
/* @(#) $Id$ */
#define ZLIB_INTERNAL
#include "zlib.h"
/* ===========================================================================
Compresses the source buffer into the destination buffer. The level
parameter has the same meaning as in deflateInit. sourceLen is the byte
length of the source buffer. Upon entry, destLen is the total size of the
destination buffer, which must be at least 0.1% larger than sourceLen plus
12 bytes. Upon exit, destLen is the actual size of the compressed buffer.
compress2 returns Z_OK if success, Z_MEM_ERROR if there was not enough
memory, Z_BUF_ERROR if there was not enough room in the output buffer,
Z_STREAM_ERROR if the level parameter is invalid.
*/
int ZEXPORT compress2(unsigned char *dest, size_t *destLen, const unsigned char *source,
size_t sourceLen, int level) {
z_stream stream;
int err;
const unsigned int max = (unsigned int)0 - 1;
size_t left;
left = *destLen;
*destLen = 0;
stream.zalloc = (alloc_func)0;
stream.zfree = (free_func)0;
stream.opaque = NULL;
err = deflateInit(&stream, level);
if (err != Z_OK)
return err;
stream.next_out = dest;
stream.avail_out = 0;
stream.next_in = (const unsigned char *)source;
stream.avail_in = 0;
do {
if (stream.avail_out == 0) {
stream.avail_out = left > (unsigned long)max ? max : (unsigned int)left;
left -= stream.avail_out;
}
if (stream.avail_in == 0) {
stream.avail_in = sourceLen > (unsigned long)max ? max : (unsigned int)sourceLen;
sourceLen -= stream.avail_in;
}
err = deflate(&stream, sourceLen ? Z_NO_FLUSH : Z_FINISH);
} while (err == Z_OK);
*destLen = stream.total_out;
deflateEnd(&stream);
return err == Z_STREAM_END ? Z_OK : err;
}
/* ===========================================================================
*/
int ZEXPORT compress(unsigned char *dest, size_t *destLen, const unsigned char *source, size_t sourceLen) {
return compress2(dest, destLen, source, sourceLen, Z_DEFAULT_COMPRESSION);
}
/* ===========================================================================
If the default memLevel or windowBits for deflateInit() is changed, then
this function needs to be updated.
*/
size_t ZEXPORT compressBound(size_t sourceLen) {
return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) + (sourceLen >> 25) + 13;
}

View File

@ -1,923 +0,0 @@
#!/bin/sh
# configure script for zlib.
#
# Normally configure builds both a static and a shared library.
# If you want to build just a static library, use: ./configure --static
#
# To impose specific compiler or flags or install directory, use for example:
# prefix=$HOME CC=cc CFLAGS="-O4" ./configure
# or for csh/tcsh users:
# (setenv prefix $HOME; setenv CC cc; setenv CFLAGS "-O4"; ./configure)
# Incorrect settings of CC or CFLAGS may prevent creating a shared library.
# If you have problems, try without defining CC and CFLAGS before reporting
# an error.
# start off configure.log
echo -------------------- >> configure.log
echo $0 $* >> configure.log
date >> configure.log
SRCDIR=$(cd $(dirname $0); pwd)
BUILDDIR=$(pwd)
# set command prefix for cross-compilation
if [ -n "${CHOST}" ]; then
uname="`echo "${CHOST}" | sed -e 's/^[^-]*-\([^-]*\)$/\1/' -e 's/^[^-]*-[^-]*-\([^-]*\)$/\1/' -e 's/^[^-]*-[^-]*-\([^-]*\)-.*$/\1/'`"
CROSS_PREFIX="${CHOST}-"
ARCH="`echo "${CHOST}" | sed -e 's/-.*//'`"
else
ARCH="`uname -m`"
fi
case "${ARCH}" in
x86_64)
case "${CFLAGS}" in
*-m32*)
ARCH=i686
;;
esac
;;
i386 | i486 | i586 | i686)
case "${CFLAGS}" in
*-m64*)
ARCH=x86_64
;;
esac
;;
esac
# destination name for static library
STATICLIB=libz.a
# destination name for windows import library
IMPORTLIB=
# extract zlib version numbers from zlib.h
VER=`sed -n -e '/ZLIB_VERSION "/s/.*"\(.*\)".*/\1/p' < ${SRCDIR}/zlib.h`
VER3=`sed -n -e '/ZLIB_VERSION "/s/.*"\([0-9]*\\.[0-9]*\\.[0-9]*\).*/\1/p' < ${SRCDIR}/zlib.h`
VER2=`sed -n -e '/ZLIB_VERSION "/s/.*"\([0-9]*\\.[0-9]*\)\\..*/\1/p' < ${SRCDIR}/zlib.h`
VER1=`sed -n -e '/ZLIB_VERSION "/s/.*"\([0-9]*\)\\..*/\1/p' < ${SRCDIR}/zlib.h`
# establish commands for library building
if "${CROSS_PREFIX}ar" --version >/dev/null 2>/dev/null || test $? -lt 126; then
AR=${AR-"${CROSS_PREFIX}ar"}
test -n "${CROSS_PREFIX}" && echo Using ${AR} | tee -a configure.log
else
AR=${AR-"ar"}
test -n "${CROSS_PREFIX}" && echo Using ${AR} | tee -a configure.log
fi
ARFLAGS=${ARFLAGS-"rc"}
if "${CROSS_PREFIX}ranlib" --version >/dev/null 2>/dev/null || test $? -lt 126; then
RANLIB=${RANLIB-"${CROSS_PREFIX}ranlib"}
test -n "${CROSS_PREFIX}" && echo Using ${RANLIB} | tee -a configure.log
else
RANLIB=${RANLIB-"ranlib"}
fi
if "${CROSS_PREFIX}nm" --version >/dev/null 2>/dev/null || test $? -lt 126; then
NM=${NM-"${CROSS_PREFIX}nm"}
test -n "${CROSS_PREFIX}" && echo Using ${NM} | tee -a configure.log
else
NM=${NM-"nm"}
fi
# set defaults before processing command line options
LDCONFIG=${LDCONFIG-"ldconfig"}
LDSHAREDLIBC="${LDSHAREDLIBC--lc}"
DEFFILE=
RC=
RCFLAGS=
RCOBJS=
STRIP=
ARCHS=
prefix=${prefix-/usr/local}
exec_prefix=${exec_prefix-'${prefix}'}
bindir=${bindir-'${exec_prefix}/bin'}
libdir=${libdir-'${exec_prefix}/lib'}
sharedlibdir=${sharedlibdir-'${libdir}'}
includedir=${includedir-'${prefix}/include'}
mandir=${mandir-'${prefix}/share/man'}
shared_ext='.so'
shared=1
gzfileops=0
compat=0
cover=0
build32=0
build64=0
without_optimizations=0
without_new_strategies=0
gcc=0
old_cc="$CC"
old_cflags="$CFLAGS"
OBJC='$(OBJZ)'
PIC_OBJC='$(PIC_OBJZ)'
INSTALLTARGETS="install-shared install-static"
UNINSTALLTARGETS="uninstall-shared uninstall-static"
TEST="teststatic"
# leave this script, optionally in a bad way
leave()
{
if test "$*" != "0"; then
echo "** $0 aborting." | tee -a configure.log
fi
rm -f $test.[co] $test $test$shared_ext $test.gcno ./--version
echo -------------------- >> configure.log
echo >> configure.log
echo >> configure.log
exit $1
}
# process command line options
while test $# -ge 1
do
case "$1" in
-h* | --help)
echo 'usage:' | tee -a configure.log
echo ' configure [--zlib-compat] [--prefix=PREFIX] [--eprefix=EXPREFIX]' | tee -a configure.log
echo ' [--static] [--32] [--64] [--libdir=LIBDIR] [--sharedlibdir=LIBDIR]' | tee -a configure.log
echo ' [--includedir=INCLUDEDIR] [--archs="-arch i386 -arch x86_64"]' | tee -a configure.log
exit 0 ;;
-p*=* | --prefix=*) prefix=`echo $1 | sed 's/.*=//'`; shift ;;
-e*=* | --eprefix=*) exec_prefix=`echo $1 | sed 's/.*=//'`; shift ;;
-l*=* | --libdir=*) libdir=`echo $1 | sed 's/.*=//'`; shift ;;
--sharedlibdir=*) sharedlibdir=`echo $1 | sed 's/.*=//'`; shift ;;
-i*=* | --includedir=*) includedir=`echo $1 | sed 's/.*=//'`;shift ;;
-u*=* | --uname=*) uname=`echo $1 | sed 's/.*=//'`;shift ;;
-p* | --prefix) prefix="$2"; shift; shift ;;
-e* | --eprefix) exec_prefix="$2"; shift; shift ;;
-l* | --libdir) libdir="$2"; shift; shift ;;
-i* | --includedir) includedir="$2"; shift; shift ;;
-s* | --shared | --enable-shared) shared=1; shift ;;
-t | --static) shared=0; shift ;;
--zlib-compat) compat=1; shift ;;
--cover) cover=1; shift ;;
-3* | --32) build32=1; shift ;;
-6* | --64) build64=1; shift ;;
-a*=* | --archs=*) ARCHS=`echo $1 | sed 's/.*=//'`; shift ;;
--sysconfdir=*) echo "ignored option: --sysconfdir" | tee -a configure.log; shift ;;
--localstatedir=*) echo "ignored option: --localstatedir" | tee -a configure.log; shift ;;
-noopt | --without-optimizations) without_optimizations=1; shift;;
-oldstrat | --without-new-strategies) without_new_strategies=1; shift;;
*)
echo "unknown option: $1" | tee -a configure.log
echo "$0 --help for help" | tee -a configure.log
leave 1;;
esac
done
# temporary file name
test=ztest$$
# put arguments in log, also put test file in log if used in arguments
show()
{
case "$*" in
*$test.c*)
echo === $test.c === >> configure.log
cat $test.c >> configure.log
echo === >> configure.log;;
esac
echo $* >> configure.log
}
# check for gcc vs. cc and set compile and link flags based on the system identified by uname
cat > $test.c <<EOF
extern int getchar();
int hello() {return getchar();}
EOF
test -z "$CC" && echo Checking for ${CROSS_PREFIX}gcc... | tee -a configure.log
cc=${CC-${CROSS_PREFIX}gcc}
cflags=${CFLAGS-"-O3"}
case "$cc" in
*gcc*) gcc=1 ;;
*clang*) gcc=1 ;;
esac
case `$cc -v 2>&1` in
*gcc*) gcc=1 ;;
esac
show $cc -c $test.c
if test "$gcc" -eq 1 && ($cc -c $test.c) >> configure.log 2>&1; then
echo ... using gcc >> configure.log
CC="$cc"
# Re-check arch if gcc is a cross-compiler
GCC_ARCH=`$CC -dumpmachine | sed 's/-.*//g'`
case $GCC_ARCH in
i386 | i486 | i586 | i686)
# Honor user choice if gcc is multilib and 64-bit is requested
if test $build64 -eq 1; then
ARCH=x86_64
else
ARCH=$GCC_ARCH
fi ;;
# Honor user choice if gcc is multilib and 32-bit is requested
x86_64)
if test $build32 -ne 1; then
ARCH=$GCC_ARCH
fi ;;
esac
CFLAGS="${CFLAGS--O3} ${ARCHS} -Wall"
SFLAGS="${CFLAGS--O3} -fPIC"
LDFLAGS="${LDFLAGS} ${ARCHS}"
if test $build64 -eq 1; then
CFLAGS="${CFLAGS} -m64"
SFLAGS="${SFLAGS} -m64"
fi
if test "${ZLIBGCCWARN}" = "YES"; then
CFLAGS="${CFLAGS} -Wextra -pedantic"
fi
if test -z "$uname"; then
uname=`(uname -s || echo unknown) 2>/dev/null`
fi
case "$uname" in
Linux* | linux* | GNU | GNU/* | solaris*)
LDSHARED=${LDSHARED-"$cc -shared -Wl,-soname,libz.so.1,--version-script,${SRCDIR}/zlib.map"} ;;
*BSD | *bsd* | DragonFly)
LDSHARED=${LDSHARED-"$cc -shared -Wl,-soname,libz.so.1,--version-script,${SRCDIR}/zlib.map"}
LDCONFIG="ldconfig -m" ;;
CYGWIN* | Cygwin* | cygwin*)
ARFLAGS="rcs"
CFLAGS="${CFLAGS} -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64"
SFLAGS="${CFLAGS}"
shared_ext='.dll'
sharedlibdir='${bindir}'
SHAREDLIB=cygz$shared_ext
SHAREDLIBM=''
SHAREDLIBV=''
SHAREDTARGET=$SHAREDLIB
IMPORTLIB='libz.dll.a'
LDSHARED=${LDSHARED-"$cc -shared -Wl,--out-implib,${IMPORTLIB},--version-script,${SRCDIR}/zlib.map"}
LDSHAREDLIBC=""
DEFFILE='win32/zlib.def'
RC='windres'
RCFLAGS='--define GCC_WINDRES'
RCOBJS='zlibrc.o'
STRIP='strip'
EXE='.exe' ;;
MSYS* | msys*)
ARFLAGS="rcs"
SFLAGS="${CFLAGS}"
shared_ext='.dll'
sharedlibdir='${bindir}'
SHAREDLIB=msys-z$shared_ext
SHAREDLIBM=''
SHAREDLIBV=''
SHAREDTARGET=$SHAREDLIB
IMPORTLIB='libz.dll.a'
LDSHARED=${LDSHARED-"$cc -shared -Wl,--out-implib,${IMPORTLIB}"}
LDSHAREDLIBC=""
DEFFILE='win32/zlib.def'
RC='windres'
RCFLAGS='--define GCC_WINDRES'
RCOBJS='zlibrc.o'
STRIP='strip'
EXE='.exe' ;;
MINGW* | mingw*)
ARFLAGS="rcs"
CFLAGS="${CFLAGS} -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -D_POSIX_C_SOURCE=200809L -D_GNU_SOURCE=1"
SFLAGS="${CFLAGS}"
shared_ext='.dll'
sharedlibdir='${bindir}'
SHAREDLIB=libz-$VER1$shared_ext
SHAREDLIBM=''
SHAREDLIBV=''
SHAREDTARGET=$SHAREDLIB
IMPORTLIB='libz.dll.a'
LDSHARED=${LDSHARED-"$cc -shared -Wl,--out-implib=${IMPORTLIB} -Wl,--version-script=${SRCDIR}/zlib.map"}
LDSHAREDLIBC=""
DEFFILE='win32/zlib.def'
RC='windres'
RCFLAGS='--define GCC_WINDRES'
if [ "$CC" == "mingw32-gcc" ]; then
case $ARCH in
i386 | i486 | i586 | i686) RCFLAGS="${RCFLAGS} -F pe-i386";;
esac;
fi
RCOBJS='zlibrc.o'
STRIP='strip'
EXE='.exe' ;;
QNX*) # This is for QNX6. I suppose that the QNX rule below is for QNX2,QNX4
# (alain.bonnefoy@icbt.com)
LDSHARED=${LDSHARED-"$cc -shared -Wl,-hlibz.so.1"} ;;
HP-UX*)
LDSHARED=${LDSHARED-"$cc -shared $SFLAGS"}
case `(uname -m || echo unknown) 2>/dev/null` in
ia64)
shared_ext='.so'
SHAREDLIB='libz.so' ;;
*)
shared_ext='.sl'
SHAREDLIB='libz.sl' ;;
esac ;;
Darwin* | darwin*)
shared_ext='.dylib'
SHAREDLIB=libz$shared_ext
SHAREDLIBV=libz.$VER$shared_ext
SHAREDLIBM=libz.$VER1$shared_ext
SHAREDTARGET=$SHAREDLIBV
LDSHARED=${LDSHARED-"$cc -dynamiclib -install_name $libdir/$SHAREDLIBM -compatibility_version $VER1 -current_version $VER3"}
if libtool -V 2>&1 | grep Apple > /dev/null; then
AR="libtool"
else
AR="/usr/bin/libtool"
fi
ARFLAGS="-o" ;;
*) LDSHARED=${LDSHARED-"$cc -shared"} ;;
esac
else
# find system name and corresponding cc options
CC=${CC-cc}
gcc=0
echo ... using $CC >> configure.log
if test -z "$uname"; then
uname=`(uname -sr || echo unknown) 2>/dev/null`
fi
case "$uname" in
HP-UX*) SFLAGS=${CFLAGS-"-O +z"}
CFLAGS=${CFLAGS-"-O"}
# LDSHARED=${LDSHARED-"ld -b +vnocompatwarnings"}
LDSHARED=${LDSHARED-"ld -b"}
case `(uname -m || echo unknown) 2>/dev/null` in
ia64)
shared_ext='.so'
SHAREDLIB='libz.so' ;;
*)
shared_ext='.sl'
SHAREDLIB='libz.sl' ;;
esac ;;
AIX*) # Courtesy of dbakker@arrayasolutions.com
SFLAGS=${CFLAGS-"-O -qmaxmem=8192"}
CFLAGS=${CFLAGS-"-O -qmaxmem=8192"}
LDSHARED=${LDSHARED-"xlc -G"} ;;
# send working options for other systems to zlib@gzip.org
*) SFLAGS=${CFLAGS-"-O"}
CFLAGS=${CFLAGS-"-O"}
LDSHARED=${LDSHARED-"cc -shared"} ;;
esac
fi
# destination names for shared library if not defined above
SHAREDLIB=${SHAREDLIB-"libz$shared_ext"}
SHAREDLIBV=${SHAREDLIBV-"libz$shared_ext.$VER"}
SHAREDLIBM=${SHAREDLIBM-"libz$shared_ext.$VER1"}
SHAREDTARGET=${SHAREDTARGET-"libz$shared_ext.$VER"}
echo >> configure.log
# define functions for testing compiler and library characteristics and logging the results
cat > $test.c <<EOF
#error error
EOF
if ($CC -c $CFLAGS $test.c) 2>/dev/null; then
try()
{
show $*
test "`( $* ) 2>&1 | tee -a configure.log`" = ""
}
echo - using any output from compiler to indicate an error >> configure.log
else
try()
{
show $*
( $* ) >> configure.log 2>&1
ret=$?
if test $ret -ne 0; then
echo "(exit code "$ret")" >> configure.log
fi
return $ret
}
fi
tryboth()
{
show $*
got=`( $* ) 2>&1`
ret=$?
printf %s "$got" >> configure.log
if test $ret -ne 0; then
return $ret
fi
test "$got" = ""
}
cat > $test.c << EOF
int foo() { return 0; }
EOF
echo "Checking for obsessive-compulsive compiler options..." >> configure.log
if try $CC -c $CFLAGS $test.c; then
:
else
echo "Compiler error reporting is too harsh for $0 (perhaps remove -Werror)." | tee -a configure.log
leave 1
fi
echo >> configure.log
# see if shared library build supported
cat > $test.c <<EOF
extern int getchar();
int hello() {return getchar();}
EOF
if test $shared -eq 1; then
echo Checking for shared library support... | tee -a configure.log
# we must test in two steps (cc then ld), required at least on SunOS 4.x
if try $CC -w -c $SFLAGS $test.c &&
try $LDSHARED $SFLAGS -o $test$shared_ext $test.o; then
echo Building shared library $SHAREDTARGET with $CC. | tee -a configure.log
elif test -z "$old_cc" -a -z "$old_cflags"; then
echo No shared library support. | tee -a configure.log
shared=0;
else
echo 'No shared library support; try without defining CC and CFLAGS' | tee -a configure.log
shared=0;
fi
fi
if test $shared -eq 0; then
LDSHARED="$CC"
ALL="static"
SHAREDLIB=""
SHAREDLIBV=""
SHAREDLIBM=""
SHAREDTARGET=""
INSTALLTARGETS=install-static
UNINSTALLTARGETS=uninstall-static
echo Building static library $STATICLIB version $VER with $CC. | tee -a configure.log
else
ALL="static shared"
TEST="${TEST} testshared"
fi
echo >> configure.log
# check for large file support, and if none, check for fseeko()
cat > $test.c <<EOF
#include <sys/types.h>
#ifdef __MSYS__
# define off64_t _off64_t
#endif
off64_t dummy = 0;
EOF
if try $CC -c $CFLAGS -D_LARGEFILE64_SOURCE=1 $test.c; then
CFLAGS="${CFLAGS} -D_LARGEFILE64_SOURCE=1"
SFLAGS="${SFLAGS} -D_LARGEFILE64_SOURCE=1"
ALL="${ALL} all64"
TEST="${TEST} test64"
echo "Checking for off64_t... Yes." | tee -a configure.log
echo "Checking for fseeko... Yes." | tee -a configure.log
else
echo "Checking for off64_t... No." | tee -a configure.log
echo >> configure.log
cat > $test.c <<EOF
#include <stdio.h>
int main(void) {
fseeko(NULL, 0, 0);
return 0;
}
EOF
if try $CC $CFLAGS -o $test $test.c; then
echo "Checking for fseeko... Yes." | tee -a configure.log
else
CFLAGS="${CFLAGS} -DNO_FSEEKO"
SFLAGS="${SFLAGS} -DNO_FSEEKO"
echo "Checking for fseeko... No." | tee -a configure.log
fi
fi
echo >> configure.log
# check for strerror() for use by gz* functions
cat > $test.c <<EOF
#include <string.h>
#include <errno.h>
int main() { return strlen(strerror(errno)); }
EOF
if try $CC $CFLAGS -o $test $test.c; then
echo "Checking for strerror... Yes." | tee -a configure.log
else
CFLAGS="${CFLAGS} -DNO_STRERROR"
SFLAGS="${SFLAGS} -DNO_STRERROR"
echo "Checking for strerror... No." | tee -a configure.log
fi
# We need to remove zconf.h from source directory if building outside of it
if [ "$SRCDIR" != "$BUILDDIR" ]; then rm -f $SRCDIR/zconf.h; fi
# copy clean zconf.h for subsequent edits
cp -p $SRCDIR/zconf.h.in zconf.h
echo >> configure.log
# check for unistd.h and save result in zconf.h
cat > $test.c <<EOF
#include <unistd.h>
int main() { return 0; }
EOF
if try $CC -c $CFLAGS $test.c; then
sed < zconf.h "/^#ifdef HAVE_UNISTD_H.* may be/s/def HAVE_UNISTD_H\(.*\) may be/ 1\1 was/" > zconf.temp.h
mv zconf.temp.h zconf.h
echo "Checking for unistd.h... Yes." | tee -a configure.log
else
echo "Checking for unistd.h... No." | tee -a configure.log
fi
echo >> configure.log
# check for stdarg.h and save result in zconf.h
cat > $test.c <<EOF
#include <stdarg.h>
int main() { return 0; }
EOF
if try $CC -c $CFLAGS $test.c; then
sed < zconf.h "/^#ifdef HAVE_STDARG_H.* may be/s/def HAVE_STDARG_H\(.*\) may be/ 1\1 was/" > zconf.temp.h
mv zconf.temp.h zconf.h
echo "Checking for stdarg.h... Yes." | tee -a configure.log
else
echo "Checking for stdarg.h... No." | tee -a configure.log
fi
# if --zlib-compat was requested
if test $compat -eq 1; then
CFLAGS="${CFLAGS} -DZLIB_COMPAT -DWITH_GZFILEOP"
SFLAGS="${SFLAGS} -DZLIB_COMPAT -DWITH_GZFILEOP"
OBJC="${OBJC} \$(OBJG)"
PIC_OBJC="${PIC_OBJC} \$(PIC_OBJG)"
case "$uname" in
CYGWIN* | Cygwin* | cygwin* | MSYS* | msys* | MINGW* | mingw*)
DEFFILE="win32/zlibcompat.def" ;;
esac
fi
# if code coverage testing was requested, use older gcc if defined, e.g. "gcc-4.2" on Mac OS X
if test $cover -eq 1; then
CFLAGS="${CFLAGS} -fprofile-arcs -ftest-coverage"
if test -n "$GCC_CLASSIC"; then
CC=$GCC_CLASSIC
fi
fi
echo >> configure.log
# Check for ANSI C compliant compiler
cat > $test.c <<EOF
#include <stdio.h>
#include <stdarg.h>
#include "zconf.h"
int main()
{
#ifdef STDC
return 0;
#endif
return 1;
}
EOF
if try $CC -c $CFLAGS $test.c; then
echo "Checking for ANSI C compliant compiler... Yes." | tee -a configure.log
:
else
echo "Checking for ANSI C compliant compiler... No." | tee -a configure.log
echo "Error: ANSI C compatible compiler needed, cannot continue." | tee -a configure.log
leave 1
fi
# see if we can hide zlib internal symbols that are linked between separate source files using hidden
if test "$gcc" -eq 1; then
echo >> configure.log
cat > $test.c <<EOF
#define ZLIB_INTERNAL __attribute__((visibility ("hidden")))
int ZLIB_INTERNAL foo;
int main()
{
return 0;
}
EOF
if tryboth $CC -c $CFLAGS $test.c; then
CFLAGS="$CFLAGS -DHAVE_HIDDEN"
SFLAGS="$SFLAGS -DHAVE_HIDDEN"
echo >> configure.log
echo "Checking for attribute(visibility(hidden)) support... Yes." | tee -a configure.log
else
echo >> configure.log
echo "Checking for attribute(visibility(hidden)) support... No." | tee -a configure.log
fi
fi
# see if we can hide zlib internal symbols that are linked between separate source files using internal
if test "$gcc" -eq 1; then
echo >> configure.log
cat > $test.c <<EOF
#define ZLIB_INTERNAL __attribute__((visibility ("internal")))
int ZLIB_INTERNAL foo;
int main()
{
return 0;
}
EOF
if tryboth $CC -c $CFLAGS $test.c; then
CFLAGS="$CFLAGS -DHAVE_INTERNAL"
SFLAGS="$SFLAGS -DHAVE_INTERNAL"
echo >> configure.log
echo "Checking for attribute(visibility(internal)) support... Yes." | tee -a configure.log
else
echo >> configure.log
echo "Checking for attribute(visibility(internal)) support... No." | tee -a configure.log
fi
fi
# Check for __builtin_ctzl() support in compiler
cat > $test.c << EOF
int main(void)
{
unsigned int zero = 0;
long test = __builtin_ctzl(zero);
(void)test;
return 0;
}
EOF
if try ${CC} ${CFLAGS} $test.c; then
echo "Checking for __builtin_ctzl ... Yes." | tee -a configure.log
CFLAGS="$CFLAGS -DHAVE_BUILTIN_CTZL"
SFLAGS="$SFLAGS -DHAVE_BUILTIN_CTZL"
else
echo "Checking for __builtin_ctzl ... No." | tee -a configure.log
fi
# Check for SSE2 intrinsics
cat > $test.c << EOF
#include <immintrin.h>
int main(void)
{
__m128i zero = _mm_setzero_si128();
(void)zero;
return 0;
}
EOF
if try ${CC} ${CFLAGS} -msse2 $test.c; then
echo "Checking for SSE2 intrinsics ... Yes." | tee -a configure.log
HAVE_SSE2_INTRIN=1
else
echo "Checking for SSE2 intrinsics ... No." | tee -a configure.log
HAVE_SSE2_INTRIN=0
fi
# Check for PCLMULQDQ intrinsics
cat > $test.c << EOF
#include <immintrin.h>
#include <wmmintrin.h>
int main(void)
{
__m128i a = _mm_setzero_si128();
__m128i b = _mm_setzero_si128();
__m128i c = _mm_clmulepi64_si128(a, b, 0x10);
(void)c;
return 0;
}
EOF
if try ${CC} ${CFLAGS} -mpclmul $test.c; then
echo "Checking for PCLMULQDQ intrinsics ... Yes." | tee -a configure.log
HAVE_PCLMULQDQ_INTRIN=1
else
echo "Checking for PCLMULQDQ intrinsics ... No." | tee -a configure.log
HAVE_PCLMULQDQ_INTRIN=0
fi
# Enable deflate_medium at level 4-6
if test $without_new_strategies -eq 0; then
CFLAGS="${CFLAGS} -DMEDIUM_STRATEGY"
SFLAGS="${SFLAGS} -DMEDIUM_STRATEGY"
fi
ARCHDIR='arch/generic'
ARCH_STATIC_OBJS=''
ARCH_SHARED_OBJS=''
# Set ARCH specific FLAGS
case "${ARCH}" in
# x86 and x86_64 specific optimizations
i386 | i486 | i586 | i686 | x86_64)
ARCHDIR=arch/x86
case "${ARCH}" in
x86_64)
CFLAGS="${CFLAGS} -DX86_64 -DX86_NOCHECK_SSE2"
SFLAGS="${SFLAGS} -DX86_64 -DX86_NOCHECK_SSE2"
;;
i386 | i486 | i586 | i686)
CFLAGS="${CFLAGS} -DX86"
SFLAGS="${SFLAGS} -DX86"
;;
esac
CFLAGS="${CFLAGS} -DUNALIGNED_OK -DUNROLL_LESS -DX86_CPUID"
SFLAGS="${SFLAGS} -DUNALIGNED_OK -DUNROLL_LESS -DX86_CPUID"
# Enable arch-specific optimizations?
if test $without_optimizations -eq 0; then
ARCH_STATIC_OBJS="${ARCH_STATIC_OBJS} x86.o"
ARCH_SHARED_OBJS="${ARCH_SHARED_OBJS} x86.lo"
if test ${HAVE_SSE2_INTRIN} -eq 1; then
CFLAGS="${CFLAGS} -DX86_SSE2_FILL_WINDOW"
SFLAGS="${SFLAGS} -DX86_SSE2_FILL_WINDOW"
ARCH_STATIC_OBJS="${ARCH_STATIC_OBJS} fill_window_sse.o"
ARCH_SHARED_OBJS="${ARCH_SHARED_OBJS} fill_window_sse.lo"
fi
CFLAGS="${CFLAGS} -DX86_SSE4_2_CRC_HASH"
SFLAGS="${SFLAGS} -DX86_SSE4_2_CRC_HASH"
ARCH_STATIC_OBJS="${ARCH_STATIC_OBJS} insert_string_sse.o"
ARCH_SHARED_OBJS="${ARCH_SHARED_OBJS} insert_string_sse.lo"
if test ${HAVE_PCLMULQDQ_INTRIN} -eq 1; then
CFLAGS="${CFLAGS} -DX86_PCLMULQDQ_CRC"
SFLAGS="${SFLAGS} -DX86_PCLMULQDQ_CRC"
ARCH_STATIC_OBJS="${ARCH_STATIC_OBJS} crc_folding.o"
ARCH_SHARED_OBJS="${ARCH_SHARED_OBJS} crc_folding.lo"
fi
# Enable deflate_quick at level 1?
# requires SSE2: code uses fill_window_sse
if test ${HAVE_SSE2_INTRIN} -eq 1 && test $without_new_strategies -eq 0; then
CFLAGS="${CFLAGS} -DX86_QUICK_STRATEGY"
SFLAGS="${SFLAGS} -DX86_QUICK_STRATEGY"
ARCH_STATIC_OBJS="${ARCH_STATIC_OBJS} deflate_quick.o"
ARCH_SHARED_OBJS="${ARCH_SHARED_OBJS} deflate_quick.lo"
fi
fi
;;
# ARM specific optimizations
armv3l | armv4b | armv4l | armv4tl | armv5tel | armv5tejl | armv6l | armv6hl | armv7l | armv7hl | armv7hnl)
ARCHDIR=arch/arm
case "${ARCH}" in
armv6l | armv6hl)
# Tests done on Raspberry pi (armv6hl) indicate that UNALIGNED_OK and UNROLL_LESS both
# provide performance improvements, totaling about 1.5% for the two.
CFLAGS="${CFLAGS} -DUNALIGNED_OK -DUNROLL_LESS"
SFLAGS="${SFLAGS} -DUNALIGNED_OK -DUNROLL_LESS"
;;
esac
;;
esac
echo "ARCH: ${ARCH}"
echo "Using arch directory: ${ARCHDIR}"
# show the results in the log
echo >> configure.log
echo ALL = $ALL >> configure.log
echo AR = $AR >> configure.log
echo ARFLAGS = $ARFLAGS >> configure.log
echo CC = $CC >> configure.log
echo CFLAGS = $CFLAGS >> configure.log
echo EXE = $EXE >> configure.log
echo LDCONFIG = $LDCONFIG >> configure.log
echo LDFLAGS = $LDFLAGS >> configure.log
echo LDSHARED = $LDSHARED >> configure.log
echo LDSHAREDLIBC = $LDSHAREDLIBC >> configure.log
echo DEFFILE = $DEFFILE >> configure.log
echo RC = $RC >> configure.log
echo RCFLAGS = $RCFLAGS >> configure.log
echo RCOBJS = $RCOBJS >> configure.log
echo STRIP = $STRIP >> configure.log
echo OBJC = $OBJC >> configure.log
echo PIC_OBJC = $PIC_OBJC >> configure.log
echo RANLIB = $RANLIB >> configure.log
echo SFLAGS = $SFLAGS >> configure.log
echo SHAREDLIB = $SHAREDLIB >> configure.log
echo SHAREDLIBM = $SHAREDLIBM >> configure.log
echo SHAREDLIBV = $SHAREDLIBV >> configure.log
echo SHAREDTARGET = $SHAREDTARGET >> configure.log
echo IMPORTLIB = $IMPORTLIB >> configure.log
echo INSTALLTARGETS = $INSTALLTARGETS >> configure.log
echo UNINSTALLTARGETS = $UNINSTALLTARGETS >> configure.log
echo SRCDIR = $SRCDIR >> configure.log
echo BUILDDIR = $BUILDDIR >> configure.log
echo STATICLIB = $STATICLIB >> configure.log
echo TEST = $TEST >> configure.log
echo VER = $VER >> configure.log
echo exec_prefix = $exec_prefix >> configure.log
echo includedir = $includedir >> configure.log
echo bindir = $bindir >> configure.log
echo libdir = $libdir >> configure.log
echo mandir = $mandir >> configure.log
echo prefix = $prefix >> configure.log
echo sharedlibdir = $sharedlibdir >> configure.log
echo uname = $uname >> configure.log
echo ARCHDIR = ${ARCHDIR} >> configure.log
echo ARCH_STATIC_OBJS = ${ARCH_STATIC_OBJS} >> configure.log
echo ARCH_SHARED_OBJS = ${ARCH_SHARED_OBJS} >> configure.log
# update Makefile with the configure results
INCLUDES="-I$SRCDIR"
if [ "$SRCDIR" != "$BUILDDIR" ]; then INCLUDES="-I$BUILDDIR ${INCLUDES}"; fi
sed < $SRCDIR/Makefile.in "
/^CC *=/s#=.*#=$CC#
/^CFLAGS *=/s#=.*#=$CFLAGS#
/^SFLAGS *=/s#=.*#=$SFLAGS#
/^LDFLAGS *=/s#=.*#=$LDFLAGS#
/^LDSHARED *=/s#=.*#=$LDSHARED#
/^STATICLIB *=/s#=.*#=$STATICLIB#
/^SHAREDLIB *=/s#=.*#=$SHAREDLIB#
/^SHAREDLIBV *=/s#=.*#=$SHAREDLIBV#
/^SHAREDLIBM *=/s#=.*#=$SHAREDLIBM#
/^SHAREDTARGET *=/s#=.*#=$SHAREDTARGET#
/^IMPORTLIB *=/s#=.*#=$IMPORTLIB#
/^AR *=/s#=.*#=$AR#
/^ARFLAGS *=/s#=.*#=$ARFLAGS#
/^RANLIB *=/s#=.*#=$RANLIB#
/^LDCONFIG *=/s#=.*#=$LDCONFIG#
/^LDSHAREDLIBC *=/s#=.*#=$LDSHAREDLIBC#
/^DEFFILE *=/s#=.*#=$DEFFILE#
/^RC *=/s#=.*#=$RC#
/^RCFLAGS *=/s#=.*#=$RCFLAGS#
/^RCOBJS *=/s#=.*#=$RCOBJS#
/^STRIP *=/s#=.*#=$STRIP#
/^EXE *=/s#=.*#=$EXE#
/^prefix *=/s#=.*#= $prefix#
/^exec_prefix *=/s#=.*#= $exec_prefix#
/^bindir *=/s#=.*#= $bindir#
/^libdir *=/s#=.*#= $libdir#
/^sharedlibdir *=/s#=.*#= $sharedlibdir#
/^includedir *=/s#=.*#= $includedir#
/^mandir *=/s#=.*#= $mandir#
/^SRCDIR *=/s#=.*#=$SRCDIR#
/^INCLUDES *=/s#=.*#=$INCLUDES#
/^OBJC *=/s#=.*#= $OBJC#
/^PIC_OBJC *=/s#=.*#= $PIC_OBJC#
/^all: */s#:.*#: $ALL#
/^install-libs: */s#:.*#: $INSTALLTARGETS#
/^uninstall-libs: */s#:.*#: $UNINSTALLTARGETS#
/^ARCHDIR *=/s#=.*#=$ARCHDIR#
/^ARCH_STATIC_OBJS *=/s#=.*#=$ARCH_STATIC_OBJS#
/^ARCH_SHARED_OBJS *=/s#=.*#=$ARCH_SHARED_OBJS#
" > Makefile
# Generate Makefile in arch dir
mkdir -p $ARCHDIR
ARCHINCLUDES="-I$SRCDIR/$ARCHDIR -I$SRCDIR"
if [ "$SRCDIR" != "$BUILDDIR" ]; then ARCHINCLUDES="-I$BUILDDIR ${ARCHINCLUDES}"; fi
sed < $SRCDIR/$ARCHDIR/Makefile.in "
/^CC *=/s#=.*#=$CC#
/^CFLAGS *=/s#=.*#=$CFLAGS#
/^SFLAGS *=/s#=.*#=$SFLAGS#
/^INCLUDES *=/s#=.*#=$ARCHINCLUDES#
/^SRCDIR *=/s#=.*#=$SRCDIR/$ARCHDIR#
/^SRCTOP *=/s#=.*#=$SRCDIR#
" > $ARCHDIR/Makefile
# Generate Makefile in test dir
mkdir -p test
TESTINCLUDES="-I$SRCDIR"
if [ "$SRCDIR" != "$BUILDDIR" ]; then TESTINCLUDES="${TESTINCLUDES} -I$BUILDDIR"; fi
if test $compat -eq 1; then COMPATTESTS="compattests"; fi
sed < $SRCDIR/test/Makefile.in "
/^CC *=/s#=.*#=$CC#
/^CFLAGS *=/s#=.*#=$CFLAGS#
/^EXE *=/s#=.*#=$EXE#
/^oldtests: */s#:.*#: $TEST#
/^INCLUDES *=/s#=.*#=$TESTINCLUDES#
/^SRCDIR *=/s#=.*#=$SRCDIR/test#
/^SRCTOP *=/s#=.*#=$SRCDIR#
/^COMPATTESTS *=/s#=.*#=$COMPATTESTS#
" > test/Makefile
# create zlib.pc with the configure results
sed < $SRCDIR/zlib.pc.in "
/^CC *=/s#=.*#=$CC#
/^CFLAGS *=/s#=.*#=$CFLAGS#
/^LDSHARED *=/s#=.*#=$LDSHARED#
/^STATICLIB *=/s#=.*#=$STATICLIB#
/^SHAREDLIB *=/s#=.*#=$SHAREDLIB#
/^SHAREDLIBV *=/s#=.*#=$SHAREDLIBV#
/^SHAREDLIBM *=/s#=.*#=$SHAREDLIBM#
/^IMPORTLIB *=/s#=.*#=$IMPORTLIB#
/^AR *=/s#=.*#=$AR#
/^ARFLAGS *=/s#=.*#=$ARFLAGS#
/^RANLIB *=/s#=.*#=$RANLIB#
/^EXE *=/s#=.*#=$EXE#
/^prefix *=/s#=.*#=$prefix#
/^exec_prefix *=/s#=.*#=$exec_prefix#
/^bindir *=/s#=.*#=$bindir#
/^libdir *=/s#=.*#=$libdir#
/^sharedlibdir *=/s#=.*#=$sharedlibdir#
/^includedir *=/s#=.*#=$includedir#
/^mandir *=/s#=.*#=$mandir#
/^LDFLAGS *=/s#=.*#=$LDFLAGS#
" | sed -e "
s/\@VERSION\@/$VER/g;
" > zlib.pc
# done
leave 0

View File

@ -1,458 +0,0 @@
/* crc32.c -- compute the CRC-32 of a data stream
* Copyright (C) 1995-2006, 2010, 2011, 2012 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*
* Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster
* CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing
* tables for updating the shift register in one step with three exclusive-ors
* instead of four steps with four exclusive-ors. This results in about a
* factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
*/
/* @(#) $Id$ */
#ifdef __MINGW32__
# include <sys/param.h>
#elif defined(WIN32) || defined(_WIN32)
# define LITTLE_ENDIAN 1234
# define BIG_ENDIAN 4321
# if defined(_M_IX86) || defined(_M_AMD64) || defined(_M_IA64)
# define BYTE_ORDER LITTLE_ENDIAN
# else
# error Unknown endianness!
# endif
#elif __APPLE__
# include <machine/endian.h>
#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__bsdi__) || defined(__DragonFly__)
# include <sys/endian.h>
#elif defined(__sun) || defined(sun)
# include <sys/byteorder.h>
# if !defined(LITTLE_ENDIAN)
# define LITTLE_ENDIAN 4321
# endif
# if !defined(BIG_ENDIAN)
# define BIG_ENDIAN 1234
# endif
# if !defined(BYTE_ORDER)
# if defined(_BIG_ENDIAN)
# define BYTE_ORDER BIG_ENDIAN
# else
# define BYTE_ORDER LITTLE_ENDIAN
# endif
# endif
#else
# include <endian.h>
#endif
/*
Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
protection on the static variables used to control the first-use generation
of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should
first call get_crc_table() to initialize the tables before allowing more than
one thread to use crc32().
DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h.
*/
#ifdef MAKECRCH
# include <stdio.h>
# ifndef DYNAMIC_CRC_TABLE
# define DYNAMIC_CRC_TABLE
# endif /* !DYNAMIC_CRC_TABLE */
#endif /* MAKECRCH */
#include "deflate.h"
#if BYTE_ORDER == LITTLE_ENDIAN
static uint32_t crc32_little(uint32_t, const unsigned char *, z_off64_t);
#elif BYTE_ORDER == BIG_ENDIAN
static uint32_t crc32_big(uint32_t, const unsigned char *, z_off64_t);
#endif
/* Local functions for crc concatenation */
static uint32_t gf2_matrix_times(uint32_t *mat, uint32_t vec);
static void gf2_matrix_square(uint32_t *square, uint32_t *mat);
static uint32_t crc32_combine_(uint32_t crc1, uint32_t crc2, z_off64_t len2);
#ifdef DYNAMIC_CRC_TABLE
static volatile int crc_table_empty = 1;
static uint32_t crc_table[8][256];
static void make_crc_table(void);
#ifdef MAKECRCH
static void write_table(FILE *, const uint32_t *);
#endif /* MAKECRCH */
/*
Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
Polynomials over GF(2) are represented in binary, one bit per coefficient,
with the lowest powers in the most significant bit. Then adding polynomials
is just exclusive-or, and multiplying a polynomial by x is a right shift by
one. If we call the above polynomial p, and represent a byte as the
polynomial q, also with the lowest power in the most significant bit (so the
byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
where a mod b means the remainder after dividing a by b.
This calculation is done using the shift-register method of multiplying and
taking the remainder. The register is initialized to zero, and for each
incoming bit, x^32 is added mod p to the register if the bit is a one (where
x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
x (which is shifting right by one and adding x^32 mod p if the bit shifted
out is a one). We start with the highest power (least significant bit) of
q and repeat for all eight bits of q.
The first table is simply the CRC of all possible eight bit values. This is
all the information needed to generate CRCs on data a byte at a time for all
combinations of CRC register values and incoming bytes. The remaining tables
allow for word-at-a-time CRC calculation for both big-endian and little-
endian machines, where a word is four bytes.
*/
static void make_crc_table() {
uint32_t c;
int n, k;
uint32_t poly; /* polynomial exclusive-or pattern */
/* terms of polynomial defining this crc (except x^32): */
static volatile int first = 1; /* flag to limit concurrent making */
static const unsigned char p[] = {0, 1, 2, 4, 5, 7, 8, 10, 11, 12, 16, 22, 23, 26};
/* See if another task is already doing this (not thread-safe, but better
than nothing -- significantly reduces duration of vulnerability in
case the advice about DYNAMIC_CRC_TABLE is ignored) */
if (first) {
first = 0;
/* make exclusive-or pattern from polynomial (0xedb88320) */
poly = 0;
for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++)
poly |= (uint32_t)1 << (31 - p[n]);
/* generate a crc for every 8-bit value */
for (n = 0; n < 256; n++) {
c = (uint32_t)n;
for (k = 0; k < 8; k++)
c = c & 1 ? poly ^ (c >> 1) : c >> 1;
crc_table[0][n] = c;
}
/* generate crc for each value followed by one, two, and three zeros,
and then the byte reversal of those as well as the first table */
for (n = 0; n < 256; n++) {
c = crc_table[0][n];
crc_table[4][n] = ZSWAP32(c);
for (k = 1; k < 4; k++) {
c = crc_table[0][c & 0xff] ^ (c >> 8);
crc_table[k][n] = c;
crc_table[k + 4][n] = ZSWAP32(c);
}
}
crc_table_empty = 0;
} else { /* not first */
/* wait for the other guy to finish (not efficient, but rare) */
while (crc_table_empty)
{}
}
#ifdef MAKECRCH
/* write out CRC tables to crc32.h */
{
FILE *out;
out = fopen("crc32.h", "w");
if (out == NULL) return;
fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n");
fprintf(out, " * Generated automatically by crc32.c\n */\n\n");
fprintf(out, "static const uint32_t ");
fprintf(out, "crc_table[8][256] =\n{\n {\n");
write_table(out, crc_table[0]);
for (k = 1; k < 8; k++) {
fprintf(out, " },\n {\n");
write_table(out, crc_table[k]);
}
fprintf(out, " }\n};\n");
fclose(out);
}
#endif /* MAKECRCH */
}
#ifdef MAKECRCH
static void write_table(FILE *out, const uint32_t *table) {
int n;
for (n = 0; n < 256; n++)
fprintf(out, "%s0x%08lx%s", n % 5 ? "" : " ",
(uint32_t)(table[n]),
n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", "));
}
#endif /* MAKECRCH */
#else /* !DYNAMIC_CRC_TABLE */
/* ========================================================================
* Tables of CRC-32s of all single-byte values, made by make_crc_table().
*/
#include "crc32.h"
#endif /* DYNAMIC_CRC_TABLE */
/* =========================================================================
* This function can be used by asm versions of crc32()
*/
const uint32_t * ZEXPORT get_crc_table(void) {
#ifdef DYNAMIC_CRC_TABLE
if (crc_table_empty)
make_crc_table();
#endif /* DYNAMIC_CRC_TABLE */
return (const uint32_t *)crc_table;
}
/* ========================================================================= */
#define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8)
#define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1
#define DO4 DO1; DO1; DO1; DO1
/* ========================================================================= */
uint32_t ZEXPORT crc32(uint32_t crc, const unsigned char *buf, z_off64_t len) {
if (buf == Z_NULL) return 0;
#ifdef DYNAMIC_CRC_TABLE
if (crc_table_empty)
make_crc_table();
#endif /* DYNAMIC_CRC_TABLE */
if (sizeof(void *) == sizeof(ptrdiff_t)) {
#if BYTE_ORDER == LITTLE_ENDIAN
return crc32_little(crc, buf, len);
#elif BYTE_ORDER == BIG_ENDIAN
return crc32_big(crc, buf, len);
#endif
}
crc = crc ^ 0xffffffff;
#ifdef UNROLL_LESS
while (len >= 4) {
DO4;
len -= 4;
}
#else
while (len >= 8) {
DO8;
len -= 8;
}
#endif
if (len) do {
DO1;
} while (--len);
return crc ^ 0xffffffff;
}
/* ========================================================================= */
#if BYTE_ORDER == LITTLE_ENDIAN
#define DOLIT4 c ^= *buf4++; \
c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \
crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24]
#define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4
/* ========================================================================= */
static uint32_t crc32_little(uint32_t crc, const unsigned char *buf, z_off64_t len) {
register uint32_t c;
register const uint32_t *buf4;
c = crc;
c = ~c;
while (len && ((ptrdiff_t)buf & 3)) {
c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
len--;
}
buf4 = (const uint32_t *)(const void *)buf;
#ifndef UNROLL_LESS
while (len >= 32) {
DOLIT32;
len -= 32;
}
#endif
while (len >= 4) {
DOLIT4;
len -= 4;
}
buf = (const unsigned char *)buf4;
if (len) do {
c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
} while (--len);
c = ~c;
return c;
}
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
/* ========================================================================= */
#if BYTE_ORDER == BIG_ENDIAN
#define DOBIG4 c ^= *++buf4; \
c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
#define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
/* ========================================================================= */
static uint32_t crc32_big(uint32_t crc, const unsigned char *buf, z_off64_t len) {
register uint32_t c;
register const uint32_t *buf4;
c = ZSWAP32(crc);
c = ~c;
while (len && ((ptrdiff_t)buf & 3)) {
c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
len--;
}
buf4 = (const uint32_t *)(const void *)buf;
buf4--;
#ifndef UNROLL_LESS
while (len >= 32) {
DOBIG32;
len -= 32;
}
#endif
while (len >= 4) {
DOBIG4;
len -= 4;
}
buf4++;
buf = (const unsigned char *)buf4;
if (len) do {
c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
} while (--len);
c = ~c;
return ZSWAP32(c);
}
#endif /* BYTE_ORDER == BIG_ENDIAN */
#define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */
/* ========================================================================= */
static uint32_t gf2_matrix_times(uint32_t *mat, uint32_t vec) {
uint32_t sum;
sum = 0;
while (vec) {
if (vec & 1)
sum ^= *mat;
vec >>= 1;
mat++;
}
return sum;
}
/* ========================================================================= */
static void gf2_matrix_square(uint32_t *square, uint32_t *mat) {
int n;
for (n = 0; n < GF2_DIM; n++)
square[n] = gf2_matrix_times(mat, mat[n]);
}
/* ========================================================================= */
static uint32_t crc32_combine_(uint32_t crc1, uint32_t crc2, z_off64_t len2) {
int n;
uint32_t row;
uint32_t even[GF2_DIM]; /* even-power-of-two zeros operator */
uint32_t odd[GF2_DIM]; /* odd-power-of-two zeros operator */
/* degenerate case (also disallow negative lengths) */
if (len2 <= 0)
return crc1;
/* put operator for one zero bit in odd */
odd[0] = 0xedb88320; /* CRC-32 polynomial */
row = 1;
for (n = 1; n < GF2_DIM; n++) {
odd[n] = row;
row <<= 1;
}
/* put operator for two zero bits in even */
gf2_matrix_square(even, odd);
/* put operator for four zero bits in odd */
gf2_matrix_square(odd, even);
/* apply len2 zeros to crc1 (first square will put the operator for one
zero byte, eight zero bits, in even) */
do {
/* apply zeros operator for this bit of len2 */
gf2_matrix_square(even, odd);
if (len2 & 1)
crc1 = gf2_matrix_times(even, crc1);
len2 >>= 1;
/* if no more bits set, then done */
if (len2 == 0)
break;
/* another iteration of the loop with odd and even swapped */
gf2_matrix_square(odd, even);
if (len2 & 1)
crc1 = gf2_matrix_times(odd, crc1);
len2 >>= 1;
/* if no more bits set, then done */
} while (len2 != 0);
/* return combined crc */
crc1 ^= crc2;
return crc1;
}
/* ========================================================================= */
uint32_t ZEXPORT crc32_combine(uint32_t crc1, uint32_t crc2, z_off_t len2) {
return crc32_combine_(crc1, crc2, len2);
}
uint32_t ZEXPORT crc32_combine64(uint32_t crc1, uint32_t crc2, z_off64_t len2) {
return crc32_combine_(crc1, crc2, len2);
}
#ifdef X86_PCLMULQDQ_CRC
#include "arch/x86/x86.h"
extern void ZLIB_INTERNAL crc_fold_init(deflate_state *const s);
extern void ZLIB_INTERNAL crc_fold_copy(deflate_state *const s,
unsigned char *dst, const unsigned char *src, long len);
extern uint32_t ZLIB_INTERNAL crc_fold_512to32(deflate_state *const s);
#endif
ZLIB_INTERNAL void crc_reset(deflate_state *const s) {
#ifdef X86_PCLMULQDQ_CRC
if (x86_cpu_has_pclmulqdq) {
crc_fold_init(s);
return;
}
#endif
s->strm->adler = crc32(0L, Z_NULL, 0);
}
ZLIB_INTERNAL void crc_finalize(deflate_state *const s) {
#ifdef X86_PCLMULQDQ_CRC
if (x86_cpu_has_pclmulqdq)
s->strm->adler = crc_fold_512to32(s);
#endif
}
ZLIB_INTERNAL void copy_with_crc(z_stream *strm, unsigned char *dst, long size) {
#ifdef X86_PCLMULQDQ_CRC
if (x86_cpu_has_pclmulqdq) {
crc_fold_copy(strm->state, dst, strm->next_in, size);
return;
}
#endif
memcpy(dst, strm->next_in, size);
strm->adler = crc32(strm->adler, dst, size);
}

View File

@ -1,444 +0,0 @@
#ifndef CRC32_H_
#define CRC32_H_
/* crc32.h -- tables for rapid CRC calculation
* Generated automatically by crc32.c
*/
static const uint32_t crc_table[8][256] =
{
{
0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419,
0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,
0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07,
0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856,
0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4,
0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3,
0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a,
0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599,
0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190,
0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,
0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e,
0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed,
0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3,
0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a,
0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5,
0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010,
0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17,
0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,
0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615,
0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344,
0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a,
0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1,
0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c,
0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef,
0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe,
0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31,
0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c,
0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b,
0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1,
0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278,
0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,
0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66,
0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605,
0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,
0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b,
0x2d02ef8d
},
{
0x00000000, 0x191b3141, 0x32366282, 0x2b2d53c3, 0x646cc504,
0x7d77f445, 0x565aa786, 0x4f4196c7, 0xc8d98a08, 0xd1c2bb49,
0xfaefe88a, 0xe3f4d9cb, 0xacb54f0c, 0xb5ae7e4d, 0x9e832d8e,
0x87981ccf, 0x4ac21251, 0x53d92310, 0x78f470d3, 0x61ef4192,
0x2eaed755, 0x37b5e614, 0x1c98b5d7, 0x05838496, 0x821b9859,
0x9b00a918, 0xb02dfadb, 0xa936cb9a, 0xe6775d5d, 0xff6c6c1c,
0xd4413fdf, 0xcd5a0e9e, 0x958424a2, 0x8c9f15e3, 0xa7b24620,
0xbea97761, 0xf1e8e1a6, 0xe8f3d0e7, 0xc3de8324, 0xdac5b265,
0x5d5daeaa, 0x44469feb, 0x6f6bcc28, 0x7670fd69, 0x39316bae,
0x202a5aef, 0x0b07092c, 0x121c386d, 0xdf4636f3, 0xc65d07b2,
0xed705471, 0xf46b6530, 0xbb2af3f7, 0xa231c2b6, 0x891c9175,
0x9007a034, 0x179fbcfb, 0x0e848dba, 0x25a9de79, 0x3cb2ef38,
0x73f379ff, 0x6ae848be, 0x41c51b7d, 0x58de2a3c, 0xf0794f05,
0xe9627e44, 0xc24f2d87, 0xdb541cc6, 0x94158a01, 0x8d0ebb40,
0xa623e883, 0xbf38d9c2, 0x38a0c50d, 0x21bbf44c, 0x0a96a78f,
0x138d96ce, 0x5ccc0009, 0x45d73148, 0x6efa628b, 0x77e153ca,
0xbabb5d54, 0xa3a06c15, 0x888d3fd6, 0x91960e97, 0xded79850,
0xc7cca911, 0xece1fad2, 0xf5facb93, 0x7262d75c, 0x6b79e61d,
0x4054b5de, 0x594f849f, 0x160e1258, 0x0f152319, 0x243870da,
0x3d23419b, 0x65fd6ba7, 0x7ce65ae6, 0x57cb0925, 0x4ed03864,
0x0191aea3, 0x188a9fe2, 0x33a7cc21, 0x2abcfd60, 0xad24e1af,
0xb43fd0ee, 0x9f12832d, 0x8609b26c, 0xc94824ab, 0xd05315ea,
0xfb7e4629, 0xe2657768, 0x2f3f79f6, 0x362448b7, 0x1d091b74,
0x04122a35, 0x4b53bcf2, 0x52488db3, 0x7965de70, 0x607eef31,
0xe7e6f3fe, 0xfefdc2bf, 0xd5d0917c, 0xcccba03d, 0x838a36fa,
0x9a9107bb, 0xb1bc5478, 0xa8a76539, 0x3b83984b, 0x2298a90a,
0x09b5fac9, 0x10aecb88, 0x5fef5d4f, 0x46f46c0e, 0x6dd93fcd,
0x74c20e8c, 0xf35a1243, 0xea412302, 0xc16c70c1, 0xd8774180,
0x9736d747, 0x8e2de606, 0xa500b5c5, 0xbc1b8484, 0x71418a1a,
0x685abb5b, 0x4377e898, 0x5a6cd9d9, 0x152d4f1e, 0x0c367e5f,
0x271b2d9c, 0x3e001cdd, 0xb9980012, 0xa0833153, 0x8bae6290,
0x92b553d1, 0xddf4c516, 0xc4eff457, 0xefc2a794, 0xf6d996d5,
0xae07bce9, 0xb71c8da8, 0x9c31de6b, 0x852aef2a, 0xca6b79ed,
0xd37048ac, 0xf85d1b6f, 0xe1462a2e, 0x66de36e1, 0x7fc507a0,
0x54e85463, 0x4df36522, 0x02b2f3e5, 0x1ba9c2a4, 0x30849167,
0x299fa026, 0xe4c5aeb8, 0xfdde9ff9, 0xd6f3cc3a, 0xcfe8fd7b,
0x80a96bbc, 0x99b25afd, 0xb29f093e, 0xab84387f, 0x2c1c24b0,
0x350715f1, 0x1e2a4632, 0x07317773, 0x4870e1b4, 0x516bd0f5,
0x7a468336, 0x635db277, 0xcbfad74e, 0xd2e1e60f, 0xf9ccb5cc,
0xe0d7848d, 0xaf96124a, 0xb68d230b, 0x9da070c8, 0x84bb4189,
0x03235d46, 0x1a386c07, 0x31153fc4, 0x280e0e85, 0x674f9842,
0x7e54a903, 0x5579fac0, 0x4c62cb81, 0x8138c51f, 0x9823f45e,
0xb30ea79d, 0xaa1596dc, 0xe554001b, 0xfc4f315a, 0xd7626299,
0xce7953d8, 0x49e14f17, 0x50fa7e56, 0x7bd72d95, 0x62cc1cd4,
0x2d8d8a13, 0x3496bb52, 0x1fbbe891, 0x06a0d9d0, 0x5e7ef3ec,
0x4765c2ad, 0x6c48916e, 0x7553a02f, 0x3a1236e8, 0x230907a9,
0x0824546a, 0x113f652b, 0x96a779e4, 0x8fbc48a5, 0xa4911b66,
0xbd8a2a27, 0xf2cbbce0, 0xebd08da1, 0xc0fdde62, 0xd9e6ef23,
0x14bce1bd, 0x0da7d0fc, 0x268a833f, 0x3f91b27e, 0x70d024b9,
0x69cb15f8, 0x42e6463b, 0x5bfd777a, 0xdc656bb5, 0xc57e5af4,
0xee530937, 0xf7483876, 0xb809aeb1, 0xa1129ff0, 0x8a3fcc33,
0x9324fd72
},
{
0x00000000, 0x01c26a37, 0x0384d46e, 0x0246be59, 0x0709a8dc,
0x06cbc2eb, 0x048d7cb2, 0x054f1685, 0x0e1351b8, 0x0fd13b8f,
0x0d9785d6, 0x0c55efe1, 0x091af964, 0x08d89353, 0x0a9e2d0a,
0x0b5c473d, 0x1c26a370, 0x1de4c947, 0x1fa2771e, 0x1e601d29,
0x1b2f0bac, 0x1aed619b, 0x18abdfc2, 0x1969b5f5, 0x1235f2c8,
0x13f798ff, 0x11b126a6, 0x10734c91, 0x153c5a14, 0x14fe3023,
0x16b88e7a, 0x177ae44d, 0x384d46e0, 0x398f2cd7, 0x3bc9928e,
0x3a0bf8b9, 0x3f44ee3c, 0x3e86840b, 0x3cc03a52, 0x3d025065,
0x365e1758, 0x379c7d6f, 0x35dac336, 0x3418a901, 0x3157bf84,
0x3095d5b3, 0x32d36bea, 0x331101dd, 0x246be590, 0x25a98fa7,
0x27ef31fe, 0x262d5bc9, 0x23624d4c, 0x22a0277b, 0x20e69922,
0x2124f315, 0x2a78b428, 0x2bbade1f, 0x29fc6046, 0x283e0a71,
0x2d711cf4, 0x2cb376c3, 0x2ef5c89a, 0x2f37a2ad, 0x709a8dc0,
0x7158e7f7, 0x731e59ae, 0x72dc3399, 0x7793251c, 0x76514f2b,
0x7417f172, 0x75d59b45, 0x7e89dc78, 0x7f4bb64f, 0x7d0d0816,
0x7ccf6221, 0x798074a4, 0x78421e93, 0x7a04a0ca, 0x7bc6cafd,
0x6cbc2eb0, 0x6d7e4487, 0x6f38fade, 0x6efa90e9, 0x6bb5866c,
0x6a77ec5b, 0x68315202, 0x69f33835, 0x62af7f08, 0x636d153f,
0x612bab66, 0x60e9c151, 0x65a6d7d4, 0x6464bde3, 0x662203ba,
0x67e0698d, 0x48d7cb20, 0x4915a117, 0x4b531f4e, 0x4a917579,
0x4fde63fc, 0x4e1c09cb, 0x4c5ab792, 0x4d98dda5, 0x46c49a98,
0x4706f0af, 0x45404ef6, 0x448224c1, 0x41cd3244, 0x400f5873,
0x4249e62a, 0x438b8c1d, 0x54f16850, 0x55330267, 0x5775bc3e,
0x56b7d609, 0x53f8c08c, 0x523aaabb, 0x507c14e2, 0x51be7ed5,
0x5ae239e8, 0x5b2053df, 0x5966ed86, 0x58a487b1, 0x5deb9134,
0x5c29fb03, 0x5e6f455a, 0x5fad2f6d, 0xe1351b80, 0xe0f771b7,
0xe2b1cfee, 0xe373a5d9, 0xe63cb35c, 0xe7fed96b, 0xe5b86732,
0xe47a0d05, 0xef264a38, 0xeee4200f, 0xeca29e56, 0xed60f461,
0xe82fe2e4, 0xe9ed88d3, 0xebab368a, 0xea695cbd, 0xfd13b8f0,
0xfcd1d2c7, 0xfe976c9e, 0xff5506a9, 0xfa1a102c, 0xfbd87a1b,
0xf99ec442, 0xf85cae75, 0xf300e948, 0xf2c2837f, 0xf0843d26,
0xf1465711, 0xf4094194, 0xf5cb2ba3, 0xf78d95fa, 0xf64fffcd,
0xd9785d60, 0xd8ba3757, 0xdafc890e, 0xdb3ee339, 0xde71f5bc,
0xdfb39f8b, 0xddf521d2, 0xdc374be5, 0xd76b0cd8, 0xd6a966ef,
0xd4efd8b6, 0xd52db281, 0xd062a404, 0xd1a0ce33, 0xd3e6706a,
0xd2241a5d, 0xc55efe10, 0xc49c9427, 0xc6da2a7e, 0xc7184049,
0xc25756cc, 0xc3953cfb, 0xc1d382a2, 0xc011e895, 0xcb4dafa8,
0xca8fc59f, 0xc8c97bc6, 0xc90b11f1, 0xcc440774, 0xcd866d43,
0xcfc0d31a, 0xce02b92d, 0x91af9640, 0x906dfc77, 0x922b422e,
0x93e92819, 0x96a63e9c, 0x976454ab, 0x9522eaf2, 0x94e080c5,
0x9fbcc7f8, 0x9e7eadcf, 0x9c381396, 0x9dfa79a1, 0x98b56f24,
0x99770513, 0x9b31bb4a, 0x9af3d17d, 0x8d893530, 0x8c4b5f07,
0x8e0de15e, 0x8fcf8b69, 0x8a809dec, 0x8b42f7db, 0x89044982,
0x88c623b5, 0x839a6488, 0x82580ebf, 0x801eb0e6, 0x81dcdad1,
0x8493cc54, 0x8551a663, 0x8717183a, 0x86d5720d, 0xa9e2d0a0,
0xa820ba97, 0xaa6604ce, 0xaba46ef9, 0xaeeb787c, 0xaf29124b,
0xad6fac12, 0xacadc625, 0xa7f18118, 0xa633eb2f, 0xa4755576,
0xa5b73f41, 0xa0f829c4, 0xa13a43f3, 0xa37cfdaa, 0xa2be979d,
0xb5c473d0, 0xb40619e7, 0xb640a7be, 0xb782cd89, 0xb2cddb0c,
0xb30fb13b, 0xb1490f62, 0xb08b6555, 0xbbd72268, 0xba15485f,
0xb853f606, 0xb9919c31, 0xbcde8ab4, 0xbd1ce083, 0xbf5a5eda,
0xbe9834ed
},
{
0x00000000, 0xb8bc6765, 0xaa09c88b, 0x12b5afee, 0x8f629757,
0x37def032, 0x256b5fdc, 0x9dd738b9, 0xc5b428ef, 0x7d084f8a,
0x6fbde064, 0xd7018701, 0x4ad6bfb8, 0xf26ad8dd, 0xe0df7733,
0x58631056, 0x5019579f, 0xe8a530fa, 0xfa109f14, 0x42acf871,
0xdf7bc0c8, 0x67c7a7ad, 0x75720843, 0xcdce6f26, 0x95ad7f70,
0x2d111815, 0x3fa4b7fb, 0x8718d09e, 0x1acfe827, 0xa2738f42,
0xb0c620ac, 0x087a47c9, 0xa032af3e, 0x188ec85b, 0x0a3b67b5,
0xb28700d0, 0x2f503869, 0x97ec5f0c, 0x8559f0e2, 0x3de59787,
0x658687d1, 0xdd3ae0b4, 0xcf8f4f5a, 0x7733283f, 0xeae41086,
0x525877e3, 0x40edd80d, 0xf851bf68, 0xf02bf8a1, 0x48979fc4,
0x5a22302a, 0xe29e574f, 0x7f496ff6, 0xc7f50893, 0xd540a77d,
0x6dfcc018, 0x359fd04e, 0x8d23b72b, 0x9f9618c5, 0x272a7fa0,
0xbafd4719, 0x0241207c, 0x10f48f92, 0xa848e8f7, 0x9b14583d,
0x23a83f58, 0x311d90b6, 0x89a1f7d3, 0x1476cf6a, 0xaccaa80f,
0xbe7f07e1, 0x06c36084, 0x5ea070d2, 0xe61c17b7, 0xf4a9b859,
0x4c15df3c, 0xd1c2e785, 0x697e80e0, 0x7bcb2f0e, 0xc377486b,
0xcb0d0fa2, 0x73b168c7, 0x6104c729, 0xd9b8a04c, 0x446f98f5,
0xfcd3ff90, 0xee66507e, 0x56da371b, 0x0eb9274d, 0xb6054028,
0xa4b0efc6, 0x1c0c88a3, 0x81dbb01a, 0x3967d77f, 0x2bd27891,
0x936e1ff4, 0x3b26f703, 0x839a9066, 0x912f3f88, 0x299358ed,
0xb4446054, 0x0cf80731, 0x1e4da8df, 0xa6f1cfba, 0xfe92dfec,
0x462eb889, 0x549b1767, 0xec277002, 0x71f048bb, 0xc94c2fde,
0xdbf98030, 0x6345e755, 0x6b3fa09c, 0xd383c7f9, 0xc1366817,
0x798a0f72, 0xe45d37cb, 0x5ce150ae, 0x4e54ff40, 0xf6e89825,
0xae8b8873, 0x1637ef16, 0x048240f8, 0xbc3e279d, 0x21e91f24,
0x99557841, 0x8be0d7af, 0x335cb0ca, 0xed59b63b, 0x55e5d15e,
0x47507eb0, 0xffec19d5, 0x623b216c, 0xda874609, 0xc832e9e7,
0x708e8e82, 0x28ed9ed4, 0x9051f9b1, 0x82e4565f, 0x3a58313a,
0xa78f0983, 0x1f336ee6, 0x0d86c108, 0xb53aa66d, 0xbd40e1a4,
0x05fc86c1, 0x1749292f, 0xaff54e4a, 0x322276f3, 0x8a9e1196,
0x982bbe78, 0x2097d91d, 0x78f4c94b, 0xc048ae2e, 0xd2fd01c0,
0x6a4166a5, 0xf7965e1c, 0x4f2a3979, 0x5d9f9697, 0xe523f1f2,
0x4d6b1905, 0xf5d77e60, 0xe762d18e, 0x5fdeb6eb, 0xc2098e52,
0x7ab5e937, 0x680046d9, 0xd0bc21bc, 0x88df31ea, 0x3063568f,
0x22d6f961, 0x9a6a9e04, 0x07bda6bd, 0xbf01c1d8, 0xadb46e36,
0x15080953, 0x1d724e9a, 0xa5ce29ff, 0xb77b8611, 0x0fc7e174,
0x9210d9cd, 0x2aacbea8, 0x38191146, 0x80a57623, 0xd8c66675,
0x607a0110, 0x72cfaefe, 0xca73c99b, 0x57a4f122, 0xef189647,
0xfdad39a9, 0x45115ecc, 0x764dee06, 0xcef18963, 0xdc44268d,
0x64f841e8, 0xf92f7951, 0x41931e34, 0x5326b1da, 0xeb9ad6bf,
0xb3f9c6e9, 0x0b45a18c, 0x19f00e62, 0xa14c6907, 0x3c9b51be,
0x842736db, 0x96929935, 0x2e2efe50, 0x2654b999, 0x9ee8defc,
0x8c5d7112, 0x34e11677, 0xa9362ece, 0x118a49ab, 0x033fe645,
0xbb838120, 0xe3e09176, 0x5b5cf613, 0x49e959fd, 0xf1553e98,
0x6c820621, 0xd43e6144, 0xc68bceaa, 0x7e37a9cf, 0xd67f4138,
0x6ec3265d, 0x7c7689b3, 0xc4caeed6, 0x591dd66f, 0xe1a1b10a,
0xf3141ee4, 0x4ba87981, 0x13cb69d7, 0xab770eb2, 0xb9c2a15c,
0x017ec639, 0x9ca9fe80, 0x241599e5, 0x36a0360b, 0x8e1c516e,
0x866616a7, 0x3eda71c2, 0x2c6fde2c, 0x94d3b949, 0x090481f0,
0xb1b8e695, 0xa30d497b, 0x1bb12e1e, 0x43d23e48, 0xfb6e592d,
0xe9dbf6c3, 0x516791a6, 0xccb0a91f, 0x740cce7a, 0x66b96194,
0xde0506f1
},
{
0x00000000, 0x96300777, 0x2c610eee, 0xba510999, 0x19c46d07,
0x8ff46a70, 0x35a563e9, 0xa395649e, 0x3288db0e, 0xa4b8dc79,
0x1ee9d5e0, 0x88d9d297, 0x2b4cb609, 0xbd7cb17e, 0x072db8e7,
0x911dbf90, 0x6410b71d, 0xf220b06a, 0x4871b9f3, 0xde41be84,
0x7dd4da1a, 0xebe4dd6d, 0x51b5d4f4, 0xc785d383, 0x56986c13,
0xc0a86b64, 0x7af962fd, 0xecc9658a, 0x4f5c0114, 0xd96c0663,
0x633d0ffa, 0xf50d088d, 0xc8206e3b, 0x5e10694c, 0xe44160d5,
0x727167a2, 0xd1e4033c, 0x47d4044b, 0xfd850dd2, 0x6bb50aa5,
0xfaa8b535, 0x6c98b242, 0xd6c9bbdb, 0x40f9bcac, 0xe36cd832,
0x755cdf45, 0xcf0dd6dc, 0x593dd1ab, 0xac30d926, 0x3a00de51,
0x8051d7c8, 0x1661d0bf, 0xb5f4b421, 0x23c4b356, 0x9995bacf,
0x0fa5bdb8, 0x9eb80228, 0x0888055f, 0xb2d90cc6, 0x24e90bb1,
0x877c6f2f, 0x114c6858, 0xab1d61c1, 0x3d2d66b6, 0x9041dc76,
0x0671db01, 0xbc20d298, 0x2a10d5ef, 0x8985b171, 0x1fb5b606,
0xa5e4bf9f, 0x33d4b8e8, 0xa2c90778, 0x34f9000f, 0x8ea80996,
0x18980ee1, 0xbb0d6a7f, 0x2d3d6d08, 0x976c6491, 0x015c63e6,
0xf4516b6b, 0x62616c1c, 0xd8306585, 0x4e0062f2, 0xed95066c,
0x7ba5011b, 0xc1f40882, 0x57c40ff5, 0xc6d9b065, 0x50e9b712,
0xeab8be8b, 0x7c88b9fc, 0xdf1ddd62, 0x492dda15, 0xf37cd38c,
0x654cd4fb, 0x5861b24d, 0xce51b53a, 0x7400bca3, 0xe230bbd4,
0x41a5df4a, 0xd795d83d, 0x6dc4d1a4, 0xfbf4d6d3, 0x6ae96943,
0xfcd96e34, 0x468867ad, 0xd0b860da, 0x732d0444, 0xe51d0333,
0x5f4c0aaa, 0xc97c0ddd, 0x3c710550, 0xaa410227, 0x10100bbe,
0x86200cc9, 0x25b56857, 0xb3856f20, 0x09d466b9, 0x9fe461ce,
0x0ef9de5e, 0x98c9d929, 0x2298d0b0, 0xb4a8d7c7, 0x173db359,
0x810db42e, 0x3b5cbdb7, 0xad6cbac0, 0x2083b8ed, 0xb6b3bf9a,
0x0ce2b603, 0x9ad2b174, 0x3947d5ea, 0xaf77d29d, 0x1526db04,
0x8316dc73, 0x120b63e3, 0x843b6494, 0x3e6a6d0d, 0xa85a6a7a,
0x0bcf0ee4, 0x9dff0993, 0x27ae000a, 0xb19e077d, 0x44930ff0,
0xd2a30887, 0x68f2011e, 0xfec20669, 0x5d5762f7, 0xcb676580,
0x71366c19, 0xe7066b6e, 0x761bd4fe, 0xe02bd389, 0x5a7ada10,
0xcc4add67, 0x6fdfb9f9, 0xf9efbe8e, 0x43beb717, 0xd58eb060,
0xe8a3d6d6, 0x7e93d1a1, 0xc4c2d838, 0x52f2df4f, 0xf167bbd1,
0x6757bca6, 0xdd06b53f, 0x4b36b248, 0xda2b0dd8, 0x4c1b0aaf,
0xf64a0336, 0x607a0441, 0xc3ef60df, 0x55df67a8, 0xef8e6e31,
0x79be6946, 0x8cb361cb, 0x1a8366bc, 0xa0d26f25, 0x36e26852,
0x95770ccc, 0x03470bbb, 0xb9160222, 0x2f260555, 0xbe3bbac5,
0x280bbdb2, 0x925ab42b, 0x046ab35c, 0xa7ffd7c2, 0x31cfd0b5,
0x8b9ed92c, 0x1daede5b, 0xb0c2649b, 0x26f263ec, 0x9ca36a75,
0x0a936d02, 0xa906099c, 0x3f360eeb, 0x85670772, 0x13570005,
0x824abf95, 0x147ab8e2, 0xae2bb17b, 0x381bb60c, 0x9b8ed292,
0x0dbed5e5, 0xb7efdc7c, 0x21dfdb0b, 0xd4d2d386, 0x42e2d4f1,
0xf8b3dd68, 0x6e83da1f, 0xcd16be81, 0x5b26b9f6, 0xe177b06f,
0x7747b718, 0xe65a0888, 0x706a0fff, 0xca3b0666, 0x5c0b0111,
0xff9e658f, 0x69ae62f8, 0xd3ff6b61, 0x45cf6c16, 0x78e20aa0,
0xeed20dd7, 0x5483044e, 0xc2b30339, 0x612667a7, 0xf71660d0,
0x4d476949, 0xdb776e3e, 0x4a6ad1ae, 0xdc5ad6d9, 0x660bdf40,
0xf03bd837, 0x53aebca9, 0xc59ebbde, 0x7fcfb247, 0xe9ffb530,
0x1cf2bdbd, 0x8ac2baca, 0x3093b353, 0xa6a3b424, 0x0536d0ba,
0x9306d7cd, 0x2957de54, 0xbf67d923, 0x2e7a66b3, 0xb84a61c4,
0x021b685d, 0x942b6f2a, 0x37be0bb4, 0xa18e0cc3, 0x1bdf055a,
0x8def022d
},
{
0x00000000, 0x41311b19, 0x82623632, 0xc3532d2b, 0x04c56c64,
0x45f4777d, 0x86a75a56, 0xc796414f, 0x088ad9c8, 0x49bbc2d1,
0x8ae8effa, 0xcbd9f4e3, 0x0c4fb5ac, 0x4d7eaeb5, 0x8e2d839e,
0xcf1c9887, 0x5112c24a, 0x1023d953, 0xd370f478, 0x9241ef61,
0x55d7ae2e, 0x14e6b537, 0xd7b5981c, 0x96848305, 0x59981b82,
0x18a9009b, 0xdbfa2db0, 0x9acb36a9, 0x5d5d77e6, 0x1c6c6cff,
0xdf3f41d4, 0x9e0e5acd, 0xa2248495, 0xe3159f8c, 0x2046b2a7,
0x6177a9be, 0xa6e1e8f1, 0xe7d0f3e8, 0x2483dec3, 0x65b2c5da,
0xaaae5d5d, 0xeb9f4644, 0x28cc6b6f, 0x69fd7076, 0xae6b3139,
0xef5a2a20, 0x2c09070b, 0x6d381c12, 0xf33646df, 0xb2075dc6,
0x715470ed, 0x30656bf4, 0xf7f32abb, 0xb6c231a2, 0x75911c89,
0x34a00790, 0xfbbc9f17, 0xba8d840e, 0x79dea925, 0x38efb23c,
0xff79f373, 0xbe48e86a, 0x7d1bc541, 0x3c2ade58, 0x054f79f0,
0x447e62e9, 0x872d4fc2, 0xc61c54db, 0x018a1594, 0x40bb0e8d,
0x83e823a6, 0xc2d938bf, 0x0dc5a038, 0x4cf4bb21, 0x8fa7960a,
0xce968d13, 0x0900cc5c, 0x4831d745, 0x8b62fa6e, 0xca53e177,
0x545dbbba, 0x156ca0a3, 0xd63f8d88, 0x970e9691, 0x5098d7de,
0x11a9ccc7, 0xd2fae1ec, 0x93cbfaf5, 0x5cd76272, 0x1de6796b,
0xdeb55440, 0x9f844f59, 0x58120e16, 0x1923150f, 0xda703824,
0x9b41233d, 0xa76bfd65, 0xe65ae67c, 0x2509cb57, 0x6438d04e,
0xa3ae9101, 0xe29f8a18, 0x21cca733, 0x60fdbc2a, 0xafe124ad,
0xeed03fb4, 0x2d83129f, 0x6cb20986, 0xab2448c9, 0xea1553d0,
0x29467efb, 0x687765e2, 0xf6793f2f, 0xb7482436, 0x741b091d,
0x352a1204, 0xf2bc534b, 0xb38d4852, 0x70de6579, 0x31ef7e60,
0xfef3e6e7, 0xbfc2fdfe, 0x7c91d0d5, 0x3da0cbcc, 0xfa368a83,
0xbb07919a, 0x7854bcb1, 0x3965a7a8, 0x4b98833b, 0x0aa99822,
0xc9fab509, 0x88cbae10, 0x4f5def5f, 0x0e6cf446, 0xcd3fd96d,
0x8c0ec274, 0x43125af3, 0x022341ea, 0xc1706cc1, 0x804177d8,
0x47d73697, 0x06e62d8e, 0xc5b500a5, 0x84841bbc, 0x1a8a4171,
0x5bbb5a68, 0x98e87743, 0xd9d96c5a, 0x1e4f2d15, 0x5f7e360c,
0x9c2d1b27, 0xdd1c003e, 0x120098b9, 0x533183a0, 0x9062ae8b,
0xd153b592, 0x16c5f4dd, 0x57f4efc4, 0x94a7c2ef, 0xd596d9f6,
0xe9bc07ae, 0xa88d1cb7, 0x6bde319c, 0x2aef2a85, 0xed796bca,
0xac4870d3, 0x6f1b5df8, 0x2e2a46e1, 0xe136de66, 0xa007c57f,
0x6354e854, 0x2265f34d, 0xe5f3b202, 0xa4c2a91b, 0x67918430,
0x26a09f29, 0xb8aec5e4, 0xf99fdefd, 0x3accf3d6, 0x7bfde8cf,
0xbc6ba980, 0xfd5ab299, 0x3e099fb2, 0x7f3884ab, 0xb0241c2c,
0xf1150735, 0x32462a1e, 0x73773107, 0xb4e17048, 0xf5d06b51,
0x3683467a, 0x77b25d63, 0x4ed7facb, 0x0fe6e1d2, 0xccb5ccf9,
0x8d84d7e0, 0x4a1296af, 0x0b238db6, 0xc870a09d, 0x8941bb84,
0x465d2303, 0x076c381a, 0xc43f1531, 0x850e0e28, 0x42984f67,
0x03a9547e, 0xc0fa7955, 0x81cb624c, 0x1fc53881, 0x5ef42398,
0x9da70eb3, 0xdc9615aa, 0x1b0054e5, 0x5a314ffc, 0x996262d7,
0xd85379ce, 0x174fe149, 0x567efa50, 0x952dd77b, 0xd41ccc62,
0x138a8d2d, 0x52bb9634, 0x91e8bb1f, 0xd0d9a006, 0xecf37e5e,
0xadc26547, 0x6e91486c, 0x2fa05375, 0xe836123a, 0xa9070923,
0x6a542408, 0x2b653f11, 0xe479a796, 0xa548bc8f, 0x661b91a4,
0x272a8abd, 0xe0bccbf2, 0xa18dd0eb, 0x62defdc0, 0x23efe6d9,
0xbde1bc14, 0xfcd0a70d, 0x3f838a26, 0x7eb2913f, 0xb924d070,
0xf815cb69, 0x3b46e642, 0x7a77fd5b, 0xb56b65dc, 0xf45a7ec5,
0x370953ee, 0x763848f7, 0xb1ae09b8, 0xf09f12a1, 0x33cc3f8a,
0x72fd2493
},
{
0x00000000, 0x376ac201, 0x6ed48403, 0x59be4602, 0xdca80907,
0xebc2cb06, 0xb27c8d04, 0x85164f05, 0xb851130e, 0x8f3bd10f,
0xd685970d, 0xe1ef550c, 0x64f91a09, 0x5393d808, 0x0a2d9e0a,
0x3d475c0b, 0x70a3261c, 0x47c9e41d, 0x1e77a21f, 0x291d601e,
0xac0b2f1b, 0x9b61ed1a, 0xc2dfab18, 0xf5b56919, 0xc8f23512,
0xff98f713, 0xa626b111, 0x914c7310, 0x145a3c15, 0x2330fe14,
0x7a8eb816, 0x4de47a17, 0xe0464d38, 0xd72c8f39, 0x8e92c93b,
0xb9f80b3a, 0x3cee443f, 0x0b84863e, 0x523ac03c, 0x6550023d,
0x58175e36, 0x6f7d9c37, 0x36c3da35, 0x01a91834, 0x84bf5731,
0xb3d59530, 0xea6bd332, 0xdd011133, 0x90e56b24, 0xa78fa925,
0xfe31ef27, 0xc95b2d26, 0x4c4d6223, 0x7b27a022, 0x2299e620,
0x15f32421, 0x28b4782a, 0x1fdeba2b, 0x4660fc29, 0x710a3e28,
0xf41c712d, 0xc376b32c, 0x9ac8f52e, 0xada2372f, 0xc08d9a70,
0xf7e75871, 0xae591e73, 0x9933dc72, 0x1c259377, 0x2b4f5176,
0x72f11774, 0x459bd575, 0x78dc897e, 0x4fb64b7f, 0x16080d7d,
0x2162cf7c, 0xa4748079, 0x931e4278, 0xcaa0047a, 0xfdcac67b,
0xb02ebc6c, 0x87447e6d, 0xdefa386f, 0xe990fa6e, 0x6c86b56b,
0x5bec776a, 0x02523168, 0x3538f369, 0x087faf62, 0x3f156d63,
0x66ab2b61, 0x51c1e960, 0xd4d7a665, 0xe3bd6464, 0xba032266,
0x8d69e067, 0x20cbd748, 0x17a11549, 0x4e1f534b, 0x7975914a,
0xfc63de4f, 0xcb091c4e, 0x92b75a4c, 0xa5dd984d, 0x989ac446,
0xaff00647, 0xf64e4045, 0xc1248244, 0x4432cd41, 0x73580f40,
0x2ae64942, 0x1d8c8b43, 0x5068f154, 0x67023355, 0x3ebc7557,
0x09d6b756, 0x8cc0f853, 0xbbaa3a52, 0xe2147c50, 0xd57ebe51,
0xe839e25a, 0xdf53205b, 0x86ed6659, 0xb187a458, 0x3491eb5d,
0x03fb295c, 0x5a456f5e, 0x6d2fad5f, 0x801b35e1, 0xb771f7e0,
0xeecfb1e2, 0xd9a573e3, 0x5cb33ce6, 0x6bd9fee7, 0x3267b8e5,
0x050d7ae4, 0x384a26ef, 0x0f20e4ee, 0x569ea2ec, 0x61f460ed,
0xe4e22fe8, 0xd388ede9, 0x8a36abeb, 0xbd5c69ea, 0xf0b813fd,
0xc7d2d1fc, 0x9e6c97fe, 0xa90655ff, 0x2c101afa, 0x1b7ad8fb,
0x42c49ef9, 0x75ae5cf8, 0x48e900f3, 0x7f83c2f2, 0x263d84f0,
0x115746f1, 0x944109f4, 0xa32bcbf5, 0xfa958df7, 0xcdff4ff6,
0x605d78d9, 0x5737bad8, 0x0e89fcda, 0x39e33edb, 0xbcf571de,
0x8b9fb3df, 0xd221f5dd, 0xe54b37dc, 0xd80c6bd7, 0xef66a9d6,
0xb6d8efd4, 0x81b22dd5, 0x04a462d0, 0x33cea0d1, 0x6a70e6d3,
0x5d1a24d2, 0x10fe5ec5, 0x27949cc4, 0x7e2adac6, 0x494018c7,
0xcc5657c2, 0xfb3c95c3, 0xa282d3c1, 0x95e811c0, 0xa8af4dcb,
0x9fc58fca, 0xc67bc9c8, 0xf1110bc9, 0x740744cc, 0x436d86cd,
0x1ad3c0cf, 0x2db902ce, 0x4096af91, 0x77fc6d90, 0x2e422b92,
0x1928e993, 0x9c3ea696, 0xab546497, 0xf2ea2295, 0xc580e094,
0xf8c7bc9f, 0xcfad7e9e, 0x9613389c, 0xa179fa9d, 0x246fb598,
0x13057799, 0x4abb319b, 0x7dd1f39a, 0x3035898d, 0x075f4b8c,
0x5ee10d8e, 0x698bcf8f, 0xec9d808a, 0xdbf7428b, 0x82490489,
0xb523c688, 0x88649a83, 0xbf0e5882, 0xe6b01e80, 0xd1dadc81,
0x54cc9384, 0x63a65185, 0x3a181787, 0x0d72d586, 0xa0d0e2a9,
0x97ba20a8, 0xce0466aa, 0xf96ea4ab, 0x7c78ebae, 0x4b1229af,
0x12ac6fad, 0x25c6adac, 0x1881f1a7, 0x2feb33a6, 0x765575a4,
0x413fb7a5, 0xc429f8a0, 0xf3433aa1, 0xaafd7ca3, 0x9d97bea2,
0xd073c4b5, 0xe71906b4, 0xbea740b6, 0x89cd82b7, 0x0cdbcdb2,
0x3bb10fb3, 0x620f49b1, 0x55658bb0, 0x6822d7bb, 0x5f4815ba,
0x06f653b8, 0x319c91b9, 0xb48adebc, 0x83e01cbd, 0xda5e5abf,
0xed3498be
},
{
0x00000000, 0x6567bcb8, 0x8bc809aa, 0xeeafb512, 0x5797628f,
0x32f0de37, 0xdc5f6b25, 0xb938d79d, 0xef28b4c5, 0x8a4f087d,
0x64e0bd6f, 0x018701d7, 0xb8bfd64a, 0xddd86af2, 0x3377dfe0,
0x56106358, 0x9f571950, 0xfa30a5e8, 0x149f10fa, 0x71f8ac42,
0xc8c07bdf, 0xada7c767, 0x43087275, 0x266fcecd, 0x707fad95,
0x1518112d, 0xfbb7a43f, 0x9ed01887, 0x27e8cf1a, 0x428f73a2,
0xac20c6b0, 0xc9477a08, 0x3eaf32a0, 0x5bc88e18, 0xb5673b0a,
0xd00087b2, 0x6938502f, 0x0c5fec97, 0xe2f05985, 0x8797e53d,
0xd1878665, 0xb4e03add, 0x5a4f8fcf, 0x3f283377, 0x8610e4ea,
0xe3775852, 0x0dd8ed40, 0x68bf51f8, 0xa1f82bf0, 0xc49f9748,
0x2a30225a, 0x4f579ee2, 0xf66f497f, 0x9308f5c7, 0x7da740d5,
0x18c0fc6d, 0x4ed09f35, 0x2bb7238d, 0xc518969f, 0xa07f2a27,
0x1947fdba, 0x7c204102, 0x928ff410, 0xf7e848a8, 0x3d58149b,
0x583fa823, 0xb6901d31, 0xd3f7a189, 0x6acf7614, 0x0fa8caac,
0xe1077fbe, 0x8460c306, 0xd270a05e, 0xb7171ce6, 0x59b8a9f4,
0x3cdf154c, 0x85e7c2d1, 0xe0807e69, 0x0e2fcb7b, 0x6b4877c3,
0xa20f0dcb, 0xc768b173, 0x29c70461, 0x4ca0b8d9, 0xf5986f44,
0x90ffd3fc, 0x7e5066ee, 0x1b37da56, 0x4d27b90e, 0x284005b6,
0xc6efb0a4, 0xa3880c1c, 0x1ab0db81, 0x7fd76739, 0x9178d22b,
0xf41f6e93, 0x03f7263b, 0x66909a83, 0x883f2f91, 0xed589329,
0x546044b4, 0x3107f80c, 0xdfa84d1e, 0xbacff1a6, 0xecdf92fe,
0x89b82e46, 0x67179b54, 0x027027ec, 0xbb48f071, 0xde2f4cc9,
0x3080f9db, 0x55e74563, 0x9ca03f6b, 0xf9c783d3, 0x176836c1,
0x720f8a79, 0xcb375de4, 0xae50e15c, 0x40ff544e, 0x2598e8f6,
0x73888bae, 0x16ef3716, 0xf8408204, 0x9d273ebc, 0x241fe921,
0x41785599, 0xafd7e08b, 0xcab05c33, 0x3bb659ed, 0x5ed1e555,
0xb07e5047, 0xd519ecff, 0x6c213b62, 0x094687da, 0xe7e932c8,
0x828e8e70, 0xd49eed28, 0xb1f95190, 0x5f56e482, 0x3a31583a,
0x83098fa7, 0xe66e331f, 0x08c1860d, 0x6da63ab5, 0xa4e140bd,
0xc186fc05, 0x2f294917, 0x4a4ef5af, 0xf3762232, 0x96119e8a,
0x78be2b98, 0x1dd99720, 0x4bc9f478, 0x2eae48c0, 0xc001fdd2,
0xa566416a, 0x1c5e96f7, 0x79392a4f, 0x97969f5d, 0xf2f123e5,
0x05196b4d, 0x607ed7f5, 0x8ed162e7, 0xebb6de5f, 0x528e09c2,
0x37e9b57a, 0xd9460068, 0xbc21bcd0, 0xea31df88, 0x8f566330,
0x61f9d622, 0x049e6a9a, 0xbda6bd07, 0xd8c101bf, 0x366eb4ad,
0x53090815, 0x9a4e721d, 0xff29cea5, 0x11867bb7, 0x74e1c70f,
0xcdd91092, 0xa8beac2a, 0x46111938, 0x2376a580, 0x7566c6d8,
0x10017a60, 0xfeaecf72, 0x9bc973ca, 0x22f1a457, 0x479618ef,
0xa939adfd, 0xcc5e1145, 0x06ee4d76, 0x6389f1ce, 0x8d2644dc,
0xe841f864, 0x51792ff9, 0x341e9341, 0xdab12653, 0xbfd69aeb,
0xe9c6f9b3, 0x8ca1450b, 0x620ef019, 0x07694ca1, 0xbe519b3c,
0xdb362784, 0x35999296, 0x50fe2e2e, 0x99b95426, 0xfcdee89e,
0x12715d8c, 0x7716e134, 0xce2e36a9, 0xab498a11, 0x45e63f03,
0x208183bb, 0x7691e0e3, 0x13f65c5b, 0xfd59e949, 0x983e55f1,
0x2106826c, 0x44613ed4, 0xaace8bc6, 0xcfa9377e, 0x38417fd6,
0x5d26c36e, 0xb389767c, 0xd6eecac4, 0x6fd61d59, 0x0ab1a1e1,
0xe41e14f3, 0x8179a84b, 0xd769cb13, 0xb20e77ab, 0x5ca1c2b9,
0x39c67e01, 0x80fea99c, 0xe5991524, 0x0b36a036, 0x6e511c8e,
0xa7166686, 0xc271da3e, 0x2cde6f2c, 0x49b9d394, 0xf0810409,
0x95e6b8b1, 0x7b490da3, 0x1e2eb11b, 0x483ed243, 0x2d596efb,
0xc3f6dbe9, 0xa6916751, 0x1fa9b0cc, 0x7ace0c74, 0x9461b966,
0xf10605de
}
};
#endif /* CRC32_H_ */

File diff suppressed because it is too large Load Diff

View File

@ -1,459 +0,0 @@
#ifndef DEFLATE_H_
#define DEFLATE_H_
/* deflate.h -- internal compression state
* Copyright (C) 1995-2012 Jean-loup Gailly
* For conditions of distribution and use, see copyright notice in zlib.h
*/
/* WARNING: this file should *not* be used by applications. It is
part of the implementation of the compression library and is
subject to change. Applications should only use zlib.h.
*/
/* @(#) $Id$ */
#include "zutil.h"
/* define NO_GZIP when compiling if you want to disable gzip header and
trailer creation by deflate(). NO_GZIP would be used to avoid linking in
the crc code when it is not needed. For shared libraries, gzip encoding
should be left enabled. */
#ifndef NO_GZIP
# define GZIP
#endif
#define NIL 0
/* Tail of hash chains */
/* ===========================================================================
* Internal compression state.
*/
#define LENGTH_CODES 29
/* number of length codes, not counting the special END_BLOCK code */
#define LITERALS 256
/* number of literal bytes 0..255 */
#define L_CODES (LITERALS+1+LENGTH_CODES)
/* number of Literal or Length codes, including the END_BLOCK code */
#define D_CODES 30
/* number of distance codes */
#define BL_CODES 19
/* number of codes used to transfer the bit lengths */
#define HEAP_SIZE (2*L_CODES+1)
/* maximum heap size */
#define MAX_BITS 15
/* All codes must not exceed MAX_BITS bits */
#define Buf_size 16
/* size of bit buffer in bi_buf */
#define END_BLOCK 256
/* end of block literal code */
#define INIT_STATE 42
#define EXTRA_STATE 69
#define NAME_STATE 73
#define COMMENT_STATE 91
#define HCRC_STATE 103
#define BUSY_STATE 113
#define FINISH_STATE 666
/* Stream status */
/* Data structure describing a single value and its code string. */
typedef struct ct_data_s {
union {
uint16_t freq; /* frequency count */
uint16_t code; /* bit string */
} fc;
union {
uint16_t dad; /* father node in Huffman tree */
uint16_t len; /* length of bit string */
} dl;
} ct_data;
#define Freq fc.freq
#define Code fc.code
#define Dad dl.dad
#define Len dl.len
typedef struct static_tree_desc_s static_tree_desc;
typedef struct tree_desc_s {
ct_data *dyn_tree; /* the dynamic tree */
int max_code; /* largest code with non zero frequency */
const static_tree_desc *stat_desc; /* the corresponding static tree */
} tree_desc;
typedef uint16_t Pos;
typedef unsigned IPos;
/* A Pos is an index in the character window. We use short instead of int to
* save space in the various tables. IPos is used only for parameter passing.
*/
typedef struct internal_state {
z_stream *strm; /* pointer back to this zlib stream */
int status; /* as the name implies */
unsigned char *pending_buf; /* output still pending */
unsigned long pending_buf_size; /* size of pending_buf */
unsigned char *pending_out; /* next pending byte to output to the stream */
unsigned int pending; /* nb of bytes in the pending buffer */
int wrap; /* bit 0 true for zlib, bit 1 true for gzip */
gz_headerp gzhead; /* gzip header information to write */
unsigned int gzindex; /* where in extra, name, or comment */
unsigned char method; /* can only be DEFLATED */
int last_flush; /* value of flush param for previous deflate call */
#ifdef X86_PCLMULQDQ_CRC
unsigned ALIGNED_(16) crc0[4 * 5];
#endif
/* used by deflate.c: */
unsigned int w_size; /* LZ77 window size (32K by default) */
unsigned int w_bits; /* log2(w_size) (8..16) */
unsigned int w_mask; /* w_size - 1 */
unsigned char *window;
/* Sliding window. Input bytes are read into the second half of the window,
* and move to the first half later to keep a dictionary of at least wSize
* bytes. With this organization, matches are limited to a distance of
* wSize-MAX_MATCH bytes, but this ensures that IO is always
* performed with a length multiple of the block size. Also, it limits
* the window size to 64K, which is quite useful on MSDOS.
* To do: use the user input buffer as sliding window.
*/
unsigned long window_size;
/* Actual size of window: 2*wSize, except when the user input buffer
* is directly used as sliding window.
*/
Pos *prev;
/* Link to older string with same hash index. To limit the size of this
* array to 64K, this link is maintained only for the last 32K strings.
* An index in this array is thus a window index modulo 32K.
*/
Pos *head; /* Heads of the hash chains or NIL. */
unsigned int ins_h; /* hash index of string to be inserted */
unsigned int hash_size; /* number of elements in hash table */
unsigned int hash_bits; /* log2(hash_size) */
unsigned int hash_mask; /* hash_size-1 */
unsigned int hash_shift;
/* Number of bits by which ins_h must be shifted at each input
* step. It must be such that after MIN_MATCH steps, the oldest
* byte no longer takes part in the hash key, that is:
* hash_shift * MIN_MATCH >= hash_bits
*/
long block_start;
/* Window position at the beginning of the current output block. Gets
* negative when the window is moved backwards.
*/
unsigned int match_length; /* length of best match */
IPos prev_match; /* previous match */
int match_available; /* set if previous match exists */
unsigned int strstart; /* start of string to insert */
unsigned int match_start; /* start of matching string */
unsigned int lookahead; /* number of valid bytes ahead in window */
unsigned int prev_length;
/* Length of the best match at previous step. Matches not greater than this
* are discarded. This is used in the lazy match evaluation.
*/
unsigned int max_chain_length;
/* To speed up deflation, hash chains are never searched beyond this
* length. A higher limit improves compression ratio but degrades the
* speed.
*/
unsigned int max_lazy_match;
/* Attempt to find a better match only when the current match is strictly
* smaller than this value. This mechanism is used only for compression
* levels >= 4.
*/
# define max_insert_length max_lazy_match
/* Insert new strings in the hash table only if the match length is not
* greater than this length. This saves time but degrades compression.
* max_insert_length is used only for compression levels <= 3.
*/
int level; /* compression level (1..9) */
int strategy; /* favor or force Huffman coding*/
unsigned int good_match;
/* Use a faster search when the previous match is longer than this */
int nice_match; /* Stop searching when current match exceeds this */
/* used by trees.c: */
/* Didn't use ct_data typedef below to suppress compiler warning */
struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */
struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */
struct tree_desc_s l_desc; /* desc. for literal tree */
struct tree_desc_s d_desc; /* desc. for distance tree */
struct tree_desc_s bl_desc; /* desc. for bit length tree */
uint16_t bl_count[MAX_BITS+1];
/* number of codes at each bit length for an optimal tree */
int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */
int heap_len; /* number of elements in the heap */
int heap_max; /* element of largest frequency */
/* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
* The same heap array is used to build all trees.
*/
unsigned char depth[2*L_CODES+1];
/* Depth of each subtree used as tie breaker for trees of equal frequency
*/
unsigned char *l_buf; /* buffer for literals or lengths */
unsigned int lit_bufsize;
/* Size of match buffer for literals/lengths. There are 4 reasons for
* limiting lit_bufsize to 64K:
* - frequencies can be kept in 16 bit counters
* - if compression is not successful for the first block, all input
* data is still in the window so we can still emit a stored block even
* when input comes from standard input. (This can also be done for
* all blocks if lit_bufsize is not greater than 32K.)
* - if compression is not successful for a file smaller than 64K, we can
* even emit a stored file instead of a stored block (saving 5 bytes).
* This is applicable only for zip (not gzip or zlib).
* - creating new Huffman trees less frequently may not provide fast
* adaptation to changes in the input data statistics. (Take for
* example a binary file with poorly compressible code followed by
* a highly compressible string table.) Smaller buffer sizes give
* fast adaptation but have of course the overhead of transmitting
* trees more frequently.
* - I can't count above 4
*/
unsigned int last_lit; /* running index in l_buf */
uint16_t *d_buf;
/* Buffer for distances. To simplify the code, d_buf and l_buf have
* the same number of elements. To use different lengths, an extra flag
* array would be necessary.
*/
unsigned long opt_len; /* bit length of current block with optimal trees */
unsigned long static_len; /* bit length of current block with static trees */
unsigned int matches; /* number of string matches in current block */
unsigned int insert; /* bytes at end of window left to insert */
#ifdef DEBUG
unsigned long compressed_len; /* total bit length of compressed file mod 2^32 */
unsigned long bits_sent; /* bit length of compressed data sent mod 2^32 */
#endif
uint16_t bi_buf;
/* Output buffer. bits are inserted starting at the bottom (least
* significant bits).
*/
int bi_valid;
/* Number of valid bits in bi_buf. All bits above the last valid bit
* are always zero.
*/
unsigned long high_water;
/* High water mark offset in window for initialized bytes -- bytes above
* this are set to zero in order to avoid memory check warnings when
* longest match routines access bytes past the input. This is then
* updated to the new high water mark.
*/
} deflate_state;
typedef enum {
need_more, /* block not completed, need more input or more output */
block_done, /* block flush performed */
finish_started, /* finish started, need only more output at next deflate */
finish_done /* finish done, accept no more input or output */
} block_state;
/* Output a byte on the stream.
* IN assertion: there is enough room in pending_buf.
*/
#define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
/* ===========================================================================
* Output a short LSB first on the stream.
* IN assertion: there is enough room in pendingBuf.
*/
#if defined(__x86_64) || defined(__i386_)
/* Compared to the else-clause's implementation, there are few advantages:
* - s->pending is loaded only once (else-clause's implementation needs to
* load s->pending twice due to the alias between s->pending and
* s->pending_buf[].
* - no instructions for extracting bytes from short.
* - needs less registers
* - stores to adjacent bytes are merged into a single store, albeit at the
* cost of penalty of potentially unaligned access.
*/
#define put_short(s, w) { \
s->pending += 2; \
*(uint16_t*)(&s->pending_buf[s->pending - 2]) = (w) ; \
}
#else
#define put_short(s, w) { \
put_byte(s, (unsigned char)((w) & 0xff)); \
put_byte(s, (unsigned char)((uint16_t)(w) >> 8)); \
}
#endif
#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
/* Minimum amount of lookahead, except at the end of the input file.
* See deflate.c for comments about the MIN_MATCH+1.
*/
#define MAX_DIST(s) ((s)->w_size-MIN_LOOKAHEAD)
/* In order to simplify the code, particularly on 16 bit machines, match
* distances are limited to MAX_DIST instead of WSIZE.
*/
#define WIN_INIT MAX_MATCH
/* Number of bytes after end of data in window to initialize in order to avoid
memory checker errors from longest match routines */
/* in trees.c */
void ZLIB_INTERNAL _tr_init(deflate_state *s);
int ZLIB_INTERNAL _tr_tally(deflate_state *s, unsigned dist, unsigned lc);
void ZLIB_INTERNAL _tr_flush_block(deflate_state *s, char *buf, unsigned long stored_len, int last);
void ZLIB_INTERNAL _tr_flush_bits(deflate_state *s);
void ZLIB_INTERNAL _tr_align(deflate_state *s);
void ZLIB_INTERNAL _tr_stored_block(deflate_state *s, char *buf, unsigned long stored_len, int last);
void ZLIB_INTERNAL bi_windup(deflate_state *s);
#define d_code(dist) ((dist) < 256 ? _dist_code[dist] : _dist_code[256+((dist)>>7)])
/* Mapping from a distance to a distance code. dist is the distance - 1 and
* must not have side effects. _dist_code[256] and _dist_code[257] are never
* used.
*/
#ifndef DEBUG
/* Inline versions of _tr_tally for speed: */
# if defined(GEN_TREES_H)
extern unsigned char ZLIB_INTERNAL _length_code[];
extern unsigned char ZLIB_INTERNAL _dist_code[];
# else
extern const unsigned char ZLIB_INTERNAL _length_code[];
extern const unsigned char ZLIB_INTERNAL _dist_code[];
# endif
# define _tr_tally_lit(s, c, flush) \
{ unsigned char cc = (c); \
s->d_buf[s->last_lit] = 0; \
s->l_buf[s->last_lit++] = cc; \
s->dyn_ltree[cc].Freq++; \
flush = (s->last_lit == s->lit_bufsize-1); \
}
# define _tr_tally_dist(s, distance, length, flush) \
{ unsigned char len = (length); \
uint16_t dist = (distance); \
s->d_buf[s->last_lit] = dist; \
s->l_buf[s->last_lit++] = len; \
dist--; \
s->dyn_ltree[_length_code[len]+LITERALS+1].Freq++; \
s->dyn_dtree[d_code(dist)].Freq++; \
flush = (s->last_lit == s->lit_bufsize-1); \
}
#else
# define _tr_tally_lit(s, c, flush) flush = _tr_tally(s, 0, c)
# define _tr_tally_dist(s, distance, length, flush) \
flush = _tr_tally(s, distance, length)
#endif
/* ===========================================================================
* Update a hash value with the given input byte
* IN assertion: all calls to to UPDATE_HASH are made with consecutive
* input characters, so that a running hash key can be computed from the
* previous key instead of complete recalculation each time.
*/
#ifdef X86_SSE4_2_CRC_HASH
#define UPDATE_HASH(s, h, i) \
do {\
if (s->level < 6) \
h = (3483 * (s->window[i]) +\
23081* (s->window[i+1]) +\
6954 * (s->window[i+2]) +\
20947* (s->window[i+3])) & s->hash_mask;\
else\
h = (25881* (s->window[i]) +\
24674* (s->window[i+1]) +\
25811* (s->window[i+2])) & s->hash_mask;\
} while (0)
#else
# define UPDATE_HASH(s, h, i) (h = (((h) << s->hash_shift) ^ (s->window[i + (MIN_MATCH-1)])) & s->hash_mask)
#endif
#ifndef DEBUG
# define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
/* Send a code of the given tree. c and tree must not have side effects */
#else /* DEBUG */
# define send_code(s, c, tree) \
{ if (z_verbose > 2) { \
fprintf(stderr, "\ncd %3d ", (c)); \
} \
send_bits(s, tree[c].Code, tree[c].Len); \
}
#endif
#ifdef DEBUG
/* ===========================================================================
* Send a value on a given number of bits.
* IN assertion: length <= 16 and value fits in length bits.
*/
local void send_bits(deflate_state *s, int value, int length) {
Tracevv((stderr, " l %2d v %4x ", length, value));
Assert(length > 0 && length <= 15, "invalid length");
s->bits_sent += (unsigned long)length;
/* If not enough room in bi_buf, use (valid) bits from bi_buf and
* (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
* unused bits in value.
*/
if (s->bi_valid > (int)Buf_size - length) {
s->bi_buf |= (uint16_t)value << s->bi_valid;
put_short(s, s->bi_buf);
s->bi_buf = (uint16_t)value >> (Buf_size - s->bi_valid);
s->bi_valid += length - Buf_size;
} else {
s->bi_buf |= (uint16_t)value << s->bi_valid;
s->bi_valid += length;
}
}
#else
#define send_bits(s, value, length) \
{ int len = length;\
if (s->bi_valid > (int)Buf_size - len) {\
int val = value;\
s->bi_buf |= (uint16_t)val << s->bi_valid;\
put_short(s, s->bi_buf);\
s->bi_buf = (uint16_t)val >> (Buf_size - s->bi_valid);\
s->bi_valid += len - Buf_size;\
} else {\
s->bi_buf |= (uint16_t)(value) << s->bi_valid;\
s->bi_valid += len;\
}\
}
#endif
#endif /* DEFLATE_H_ */

View File

@ -1,114 +0,0 @@
/* deflate_fast.c -- compress data using the fast strategy of deflation algorithm
*
* Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/
#include "deflate.h"
#include "deflate_p.h"
#include "match.h"
/* ===========================================================================
* Compress as much as possible from the input stream, return the current
* block state.
* This function does not perform lazy evaluation of matches and inserts
* new strings in the dictionary only for unmatched strings or for short
* matches. It is used only for the fast compression options.
*/
block_state deflate_fast(deflate_state *s, int flush) {
IPos hash_head; /* head of the hash chain */
int bflush; /* set if current block must be flushed */
for (;;) {
/* Make sure that we always have enough lookahead, except
* at the end of the input file. We need MAX_MATCH bytes
* for the next match, plus MIN_MATCH bytes to insert the
* string following the next match.
*/
if (s->lookahead < MIN_LOOKAHEAD) {
fill_window(s);
if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
return need_more;
}
if (s->lookahead == 0)
break; /* flush the current block */
}
/* Insert the string window[strstart .. strstart+2] in the
* dictionary, and set hash_head to the head of the hash chain:
*/
hash_head = NIL;
if (s->lookahead >= MIN_MATCH) {
hash_head = insert_string(s, s->strstart);
}
/* Find the longest match, discarding those <= prev_length.
* At this point we have always match_length < MIN_MATCH
*/
if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
/* To simplify the code, we prevent matches with the string
* of window index 0 (in particular we have to avoid a match
* of the string with itself at the start of the input file).
*/
s->match_length = longest_match(s, hash_head);
/* longest_match() sets match_start */
}
if (s->match_length >= MIN_MATCH) {
check_match(s, s->strstart, s->match_start, s->match_length);
_tr_tally_dist(s, s->strstart - s->match_start, s->match_length - MIN_MATCH, bflush);
s->lookahead -= s->match_length;
/* Insert new strings in the hash table only if the match length
* is not too large. This saves time but degrades compression.
*/
if (s->match_length <= s->max_insert_length && s->lookahead >= MIN_MATCH) {
s->match_length--; /* string at strstart already in table */
s->strstart++;
#ifdef NOT_TWEAK_COMPILER
do {
insert_string(s, s->strstart);
s->strstart++;
/* strstart never exceeds WSIZE-MAX_MATCH, so there are
* always MIN_MATCH bytes ahead.
*/
} while (--s->match_length != 0);
#else
{
bulk_insert_str(s, s->strstart, s->match_length);
s->strstart += s->match_length;
s->match_length = 0;
}
#endif
} else {
s->strstart += s->match_length;
s->match_length = 0;
s->ins_h = s->window[s->strstart];
UPDATE_HASH(s, s->ins_h, s->strstart+2 - (MIN_MATCH));
#if MIN_MATCH != 3
Call UPDATE_HASH() MIN_MATCH-3 more times
#endif
/* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
* matter since it will be recomputed at next deflate call.
*/
}
} else {
/* No match, output a literal byte */
Tracevv((stderr, "%c", s->window[s->strstart]));
_tr_tally_lit(s, s->window[s->strstart], bflush);
s->lookahead--;
s->strstart++;
}
if (bflush)
FLUSH_BLOCK(s, 0);
}
s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
if (flush == Z_FINISH) {
FLUSH_BLOCK(s, 1);
return finish_done;
}
if (s->last_lit)
FLUSH_BLOCK(s, 0);
return block_done;
}

View File

@ -1,322 +0,0 @@
/* deflate_medium.c -- The deflate_medium deflate strategy
*
* Copyright (C) 2013 Intel Corporation. All rights reserved.
* Authors:
* Arjan van de Ven <arjan@linux.intel.com>
*
* For conditions of distribution and use, see copyright notice in zlib.h
*/
#ifdef MEDIUM_STRATEGY
#include "deflate.h"
#include "deflate_p.h"
#include "match.h"
struct match {
unsigned int match_start;
unsigned int match_length;
unsigned int strstart;
unsigned int orgstart;
};
#define MAX_DIST2 ((1 << MAX_WBITS) - MIN_LOOKAHEAD)
static int tr_tally_dist(deflate_state *s, int distance, int length) {
return _tr_tally(s, distance, length);
}
static int tr_tally_lit(deflate_state *s, int c) {
return _tr_tally(s, 0, c);
}
static int emit_match(deflate_state *s, struct match match) {
int flush = 0;
/* matches that are not long enough we need to emit as litterals */
if (match.match_length < MIN_MATCH) {
while (match.match_length) {
flush += tr_tally_lit(s, s->window[match.strstart]);
s->lookahead--;
match.strstart++;
match.match_length--;
}
return flush;
}
check_match(s, match.strstart, match.match_start, match.match_length);
flush += tr_tally_dist(s, match.strstart - match.match_start, match.match_length - MIN_MATCH);
s->lookahead -= match.match_length;
return flush;
}
static void insert_match(deflate_state *s, struct match match) {
if (unlikely(s->lookahead <= match.match_length + MIN_MATCH))
return;
/* matches that are not long enough we need to emit as litterals */
if (match.match_length < MIN_MATCH) {
#ifdef NOT_TWEAK_COMPILER
while (match.match_length) {
match.strstart++;
match.match_length--;
if (match.match_length) {
if (match.strstart >= match.orgstart) {
insert_string(s, match.strstart);
}
}
}
#else
if (likely(match.match_length == 1)) {
match.strstart++;
match.match_length = 0;
}else{
match.strstart++;
match.match_length--;
if (match.strstart >= match.orgstart) {
bulk_insert_str(s, match.strstart, match.match_length);
}
match.strstart += match.match_length;
match.match_length = 0;
}
#endif
return;
}
/* Insert new strings in the hash table only if the match length
* is not too large. This saves time but degrades compression.
*/
if (match.match_length <= 16* s->max_insert_length && s->lookahead >= MIN_MATCH) {
match.match_length--; /* string at strstart already in table */
match.strstart++;
#ifdef NOT_TWEAK_COMPILER
do {
if (likely(match.strstart >= match.orgstart)) {
insert_string(s, match.strstart);
}
match.strstart++;
/* strstart never exceeds WSIZE-MAX_MATCH, so there are
* always MIN_MATCH bytes ahead.
*/
} while (--match.match_length != 0);
#else
if (likely(match.strstart >= match.orgstart)) {
bulk_insert_str(s, match.strstart, match.match_length);
}
match.strstart += match.match_length;
match.match_length = 0;
#endif
} else {
match.strstart += match.match_length;
match.match_length = 0;
s->ins_h = s->window[match.strstart];
if (match.strstart >= 1)
UPDATE_HASH(s, s->ins_h, match.strstart+2-MIN_MATCH);
#if MIN_MATCH != 3
#warning Call UPDATE_HASH() MIN_MATCH-3 more times
#endif
/* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
* matter since it will be recomputed at next deflate call.
*/
}
}
static void fizzle_matches(deflate_state *s, struct match *current, struct match *next) {
IPos limit;
unsigned char *match, *orig;
int changed = 0;
struct match c, n;
/* step zero: sanity checks */
if (current->match_length <= 1)
return;
if (unlikely(current->match_length > 1 + next->match_start))
return;
if (unlikely(current->match_length > 1 + next->strstart))
return;
match = s->window - current->match_length + 1 + next->match_start;
orig = s->window - current->match_length + 1 + next->strstart;
/* quick exit check.. if this fails then don't bother with anything else */
if (likely(*match != *orig))
return;
/* check the overlap case and just give up. We can do better in theory,
* but unlikely to be worth it
*/
if (next->match_start + next->match_length >= current->strstart)
return;
c = *current;
n = *next;
/* step one: try to move the "next" match to the left as much as possible */
limit = next->strstart > MAX_DIST2 ? next->strstart - MAX_DIST2 : 0;
match = s->window + n.match_start - 1;
orig = s->window + n.strstart - 1;
while (*match == *orig) {
if (c.match_length < 1)
break;
if (n.strstart <= limit)
break;
if (n.match_length >= 256)
break;
if (n.match_start <= 0)
break;
n.strstart--;
n.match_start--;
n.match_length++;
c.match_length--;
match--;
orig--;
changed++;
}
if (!changed)
return;
if (c.match_length <= 1 && n.match_length != 2) {
n.orgstart++;
*current = c;
*next = n;
} else {
return;
}
}
block_state deflate_medium(deflate_state *s, int flush) {
struct match current_match, next_match;
memset(&current_match, 0, sizeof(struct match));
memset(&next_match, 0, sizeof(struct match));
for (;;) {
IPos hash_head = 0; /* head of the hash chain */
int bflush; /* set if current block must be flushed */
/* Make sure that we always have enough lookahead, except
* at the end of the input file. We need MAX_MATCH bytes
* for the next match, plus MIN_MATCH bytes to insert the
* string following the next current_match.
*/
if (s->lookahead < MIN_LOOKAHEAD) {
fill_window(s);
if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
return need_more;
}
if (s->lookahead == 0)
break; /* flush the current block */
next_match.match_length = 0;
}
s->prev_length = 2;
/* Insert the string window[strstart .. strstart+2] in the
* dictionary, and set hash_head to the head of the hash chain:
*/
/* If we already have a future match from a previous round, just use that */
if (next_match.match_length > 0) {
current_match = next_match;
next_match.match_length = 0;
} else {
hash_head = 0;
if (s->lookahead >= MIN_MATCH) {
hash_head = insert_string(s, s->strstart);
}
/* set up the initial match to be a 1 byte literal */
current_match.match_start = 0;
current_match.match_length = 1;
current_match.strstart = s->strstart;
current_match.orgstart = current_match.strstart;
/* Find the longest match, discarding those <= prev_length.
* At this point we have always match_length < MIN_MATCH
*/
if (hash_head != 0 && s->strstart - hash_head <= MAX_DIST2) {
/* To simplify the code, we prevent matches with the string
* of window index 0 (in particular we have to avoid a match
* of the string with itself at the start of the input file).
*/
current_match.match_length = longest_match(s, hash_head);
current_match.match_start = s->match_start;
if (current_match.match_length < MIN_MATCH)
current_match.match_length = 1;
if (current_match.match_start >= current_match.strstart) {
/* this can happen due to some restarts */
current_match.match_length = 1;
}
}
}
insert_match(s, current_match);
/* now, look ahead one */
if (s->lookahead > MIN_LOOKAHEAD) {
s->strstart = current_match.strstart + current_match.match_length;
hash_head = insert_string(s, s->strstart);
/* set up the initial match to be a 1 byte literal */
next_match.match_start = 0;
next_match.match_length = 1;
next_match.strstart = s->strstart;
next_match.orgstart = next_match.strstart;
/* Find the longest match, discarding those <= prev_length.
* At this point we have always match_length < MIN_MATCH
*/
if (hash_head != 0 && s->strstart - hash_head <= MAX_DIST2) {
/* To simplify the code, we prevent matches with the string
* of window index 0 (in particular we have to avoid a match
* of the string with itself at the start of the input file).
*/
next_match.match_length = longest_match(s, hash_head);
next_match.match_start = s->match_start;
if (next_match.match_start >= next_match.strstart) {
/* this can happen due to some restarts */
next_match.match_length = 1;
}
if (next_match.match_length < MIN_MATCH)
next_match.match_length = 1;
else
fizzle_matches(s, &current_match, &next_match);
}
/* short matches with a very long distance are rarely a good idea encoding wise */
if (next_match.match_length == 3 && (next_match.strstart - next_match.match_start) > 12000)
next_match.match_length = 1;
s->strstart = current_match.strstart;
} else {
next_match.match_length = 0;
}
/* now emit the current match */
bflush = emit_match(s, current_match);
/* move the "cursor" forward */
s->strstart += current_match.match_length;
if (bflush)
FLUSH_BLOCK(s, 0);
}
s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
if (flush == Z_FINISH) {
FLUSH_BLOCK(s, 1);
return finish_done;
}
if (s->last_lit)
FLUSH_BLOCK(s, 0);
return block_done;
}
#endif

View File

@ -1,96 +0,0 @@
/* deflate_p.h -- Private inline functions and macros shared with more than
* one deflate method
*
* Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*
*/
#ifndef DEFLATE_P_H
#define DEFLATE_P_H
#if defined(X86_CPUID)
# include "arch/x86/x86.h"
#endif
/* Forward declare common non-inlined functions declared in deflate.c */
#ifdef DEBUG
void check_match(deflate_state *s, IPos start, IPos match, int length);
#else
#define check_match(s, start, match, length)
#endif
void fill_window(deflate_state *s);
void flush_pending(z_stream *strm);
/* ===========================================================================
* Insert string str in the dictionary and set match_head to the previous head
* of the hash chain (the most recent string with same hash key). Return
* the previous length of the hash chain.
* IN assertion: all calls to to INSERT_STRING are made with consecutive
* input characters and the first MIN_MATCH bytes of str are valid
* (except for the last MIN_MATCH-1 bytes of the input file).
*/
#ifdef X86_SSE4_2_CRC_HASH
extern Pos insert_string_sse(deflate_state *const s, const Pos str, uInt count);
#endif
local inline Pos insert_string_c(deflate_state *const s, const Pos str, uInt count) {
Pos ret = 0;
uInt idx;
for (idx = 0; idx < count; idx++) {
UPDATE_HASH(s, s->ins_h, str+idx);
if (s->head[s->ins_h] != str+idx) {
s->prev[(str+idx) & s->w_mask] = s->head[s->ins_h];
s->head[s->ins_h] = str+idx;
}
}
ret = s->prev[(str+count-1) & s->w_mask];
return ret;
}
local inline Pos insert_string(deflate_state *const s, const Pos str) {
#ifdef X86_SSE4_2_CRC_HASH
if (x86_cpu_has_sse42)
return insert_string_sse(s, str, 1);
#endif
return insert_string_c(s, str, 1);
}
#ifndef NOT_TWEAK_COMPILER
local inline void bulk_insert_str(deflate_state *const s, Pos startpos, uInt count) {
# ifdef X86_SSE4_2_CRC_HASH
if (x86_cpu_has_sse42) {
insert_string_sse(s, startpos, count);
} else
# endif
{
insert_string_c(s, startpos, count);
}
}
#endif /* NOT_TWEAK_COMPILER */
/* ===========================================================================
* Flush the current block, with given end-of-file flag.
* IN assertion: strstart is set to the end of the current match.
*/
#define FLUSH_BLOCK_ONLY(s, last) { \
_tr_flush_block(s, (s->block_start >= 0L ? \
(char *)&s->window[(unsigned)s->block_start] : \
(char *)Z_NULL), \
(ulg)((long)s->strstart - s->block_start), \
(last)); \
s->block_start = s->strstart; \
flush_pending(s->strm); \
Tracev((stderr, "[FLUSH]")); \
}
/* Same but force premature exit if necessary. */
#define FLUSH_BLOCK(s, last) { \
FLUSH_BLOCK_ONLY(s, last); \
if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
}
#endif

View File

@ -1,160 +0,0 @@
/* deflate_slow.c -- compress data using the slow strategy of deflation algorithm
*
* Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/
#include "deflate.h"
#include "deflate_p.h"
#include "match.h"
/* ===========================================================================
* Local data
*/
#ifndef TOO_FAR
# define TOO_FAR 4096
#endif
/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
/* ===========================================================================
* Same as deflate_medium, but achieves better compression. We use a lazy
* evaluation for matches: a match is finally adopted only if there is
* no better match at the next window position.
*/
block_state deflate_slow(deflate_state *s, int flush) {
IPos hash_head; /* head of hash chain */
int bflush; /* set if current block must be flushed */
/* Process the input block. */
for (;;) {
/* Make sure that we always have enough lookahead, except
* at the end of the input file. We need MAX_MATCH bytes
* for the next match, plus MIN_MATCH bytes to insert the
* string following the next match.
*/
if (s->lookahead < MIN_LOOKAHEAD) {
fill_window(s);
if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
return need_more;
}
if (s->lookahead == 0)
break; /* flush the current block */
}
/* Insert the string window[strstart .. strstart+2] in the
* dictionary, and set hash_head to the head of the hash chain:
*/
hash_head = NIL;
if (s->lookahead >= MIN_MATCH) {
hash_head = insert_string(s, s->strstart);
}
/* Find the longest match, discarding those <= prev_length.
*/
s->prev_length = s->match_length, s->prev_match = s->match_start;
s->match_length = MIN_MATCH-1;
if (hash_head != NIL && s->prev_length < s->max_lazy_match && s->strstart - hash_head <= MAX_DIST(s)) {
/* To simplify the code, we prevent matches with the string
* of window index 0 (in particular we have to avoid a match
* of the string with itself at the start of the input file).
*/
s->match_length = longest_match(s, hash_head);
/* longest_match() sets match_start */
if (s->match_length <= 5 && (s->strategy == Z_FILTERED
#if TOO_FAR <= 32767
|| (s->match_length == MIN_MATCH && s->strstart - s->match_start > TOO_FAR)
#endif
)) {
/* If prev_match is also MIN_MATCH, match_start is garbage
* but we will ignore the current match anyway.
*/
s->match_length = MIN_MATCH-1;
}
}
/* If there was a match at the previous step and the current
* match is not better, output the previous match:
*/
if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
/* Do not insert strings in hash table beyond this. */
check_match(s, s->strstart-1, s->prev_match, s->prev_length);
_tr_tally_dist(s, s->strstart -1 - s->prev_match, s->prev_length - MIN_MATCH, bflush);
/* Insert in hash table all strings up to the end of the match.
* strstart-1 and strstart are already inserted. If there is not
* enough lookahead, the last two strings are not inserted in
* the hash table.
*/
s->lookahead -= s->prev_length-1;
#ifdef NOT_TWEAK_COMPILER
s->prev_length -= 2;
do {
if (++s->strstart <= max_insert) {
insert_string(s, s->strstart);
}
} while (--s->prev_length != 0);
s->match_available = 0;
s->match_length = MIN_MATCH-1;
s->strstart++;
#else
{
uInt mov_fwd = s->prev_length - 2;
uInt insert_cnt = mov_fwd;
if (unlikely(insert_cnt > max_insert - s->strstart))
insert_cnt = max_insert - s->strstart;
bulk_insert_str(s, s->strstart + 1, insert_cnt);
s->prev_length = 0;
s->match_available = 0;
s->match_length = MIN_MATCH-1;
s->strstart += mov_fwd + 1;
}
#endif /*NOT_TWEAK_COMPILER*/
if (bflush) FLUSH_BLOCK(s, 0);
} else if (s->match_available) {
/* If there was no match at the previous position, output a
* single literal. If there was a match but the current match
* is longer, truncate the previous match to a single literal.
*/
Tracevv((stderr, "%c", s->window[s->strstart-1]));
_tr_tally_lit(s, s->window[s->strstart-1], bflush);
if (bflush) {
FLUSH_BLOCK_ONLY(s, 0);
}
s->strstart++;
s->lookahead--;
if (s->strm->avail_out == 0)
return need_more;
} else {
/* There is no previous match to compare with, wait for
* the next step to decide.
*/
s->match_available = 1;
s->strstart++;
s->lookahead--;
}
}
Assert(flush != Z_NO_FLUSH, "no flush?");
if (s->match_available) {
Tracevv((stderr, "%c", s->window[s->strstart-1]));
_tr_tally_lit(s, s->window[s->strstart-1], bflush);
s->match_available = 0;
}
s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
if (flush == Z_FINISH) {
FLUSH_BLOCK(s, 1);
return finish_done;
}
if (s->last_lit)
FLUSH_BLOCK(s, 0);
return block_done;
}

View File

@ -1,209 +0,0 @@
1. Compression algorithm (deflate)
The deflation algorithm used by gzip (also zip and zlib) is a variation of
LZ77 (Lempel-Ziv 1977, see reference below). It finds duplicated strings in
the input data. The second occurrence of a string is replaced by a
pointer to the previous string, in the form of a pair (distance,
length). Distances are limited to 32K bytes, and lengths are limited
to 258 bytes. When a string does not occur anywhere in the previous
32K bytes, it is emitted as a sequence of literal bytes. (In this
description, `string' must be taken as an arbitrary sequence of bytes,
and is not restricted to printable characters.)
Literals or match lengths are compressed with one Huffman tree, and
match distances are compressed with another tree. The trees are stored
in a compact form at the start of each block. The blocks can have any
size (except that the compressed data for one block must fit in
available memory). A block is terminated when deflate() determines that
it would be useful to start another block with fresh trees. (This is
somewhat similar to the behavior of LZW-based _compress_.)
Duplicated strings are found using a hash table. All input strings of
length 3 are inserted in the hash table. A hash index is computed for
the next 3 bytes. If the hash chain for this index is not empty, all
strings in the chain are compared with the current input string, and
the longest match is selected.
The hash chains are searched starting with the most recent strings, to
favor small distances and thus take advantage of the Huffman encoding.
The hash chains are singly linked. There are no deletions from the
hash chains, the algorithm simply discards matches that are too old.
To avoid a worst-case situation, very long hash chains are arbitrarily
truncated at a certain length, determined by a runtime option (level
parameter of deflateInit). So deflate() does not always find the longest
possible match but generally finds a match which is long enough.
deflate() also defers the selection of matches with a lazy evaluation
mechanism. After a match of length N has been found, deflate() searches for
a longer match at the next input byte. If a longer match is found, the
previous match is truncated to a length of one (thus producing a single
literal byte) and the process of lazy evaluation begins again. Otherwise,
the original match is kept, and the next match search is attempted only N
steps later.
The lazy match evaluation is also subject to a runtime parameter. If
the current match is long enough, deflate() reduces the search for a longer
match, thus speeding up the whole process. If compression ratio is more
important than speed, deflate() attempts a complete second search even if
the first match is already long enough.
The lazy match evaluation is not performed for the fastest compression
modes (level parameter 1 to 3). For these fast modes, new strings
are inserted in the hash table only when no match was found, or
when the match is not too long. This degrades the compression ratio
but saves time since there are both fewer insertions and fewer searches.
2. Decompression algorithm (inflate)
2.1 Introduction
The key question is how to represent a Huffman code (or any prefix code) so
that you can decode fast. The most important characteristic is that shorter
codes are much more common than longer codes, so pay attention to decoding the
short codes fast, and let the long codes take longer to decode.
inflate() sets up a first level table that covers some number of bits of
input less than the length of longest code. It gets that many bits from the
stream, and looks it up in the table. The table will tell if the next
code is that many bits or less and how many, and if it is, it will tell
the value, else it will point to the next level table for which inflate()
grabs more bits and tries to decode a longer code.
How many bits to make the first lookup is a tradeoff between the time it
takes to decode and the time it takes to build the table. If building the
table took no time (and if you had infinite memory), then there would only
be a first level table to cover all the way to the longest code. However,
building the table ends up taking a lot longer for more bits since short
codes are replicated many times in such a table. What inflate() does is
simply to make the number of bits in the first table a variable, and then
to set that variable for the maximum speed.
For inflate, which has 286 possible codes for the literal/length tree, the size
of the first table is nine bits. Also the distance trees have 30 possible
values, and the size of the first table is six bits. Note that for each of
those cases, the table ended up one bit longer than the ``average'' code
length, i.e. the code length of an approximately flat code which would be a
little more than eight bits for 286 symbols and a little less than five bits
for 30 symbols.
2.2 More details on the inflate table lookup
Ok, you want to know what this cleverly obfuscated inflate tree actually
looks like. You are correct that it's not a Huffman tree. It is simply a
lookup table for the first, let's say, nine bits of a Huffman symbol. The
symbol could be as short as one bit or as long as 15 bits. If a particular
symbol is shorter than nine bits, then that symbol's translation is duplicated
in all those entries that start with that symbol's bits. For example, if the
symbol is four bits, then it's duplicated 32 times in a nine-bit table. If a
symbol is nine bits long, it appears in the table once.
If the symbol is longer than nine bits, then that entry in the table points
to another similar table for the remaining bits. Again, there are duplicated
entries as needed. The idea is that most of the time the symbol will be short
and there will only be one table look up. (That's whole idea behind data
compression in the first place.) For the less frequent long symbols, there
will be two lookups. If you had a compression method with really long
symbols, you could have as many levels of lookups as is efficient. For
inflate, two is enough.
So a table entry either points to another table (in which case nine bits in
the above example are gobbled), or it contains the translation for the symbol
and the number of bits to gobble. Then you start again with the next
ungobbled bit.
You may wonder: why not just have one lookup table for how ever many bits the
longest symbol is? The reason is that if you do that, you end up spending
more time filling in duplicate symbol entries than you do actually decoding.
At least for deflate's output that generates new trees every several 10's of
kbytes. You can imagine that filling in a 2^15 entry table for a 15-bit code
would take too long if you're only decoding several thousand symbols. At the
other extreme, you could make a new table for every bit in the code. In fact,
that's essentially a Huffman tree. But then you spend too much time
traversing the tree while decoding, even for short symbols.
So the number of bits for the first lookup table is a trade of the time to
fill out the table vs. the time spent looking at the second level and above of
the table.
Here is an example, scaled down:
The code being decoded, with 10 symbols, from 1 to 6 bits long:
A: 0
B: 10
C: 1100
D: 11010
E: 11011
F: 11100
G: 11101
H: 11110
I: 111110
J: 111111
Let's make the first table three bits long (eight entries):
000: A,1
001: A,1
010: A,1
011: A,1
100: B,2
101: B,2
110: -> table X (gobble 3 bits)
111: -> table Y (gobble 3 bits)
Each entry is what the bits decode as and how many bits that is, i.e. how
many bits to gobble. Or the entry points to another table, with the number of
bits to gobble implicit in the size of the table.
Table X is two bits long since the longest code starting with 110 is five bits
long:
00: C,1
01: C,1
10: D,2
11: E,2
Table Y is three bits long since the longest code starting with 111 is six
bits long:
000: F,2
001: F,2
010: G,2
011: G,2
100: H,2
101: H,2
110: I,3
111: J,3
So what we have here are three tables with a total of 20 entries that had to
be constructed. That's compared to 64 entries for a single table. Or
compared to 16 entries for a Huffman tree (six two entry tables and one four
entry table). Assuming that the code ideally represents the probability of
the symbols, it takes on the average 1.25 lookups per symbol. That's compared
to one lookup for the single table, or 1.66 lookups per symbol for the
Huffman tree.
There, I think that gives you a picture of what's going on. For inflate, the
meaning of a particular symbol is often more than just a letter. It can be a
byte (a "literal"), or it can be either a length or a distance which
indicates a base value and a number of bits to fetch after the code that is
added to the base value. Or it might be the special end-of-block code. The
data structures created in inftrees.c try to encode all that information
compactly in the tables.
Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu
References:
[LZ77] Ziv J., Lempel A., ``A Universal Algorithm for Sequential Data
Compression,'' IEEE Transactions on Information Theory, Vol. 23, No. 3,
pp. 337-343.
``DEFLATE Compressed Data Format Specification'' available in
http://tools.ietf.org/html/rfc1951

View File

@ -1,619 +0,0 @@
Network Working Group P. Deutsch
Request for Comments: 1950 Aladdin Enterprises
Category: Informational J-L. Gailly
Info-ZIP
May 1996
ZLIB Compressed Data Format Specification version 3.3
Status of This Memo
This memo provides information for the Internet community. This memo
does not specify an Internet standard of any kind. Distribution of
this memo is unlimited.
IESG Note:
The IESG takes no position on the validity of any Intellectual
Property Rights statements contained in this document.
Notices
Copyright (c) 1996 L. Peter Deutsch and Jean-Loup Gailly
Permission is granted to copy and distribute this document for any
purpose and without charge, including translations into other
languages and incorporation into compilations, provided that the
copyright notice and this notice are preserved, and that any
substantive changes or deletions from the original are clearly
marked.
A pointer to the latest version of this and related documentation in
HTML format can be found at the URL
<ftp://ftp.uu.net/graphics/png/documents/zlib/zdoc-index.html>.
Abstract
This specification defines a lossless compressed data format. The
data can be produced or consumed, even for an arbitrarily long
sequentially presented input data stream, using only an a priori
bounded amount of intermediate storage. The format presently uses
the DEFLATE compression method but can be easily extended to use
other compression methods. It can be implemented readily in a manner
not covered by patents. This specification also defines the ADLER-32
checksum (an extension and improvement of the Fletcher checksum),
used for detection of data corruption, and provides an algorithm for
computing it.
Deutsch & Gailly Informational [Page 1]
RFC 1950 ZLIB Compressed Data Format Specification May 1996
Table of Contents
1. Introduction ................................................... 2
1.1. Purpose ................................................... 2
1.2. Intended audience ......................................... 3
1.3. Scope ..................................................... 3
1.4. Compliance ................................................ 3
1.5. Definitions of terms and conventions used ................ 3
1.6. Changes from previous versions ............................ 3
2. Detailed specification ......................................... 3
2.1. Overall conventions ....................................... 3
2.2. Data format ............................................... 4
2.3. Compliance ................................................ 7
3. References ..................................................... 7
4. Source code .................................................... 8
5. Security Considerations ........................................ 8
6. Acknowledgements ............................................... 8
7. Authors' Addresses ............................................. 8
8. Appendix: Rationale ............................................ 9
9. Appendix: Sample code ..........................................10
1. Introduction
1.1. Purpose
The purpose of this specification is to define a lossless
compressed data format that:
* Is independent of CPU type, operating system, file system,
and character set, and hence can be used for interchange;
* Can be produced or consumed, even for an arbitrarily long
sequentially presented input data stream, using only an a
priori bounded amount of intermediate storage, and hence can
be used in data communications or similar structures such as
Unix filters;
* Can use a number of different compression methods;
* Can be implemented readily in a manner not covered by
patents, and hence can be practiced freely.
The data format defined by this specification does not attempt to
allow random access to compressed data.
Deutsch & Gailly Informational [Page 2]
RFC 1950 ZLIB Compressed Data Format Specification May 1996
1.2. Intended audience
This specification is intended for use by implementors of software
to compress data into zlib format and/or decompress data from zlib
format.
The text of the specification assumes a basic background in
programming at the level of bits and other primitive data
representations.
1.3. Scope
The specification specifies a compressed data format that can be
used for in-memory compression of a sequence of arbitrary bytes.
1.4. Compliance
Unless otherwise indicated below, a compliant decompressor must be
able to accept and decompress any data set that conforms to all
the specifications presented here; a compliant compressor must
produce data sets that conform to all the specifications presented
here.
1.5. Definitions of terms and conventions used
byte: 8 bits stored or transmitted as a unit (same as an octet).
(For this specification, a byte is exactly 8 bits, even on
machines which store a character on a number of bits different
from 8.) See below, for the numbering of bits within a byte.
1.6. Changes from previous versions
Version 3.1 was the first public release of this specification.
In version 3.2, some terminology was changed and the Adler-32
sample code was rewritten for clarity. In version 3.3, the
support for a preset dictionary was introduced, and the
specification was converted to RFC style.
2. Detailed specification
2.1. Overall conventions
In the diagrams below, a box like this:
+---+
| | <-- the vertical bars might be missing
+---+
Deutsch & Gailly Informational [Page 3]
RFC 1950 ZLIB Compressed Data Format Specification May 1996
represents one byte; a box like this:
+==============+
| |
+==============+
represents a variable number of bytes.
Bytes stored within a computer do not have a "bit order", since
they are always treated as a unit. However, a byte considered as
an integer between 0 and 255 does have a most- and least-
significant bit, and since we write numbers with the most-
significant digit on the left, we also write bytes with the most-
significant bit on the left. In the diagrams below, we number the
bits of a byte so that bit 0 is the least-significant bit, i.e.,
the bits are numbered:
+--------+
|76543210|
+--------+
Within a computer, a number may occupy multiple bytes. All
multi-byte numbers in the format described here are stored with
the MOST-significant byte first (at the lower memory address).
For example, the decimal number 520 is stored as:
0 1
+--------+--------+
|00000010|00001000|
+--------+--------+
^ ^
| |
| + less significant byte = 8
+ more significant byte = 2 x 256
2.2. Data format
A zlib stream has the following structure:
0 1
+---+---+
|CMF|FLG| (more-->)
+---+---+
Deutsch & Gailly Informational [Page 4]
RFC 1950 ZLIB Compressed Data Format Specification May 1996
(if FLG.FDICT set)
0 1 2 3
+---+---+---+---+
| DICTID | (more-->)
+---+---+---+---+
+=====================+---+---+---+---+
|...compressed data...| ADLER32 |
+=====================+---+---+---+---+
Any data which may appear after ADLER32 are not part of the zlib
stream.
CMF (Compression Method and flags)
This byte is divided into a 4-bit compression method and a 4-
bit information field depending on the compression method.
bits 0 to 3 CM Compression method
bits 4 to 7 CINFO Compression info
CM (Compression method)
This identifies the compression method used in the file. CM = 8
denotes the "deflate" compression method with a window size up
to 32K. This is the method used by gzip and PNG (see
references [1] and [2] in Chapter 3, below, for the reference
documents). CM = 15 is reserved. It might be used in a future
version of this specification to indicate the presence of an
extra field before the compressed data.
CINFO (Compression info)
For CM = 8, CINFO is the base-2 logarithm of the LZ77 window
size, minus eight (CINFO=7 indicates a 32K window size). Values
of CINFO above 7 are not allowed in this version of the
specification. CINFO is not defined in this specification for
CM not equal to 8.
FLG (FLaGs)
This flag byte is divided as follows:
bits 0 to 4 FCHECK (check bits for CMF and FLG)
bit 5 FDICT (preset dictionary)
bits 6 to 7 FLEVEL (compression level)
The FCHECK value must be such that CMF and FLG, when viewed as
a 16-bit unsigned integer stored in MSB order (CMF*256 + FLG),
is a multiple of 31.
Deutsch & Gailly Informational [Page 5]
RFC 1950 ZLIB Compressed Data Format Specification May 1996
FDICT (Preset dictionary)
If FDICT is set, a DICT dictionary identifier is present
immediately after the FLG byte. The dictionary is a sequence of
bytes which are initially fed to the compressor without
producing any compressed output. DICT is the Adler-32 checksum
of this sequence of bytes (see the definition of ADLER32
below). The decompressor can use this identifier to determine
which dictionary has been used by the compressor.
FLEVEL (Compression level)
These flags are available for use by specific compression
methods. The "deflate" method (CM = 8) sets these flags as
follows:
0 - compressor used fastest algorithm
1 - compressor used fast algorithm
2 - compressor used default algorithm
3 - compressor used maximum compression, slowest algorithm
The information in FLEVEL is not needed for decompression; it
is there to indicate if recompression might be worthwhile.
compressed data
For compression method 8, the compressed data is stored in the
deflate compressed data format as described in the document
"DEFLATE Compressed Data Format Specification" by L. Peter
Deutsch. (See reference [3] in Chapter 3, below)
Other compressed data formats are not specified in this version
of the zlib specification.
ADLER32 (Adler-32 checksum)
This contains a checksum value of the uncompressed data
(excluding any dictionary data) computed according to Adler-32
algorithm. This algorithm is a 32-bit extension and improvement
of the Fletcher algorithm, used in the ITU-T X.224 / ISO 8073
standard. See references [4] and [5] in Chapter 3, below)
Adler-32 is composed of two sums accumulated per byte: s1 is
the sum of all bytes, s2 is the sum of all s1 values. Both sums
are done modulo 65521. s1 is initialized to 1, s2 to zero. The
Adler-32 checksum is stored as s2*65536 + s1 in most-
significant-byte first (network) order.
Deutsch & Gailly Informational [Page 6]
RFC 1950 ZLIB Compressed Data Format Specification May 1996
2.3. Compliance
A compliant compressor must produce streams with correct CMF, FLG
and ADLER32, but need not support preset dictionaries. When the
zlib data format is used as part of another standard data format,
the compressor may use only preset dictionaries that are specified
by this other data format. If this other format does not use the
preset dictionary feature, the compressor must not set the FDICT
flag.
A compliant decompressor must check CMF, FLG, and ADLER32, and
provide an error indication if any of these have incorrect values.
A compliant decompressor must give an error indication if CM is
not one of the values defined in this specification (only the
value 8 is permitted in this version), since another value could
indicate the presence of new features that would cause subsequent
data to be interpreted incorrectly. A compliant decompressor must
give an error indication if FDICT is set and DICTID is not the
identifier of a known preset dictionary. A decompressor may
ignore FLEVEL and still be compliant. When the zlib data format
is being used as a part of another standard format, a compliant
decompressor must support all the preset dictionaries specified by
the other format. When the other format does not use the preset
dictionary feature, a compliant decompressor must reject any
stream in which the FDICT flag is set.
3. References
[1] Deutsch, L.P.,"GZIP Compressed Data Format Specification",
available in ftp://ftp.uu.net/pub/archiving/zip/doc/
[2] Thomas Boutell, "PNG (Portable Network Graphics) specification",
available in ftp://ftp.uu.net/graphics/png/documents/
[3] Deutsch, L.P.,"DEFLATE Compressed Data Format Specification",
available in ftp://ftp.uu.net/pub/archiving/zip/doc/
[4] Fletcher, J. G., "An Arithmetic Checksum for Serial
Transmissions," IEEE Transactions on Communications, Vol. COM-30,
No. 1, January 1982, pp. 247-252.
[5] ITU-T Recommendation X.224, Annex D, "Checksum Algorithms,"
November, 1993, pp. 144, 145. (Available from
gopher://info.itu.ch). ITU-T X.244 is also the same as ISO 8073.
Deutsch & Gailly Informational [Page 7]
RFC 1950 ZLIB Compressed Data Format Specification May 1996
4. Source code
Source code for a C language implementation of a "zlib" compliant
library is available at ftp://ftp.uu.net/pub/archiving/zip/zlib/.
5. Security Considerations
A decoder that fails to check the ADLER32 checksum value may be
subject to undetected data corruption.
6. Acknowledgements
Trademarks cited in this document are the property of their
respective owners.
Jean-Loup Gailly and Mark Adler designed the zlib format and wrote
the related software described in this specification. Glenn
Randers-Pehrson converted this document to RFC and HTML format.
7. Authors' Addresses
L. Peter Deutsch
Aladdin Enterprises
203 Santa Margarita Ave.
Menlo Park, CA 94025
Phone: (415) 322-0103 (AM only)
FAX: (415) 322-1734
EMail: <ghost@aladdin.com>
Jean-Loup Gailly
EMail: <gzip@prep.ai.mit.edu>
Questions about the technical content of this specification can be
sent by email to
Jean-Loup Gailly <gzip@prep.ai.mit.edu> and
Mark Adler <madler@alumni.caltech.edu>
Editorial comments on this specification can be sent by email to
L. Peter Deutsch <ghost@aladdin.com> and
Glenn Randers-Pehrson <randeg@alumni.rpi.edu>
Deutsch & Gailly Informational [Page 8]
RFC 1950 ZLIB Compressed Data Format Specification May 1996
8. Appendix: Rationale
8.1. Preset dictionaries
A preset dictionary is specially useful to compress short input
sequences. The compressor can take advantage of the dictionary
context to encode the input in a more compact manner. The
decompressor can be initialized with the appropriate context by
virtually decompressing a compressed version of the dictionary
without producing any output. However for certain compression
algorithms such as the deflate algorithm this operation can be
achieved without actually performing any decompression.
The compressor and the decompressor must use exactly the same
dictionary. The dictionary may be fixed or may be chosen among a
certain number of predefined dictionaries, according to the kind
of input data. The decompressor can determine which dictionary has
been chosen by the compressor by checking the dictionary
identifier. This document does not specify the contents of
predefined dictionaries, since the optimal dictionaries are
application specific. Standard data formats using this feature of
the zlib specification must precisely define the allowed
dictionaries.
8.2. The Adler-32 algorithm
The Adler-32 algorithm is much faster than the CRC32 algorithm yet
still provides an extremely low probability of undetected errors.
The modulo on unsigned long accumulators can be delayed for 5552
bytes, so the modulo operation time is negligible. If the bytes
are a, b, c, the second sum is 3a + 2b + c + 3, and so is position
and order sensitive, unlike the first sum, which is just a
checksum. That 65521 is prime is important to avoid a possible
large class of two-byte errors that leave the check unchanged.
(The Fletcher checksum uses 255, which is not prime and which also
makes the Fletcher check insensitive to single byte changes 0 <->
255.)
The sum s1 is initialized to 1 instead of zero to make the length
of the sequence part of s2, so that the length does not have to be
checked separately. (Any sequence of zeroes has a Fletcher
checksum of zero.)
Deutsch & Gailly Informational [Page 9]
RFC 1950 ZLIB Compressed Data Format Specification May 1996
9. Appendix: Sample code
The following C code computes the Adler-32 checksum of a data buffer.
It is written for clarity, not for speed. The sample code is in the
ANSI C programming language. Non C users may find it easier to read
with these hints:
& Bitwise AND operator.
>> Bitwise right shift operator. When applied to an
unsigned quantity, as here, right shift inserts zero bit(s)
at the left.
<< Bitwise left shift operator. Left shift inserts zero
bit(s) at the right.
++ "n++" increments the variable n.
% modulo operator: a % b is the remainder of a divided by b.
#define BASE 65521 /* largest prime smaller than 65536 */
/*
Update a running Adler-32 checksum with the bytes buf[0..len-1]
and return the updated checksum. The Adler-32 checksum should be
initialized to 1.
Usage example:
unsigned long adler = 1L;
while (read_buffer(buffer, length) != EOF) {
adler = update_adler32(adler, buffer, length);
}
if (adler != original_adler) error();
*/
unsigned long update_adler32(unsigned long adler,
unsigned char *buf, int len)
{
unsigned long s1 = adler & 0xffff;
unsigned long s2 = (adler >> 16) & 0xffff;
int n;
for (n = 0; n < len; n++) {
s1 = (s1 + buf[n]) % BASE;
s2 = (s2 + s1) % BASE;
}
return (s2 << 16) + s1;
}
/* Return the adler32 of the bytes buf[0..len-1] */
Deutsch & Gailly Informational [Page 10]
RFC 1950 ZLIB Compressed Data Format Specification May 1996
unsigned long adler32(unsigned char *buf, int len)
{
return update_adler32(1L, buf, len);
}
Deutsch & Gailly Informational [Page 11]

View File

@ -1,955 +0,0 @@
Network Working Group P. Deutsch
Request for Comments: 1951 Aladdin Enterprises
Category: Informational May 1996
DEFLATE Compressed Data Format Specification version 1.3
Status of This Memo
This memo provides information for the Internet community. This memo
does not specify an Internet standard of any kind. Distribution of
this memo is unlimited.
IESG Note:
The IESG takes no position on the validity of any Intellectual
Property Rights statements contained in this document.
Notices
Copyright (c) 1996 L. Peter Deutsch
Permission is granted to copy and distribute this document for any
purpose and without charge, including translations into other
languages and incorporation into compilations, provided that the
copyright notice and this notice are preserved, and that any
substantive changes or deletions from the original are clearly
marked.
A pointer to the latest version of this and related documentation in
HTML format can be found at the URL
<ftp://ftp.uu.net/graphics/png/documents/zlib/zdoc-index.html>.
Abstract
This specification defines a lossless compressed data format that
compresses data using a combination of the LZ77 algorithm and Huffman
coding, with efficiency comparable to the best currently available
general-purpose compression methods. The data can be produced or
consumed, even for an arbitrarily long sequentially presented input
data stream, using only an a priori bounded amount of intermediate
storage. The format can be implemented readily in a manner not
covered by patents.
Deutsch Informational [Page 1]
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
Table of Contents
1. Introduction ................................................... 2
1.1. Purpose ................................................... 2
1.2. Intended audience ......................................... 3
1.3. Scope ..................................................... 3
1.4. Compliance ................................................ 3
1.5. Definitions of terms and conventions used ................ 3
1.6. Changes from previous versions ............................ 4
2. Compressed representation overview ............................. 4
3. Detailed specification ......................................... 5
3.1. Overall conventions ....................................... 5
3.1.1. Packing into bytes .................................. 5
3.2. Compressed block format ................................... 6
3.2.1. Synopsis of prefix and Huffman coding ............... 6
3.2.2. Use of Huffman coding in the "deflate" format ....... 7
3.2.3. Details of block format ............................. 9
3.2.4. Non-compressed blocks (BTYPE=00) ................... 11
3.2.5. Compressed blocks (length and distance codes) ...... 11
3.2.6. Compression with fixed Huffman codes (BTYPE=01) .... 12
3.2.7. Compression with dynamic Huffman codes (BTYPE=10) .. 13
3.3. Compliance ............................................... 14
4. Compression algorithm details ................................. 14
5. References .................................................... 16
6. Security Considerations ....................................... 16
7. Source code ................................................... 16
8. Acknowledgements .............................................. 16
9. Author's Address .............................................. 17
1. Introduction
1.1. Purpose
The purpose of this specification is to define a lossless
compressed data format that:
* Is independent of CPU type, operating system, file system,
and character set, and hence can be used for interchange;
* Can be produced or consumed, even for an arbitrarily long
sequentially presented input data stream, using only an a
priori bounded amount of intermediate storage, and hence
can be used in data communications or similar structures
such as Unix filters;
* Compresses data with efficiency comparable to the best
currently available general-purpose compression methods,
and in particular considerably better than the "compress"
program;
* Can be implemented readily in a manner not covered by
patents, and hence can be practiced freely;
Deutsch Informational [Page 2]
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
* Is compatible with the file format produced by the current
widely used gzip utility, in that conforming decompressors
will be able to read data produced by the existing gzip
compressor.
The data format defined by this specification does not attempt to:
* Allow random access to compressed data;
* Compress specialized data (e.g., raster graphics) as well
as the best currently available specialized algorithms.
A simple counting argument shows that no lossless compression
algorithm can compress every possible input data set. For the
format defined here, the worst case expansion is 5 bytes per 32K-
byte block, i.e., a size increase of 0.015% for large data sets.
English text usually compresses by a factor of 2.5 to 3;
executable files usually compress somewhat less; graphical data
such as raster images may compress much more.
1.2. Intended audience
This specification is intended for use by implementors of software
to compress data into "deflate" format and/or decompress data from
"deflate" format.
The text of the specification assumes a basic background in
programming at the level of bits and other primitive data
representations. Familiarity with the technique of Huffman coding
is helpful but not required.
1.3. Scope
The specification specifies a method for representing a sequence
of bytes as a (usually shorter) sequence of bits, and a method for
packing the latter bit sequence into bytes.
1.4. Compliance
Unless otherwise indicated below, a compliant decompressor must be
able to accept and decompress any data set that conforms to all
the specifications presented here; a compliant compressor must
produce data sets that conform to all the specifications presented
here.
1.5. Definitions of terms and conventions used
Byte: 8 bits stored or transmitted as a unit (same as an octet).
For this specification, a byte is exactly 8 bits, even on machines
Deutsch Informational [Page 3]
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
which store a character on a number of bits different from eight.
See below, for the numbering of bits within a byte.
String: a sequence of arbitrary bytes.
1.6. Changes from previous versions
There have been no technical changes to the deflate format since
version 1.1 of this specification. In version 1.2, some
terminology was changed. Version 1.3 is a conversion of the
specification to RFC style.
2. Compressed representation overview
A compressed data set consists of a series of blocks, corresponding
to successive blocks of input data. The block sizes are arbitrary,
except that non-compressible blocks are limited to 65,535 bytes.
Each block is compressed using a combination of the LZ77 algorithm
and Huffman coding. The Huffman trees for each block are independent
of those for previous or subsequent blocks; the LZ77 algorithm may
use a reference to a duplicated string occurring in a previous block,
up to 32K input bytes before.
Each block consists of two parts: a pair of Huffman code trees that
describe the representation of the compressed data part, and a
compressed data part. (The Huffman trees themselves are compressed
using Huffman encoding.) The compressed data consists of a series of
elements of two types: literal bytes (of strings that have not been
detected as duplicated within the previous 32K input bytes), and
pointers to duplicated strings, where a pointer is represented as a
pair <length, backward distance>. The representation used in the
"deflate" format limits distances to 32K bytes and lengths to 258
bytes, but does not limit the size of a block, except for
uncompressible blocks, which are limited as noted above.
Each type of value (literals, distances, and lengths) in the
compressed data is represented using a Huffman code, using one code
tree for literals and lengths and a separate code tree for distances.
The code trees for each block appear in a compact form just before
the compressed data for that block.
Deutsch Informational [Page 4]
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
3. Detailed specification
3.1. Overall conventions In the diagrams below, a box like this:
+---+
| | <-- the vertical bars might be missing
+---+
represents one byte; a box like this:
+==============+
| |
+==============+
represents a variable number of bytes.
Bytes stored within a computer do not have a "bit order", since
they are always treated as a unit. However, a byte considered as
an integer between 0 and 255 does have a most- and least-
significant bit, and since we write numbers with the most-
significant digit on the left, we also write bytes with the most-
significant bit on the left. In the diagrams below, we number the
bits of a byte so that bit 0 is the least-significant bit, i.e.,
the bits are numbered:
+--------+
|76543210|
+--------+
Within a computer, a number may occupy multiple bytes. All
multi-byte numbers in the format described here are stored with
the least-significant byte first (at the lower memory address).
For example, the decimal number 520 is stored as:
0 1
+--------+--------+
|00001000|00000010|
+--------+--------+
^ ^
| |
| + more significant byte = 2 x 256
+ less significant byte = 8
3.1.1. Packing into bytes
This document does not address the issue of the order in which
bits of a byte are transmitted on a bit-sequential medium,
since the final data format described here is byte- rather than
Deutsch Informational [Page 5]
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
bit-oriented. However, we describe the compressed block format
in below, as a sequence of data elements of various bit
lengths, not a sequence of bytes. We must therefore specify
how to pack these data elements into bytes to form the final
compressed byte sequence:
* Data elements are packed into bytes in order of
increasing bit number within the byte, i.e., starting
with the least-significant bit of the byte.
* Data elements other than Huffman codes are packed
starting with the least-significant bit of the data
element.
* Huffman codes are packed starting with the most-
significant bit of the code.
In other words, if one were to print out the compressed data as
a sequence of bytes, starting with the first byte at the
*right* margin and proceeding to the *left*, with the most-
significant bit of each byte on the left as usual, one would be
able to parse the result from right to left, with fixed-width
elements in the correct MSB-to-LSB order and Huffman codes in
bit-reversed order (i.e., with the first bit of the code in the
relative LSB position).
3.2. Compressed block format
3.2.1. Synopsis of prefix and Huffman coding
Prefix coding represents symbols from an a priori known
alphabet by bit sequences (codes), one code for each symbol, in
a manner such that different symbols may be represented by bit
sequences of different lengths, but a parser can always parse
an encoded string unambiguously symbol-by-symbol.
We define a prefix code in terms of a binary tree in which the
two edges descending from each non-leaf node are labeled 0 and
1 and in which the leaf nodes correspond one-for-one with (are
labeled with) the symbols of the alphabet; then the code for a
symbol is the sequence of 0's and 1's on the edges leading from
the root to the leaf labeled with that symbol. For example:
Deutsch Informational [Page 6]
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
/\ Symbol Code
0 1 ------ ----
/ \ A 00
/\ B B 1
0 1 C 011
/ \ D 010
A /\
0 1
/ \
D C
A parser can decode the next symbol from an encoded input
stream by walking down the tree from the root, at each step
choosing the edge corresponding to the next input bit.
Given an alphabet with known symbol frequencies, the Huffman
algorithm allows the construction of an optimal prefix code
(one which represents strings with those symbol frequencies
using the fewest bits of any possible prefix codes for that
alphabet). Such a code is called a Huffman code. (See
reference [1] in Chapter 5, references for additional
information on Huffman codes.)
Note that in the "deflate" format, the Huffman codes for the
various alphabets must not exceed certain maximum code lengths.
This constraint complicates the algorithm for computing code
lengths from symbol frequencies. Again, see Chapter 5,
references for details.
3.2.2. Use of Huffman coding in the "deflate" format
The Huffman codes used for each alphabet in the "deflate"
format have two additional rules:
* All codes of a given bit length have lexicographically
consecutive values, in the same order as the symbols
they represent;
* Shorter codes lexicographically precede longer codes.
Deutsch Informational [Page 7]
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
We could recode the example above to follow this rule as
follows, assuming that the order of the alphabet is ABCD:
Symbol Code
------ ----
A 10
B 0
C 110
D 111
I.e., 0 precedes 10 which precedes 11x, and 110 and 111 are
lexicographically consecutive.
Given this rule, we can define the Huffman code for an alphabet
just by giving the bit lengths of the codes for each symbol of
the alphabet in order; this is sufficient to determine the
actual codes. In our example, the code is completely defined
by the sequence of bit lengths (2, 1, 3, 3). The following
algorithm generates the codes as integers, intended to be read
from most- to least-significant bit. The code lengths are
initially in tree[I].Len; the codes are produced in
tree[I].Code.
1) Count the number of codes for each code length. Let
bl_count[N] be the number of codes of length N, N >= 1.
2) Find the numerical value of the smallest code for each
code length:
code = 0;
bl_count[0] = 0;
for (bits = 1; bits <= MAX_BITS; bits++) {
code = (code + bl_count[bits-1]) << 1;
next_code[bits] = code;
}
3) Assign numerical values to all codes, using consecutive
values for all codes of the same length with the base
values determined at step 2. Codes that are never used
(which have a bit length of zero) must not be assigned a
value.
for (n = 0; n <= max_code; n++) {
len = tree[n].Len;
if (len != 0) {
tree[n].Code = next_code[len];
next_code[len]++;
}
Deutsch Informational [Page 8]
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
}
Example:
Consider the alphabet ABCDEFGH, with bit lengths (3, 3, 3, 3,
3, 2, 4, 4). After step 1, we have:
N bl_count[N]
- -----------
2 1
3 5
4 2
Step 2 computes the following next_code values:
N next_code[N]
- ------------
1 0
2 0
3 2
4 14
Step 3 produces the following code values:
Symbol Length Code
------ ------ ----
A 3 010
B 3 011
C 3 100
D 3 101
E 3 110
F 2 00
G 4 1110
H 4 1111
3.2.3. Details of block format
Each block of compressed data begins with 3 header bits
containing the following data:
first bit BFINAL
next 2 bits BTYPE
Note that the header bits do not necessarily begin on a byte
boundary, since a block does not necessarily occupy an integral
number of bytes.
Deutsch Informational [Page 9]
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
BFINAL is set if and only if this is the last block of the data
set.
BTYPE specifies how the data are compressed, as follows:
00 - no compression
01 - compressed with fixed Huffman codes
10 - compressed with dynamic Huffman codes
11 - reserved (error)
The only difference between the two compressed cases is how the
Huffman codes for the literal/length and distance alphabets are
defined.
In all cases, the decoding algorithm for the actual data is as
follows:
do
read block header from input stream.
if stored with no compression
skip any remaining bits in current partially
processed byte
read LEN and NLEN (see next section)
copy LEN bytes of data to output
otherwise
if compressed with dynamic Huffman codes
read representation of code trees (see
subsection below)
loop (until end of block code recognized)
decode literal/length value from input stream
if value < 256
copy value (literal byte) to output stream
otherwise
if value = end of block (256)
break from loop
otherwise (value = 257..285)
decode distance from input stream
move backwards distance bytes in the output
stream, and copy length bytes from this
position to the output stream.
end loop
while not last block
Note that a duplicated string reference may refer to a string
in a previous block; i.e., the backward distance may cross one
or more block boundaries. However a distance cannot refer past
the beginning of the output stream. (An application using a
Deutsch Informational [Page 10]
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
preset dictionary might discard part of the output stream; a
distance can refer to that part of the output stream anyway)
Note also that the referenced string may overlap the current
position; for example, if the last 2 bytes decoded have values
X and Y, a string reference with <length = 5, distance = 2>
adds X,Y,X,Y,X to the output stream.
We now specify each compression method in turn.
3.2.4. Non-compressed blocks (BTYPE=00)
Any bits of input up to the next byte boundary are ignored.
The rest of the block consists of the following information:
0 1 2 3 4...
+---+---+---+---+================================+
| LEN | NLEN |... LEN bytes of literal data...|
+---+---+---+---+================================+
LEN is the number of data bytes in the block. NLEN is the
one's complement of LEN.
3.2.5. Compressed blocks (length and distance codes)
As noted above, encoded data blocks in the "deflate" format
consist of sequences of symbols drawn from three conceptually
distinct alphabets: either literal bytes, from the alphabet of
byte values (0..255), or <length, backward distance> pairs,
where the length is drawn from (3..258) and the distance is
drawn from (1..32,768). In fact, the literal and length
alphabets are merged into a single alphabet (0..285), where
values 0..255 represent literal bytes, the value 256 indicates
end-of-block, and values 257..285 represent length codes
(possibly in conjunction with extra bits following the symbol
code) as follows:
Deutsch Informational [Page 11]
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
Extra Extra Extra
Code Bits Length(s) Code Bits Lengths Code Bits Length(s)
---- ---- ------ ---- ---- ------- ---- ---- -------
257 0 3 267 1 15,16 277 4 67-82
258 0 4 268 1 17,18 278 4 83-98
259 0 5 269 2 19-22 279 4 99-114
260 0 6 270 2 23-26 280 4 115-130
261 0 7 271 2 27-30 281 5 131-162
262 0 8 272 2 31-34 282 5 163-194
263 0 9 273 3 35-42 283 5 195-226
264 0 10 274 3 43-50 284 5 227-257
265 1 11,12 275 3 51-58 285 0 258
266 1 13,14 276 3 59-66
The extra bits should be interpreted as a machine integer
stored with the most-significant bit first, e.g., bits 1110
represent the value 14.
Extra Extra Extra
Code Bits Dist Code Bits Dist Code Bits Distance
---- ---- ---- ---- ---- ------ ---- ---- --------
0 0 1 10 4 33-48 20 9 1025-1536
1 0 2 11 4 49-64 21 9 1537-2048
2 0 3 12 5 65-96 22 10 2049-3072
3 0 4 13 5 97-128 23 10 3073-4096
4 1 5,6 14 6 129-192 24 11 4097-6144
5 1 7,8 15 6 193-256 25 11 6145-8192
6 2 9-12 16 7 257-384 26 12 8193-12288
7 2 13-16 17 7 385-512 27 12 12289-16384
8 3 17-24 18 8 513-768 28 13 16385-24576
9 3 25-32 19 8 769-1024 29 13 24577-32768
3.2.6. Compression with fixed Huffman codes (BTYPE=01)
The Huffman codes for the two alphabets are fixed, and are not
represented explicitly in the data. The Huffman code lengths
for the literal/length alphabet are:
Lit Value Bits Codes
--------- ---- -----
0 - 143 8 00110000 through
10111111
144 - 255 9 110010000 through
111111111
256 - 279 7 0000000 through
0010111
280 - 287 8 11000000 through
11000111
Deutsch Informational [Page 12]
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
The code lengths are sufficient to generate the actual codes,
as described above; we show the codes in the table for added
clarity. Literal/length values 286-287 will never actually
occur in the compressed data, but participate in the code
construction.
Distance codes 0-31 are represented by (fixed-length) 5-bit
codes, with possible additional bits as shown in the table
shown in Paragraph 3.2.5, above. Note that distance codes 30-
31 will never actually occur in the compressed data.
3.2.7. Compression with dynamic Huffman codes (BTYPE=10)
The Huffman codes for the two alphabets appear in the block
immediately after the header bits and before the actual
compressed data, first the literal/length code and then the
distance code. Each code is defined by a sequence of code
lengths, as discussed in Paragraph 3.2.2, above. For even
greater compactness, the code length sequences themselves are
compressed using a Huffman code. The alphabet for code lengths
is as follows:
0 - 15: Represent code lengths of 0 - 15
16: Copy the previous code length 3 - 6 times.
The next 2 bits indicate repeat length
(0 = 3, ... , 3 = 6)
Example: Codes 8, 16 (+2 bits 11),
16 (+2 bits 10) will expand to
12 code lengths of 8 (1 + 6 + 5)
17: Repeat a code length of 0 for 3 - 10 times.
(3 bits of length)
18: Repeat a code length of 0 for 11 - 138 times
(7 bits of length)
A code length of 0 indicates that the corresponding symbol in
the literal/length or distance alphabet will not occur in the
block, and should not participate in the Huffman code
construction algorithm given earlier. If only one distance
code is used, it is encoded using one bit, not zero bits; in
this case there is a single code length of one, with one unused
code. One distance code of zero bits means that there are no
distance codes used at all (the data is all literals).
We can now define the format of the block:
5 Bits: HLIT, # of Literal/Length codes - 257 (257 - 286)
5 Bits: HDIST, # of Distance codes - 1 (1 - 32)
4 Bits: HCLEN, # of Code Length codes - 4 (4 - 19)
Deutsch Informational [Page 13]
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
(HCLEN + 4) x 3 bits: code lengths for the code length
alphabet given just above, in the order: 16, 17, 18,
0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
These code lengths are interpreted as 3-bit integers
(0-7); as above, a code length of 0 means the
corresponding symbol (literal/length or distance code
length) is not used.
HLIT + 257 code lengths for the literal/length alphabet,
encoded using the code length Huffman code
HDIST + 1 code lengths for the distance alphabet,
encoded using the code length Huffman code
The actual compressed data of the block,
encoded using the literal/length and distance Huffman
codes
The literal/length symbol 256 (end of data),
encoded using the literal/length Huffman code
The code length repeat codes can cross from HLIT + 257 to the
HDIST + 1 code lengths. In other words, all code lengths form
a single sequence of HLIT + HDIST + 258 values.
3.3. Compliance
A compressor may limit further the ranges of values specified in
the previous section and still be compliant; for example, it may
limit the range of backward pointers to some value smaller than
32K. Similarly, a compressor may limit the size of blocks so that
a compressible block fits in memory.
A compliant decompressor must accept the full range of possible
values defined in the previous section, and must accept blocks of
arbitrary size.
4. Compression algorithm details
While it is the intent of this document to define the "deflate"
compressed data format without reference to any particular
compression algorithm, the format is related to the compressed
formats produced by LZ77 (Lempel-Ziv 1977, see reference [2] below);
since many variations of LZ77 are patented, it is strongly
recommended that the implementor of a compressor follow the general
algorithm presented here, which is known not to be patented per se.
The material in this section is not part of the definition of the
Deutsch Informational [Page 14]
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
specification per se, and a compressor need not follow it in order to
be compliant.
The compressor terminates a block when it determines that starting a
new block with fresh trees would be useful, or when the block size
fills up the compressor's block buffer.
The compressor uses a chained hash table to find duplicated strings,
using a hash function that operates on 3-byte sequences. At any
given point during compression, let XYZ be the next 3 input bytes to
be examined (not necessarily all different, of course). First, the
compressor examines the hash chain for XYZ. If the chain is empty,
the compressor simply writes out X as a literal byte and advances one
byte in the input. If the hash chain is not empty, indicating that
the sequence XYZ (or, if we are unlucky, some other 3 bytes with the
same hash function value) has occurred recently, the compressor
compares all strings on the XYZ hash chain with the actual input data
sequence starting at the current point, and selects the longest
match.
The compressor searches the hash chains starting with the most recent
strings, to favor small distances and thus take advantage of the
Huffman encoding. The hash chains are singly linked. There are no
deletions from the hash chains; the algorithm simply discards matches
that are too old. To avoid a worst-case situation, very long hash
chains are arbitrarily truncated at a certain length, determined by a
run-time parameter.
To improve overall compression, the compressor optionally defers the
selection of matches ("lazy matching"): after a match of length N has
been found, the compressor searches for a longer match starting at
the next input byte. If it finds a longer match, it truncates the
previous match to a length of one (thus producing a single literal
byte) and then emits the longer match. Otherwise, it emits the
original match, and, as described above, advances N bytes before
continuing.
Run-time parameters also control this "lazy match" procedure. If
compression ratio is most important, the compressor attempts a
complete second search regardless of the length of the first match.
In the normal case, if the current match is "long enough", the
compressor reduces the search for a longer match, thus speeding up
the process. If speed is most important, the compressor inserts new
strings in the hash table only when no match was found, or when the
match is not "too long". This degrades the compression ratio but
saves time since there are both fewer insertions and fewer searches.
Deutsch Informational [Page 15]
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
5. References
[1] Huffman, D. A., "A Method for the Construction of Minimum
Redundancy Codes", Proceedings of the Institute of Radio
Engineers, September 1952, Volume 40, Number 9, pp. 1098-1101.
[2] Ziv J., Lempel A., "A Universal Algorithm for Sequential Data
Compression", IEEE Transactions on Information Theory, Vol. 23,
No. 3, pp. 337-343.
[3] Gailly, J.-L., and Adler, M., ZLIB documentation and sources,
available in ftp://ftp.uu.net/pub/archiving/zip/doc/
[4] Gailly, J.-L., and Adler, M., GZIP documentation and sources,
available as gzip-*.tar in ftp://prep.ai.mit.edu/pub/gnu/
[5] Schwartz, E. S., and Kallick, B. "Generating a canonical prefix
encoding." Comm. ACM, 7,3 (Mar. 1964), pp. 166-169.
[6] Hirschberg and Lelewer, "Efficient decoding of prefix codes,"
Comm. ACM, 33,4, April 1990, pp. 449-459.
6. Security Considerations
Any data compression method involves the reduction of redundancy in
the data. Consequently, any corruption of the data is likely to have
severe effects and be difficult to correct. Uncompressed text, on
the other hand, will probably still be readable despite the presence
of some corrupted bytes.
It is recommended that systems using this data format provide some
means of validating the integrity of the compressed data. See
reference [3], for example.
7. Source code
Source code for a C language implementation of a "deflate" compliant
compressor and decompressor is available within the zlib package at
ftp://ftp.uu.net/pub/archiving/zip/zlib/.
8. Acknowledgements
Trademarks cited in this document are the property of their
respective owners.
Phil Katz designed the deflate format. Jean-Loup Gailly and Mark
Adler wrote the related software described in this specification.
Glenn Randers-Pehrson converted this document to RFC and HTML format.
Deutsch Informational [Page 16]
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
9. Author's Address
L. Peter Deutsch
Aladdin Enterprises
203 Santa Margarita Ave.
Menlo Park, CA 94025
Phone: (415) 322-0103 (AM only)
FAX: (415) 322-1734
EMail: <ghost@aladdin.com>
Questions about the technical content of this specification can be
sent by email to:
Jean-Loup Gailly <gzip@prep.ai.mit.edu> and
Mark Adler <madler@alumni.caltech.edu>
Editorial comments on this specification can be sent by email to:
L. Peter Deutsch <ghost@aladdin.com> and
Glenn Randers-Pehrson <randeg@alumni.rpi.edu>
Deutsch Informational [Page 17]

View File

@ -1,675 +0,0 @@
Network Working Group P. Deutsch
Request for Comments: 1952 Aladdin Enterprises
Category: Informational May 1996
GZIP file format specification version 4.3
Status of This Memo
This memo provides information for the Internet community. This memo
does not specify an Internet standard of any kind. Distribution of
this memo is unlimited.
IESG Note:
The IESG takes no position on the validity of any Intellectual
Property Rights statements contained in this document.
Notices
Copyright (c) 1996 L. Peter Deutsch
Permission is granted to copy and distribute this document for any
purpose and without charge, including translations into other
languages and incorporation into compilations, provided that the
copyright notice and this notice are preserved, and that any
substantive changes or deletions from the original are clearly
marked.
A pointer to the latest version of this and related documentation in
HTML format can be found at the URL
<ftp://ftp.uu.net/graphics/png/documents/zlib/zdoc-index.html>.
Abstract
This specification defines a lossless compressed data format that is
compatible with the widely used GZIP utility. The format includes a
cyclic redundancy check value for detecting data corruption. The
format presently uses the DEFLATE method of compression but can be
easily extended to use other compression methods. The format can be
implemented readily in a manner not covered by patents.
Deutsch Informational [Page 1]
RFC 1952 GZIP File Format Specification May 1996
Table of Contents
1. Introduction ................................................... 2
1.1. Purpose ................................................... 2
1.2. Intended audience ......................................... 3
1.3. Scope ..................................................... 3
1.4. Compliance ................................................ 3
1.5. Definitions of terms and conventions used ................. 3
1.6. Changes from previous versions ............................ 3
2. Detailed specification ......................................... 4
2.1. Overall conventions ....................................... 4
2.2. File format ............................................... 5
2.3. Member format ............................................. 5
2.3.1. Member header and trailer ........................... 6
2.3.1.1. Extra field ................................... 8
2.3.1.2. Compliance .................................... 9
3. References .................................................. 9
4. Security Considerations .................................... 10
5. Acknowledgements ........................................... 10
6. Author's Address ........................................... 10
7. Appendix: Jean-Loup Gailly's gzip utility .................. 11
8. Appendix: Sample CRC Code .................................. 11
1. Introduction
1.1. Purpose
The purpose of this specification is to define a lossless
compressed data format that:
* Is independent of CPU type, operating system, file system,
and character set, and hence can be used for interchange;
* Can compress or decompress a data stream (as opposed to a
randomly accessible file) to produce another data stream,
using only an a priori bounded amount of intermediate
storage, and hence can be used in data communications or
similar structures such as Unix filters;
* Compresses data with efficiency comparable to the best
currently available general-purpose compression methods,
and in particular considerably better than the "compress"
program;
* Can be implemented readily in a manner not covered by
patents, and hence can be practiced freely;
* Is compatible with the file format produced by the current
widely used gzip utility, in that conforming decompressors
will be able to read data produced by the existing gzip
compressor.
Deutsch Informational [Page 2]
RFC 1952 GZIP File Format Specification May 1996
The data format defined by this specification does not attempt to:
* Provide random access to compressed data;
* Compress specialized data (e.g., raster graphics) as well as
the best currently available specialized algorithms.
1.2. Intended audience
This specification is intended for use by implementors of software
to compress data into gzip format and/or decompress data from gzip
format.
The text of the specification assumes a basic background in
programming at the level of bits and other primitive data
representations.
1.3. Scope
The specification specifies a compression method and a file format
(the latter assuming only that a file can store a sequence of
arbitrary bytes). It does not specify any particular interface to
a file system or anything about character sets or encodings
(except for file names and comments, which are optional).
1.4. Compliance
Unless otherwise indicated below, a compliant decompressor must be
able to accept and decompress any file that conforms to all the
specifications presented here; a compliant compressor must produce
files that conform to all the specifications presented here. The
material in the appendices is not part of the specification per se
and is not relevant to compliance.
1.5. Definitions of terms and conventions used
byte: 8 bits stored or transmitted as a unit (same as an octet).
(For this specification, a byte is exactly 8 bits, even on
machines which store a character on a number of bits different
from 8.) See below for the numbering of bits within a byte.
1.6. Changes from previous versions
There have been no technical changes to the gzip format since
version 4.1 of this specification. In version 4.2, some
terminology was changed, and the sample CRC code was rewritten for
clarity and to eliminate the requirement for the caller to do pre-
and post-conditioning. Version 4.3 is a conversion of the
specification to RFC style.
Deutsch Informational [Page 3]
RFC 1952 GZIP File Format Specification May 1996
2. Detailed specification
2.1. Overall conventions
In the diagrams below, a box like this:
+---+
| | <-- the vertical bars might be missing
+---+
represents one byte; a box like this:
+==============+
| |
+==============+
represents a variable number of bytes.
Bytes stored within a computer do not have a "bit order", since
they are always treated as a unit. However, a byte considered as
an integer between 0 and 255 does have a most- and least-
significant bit, and since we write numbers with the most-
significant digit on the left, we also write bytes with the most-
significant bit on the left. In the diagrams below, we number the
bits of a byte so that bit 0 is the least-significant bit, i.e.,
the bits are numbered:
+--------+
|76543210|
+--------+
This document does not address the issue of the order in which
bits of a byte are transmitted on a bit-sequential medium, since
the data format described here is byte- rather than bit-oriented.
Within a computer, a number may occupy multiple bytes. All
multi-byte numbers in the format described here are stored with
the least-significant byte first (at the lower memory address).
For example, the decimal number 520 is stored as:
0 1
+--------+--------+
|00001000|00000010|
+--------+--------+
^ ^
| |
| + more significant byte = 2 x 256
+ less significant byte = 8
Deutsch Informational [Page 4]
RFC 1952 GZIP File Format Specification May 1996
2.2. File format
A gzip file consists of a series of "members" (compressed data
sets). The format of each member is specified in the following
section. The members simply appear one after another in the file,
with no additional information before, between, or after them.
2.3. Member format
Each member has the following structure:
+---+---+---+---+---+---+---+---+---+---+
|ID1|ID2|CM |FLG| MTIME |XFL|OS | (more-->)
+---+---+---+---+---+---+---+---+---+---+
(if FLG.FEXTRA set)
+---+---+=================================+
| XLEN |...XLEN bytes of "extra field"...| (more-->)
+---+---+=================================+
(if FLG.FNAME set)
+=========================================+
|...original file name, zero-terminated...| (more-->)
+=========================================+
(if FLG.FCOMMENT set)
+===================================+
|...file comment, zero-terminated...| (more-->)
+===================================+
(if FLG.FHCRC set)
+---+---+
| CRC16 |
+---+---+
+=======================+
|...compressed blocks...| (more-->)
+=======================+
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| CRC32 | ISIZE |
+---+---+---+---+---+---+---+---+
Deutsch Informational [Page 5]
RFC 1952 GZIP File Format Specification May 1996
2.3.1. Member header and trailer
ID1 (IDentification 1)
ID2 (IDentification 2)
These have the fixed values ID1 = 31 (0x1f, \037), ID2 = 139
(0x8b, \213), to identify the file as being in gzip format.
CM (Compression Method)
This identifies the compression method used in the file. CM
= 0-7 are reserved. CM = 8 denotes the "deflate"
compression method, which is the one customarily used by
gzip and which is documented elsewhere.
FLG (FLaGs)
This flag byte is divided into individual bits as follows:
bit 0 FTEXT
bit 1 FHCRC
bit 2 FEXTRA
bit 3 FNAME
bit 4 FCOMMENT
bit 5 reserved
bit 6 reserved
bit 7 reserved
If FTEXT is set, the file is probably ASCII text. This is
an optional indication, which the compressor may set by
checking a small amount of the input data to see whether any
non-ASCII characters are present. In case of doubt, FTEXT
is cleared, indicating binary data. For systems which have
different file formats for ascii text and binary data, the
decompressor can use FTEXT to choose the appropriate format.
We deliberately do not specify the algorithm used to set
this bit, since a compressor always has the option of
leaving it cleared and a decompressor always has the option
of ignoring it and letting some other program handle issues
of data conversion.
If FHCRC is set, a CRC16 for the gzip header is present,
immediately before the compressed data. The CRC16 consists
of the two least significant bytes of the CRC32 for all
bytes of the gzip header up to and not including the CRC16.
[The FHCRC bit was never set by versions of gzip up to
1.2.4, even though it was documented with a different
meaning in gzip 1.2.4.]
If FEXTRA is set, optional extra fields are present, as
described in a following section.
Deutsch Informational [Page 6]
RFC 1952 GZIP File Format Specification May 1996
If FNAME is set, an original file name is present,
terminated by a zero byte. The name must consist of ISO
8859-1 (LATIN-1) characters; on operating systems using
EBCDIC or any other character set for file names, the name
must be translated to the ISO LATIN-1 character set. This
is the original name of the file being compressed, with any
directory components removed, and, if the file being
compressed is on a file system with case insensitive names,
forced to lower case. There is no original file name if the
data was compressed from a source other than a named file;
for example, if the source was stdin on a Unix system, there
is no file name.
If FCOMMENT is set, a zero-terminated file comment is
present. This comment is not interpreted; it is only
intended for human consumption. The comment must consist of
ISO 8859-1 (LATIN-1) characters. Line breaks should be
denoted by a single line feed character (10 decimal).
Reserved FLG bits must be zero.
MTIME (Modification TIME)
This gives the most recent modification time of the original
file being compressed. The time is in Unix format, i.e.,
seconds since 00:00:00 GMT, Jan. 1, 1970. (Note that this
may cause problems for MS-DOS and other systems that use
local rather than Universal time.) If the compressed data
did not come from a file, MTIME is set to the time at which
compression started. MTIME = 0 means no time stamp is
available.
XFL (eXtra FLags)
These flags are available for use by specific compression
methods. The "deflate" method (CM = 8) sets these flags as
follows:
XFL = 2 - compressor used maximum compression,
slowest algorithm
XFL = 4 - compressor used fastest algorithm
OS (Operating System)
This identifies the type of file system on which compression
took place. This may be useful in determining end-of-line
convention for text files. The currently defined values are
as follows:
Deutsch Informational [Page 7]
RFC 1952 GZIP File Format Specification May 1996
0 - FAT filesystem (MS-DOS, OS/2, NT/Win32)
1 - Amiga
2 - VMS (or OpenVMS)
3 - Unix
4 - VM/CMS
5 - Atari TOS
6 - HPFS filesystem (OS/2, NT)
7 - Macintosh
8 - Z-System
9 - CP/M
10 - TOPS-20
11 - NTFS filesystem (NT)
12 - QDOS
13 - Acorn RISCOS
255 - unknown
XLEN (eXtra LENgth)
If FLG.FEXTRA is set, this gives the length of the optional
extra field. See below for details.
CRC32 (CRC-32)
This contains a Cyclic Redundancy Check value of the
uncompressed data computed according to CRC-32 algorithm
used in the ISO 3309 standard and in section 8.1.1.6.2 of
ITU-T recommendation V.42. (See http://www.iso.ch for
ordering ISO documents. See gopher://info.itu.ch for an
online version of ITU-T V.42.)
ISIZE (Input SIZE)
This contains the size of the original (uncompressed) input
data modulo 2^32.
2.3.1.1. Extra field
If the FLG.FEXTRA bit is set, an "extra field" is present in
the header, with total length XLEN bytes. It consists of a
series of subfields, each of the form:
+---+---+---+---+==================================+
|SI1|SI2| LEN |... LEN bytes of subfield data ...|
+---+---+---+---+==================================+
SI1 and SI2 provide a subfield ID, typically two ASCII letters
with some mnemonic value. Jean-Loup Gailly
<gzip@prep.ai.mit.edu> is maintaining a registry of subfield
IDs; please send him any subfield ID you wish to use. Subfield
IDs with SI2 = 0 are reserved for future use. The following
IDs are currently defined:
Deutsch Informational [Page 8]
RFC 1952 GZIP File Format Specification May 1996
SI1 SI2 Data
---------- ---------- ----
0x41 ('A') 0x70 ('P') Apollo file type information
LEN gives the length of the subfield data, excluding the 4
initial bytes.
2.3.1.2. Compliance
A compliant compressor must produce files with correct ID1,
ID2, CM, CRC32, and ISIZE, but may set all the other fields in
the fixed-length part of the header to default values (255 for
OS, 0 for all others). The compressor must set all reserved
bits to zero.
A compliant decompressor must check ID1, ID2, and CM, and
provide an error indication if any of these have incorrect
values. It must examine FEXTRA/XLEN, FNAME, FCOMMENT and FHCRC
at least so it can skip over the optional fields if they are
present. It need not examine any other part of the header or
trailer; in particular, a decompressor may ignore FTEXT and OS
and always produce binary output, and still be compliant. A
compliant decompressor must give an error indication if any
reserved bit is non-zero, since such a bit could indicate the
presence of a new field that would cause subsequent data to be
interpreted incorrectly.
3. References
[1] "Information Processing - 8-bit single-byte coded graphic
character sets - Part 1: Latin alphabet No.1" (ISO 8859-1:1987).
The ISO 8859-1 (Latin-1) character set is a superset of 7-bit
ASCII. Files defining this character set are available as
iso_8859-1.* in ftp://ftp.uu.net/graphics/png/documents/
[2] ISO 3309
[3] ITU-T recommendation V.42
[4] Deutsch, L.P.,"DEFLATE Compressed Data Format Specification",
available in ftp://ftp.uu.net/pub/archiving/zip/doc/
[5] Gailly, J.-L., GZIP documentation, available as gzip-*.tar in
ftp://prep.ai.mit.edu/pub/gnu/
[6] Sarwate, D.V., "Computation of Cyclic Redundancy Checks via Table
Look-Up", Communications of the ACM, 31(8), pp.1008-1013.
Deutsch Informational [Page 9]
RFC 1952 GZIP File Format Specification May 1996
[7] Schwaderer, W.D., "CRC Calculation", April 85 PC Tech Journal,
pp.118-133.
[8] ftp://ftp.adelaide.edu.au/pub/rocksoft/papers/crc_v3.txt,
describing the CRC concept.
4. Security Considerations
Any data compression method involves the reduction of redundancy in
the data. Consequently, any corruption of the data is likely to have
severe effects and be difficult to correct. Uncompressed text, on
the other hand, will probably still be readable despite the presence
of some corrupted bytes.
It is recommended that systems using this data format provide some
means of validating the integrity of the compressed data, such as by
setting and checking the CRC-32 check value.
5. Acknowledgements
Trademarks cited in this document are the property of their
respective owners.
Jean-Loup Gailly designed the gzip format and wrote, with Mark Adler,
the related software described in this specification. Glenn
Randers-Pehrson converted this document to RFC and HTML format.
6. Author's Address
L. Peter Deutsch
Aladdin Enterprises
203 Santa Margarita Ave.
Menlo Park, CA 94025
Phone: (415) 322-0103 (AM only)
FAX: (415) 322-1734
EMail: <ghost@aladdin.com>
Questions about the technical content of this specification can be
sent by email to:
Jean-Loup Gailly <gzip@prep.ai.mit.edu> and
Mark Adler <madler@alumni.caltech.edu>
Editorial comments on this specification can be sent by email to:
L. Peter Deutsch <ghost@aladdin.com> and
Glenn Randers-Pehrson <randeg@alumni.rpi.edu>
Deutsch Informational [Page 10]
RFC 1952 GZIP File Format Specification May 1996
7. Appendix: Jean-Loup Gailly's gzip utility
The most widely used implementation of gzip compression, and the
original documentation on which this specification is based, were
created by Jean-Loup Gailly <gzip@prep.ai.mit.edu>. Since this
implementation is a de facto standard, we mention some more of its
features here. Again, the material in this section is not part of
the specification per se, and implementations need not follow it to
be compliant.
When compressing or decompressing a file, gzip preserves the
protection, ownership, and modification time attributes on the local
file system, since there is no provision for representing protection
attributes in the gzip file format itself. Since the file format
includes a modification time, the gzip decompressor provides a
command line switch that assigns the modification time from the file,
rather than the local modification time of the compressed input, to
the decompressed output.
8. Appendix: Sample CRC Code
The following sample code represents a practical implementation of
the CRC (Cyclic Redundancy Check). (See also ISO 3309 and ITU-T V.42
for a formal specification.)
The sample code is in the ANSI C programming language. Non C users
may find it easier to read with these hints:
& Bitwise AND operator.
^ Bitwise exclusive-OR operator.
>> Bitwise right shift operator. When applied to an
unsigned quantity, as here, right shift inserts zero
bit(s) at the left.
! Logical NOT operator.
++ "n++" increments the variable n.
0xNNN 0x introduces a hexadecimal (base 16) constant.
Suffix L indicates a long value (at least 32 bits).
/* Table of CRCs of all 8-bit messages. */
unsigned long crc_table[256];
/* Flag: has the table been computed? Initially false. */
int crc_table_computed = 0;
/* Make the table for a fast CRC. */
void make_crc_table(void)
{
unsigned long c;
Deutsch Informational [Page 11]
RFC 1952 GZIP File Format Specification May 1996
int n, k;
for (n = 0; n < 256; n++) {
c = (unsigned long) n;
for (k = 0; k < 8; k++) {
if (c & 1) {
c = 0xedb88320L ^ (c >> 1);
} else {
c = c >> 1;
}
}
crc_table[n] = c;
}
crc_table_computed = 1;
}
/*
Update a running crc with the bytes buf[0..len-1] and return
the updated crc. The crc should be initialized to zero. Pre- and
post-conditioning (one's complement) is performed within this
function so it shouldn't be done by the caller. Usage example:
unsigned long crc = 0L;
while (read_buffer(buffer, length) != EOF) {
crc = update_crc(crc, buffer, length);
}
if (crc != original_crc) error();
*/
unsigned long update_crc(unsigned long crc,
unsigned char *buf, int len)
{
unsigned long c = crc ^ 0xffffffffL;
int n;
if (!crc_table_computed)
make_crc_table();
for (n = 0; n < len; n++) {
c = crc_table[(c ^ buf[n]) & 0xff] ^ (c >> 8);
}
return c ^ 0xffffffffL;
}
/* Return the CRC of the bytes buf[0..len-1]. */
unsigned long crc(unsigned char *buf, int len)
{
return update_crc(0L, buf, len);
}
Deutsch Informational [Page 12]

View File

@ -1,107 +0,0 @@
A Fast Method for Identifying Plain Text Files
==============================================
Introduction
------------
Given a file coming from an unknown source, it is sometimes desirable
to find out whether the format of that file is plain text. Although
this may appear like a simple task, a fully accurate detection of the
file type requires heavy-duty semantic analysis on the file contents.
It is, however, possible to obtain satisfactory results by employing
various heuristics.
Previous versions of PKZip and other zip-compatible compression tools
were using a crude detection scheme: if more than 80% (4/5) of the bytes
found in a certain buffer are within the range [7..127], the file is
labeled as plain text, otherwise it is labeled as binary. A prominent
limitation of this scheme is the restriction to Latin-based alphabets.
Other alphabets, like Greek, Cyrillic or Asian, make extensive use of
the bytes within the range [128..255], and texts using these alphabets
are most often misidentified by this scheme; in other words, the rate
of false negatives is sometimes too high, which means that the recall
is low. Another weakness of this scheme is a reduced precision, due to
the false positives that may occur when binary files containing large
amounts of textual characters are misidentified as plain text.
In this article we propose a new, simple detection scheme that features
a much increased precision and a near-100% recall. This scheme is
designed to work on ASCII, Unicode and other ASCII-derived alphabets,
and it handles single-byte encodings (ISO-8859, MacRoman, KOI8, etc.)
and variable-sized encodings (ISO-2022, UTF-8, etc.). Wider encodings
(UCS-2/UTF-16 and UCS-4/UTF-32) are not handled, however.
The Algorithm
-------------
The algorithm works by dividing the set of bytecodes [0..255] into three
categories:
- The white list of textual bytecodes:
9 (TAB), 10 (LF), 13 (CR), 32 (SPACE) to 255.
- The gray list of tolerated bytecodes:
7 (BEL), 8 (BS), 11 (VT), 12 (FF), 26 (SUB), 27 (ESC).
- The black list of undesired, non-textual bytecodes:
0 (NUL) to 6, 14 to 31.
If a file contains at least one byte that belongs to the white list and
no byte that belongs to the black list, then the file is categorized as
plain text; otherwise, it is categorized as binary. (The boundary case,
when the file is empty, automatically falls into the latter category.)
Rationale
---------
The idea behind this algorithm relies on two observations.
The first observation is that, although the full range of 7-bit codes
[0..127] is properly specified by the ASCII standard, most control
characters in the range [0..31] are not used in practice. The only
widely-used, almost universally-portable control codes are 9 (TAB),
10 (LF) and 13 (CR). There are a few more control codes that are
recognized on a reduced range of platforms and text viewers/editors:
7 (BEL), 8 (BS), 11 (VT), 12 (FF), 26 (SUB) and 27 (ESC); but these
codes are rarely (if ever) used alone, without being accompanied by
some printable text. Even the newer, portable text formats such as
XML avoid using control characters outside the list mentioned here.
The second observation is that most of the binary files tend to contain
control characters, especially 0 (NUL). Even though the older text
detection schemes observe the presence of non-ASCII codes from the range
[128..255], the precision rarely has to suffer if this upper range is
labeled as textual, because the files that are genuinely binary tend to
contain both control characters and codes from the upper range. On the
other hand, the upper range needs to be labeled as textual, because it
is used by virtually all ASCII extensions. In particular, this range is
used for encoding non-Latin scripts.
Since there is no counting involved, other than simply observing the
presence or the absence of some byte values, the algorithm produces
consistent results, regardless what alphabet encoding is being used.
(If counting were involved, it could be possible to obtain different
results on a text encoded, say, using ISO-8859-16 versus UTF-8.)
There is an extra category of plain text files that are "polluted" with
one or more black-listed codes, either by mistake or by peculiar design
considerations. In such cases, a scheme that tolerates a small fraction
of black-listed codes would provide an increased recall (i.e. more true
positives). This, however, incurs a reduced precision overall, since
false positives are more likely to appear in binary files that contain
large chunks of textual data. Furthermore, "polluted" plain text should
be regarded as binary by general-purpose text detection schemes, because
general-purpose text processing algorithms might not be applicable.
Under this premise, it is safe to say that our detection method provides
a near-100% recall.
Experiments have been run on many files coming from various platforms
and applications. We tried plain text files, system logs, source code,
formatted office documents, compiled object code, etc. The results
confirm the optimistic assumptions about the capabilities of this
algorithm.
--
Cosmin Truta
Last updated: 2006-May-28

View File

@ -1,23 +0,0 @@
/* gzclose.c -- zlib gzclose() function
* Copyright (C) 2004, 2010 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/
#include "gzguts.h"
/* gzclose() is in a separate file so that it is linked in only if it is used.
That way the other gzclose functions can be used instead to avoid linking in
unneeded compression or decompression routines. */
int ZEXPORT gzclose(gzFile file) {
#ifndef NO_GZCOMPRESS
gz_statep state;
if (file == NULL)
return Z_STREAM_ERROR;
state = (gz_statep)file;
return state->mode == GZ_READ ? gzclose_r(file) : gzclose_w(file);
#else
return gzclose_r(file);
#endif
}

View File

@ -1,158 +0,0 @@
#ifndef GZGUTS_H_
#define GZGUTS_H_
/* gzguts.h -- zlib internal header definitions for gz* operations
* Copyright (C) 2004, 2005, 2010, 2011, 2012, 2013 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/
#ifdef _LARGEFILE64_SOURCE
# ifndef _LARGEFILE_SOURCE
# define _LARGEFILE_SOURCE 1
# endif
# ifdef _FILE_OFFSET_BITS
# undef _FILE_OFFSET_BITS
# endif
#endif
#if defined(HAVE_INTERNAL)
# define ZLIB_INTERNAL __attribute__((visibility ("internal")))
#elif defined(HAVE_HIDDEN)
# define ZLIB_INTERNAL __attribute__((visibility ("hidden")))
#else
# define ZLIB_INTERNAL
#endif
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <limits.h>
#include <fcntl.h>
#include "zlib.h"
#ifdef WIN32
# include <stddef.h>
#endif
#if defined(_MSC_VER) || defined(WIN32)
# include <io.h>
#endif
#if defined(_WIN32) || defined(__CYGWIN__) || defined(__MINGW__)
# define WIDECHAR
#endif
#ifdef WINAPI_FAMILY
# define open _open
# define read _read
# define write _write
# define close _close
#endif
/* In Win32, vsnprintf is available as the "non-ANSI" _vsnprintf. */
#if !defined(STDC99) && !defined(__CYGWIN__) && !defined(__MINGW__) && defined(WIN32)
# if !defined(vsnprintf)
# if !defined(_MSC_VER) || ( defined(_MSC_VER) && _MSC_VER < 1500 )
# define vsnprintf _vsnprintf
# endif
# endif
#endif
/* unlike snprintf (which is required in C99), _snprintf does not guarantee
null termination of the result -- however this is only used in gzlib.c
where the result is assured to fit in the space provided */
#if defined(_MSC_VER) && _MSC_VER < 1900
# define snprintf _snprintf
#endif
#ifndef local
# define local static
#endif
/* compile with -Dlocal if your debugger can't find static symbols */
/* get errno and strerror definition */
#ifndef NO_STRERROR
# include <errno.h>
# define zstrerror() strerror(errno)
#else
# define zstrerror() "stdio error (consult errno)"
#endif
/* provide prototypes for these when building zlib without LFS */
#if (!defined(_LARGEFILE64_SOURCE) || _LFS64_LARGEFILE-0 == 0) && defined(WITH_GZFILEOP)
ZEXTERN gzFile ZEXPORT gzopen64(const char *, const char *);
ZEXTERN z_off64_t ZEXPORT gzseek64(gzFile, z_off64_t, int);
ZEXTERN z_off64_t ZEXPORT gztell64(gzFile);
ZEXTERN z_off64_t ZEXPORT gzoffset64(gzFile);
#endif
/* default memLevel */
#if MAX_MEM_LEVEL >= 8
# define DEF_MEM_LEVEL 8
#else
# define DEF_MEM_LEVEL MAX_MEM_LEVEL
#endif
/* default i/o buffer size -- double this for output when reading (this and
twice this must be able to fit in an unsigned type) */
#define GZBUFSIZE 8192
/* gzip modes, also provide a little integrity check on the passed structure */
#define GZ_NONE 0
#define GZ_READ 7247
#define GZ_WRITE 31153
#define GZ_APPEND 1 /* mode set to GZ_WRITE after the file is opened */
/* values for gz_state how */
#define LOOK 0 /* look for a gzip header */
#define COPY 1 /* copy input directly */
#define GZIP 2 /* decompress a gzip stream */
/* internal gzip file state data structure */
typedef struct {
/* exposed contents for gzgetc() macro */
struct gzFile_s x; /* "x" for exposed */
/* x.have: number of bytes available at x.next */
/* x.next: next output data to deliver or write */
/* x.pos: current position in uncompressed data */
/* used for both reading and writing */
int mode; /* see gzip modes above */
int fd; /* file descriptor */
char *path; /* path or fd for error messages */
unsigned size; /* buffer size, zero if not allocated yet */
unsigned want; /* requested buffer size, default is GZBUFSIZE */
unsigned char *in; /* input buffer (double-sized when writing) */
unsigned char *out; /* output buffer (double-sized when reading) */
int direct; /* 0 if processing gzip, 1 if transparent */
/* just for reading */
int how; /* 0: get header, 1: copy, 2: decompress */
z_off64_t start; /* where the gzip data started, for rewinding */
int eof; /* true if end of input file reached */
int past; /* true if read requested past end */
/* just for writing */
int level; /* compression level */
int strategy; /* compression strategy */
/* seek request */
z_off64_t skip; /* amount to skip (already rewound if backwards) */
int seek; /* true if seek request pending */
/* error information */
int err; /* error code */
char *msg; /* error message */
/* zlib inflate or deflate stream */
z_stream strm; /* stream structure in-place (not a pointer) */
} gz_state;
typedef gz_state *gz_statep;
/* shared functions */
void ZLIB_INTERNAL gz_error(gz_statep, int, const char *);
/* GT_OFF(x), where x is an unsigned value, is true if x > maximum z_off64_t
value -- needed when comparing unsigned to z_off64_t, which is signed
(possible z_off64_t types off_t, off64_t, and long are all signed) */
#ifdef INT_MAX
# define GT_OFF(x) (sizeof(int) == sizeof(z_off64_t) && (x) > INT_MAX)
#else
unsigned ZLIB_INTERNAL gz_intmax(void);
# define GT_OFF(x) (sizeof(int) == sizeof(z_off64_t) && (x) > gz_intmax())
#endif
#endif /* GZGUTS_H_ */

View File

@ -1,518 +0,0 @@
/* gzlib.c -- zlib functions common to reading and writing gzip files
* Copyright (C) 2004, 2010, 2011, 2012, 2013 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/
#include "gzguts.h"
#if defined(WIN32) && !defined(__BORLANDC__) && !defined(__MINGW32__)
# define LSEEK _lseeki64
#else
#if defined(_LARGEFILE64_SOURCE) && _LFS64_LARGEFILE-0
# define LSEEK lseek64
#else
# define LSEEK lseek
#endif
#endif
/* Local functions */
local void gz_reset(gz_statep);
local gzFile gz_open(const void *, int, const char *);
/* Reset gzip file state */
local void gz_reset(gz_statep state) {
state->x.have = 0; /* no output data available */
if (state->mode == GZ_READ) { /* for reading ... */
state->eof = 0; /* not at end of file */
state->past = 0; /* have not read past end yet */
state->how = LOOK; /* look for gzip header */
}
state->seek = 0; /* no seek request pending */
gz_error(state, Z_OK, NULL); /* clear error */
state->x.pos = 0; /* no uncompressed data yet */
state->strm.avail_in = 0; /* no input data yet */
}
/* Open a gzip file either by name or file descriptor. */
local gzFile gz_open(const void *path, int fd, const char *mode) {
gz_statep state;
size_t len;
int oflag;
#ifdef O_CLOEXEC
int cloexec = 0;
#endif
#ifdef O_EXCL
int exclusive = 0;
#endif
/* check input */
if (path == NULL)
return NULL;
/* allocate gzFile structure to return */
state = (gz_statep)malloc(sizeof(gz_state));
if (state == NULL)
return NULL;
state->size = 0; /* no buffers allocated yet */
state->want = GZBUFSIZE; /* requested buffer size */
state->msg = NULL; /* no error message yet */
/* interpret mode */
state->mode = GZ_NONE;
state->level = Z_DEFAULT_COMPRESSION;
state->strategy = Z_DEFAULT_STRATEGY;
state->direct = 0;
while (*mode) {
if (*mode >= '0' && *mode <= '9') {
state->level = *mode - '0';
} else {
switch (*mode) {
case 'r':
state->mode = GZ_READ;
break;
#ifndef NO_GZCOMPRESS
case 'w':
state->mode = GZ_WRITE;
break;
case 'a':
state->mode = GZ_APPEND;
break;
#endif
case '+': /* can't read and write at the same time */
free(state);
return NULL;
case 'b': /* ignore -- will request binary anyway */
break;
#ifdef O_CLOEXEC
case 'e':
cloexec = 1;
break;
#endif
#ifdef O_EXCL
case 'x':
exclusive = 1;
break;
#endif
case 'f':
state->strategy = Z_FILTERED;
break;
case 'h':
state->strategy = Z_HUFFMAN_ONLY;
break;
case 'R':
state->strategy = Z_RLE;
break;
case 'F':
state->strategy = Z_FIXED;
break;
case 'T':
state->direct = 1;
break;
default: /* could consider as an error, but just ignore */
{}
}
}
mode++;
}
/* must provide an "r", "w", or "a" */
if (state->mode == GZ_NONE) {
free(state);
return NULL;
}
/* can't force transparent read */
if (state->mode == GZ_READ) {
if (state->direct) {
free(state);
return NULL;
}
state->direct = 1; /* for empty file */
}
/* save the path name for error messages */
#ifdef WIDECHAR
if (fd == -2) {
len = wcstombs(NULL, path, 0);
if (len == (size_t)-1)
len = 0;
} else
#endif
len = strlen((const char *)path);
state->path = (char *)malloc(len + 1);
if (state->path == NULL) {
free(state);
return NULL;
}
#ifdef WIDECHAR
if (fd == -2)
if (len) {
wcstombs(state->path, path, len + 1);
} else {
*(state->path) = 0;
}
else
#endif
snprintf(state->path, len + 1, "%s", (const char *)path);
/* compute the flags for open() */
oflag =
#ifdef O_LARGEFILE
O_LARGEFILE |
#endif
#ifdef O_BINARY
O_BINARY |
#endif
#ifdef O_CLOEXEC
(cloexec ? O_CLOEXEC : 0) |
#endif
(state->mode == GZ_READ ?
O_RDONLY :
(O_WRONLY | O_CREAT |
#ifdef O_EXCL
(exclusive ? O_EXCL : 0) |
#endif
(state->mode == GZ_WRITE ?
O_TRUNC :
O_APPEND)));
/* open the file with the appropriate flags (or just use fd) */
state->fd = fd > -1 ? fd : (
#if defined(WIN32) || defined(__MINGW__)
fd == -2 ? _wopen(path, oflag, 0666) :
#elif __CYGWIN__
fd == -2 ? open(state->path, oflag, 0666) :
#endif
open((const char *)path, oflag, 0666));
if (state->fd == -1) {
free(state->path);
free(state);
return NULL;
}
if (state->mode == GZ_APPEND) {
LSEEK(state->fd, 0, SEEK_END); /* so gzoffset() is correct */
state->mode = GZ_WRITE; /* simplify later checks */
}
/* save the current position for rewinding (only if reading) */
if (state->mode == GZ_READ) {
state->start = LSEEK(state->fd, 0, SEEK_CUR);
if (state->start == -1) state->start = 0;
}
/* initialize stream */
gz_reset(state);
/* return stream */
return (gzFile)state;
}
/* -- see zlib.h -- */
gzFile ZEXPORT gzopen(const char *path, const char *mode) {
return gz_open(path, -1, mode);
}
/* -- see zlib.h -- */
gzFile ZEXPORT gzopen64(const char *path, const char *mode) {
return gz_open(path, -1, mode);
}
/* -- see zlib.h -- */
gzFile ZEXPORT gzdopen(int fd, const char *mode) {
char *path; /* identifier for error messages */
gzFile gz;
if (fd == -1 || (path = (char *)malloc(7 + 3 * sizeof(int))) == NULL)
return NULL;
snprintf(path, 7 + 3 * sizeof(int), "<fd:%d>", fd); /* for debugging */
gz = gz_open(path, fd, mode);
free(path);
return gz;
}
/* -- see zlib.h -- */
#ifdef WIDECHAR
gzFile ZEXPORT gzopen_w(const wchar_t *path, const char *mode) {
return gz_open(path, -2, mode);
}
#endif
/* -- see zlib.h -- */
int ZEXPORT gzbuffer(gzFile file, unsigned size) {
gz_statep state;
/* get internal structure and check integrity */
if (file == NULL)
return -1;
state = (gz_statep)file;
if (state->mode != GZ_READ && state->mode != GZ_WRITE)
return -1;
/* make sure we haven't already allocated memory */
if (state->size != 0)
return -1;
/* check and set requested size */
if ((size << 1) < size)
return -1; /* need to be able to double it */
if (size < 2)
size = 2; /* need two bytes to check magic header */
state->want = size;
return 0;
}
/* -- see zlib.h -- */
int ZEXPORT gzrewind(gzFile file) {
gz_statep state;
/* get internal structure */
if (file == NULL)
return -1;
state = (gz_statep)file;
/* check that we're reading and that there's no error */
if (state->mode != GZ_READ || (state->err != Z_OK && state->err != Z_BUF_ERROR))
return -1;
/* back up and start over */
if (LSEEK(state->fd, state->start, SEEK_SET) == -1)
return -1;
gz_reset(state);
return 0;
}
/* -- see zlib.h -- */
z_off64_t ZEXPORT gzseek64(gzFile file, z_off64_t offset, int whence) {
unsigned n;
z_off64_t ret;
gz_statep state;
/* get internal structure and check integrity */
if (file == NULL)
return -1;
state = (gz_statep)file;
if (state->mode != GZ_READ && state->mode != GZ_WRITE)
return -1;
/* check that there's no error */
if (state->err != Z_OK && state->err != Z_BUF_ERROR)
return -1;
/* can only seek from start or relative to current position */
if (whence != SEEK_SET && whence != SEEK_CUR)
return -1;
/* normalize offset to a SEEK_CUR specification */
if (whence == SEEK_SET)
offset -= state->x.pos;
else if (state->seek)
offset += state->skip;
state->seek = 0;
/* if within raw area while reading, just go there */
if (state->mode == GZ_READ && state->how == COPY && state->x.pos + offset >= 0) {
ret = LSEEK(state->fd, offset - state->x.have, SEEK_CUR);
if (ret == -1)
return -1;
state->x.have = 0;
state->eof = 0;
state->past = 0;
state->seek = 0;
gz_error(state, Z_OK, NULL);
state->strm.avail_in = 0;
state->x.pos += offset;
return state->x.pos;
}
/* calculate skip amount, rewinding if needed for back seek when reading */
if (offset < 0) {
if (state->mode != GZ_READ) /* writing -- can't go backwards */
return -1;
offset += state->x.pos;
if (offset < 0) /* before start of file! */
return -1;
if (gzrewind(file) == -1) /* rewind, then skip to offset */
return -1;
}
/* if reading, skip what's in output buffer (one less gzgetc() check) */
if (state->mode == GZ_READ) {
n = GT_OFF(state->x.have) || (z_off64_t)state->x.have > offset ? (unsigned)offset : state->x.have;
state->x.have -= n;
state->x.next += n;
state->x.pos += n;
offset -= n;
}
/* request skip (if not zero) */
if (offset) {
state->seek = 1;
state->skip = offset;
}
return state->x.pos + offset;
}
/* -- see zlib.h -- */
z_off_t ZEXPORT gzseek(gzFile file, z_off_t offset, int whence) {
z_off64_t ret;
ret = gzseek64(file, (z_off64_t)offset, whence);
return ret == (z_off_t)ret ? (z_off_t)ret : -1;
}
/* -- see zlib.h -- */
z_off64_t ZEXPORT gztell64(gzFile file) {
gz_statep state;
/* get internal structure and check integrity */
if (file == NULL)
return -1;
state = (gz_statep)file;
if (state->mode != GZ_READ && state->mode != GZ_WRITE)
return -1;
/* return position */
return state->x.pos + (state->seek ? state->skip : 0);
}
/* -- see zlib.h -- */
z_off_t ZEXPORT gztell(gzFile file) {
z_off64_t ret;
ret = gztell64(file);
return ret == (z_off_t)ret ? (z_off_t)ret : -1;
}
/* -- see zlib.h -- */
z_off64_t ZEXPORT gzoffset64(gzFile file) {
z_off64_t offset;
gz_statep state;
/* get internal structure and check integrity */
if (file == NULL)
return -1;
state = (gz_statep)file;
if (state->mode != GZ_READ && state->mode != GZ_WRITE)
return -1;
/* compute and return effective offset in file */
offset = LSEEK(state->fd, 0, SEEK_CUR);
if (offset == -1)
return -1;
if (state->mode == GZ_READ) /* reading */
offset -= state->strm.avail_in; /* don't count buffered input */
return offset;
}
/* -- see zlib.h -- */
z_off_t ZEXPORT gzoffset(gzFile file) {
z_off64_t ret;
ret = gzoffset64(file);
return ret == (z_off_t)ret ? (z_off_t)ret : -1;
}
/* -- see zlib.h -- */
int ZEXPORT gzeof(gzFile file) {
gz_statep state;
/* get internal structure and check integrity */
if (file == NULL)
return 0;
state = (gz_statep)file;
if (state->mode != GZ_READ && state->mode != GZ_WRITE)
return 0;
/* return end-of-file state */
return state->mode == GZ_READ ? state->past : 0;
}
/* -- see zlib.h -- */
const char * ZEXPORT gzerror(gzFile file, int *errnum) {
gz_statep state;
/* get internal structure and check integrity */
if (file == NULL)
return NULL;
state = (gz_statep)file;
if (state->mode != GZ_READ && state->mode != GZ_WRITE)
return NULL;
/* return error information */
if (errnum != NULL)
*errnum = state->err;
return state->err == Z_MEM_ERROR ? "out of memory" : (state->msg == NULL ? "" : state->msg);
}
/* -- see zlib.h -- */
void ZEXPORT gzclearerr(gzFile file) {
gz_statep state;
/* get internal structure and check integrity */
if (file == NULL)
return;
state = (gz_statep)file;
if (state->mode != GZ_READ && state->mode != GZ_WRITE)
return;
/* clear error and end-of-file */
if (state->mode == GZ_READ) {
state->eof = 0;
state->past = 0;
}
gz_error(state, Z_OK, NULL);
}
/* Create an error message in allocated memory and set state->err and
state->msg accordingly. Free any previous error message already there. Do
not try to free or allocate space if the error is Z_MEM_ERROR (out of
memory). Simply save the error message as a static string. If there is an
allocation failure constructing the error message, then convert the error to
out of memory. */
void ZLIB_INTERNAL gz_error(gz_statep state, int err, const char *msg) {
/* free previously allocated message and clear */
if (state->msg != NULL) {
if (state->err != Z_MEM_ERROR)
free(state->msg);
state->msg = NULL;
}
/* if fatal, set state->x.have to 0 so that the gzgetc() macro fails */
if (err != Z_OK && err != Z_BUF_ERROR)
state->x.have = 0;
/* set error code, and if no message, then done */
state->err = err;
if (msg == NULL)
return;
/* for an out of memory error, return literal string when requested */
if (err == Z_MEM_ERROR)
return;
/* construct error message with path */
if ((state->msg = (char *)malloc(strlen(state->path) + strlen(msg) + 3)) == NULL) {
state->err = Z_MEM_ERROR;
return;
}
snprintf(state->msg, strlen(state->path) + strlen(msg) + 3, "%s%s%s", state->path, ": ", msg);
return;
}
#ifndef INT_MAX
/* portably return maximum value for an int (when limits.h presumed not
available) -- we need to do this to cover cases where 2's complement not
used, since C standard permits 1's complement and sign-bit representations,
otherwise we could just use ((unsigned)-1) >> 1 */
unsigned ZLIB_INTERNAL gz_intmax() {
unsigned p, q;
p = 1;
do {
q = p;
p <<= 1;
p++;
} while (p > q);
return q >> 1;
}
#endif

View File

@ -1,538 +0,0 @@
/* gzread.c -- zlib functions for reading gzip files
* Copyright (C) 2004, 2005, 2010, 2011, 2012, 2013 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/
#include "gzguts.h"
/* Local functions */
local int gz_load(gz_statep, unsigned char *, unsigned, unsigned *);
local int gz_avail(gz_statep);
local int gz_look(gz_statep);
local int gz_decomp(gz_statep);
local int gz_fetch(gz_statep);
local int gz_skip(gz_statep, z_off64_t);
/* Use read() to load a buffer -- return -1 on error, otherwise 0. Read from
state->fd, and update state->eof, state->err, and state->msg as appropriate.
This function needs to loop on read(), since read() is not guaranteed to
read the number of bytes requested, depending on the type of descriptor. */
local int gz_load(gz_statep state, unsigned char *buf, unsigned len, unsigned *have) {
int ret;
*have = 0;
do {
ret = read(state->fd, buf + *have, len - *have);
if (ret <= 0)
break;
*have += ret;
} while (*have < len);
if (ret < 0) {
gz_error(state, Z_ERRNO, zstrerror());
return -1;
}
if (ret == 0)
state->eof = 1;
return 0;
}
/* Load up input buffer and set eof flag if last data loaded -- return -1 on
error, 0 otherwise. Note that the eof flag is set when the end of the input
file is reached, even though there may be unused data in the buffer. Once
that data has been used, no more attempts will be made to read the file.
If strm->avail_in != 0, then the current data is moved to the beginning of
the input buffer, and then the remainder of the buffer is loaded with the
available data from the input file. */
local int gz_avail(gz_statep state) {
unsigned got;
z_stream *strm = &(state->strm);
if (state->err != Z_OK && state->err != Z_BUF_ERROR)
return -1;
if (state->eof == 0) {
if (strm->avail_in) { /* copy what's there to the start */
unsigned char *p = state->in;
unsigned const char *q = strm->next_in;
unsigned n = strm->avail_in;
do {
*p++ = *q++;
} while (--n);
}
if (gz_load(state, state->in + strm->avail_in, state->size - strm->avail_in, &got) == -1)
return -1;
strm->avail_in += got;
strm->next_in = state->in;
}
return 0;
}
/* Look for gzip header, set up for inflate or copy. state->x.have must be 0.
If this is the first time in, allocate required memory. state->how will be
left unchanged if there is no more input data available, will be set to COPY
if there is no gzip header and direct copying will be performed, or it will
be set to GZIP for decompression. If direct copying, then leftover input
data from the input buffer will be copied to the output buffer. In that
case, all further file reads will be directly to either the output buffer or
a user buffer. If decompressing, the inflate state will be initialized.
gz_look() will return 0 on success or -1 on failure. */
local int gz_look(gz_statep state) {
z_stream *strm = &(state->strm);
/* allocate read buffers and inflate memory */
if (state->size == 0) {
/* allocate buffers */
state->in = (unsigned char *)malloc(state->want);
state->out = (unsigned char *)malloc(state->want << 1);
if (state->in == NULL || state->out == NULL) {
if (state->out != NULL)
free(state->out);
if (state->in != NULL)
free(state->in);
gz_error(state, Z_MEM_ERROR, "out of memory");
return -1;
}
state->size = state->want;
/* allocate inflate memory */
state->strm.zalloc = Z_NULL;
state->strm.zfree = Z_NULL;
state->strm.opaque = Z_NULL;
state->strm.avail_in = 0;
state->strm.next_in = Z_NULL;
if (inflateInit2(&(state->strm), 15 + 16) != Z_OK) { /* gunzip */
free(state->out);
free(state->in);
state->size = 0;
gz_error(state, Z_MEM_ERROR, "out of memory");
return -1;
}
}
/* get at least the magic bytes in the input buffer */
if (strm->avail_in < 2) {
if (gz_avail(state) == -1)
return -1;
if (strm->avail_in == 0)
return 0;
}
/* look for gzip magic bytes -- if there, do gzip decoding (note: there is
a logical dilemma here when considering the case of a partially written
gzip file, to wit, if a single 31 byte is written, then we cannot tell
whether this is a single-byte file, or just a partially written gzip
file -- for here we assume that if a gzip file is being written, then
the header will be written in a single operation, so that reading a
single byte is sufficient indication that it is not a gzip file) */
if (strm->avail_in > 1 &&
strm->next_in[0] == 31 && strm->next_in[1] == 139) {
inflateReset(strm);
state->how = GZIP;
state->direct = 0;
return 0;
}
/* no gzip header -- if we were decoding gzip before, then this is trailing
garbage. Ignore the trailing garbage and finish. */
if (state->direct == 0) {
strm->avail_in = 0;
state->eof = 1;
state->x.have = 0;
return 0;
}
/* doing raw i/o, copy any leftover input to output -- this assumes that
the output buffer is larger than the input buffer, which also assures
space for gzungetc() */
state->x.next = state->out;
if (strm->avail_in) {
memcpy(state->x.next, strm->next_in, strm->avail_in);
state->x.have = strm->avail_in;
strm->avail_in = 0;
}
state->how = COPY;
state->direct = 1;
return 0;
}
/* Decompress from input to the provided next_out and avail_out in the state.
On return, state->x.have and state->x.next point to the just decompressed
data. If the gzip stream completes, state->how is reset to LOOK to look for
the next gzip stream or raw data, once state->x.have is depleted. Returns 0
on success, -1 on failure. */
local int gz_decomp(gz_statep state) {
int ret = Z_OK;
unsigned had;
z_stream *strm = &(state->strm);
/* fill output buffer up to end of deflate stream */
had = strm->avail_out;
do {
/* get more input for inflate() */
if (strm->avail_in == 0 && gz_avail(state) == -1)
return -1;
if (strm->avail_in == 0) {
gz_error(state, Z_BUF_ERROR, "unexpected end of file");
break;
}
/* decompress and handle errors */
ret = inflate(strm, Z_NO_FLUSH);
if (ret == Z_STREAM_ERROR || ret == Z_NEED_DICT) {
gz_error(state, Z_STREAM_ERROR, "internal error: inflate stream corrupt");
return -1;
}
if (ret == Z_MEM_ERROR) {
gz_error(state, Z_MEM_ERROR, "out of memory");
return -1;
}
if (ret == Z_DATA_ERROR) { /* deflate stream invalid */
gz_error(state, Z_DATA_ERROR, strm->msg == NULL ? "compressed data error" : strm->msg);
return -1;
}
} while (strm->avail_out && ret != Z_STREAM_END);
/* update available output */
state->x.have = had - strm->avail_out;
state->x.next = strm->next_out - state->x.have;
/* if the gzip stream completed successfully, look for another */
if (ret == Z_STREAM_END)
state->how = LOOK;
/* good decompression */
return 0;
}
/* Fetch data and put it in the output buffer. Assumes state->x.have is 0.
Data is either copied from the input file or decompressed from the input
file depending on state->how. If state->how is LOOK, then a gzip header is
looked for to determine whether to copy or decompress. Returns -1 on error,
otherwise 0. gz_fetch() will leave state->how as COPY or GZIP unless the
end of the input file has been reached and all data has been processed. */
local int gz_fetch(gz_statep state) {
z_stream *strm = &(state->strm);
do {
switch (state->how) {
case LOOK: /* -> LOOK, COPY (only if never GZIP), or GZIP */
if (gz_look(state) == -1)
return -1;
if (state->how == LOOK)
return 0;
break;
case COPY: /* -> COPY */
if (gz_load(state, state->out, state->size << 1, &(state->x.have))
== -1)
return -1;
state->x.next = state->out;
return 0;
case GZIP: /* -> GZIP or LOOK (if end of gzip stream) */
strm->avail_out = state->size << 1;
strm->next_out = state->out;
if (gz_decomp(state) == -1)
return -1;
}
} while (state->x.have == 0 && (!state->eof || strm->avail_in));
return 0;
}
/* Skip len uncompressed bytes of output. Return -1 on error, 0 on success. */
local int gz_skip(gz_statep state, z_off64_t len) {
unsigned n;
/* skip over len bytes or reach end-of-file, whichever comes first */
while (len)
/* skip over whatever is in output buffer */
if (state->x.have) {
n = GT_OFF(state->x.have) || (z_off64_t)state->x.have > len ?
(unsigned)len : state->x.have;
state->x.have -= n;
state->x.next += n;
state->x.pos += n;
len -= n;
} else if (state->eof && state->strm.avail_in == 0) {
/* output buffer empty -- return if we're at the end of the input */
break;
} else {
/* need more data to skip -- load up output buffer */
/* get more output, looking for header if required */
if (gz_fetch(state) == -1)
return -1;
}
return 0;
}
/* -- see zlib.h -- */
int ZEXPORT gzread(gzFile file, void *buf, unsigned len) {
unsigned got, n;
gz_statep state;
z_stream *strm;
/* get internal structure */
if (file == NULL)
return -1;
state = (gz_statep)file;
strm = &(state->strm);
/* check that we're reading and that there's no (serious) error */
if (state->mode != GZ_READ || (state->err != Z_OK && state->err != Z_BUF_ERROR))
return -1;
/* since an int is returned, make sure len fits in one, otherwise return
with an error (this avoids the flaw in the interface) */
if ((int)len < 0) {
gz_error(state, Z_DATA_ERROR, "requested length does not fit in int");
return -1;
}
/* if len is zero, avoid unnecessary operations */
if (len == 0)
return 0;
/* process a skip request */
if (state->seek) {
state->seek = 0;
if (gz_skip(state, state->skip) == -1)
return -1;
}
/* get len bytes to buf, or less than len if at the end */
got = 0;
do {
/* first just try copying data from the output buffer */
if (state->x.have) {
n = state->x.have > len ? len : state->x.have;
memcpy(buf, state->x.next, n);
state->x.next += n;
state->x.have -= n;
} else if (state->eof && strm->avail_in == 0) {
/* output buffer empty -- return if we're at the end of the input */
state->past = 1; /* tried to read past end */
break;
} else if (state->how == LOOK || len < (state->size << 1)) {
/* need output data -- for small len or new stream load up our output buffer */
/* get more output, looking for header if required */
if (gz_fetch(state) == -1)
return -1;
continue; /* no progress yet -- go back to copy above */
/* the copy above assures that we will leave with space in the
output buffer, allowing at least one gzungetc() to succeed */
} else if (state->how == COPY) { /* read directly */
/* large len -- read directly into user buffer */
if (gz_load(state, (unsigned char *)buf, len, &n) == -1)
return -1;
} else { /* state->how == GZIP */
/* large len -- decompress directly into user buffer */
strm->avail_out = len;
strm->next_out = (unsigned char *)buf;
if (gz_decomp(state) == -1)
return -1;
n = state->x.have;
state->x.have = 0;
}
/* update progress */
len -= n;
buf = (char *)buf + n;
got += n;
state->x.pos += n;
} while (len);
/* return number of bytes read into user buffer (will fit in int) */
return (int)got;
}
/* -- see zlib.h -- */
#undef gzgetc
int ZEXPORT gzgetc(gzFile file) {
int ret;
unsigned char buf[1];
gz_statep state;
/* get internal structure */
if (file == NULL)
return -1;
state = (gz_statep)file;
/* check that we're reading and that there's no (serious) error */
if (state->mode != GZ_READ || (state->err != Z_OK && state->err != Z_BUF_ERROR))
return -1;
/* try output buffer (no need to check for skip request) */
if (state->x.have) {
state->x.have--;
state->x.pos++;
return *(state->x.next)++;
}
/* nothing there -- try gzread() */
ret = gzread(file, buf, 1);
return ret < 1 ? -1 : buf[0];
}
int ZEXPORT gzgetc_(gzFile file) {
return gzgetc(file);
}
/* -- see zlib.h -- */
int ZEXPORT gzungetc(int c, gzFile file) {
gz_statep state;
/* get internal structure */
if (file == NULL)
return -1;
state = (gz_statep)file;
/* check that we're reading and that there's no (serious) error */
if (state->mode != GZ_READ || (state->err != Z_OK && state->err != Z_BUF_ERROR))
return -1;
/* process a skip request */
if (state->seek) {
state->seek = 0;
if (gz_skip(state, state->skip) == -1)
return -1;
}
/* can't push EOF */
if (c < 0)
return -1;
/* if output buffer empty, put byte at end (allows more pushing) */
if (state->x.have == 0) {
state->x.have = 1;
state->x.next = state->out + (state->size << 1) - 1;
state->x.next[0] = c;
state->x.pos--;
state->past = 0;
return c;
}
/* if no room, give up (must have already done a gzungetc()) */
if (state->x.have == (state->size << 1)) {
gz_error(state, Z_DATA_ERROR, "out of room to push characters");
return -1;
}
/* slide output data if needed and insert byte before existing data */
if (state->x.next == state->out) {
unsigned char *src = state->out + state->x.have;
unsigned char *dest = state->out + (state->size << 1);
while (src > state->out)
*--dest = *--src;
state->x.next = dest;
}
state->x.have++;
state->x.next--;
state->x.next[0] = c;
state->x.pos--;
state->past = 0;
return c;
}
/* -- see zlib.h -- */
char * ZEXPORT gzgets(gzFile file, char *buf, int len) {
unsigned left, n;
char *str;
unsigned char *eol;
gz_statep state;
/* check parameters and get internal structure */
if (file == NULL || buf == NULL || len < 1)
return NULL;
state = (gz_statep)file;
/* check that we're reading and that there's no (serious) error */
if (state->mode != GZ_READ || (state->err != Z_OK && state->err != Z_BUF_ERROR))
return NULL;
/* process a skip request */
if (state->seek) {
state->seek = 0;
if (gz_skip(state, state->skip) == -1)
return NULL;
}
/* copy output bytes up to new line or len - 1, whichever comes first --
append a terminating zero to the string (we don't check for a zero in
the contents, let the user worry about that) */
str = buf;
left = (unsigned)len - 1;
if (left) do {
/* assure that something is in the output buffer */
if (state->x.have == 0 && gz_fetch(state) == -1)
return NULL; /* error */
if (state->x.have == 0) { /* end of file */
state->past = 1; /* read past end */
break; /* return what we have */
}
/* look for end-of-line in current output buffer */
n = state->x.have > left ? left : state->x.have;
eol = (unsigned char *)memchr(state->x.next, '\n', n);
if (eol != NULL)
n = (unsigned)(eol - state->x.next) + 1;
/* copy through end-of-line, or remainder if not found */
memcpy(buf, state->x.next, n);
state->x.have -= n;
state->x.next += n;
state->x.pos += n;
left -= n;
buf += n;
} while (left && eol == NULL);
/* return terminated string, or if nothing, end of file */
if (buf == str)
return NULL;
buf[0] = 0;
return str;
}
/* -- see zlib.h -- */
int ZEXPORT gzdirect(gzFile file) {
gz_statep state;
/* get internal structure */
if (file == NULL)
return 0;
state = (gz_statep)file;
/* if the state is not known, but we can find out, then do so (this is
mainly for right after a gzopen() or gzdopen()) */
if (state->mode == GZ_READ && state->how == LOOK && state->x.have == 0)
(void)gz_look(state);
/* return 1 if transparent, 0 if processing a gzip stream */
return state->direct;
}
/* -- see zlib.h -- */
int ZEXPORT gzclose_r(gzFile file) {
int ret, err;
gz_statep state;
/* get internal structure */
if (file == NULL)
return Z_STREAM_ERROR;
state = (gz_statep)file;
/* check that we're reading */
if (state->mode != GZ_READ)
return Z_STREAM_ERROR;
/* free memory and close file */
if (state->size) {
inflateEnd(&(state->strm));
free(state->out);
free(state->in);
}
err = state->err == Z_BUF_ERROR ? Z_BUF_ERROR : Z_OK;
gz_error(state, Z_OK, NULL);
free(state->path);
ret = close(state->fd);
free(state);
return ret ? Z_ERRNO : err;
}

View File

@ -1,457 +0,0 @@
/* gzwrite.c -- zlib functions for writing gzip files
* Copyright (C) 2004, 2005, 2010, 2011, 2012, 2013 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/
#include <stdarg.h>
#include "gzguts.h"
/* Local functions */
local int gz_init(gz_statep);
local int gz_comp(gz_statep, int);
local int gz_zero(gz_statep, z_off64_t);
/* Initialize state for writing a gzip file. Mark initialization by setting
state->size to non-zero. Return -1 on failure or 0 on success. */
local int gz_init(gz_statep state) {
int ret;
z_stream *strm = &(state->strm);
/* allocate input buffer (double size for gzprintf) */
state->in = (unsigned char *)malloc(state->want << 1);
if (state->in == NULL) {
gz_error(state, Z_MEM_ERROR, "out of memory");
return -1;
}
/* only need output buffer and deflate state if compressing */
if (!state->direct) {
/* allocate output buffer */
state->out = (unsigned char *)malloc(state->want);
if (state->out == NULL) {
free(state->in);
gz_error(state, Z_MEM_ERROR, "out of memory");
return -1;
}
/* allocate deflate memory, set up for gzip compression */
strm->zalloc = Z_NULL;
strm->zfree = Z_NULL;
strm->opaque = Z_NULL;
ret = deflateInit2(strm, state->level, Z_DEFLATED, MAX_WBITS + 16, DEF_MEM_LEVEL, state->strategy);
if (ret != Z_OK) {
free(state->out);
free(state->in);
gz_error(state, Z_MEM_ERROR, "out of memory");
return -1;
}
strm->next_in = NULL;
}
/* mark state as initialized */
state->size = state->want;
/* initialize write buffer if compressing */
if (!state->direct) {
strm->avail_out = state->size;
strm->next_out = state->out;
state->x.next = strm->next_out;
}
return 0;
}
/* Compress whatever is at avail_in and next_in and write to the output file.
Return -1 if there is an error writing to the output file, otherwise 0.
flush is assumed to be a valid deflate() flush value. If flush is Z_FINISH,
then the deflate() state is reset to start a new gzip stream. If gz->direct
is true, then simply write to the output file without compressing, and
ignore flush. */
local int gz_comp(gz_statep state, int flush) {
int ret, got;
unsigned have;
z_stream *strm = &(state->strm);
/* allocate memory if this is the first time through */
if (state->size == 0 && gz_init(state) == -1)
return -1;
/* write directly if requested */
if (state->direct) {
while (strm->avail_in) {
if ((got = write(state->fd, strm->next_in, strm->avail_in)) < 0) {
gz_error(state, Z_ERRNO, zstrerror());
return -1;
}
strm->avail_in -= got;
strm->next_in += got;
}
return 0;
}
/* run deflate() on provided input until it produces no more output */
ret = Z_OK;
do {
/* write out current buffer contents if full, or if flushing, but if
doing Z_FINISH then don't write until we get to Z_STREAM_END */
if (strm->avail_out == 0 || (flush != Z_NO_FLUSH && (flush != Z_FINISH || ret == Z_STREAM_END))) {
while (strm->next_out > state->x.next) {
if ((got = write(state->fd, state->x.next, strm->next_out - state->x.next)) < 0) {
gz_error(state, Z_ERRNO, zstrerror());
return -1;
}
state->x.next += got;
}
if (strm->avail_out == 0) {
strm->avail_out = state->size;
strm->next_out = state->out;
}
}
/* compress */
have = strm->avail_out;
ret = deflate(strm, flush);
if (ret == Z_STREAM_ERROR) {
gz_error(state, Z_STREAM_ERROR, "internal error: deflate stream corrupt");
return -1;
}
have -= strm->avail_out;
} while (have);
/* if that completed a deflate stream, allow another to start */
if (flush == Z_FINISH)
deflateReset(strm);
/* all done, no errors */
return 0;
}
/* Compress len zeros to output. Return -1 on error, 0 on success. */
local int gz_zero(gz_statep state, z_off64_t len) {
int first;
unsigned n;
z_stream *strm = &(state->strm);
/* consume whatever's left in the input buffer */
if (strm->avail_in && gz_comp(state, Z_NO_FLUSH) == -1)
return -1;
/* compress len zeros (len guaranteed > 0) */
first = 1;
while (len) {
n = GT_OFF(state->size) || (z_off64_t)state->size > len ? (unsigned)len : state->size;
if (first) {
memset(state->in, 0, n);
first = 0;
}
strm->avail_in = n;
strm->next_in = state->in;
state->x.pos += n;
if (gz_comp(state, Z_NO_FLUSH) == -1)
return -1;
len -= n;
}
return 0;
}
/* -- see zlib.h -- */
int ZEXPORT gzwrite(gzFile file, void const *buf, unsigned len) {
unsigned put = len;
gz_statep state;
z_stream *strm;
/* get internal structure */
if (file == NULL)
return 0;
state = (gz_statep)file;
strm = &(state->strm);
/* check that we're writing and that there's no error */
if (state->mode != GZ_WRITE || state->err != Z_OK)
return 0;
/* since an int is returned, make sure len fits in one, otherwise return
with an error (this avoids the flaw in the interface) */
if ((int)len < 0) {
gz_error(state, Z_DATA_ERROR, "requested length does not fit in int");
return 0;
}
/* if len is zero, avoid unnecessary operations */
if (len == 0)
return 0;
/* allocate memory if this is the first time through */
if (state->size == 0 && gz_init(state) == -1)
return 0;
/* check for seek request */
if (state->seek) {
state->seek = 0;
if (gz_zero(state, state->skip) == -1)
return 0;
}
/* for small len, copy to input buffer, otherwise compress directly */
if (len < state->size) {
/* copy to input buffer, compress when full */
do {
unsigned have, copy;
if (strm->avail_in == 0)
strm->next_in = state->in;
have = (unsigned)((strm->next_in + strm->avail_in) - state->in);
copy = state->size - have;
if (copy > len)
copy = len;
memcpy(state->in + have, buf, copy);
strm->avail_in += copy;
state->x.pos += copy;
buf = (const char *)buf + copy;
len -= copy;
if (len && gz_comp(state, Z_NO_FLUSH) == -1)
return 0;
} while (len);
} else {
/* consume whatever's left in the input buffer */
if (strm->avail_in && gz_comp(state, Z_NO_FLUSH) == -1)
return 0;
/* directly compress user buffer to file */
strm->avail_in = len;
strm->next_in = (const unsigned char *)buf;
state->x.pos += len;
if (gz_comp(state, Z_NO_FLUSH) == -1)
return 0;
}
/* input was all buffered or compressed (put will fit in int) */
return (int)put;
}
/* -- see zlib.h -- */
int ZEXPORT gzputc(gzFile file, int c) {
unsigned have;
unsigned char buf[1];
gz_statep state;
z_stream *strm;
/* get internal structure */
if (file == NULL)
return -1;
state = (gz_statep)file;
strm = &(state->strm);
/* check that we're writing and that there's no error */
if (state->mode != GZ_WRITE || state->err != Z_OK)
return -1;
/* check for seek request */
if (state->seek) {
state->seek = 0;
if (gz_zero(state, state->skip) == -1)
return -1;
}
/* try writing to input buffer for speed (state->size == 0 if buffer not
initialized) */
if (state->size) {
if (strm->avail_in == 0)
strm->next_in = state->in;
have = (unsigned)((strm->next_in + strm->avail_in) - state->in);
if (have < state->size) {
state->in[have] = c;
strm->avail_in++;
state->x.pos++;
return c & 0xff;
}
}
/* no room in buffer or not initialized, use gz_write() */
buf[0] = c;
if (gzwrite(file, buf, 1) != 1)
return -1;
return c & 0xff;
}
/* -- see zlib.h -- */
int ZEXPORT gzputs(gzFile file, const char *str) {
int ret;
unsigned len;
/* write string */
len = (unsigned)strlen(str);
ret = gzwrite(file, str, len);
return ret == 0 && len != 0 ? -1 : ret;
}
/* -- see zlib.h -- */
int ZEXPORTVA gzvprintf(gzFile file, const char *format, va_list va) {
int len, left;
char *next;
gz_statep state;
z_stream *strm;
/* get internal structure */
if (file == NULL)
return -1;
state = (gz_statep)file;
strm = &(state->strm);
/* check that we're writing and that there's no error */
if (state->mode != GZ_WRITE || state->err != Z_OK)
return 0;
/* make sure we have some buffer space */
if (state->size == 0 && gz_init(state) == -1)
return 0;
/* check for seek request */
if (state->seek) {
state->seek = 0;
if (gz_zero(state, state->skip) == -1)
return 0;
}
/* do the printf() into the input buffer, put length in len -- the input
buffer is double-sized just for this function, so there is guaranteed to
be state->size bytes available after the current contents */
if (strm->avail_in == 0)
strm->next_in = state->in;
next = (char *)(strm->next_in + strm->avail_in);
next[state->size - 1] = 0;
len = vsnprintf(next, state->size, format, va);
/* check that printf() results fit in buffer */
if (len == 0 || len >= state->size || next[state->size - 1] != 0)
return 0;
/* update buffer and position, compress first half if past that */
strm->avail_in += len;
state->x.pos += len;
if (strm->avail_in >= state->size) {
left = strm->avail_in - state->size;
strm->avail_in = state->size;
if (gz_comp(state, Z_NO_FLUSH) == -1)
return 0;
memcpy(state->in, state->in + state->size, left);
strm->next_in = state->in;
strm->avail_in = left;
}
return (int)len;
}
int ZEXPORTVA gzprintf(gzFile file, const char *format, ...) {
va_list va;
int ret;
va_start(va, format);
ret = gzvprintf(file, format, va);
va_end(va);
return ret;
}
/* -- see zlib.h -- */
int ZEXPORT gzflush(gzFile file, int flush) {
gz_statep state;
/* get internal structure */
if (file == NULL)
return -1;
state = (gz_statep)file;
/* check that we're writing and that there's no error */
if (state->mode != GZ_WRITE || state->err != Z_OK)
return Z_STREAM_ERROR;
/* check flush parameter */
if (flush < 0 || flush > Z_FINISH)
return Z_STREAM_ERROR;
/* check for seek request */
if (state->seek) {
state->seek = 0;
if (gz_zero(state, state->skip) == -1)
return -1;
}
/* compress remaining data with requested flush */
gz_comp(state, flush);
return state->err;
}
/* -- see zlib.h -- */
int ZEXPORT gzsetparams(gzFile file, int level, int strategy) {
gz_statep state;
z_stream *strm;
/* get internal structure */
if (file == NULL)
return Z_STREAM_ERROR;
state = (gz_statep)file;
strm = &(state->strm);
/* check that we're writing and that there's no error */
if (state->mode != GZ_WRITE || state->err != Z_OK)
return Z_STREAM_ERROR;
/* if no change is requested, then do nothing */
if (level == state->level && strategy == state->strategy)
return Z_OK;
/* check for seek request */
if (state->seek) {
state->seek = 0;
if (gz_zero(state, state->skip) == -1)
return -1;
}
/* change compression parameters for subsequent input */
if (state->size) {
/* flush previous input with previous parameters before changing */
if (strm->avail_in && gz_comp(state, Z_PARTIAL_FLUSH) == -1)
return state->err;
deflateParams(strm, level, strategy);
}
state->level = level;
state->strategy = strategy;
return Z_OK;
}
/* -- see zlib.h -- */
int ZEXPORT gzclose_w(gzFile file) {
int ret = Z_OK;
gz_statep state;
/* get internal structure */
if (file == NULL)
return Z_STREAM_ERROR;
state = (gz_statep)file;
/* check that we're writing */
if (state->mode != GZ_WRITE)
return Z_STREAM_ERROR;
/* check for seek request */
if (state->seek) {
state->seek = 0;
if (gz_zero(state, state->skip) == -1)
ret = state->err;
}
/* flush, free memory, and close file */
if (gz_comp(state, Z_FINISH) == -1)
ret = state->err;
if (state->size) {
if (!state->direct) {
(void)deflateEnd(&(state->strm));
free(state->out);
}
free(state->in);
}
gz_error(state, Z_OK, NULL);
free(state->path);
if (close(state->fd) == -1)
ret = Z_ERRNO;
free(state);
return ret;
}

View File

@ -1,612 +0,0 @@
/* infback.c -- inflate using a call-back interface
* Copyright (C) 1995-2011 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/
/*
This code is largely copied from inflate.c. Normally either infback.o or
inflate.o would be linked into an application--not both. The interface
with inffast.c is retained so that optimized assembler-coded versions of
inflate_fast() can be used with either inflate.c or infback.c.
*/
#include "zutil.h"
#include "inftrees.h"
#include "inflate.h"
#include "inffast.h"
/* function prototypes */
local void fixedtables(struct inflate_state *state);
/*
strm provides memory allocation functions in zalloc and zfree, or
Z_NULL to use the library memory allocation functions.
windowBits is in the range 8..15, and window is a user-supplied
window and output buffer that is 2**windowBits bytes.
*/
int ZEXPORT inflateBackInit_(z_stream *strm, int windowBits, unsigned char *window,
const char *version, int stream_size) {
struct inflate_state *state;
if (version == Z_NULL || version[0] != ZLIB_VERSION[0] || stream_size != (int)(sizeof(z_stream)))
return Z_VERSION_ERROR;
if (strm == Z_NULL || window == Z_NULL || windowBits < 8 || windowBits > 15)
return Z_STREAM_ERROR;
strm->msg = Z_NULL; /* in case we return an error */
if (strm->zalloc == (alloc_func)0) {
strm->zalloc = zcalloc;
strm->opaque = NULL;
}
if (strm->zfree == (free_func)0)
strm->zfree = zcfree;
state = (struct inflate_state *)ZALLOC(strm, 1, sizeof(struct inflate_state));
if (state == Z_NULL)
return Z_MEM_ERROR;
Tracev((stderr, "inflate: allocated\n"));
strm->state = (struct internal_state *)state;
state->dmax = 32768U;
state->wbits = windowBits;
state->wsize = 1U << windowBits;
state->window = window;
state->wnext = 0;
state->whave = 0;
return Z_OK;
}
/*
Return state with length and distance decoding tables and index sizes set to
fixed code decoding. Normally this returns fixed tables from inffixed.h.
If BUILDFIXED is defined, then instead this routine builds the tables the
first time it's called, and returns those tables the first time and
thereafter. This reduces the size of the code by about 2K bytes, in
exchange for a little execution time. However, BUILDFIXED should not be
used for threaded applications, since the rewriting of the tables and virgin
may not be thread-safe.
*/
local void fixedtables(struct inflate_state *state) {
#ifdef BUILDFIXED
static int virgin = 1;
static code *lenfix, *distfix;
static code fixed[544];
/* build fixed huffman tables if first call (may not be thread safe) */
if (virgin) {
unsigned sym, bits;
static code *next;
/* literal/length table */
sym = 0;
while (sym < 144) state->lens[sym++] = 8;
while (sym < 256) state->lens[sym++] = 9;
while (sym < 280) state->lens[sym++] = 7;
while (sym < 288) state->lens[sym++] = 8;
next = fixed;
lenfix = next;
bits = 9;
inflate_table(LENS, state->lens, 288, &(next), &(bits), state->work);
/* distance table */
sym = 0;
while (sym < 32) state->lens[sym++] = 5;
distfix = next;
bits = 5;
inflate_table(DISTS, state->lens, 32, &(next), &(bits), state->work);
/* do this just once */
virgin = 0;
}
#else /* !BUILDFIXED */
# include "inffixed.h"
#endif /* BUILDFIXED */
state->lencode = lenfix;
state->lenbits = 9;
state->distcode = distfix;
state->distbits = 5;
}
/* Macros for inflateBack(): */
/* Load returned state from inflate_fast() */
#define LOAD() \
do { \
put = strm->next_out; \
left = strm->avail_out; \
next = strm->next_in; \
have = strm->avail_in; \
hold = state->hold; \
bits = state->bits; \
} while (0)
/* Set state from registers for inflate_fast() */
#define RESTORE() \
do { \
strm->next_out = put; \
strm->avail_out = left; \
strm->next_in = next; \
strm->avail_in = have; \
state->hold = hold; \
state->bits = bits; \
} while (0)
/* Clear the input bit accumulator */
#define INITBITS() \
do { \
hold = 0; \
bits = 0; \
} while (0)
/* Assure that some input is available. If input is requested, but denied,
then return a Z_BUF_ERROR from inflateBack(). */
#define PULL() \
do { \
if (have == 0) { \
have = in(in_desc, &next); \
if (have == 0) { \
next = Z_NULL; \
ret = Z_BUF_ERROR; \
goto inf_leave; \
} \
} \
} while (0)
/* Get a byte of input into the bit accumulator, or return from inflateBack()
with an error if there is no input available. */
#define PULLBYTE() \
do { \
PULL(); \
have--; \
hold += (*next++ << bits); \
bits += 8; \
} while (0)
/* Assure that there are at least n bits in the bit accumulator. If there is
not enough available input to do that, then return from inflateBack() with
an error. */
#define NEEDBITS(n) \
do { \
while (bits < (unsigned)(n)) \
PULLBYTE(); \
} while (0)
/* Return the low n bits of the bit accumulator (n < 16) */
#define BITS(n) \
(hold & ((1U << (n)) - 1))
/* Remove n bits from the bit accumulator */
#define DROPBITS(n) \
do { \
hold >>= (n); \
bits -= (unsigned)(n); \
} while (0)
/* Remove zero to seven bits as needed to go to a byte boundary */
#define BYTEBITS() \
do { \
hold >>= bits & 7; \
bits -= bits & 7; \
} while (0)
/* Assure that some output space is available, by writing out the window
if it's full. If the write fails, return from inflateBack() with a
Z_BUF_ERROR. */
#define ROOM() \
do { \
if (left == 0) { \
put = state->window; \
left = state->wsize; \
state->whave = left; \
if (out(out_desc, put, left)) { \
ret = Z_BUF_ERROR; \
goto inf_leave; \
} \
} \
} while (0)
/*
strm provides the memory allocation functions and window buffer on input,
and provides information on the unused input on return. For Z_DATA_ERROR
returns, strm will also provide an error message.
in() and out() are the call-back input and output functions. When
inflateBack() needs more input, it calls in(). When inflateBack() has
filled the window with output, or when it completes with data in the
window, it calls out() to write out the data. The application must not
change the provided input until in() is called again or inflateBack()
returns. The application must not change the window/output buffer until
inflateBack() returns.
in() and out() are called with a descriptor parameter provided in the
inflateBack() call. This parameter can be a structure that provides the
information required to do the read or write, as well as accumulated
information on the input and output such as totals and check values.
in() should return zero on failure. out() should return non-zero on
failure. If either in() or out() fails, than inflateBack() returns a
Z_BUF_ERROR. strm->next_in can be checked for Z_NULL to see whether it
was in() or out() that caused in the error. Otherwise, inflateBack()
returns Z_STREAM_END on success, Z_DATA_ERROR for an deflate format
error, or Z_MEM_ERROR if it could not allocate memory for the state.
inflateBack() can also return Z_STREAM_ERROR if the input parameters
are not correct, i.e. strm is Z_NULL or the state was not initialized.
*/
int ZEXPORT inflateBack(z_stream *strm, in_func in, void *in_desc, out_func out, void *out_desc) {
struct inflate_state *state;
const unsigned char *next; /* next input */
unsigned char *put; /* next output */
unsigned have, left; /* available input and output */
uint32_t hold; /* bit buffer */
unsigned bits; /* bits in bit buffer */
unsigned copy; /* number of stored or match bytes to copy */
unsigned char *from; /* where to copy match bytes from */
code here; /* current decoding table entry */
code last; /* parent table entry */
unsigned len; /* length to copy for repeats, bits to drop */
int ret; /* return code */
static const uint16_t order[19] = /* permutation of code lengths */
{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
/* Check that the strm exists and that the state was initialized */
if (strm == Z_NULL || strm->state == Z_NULL)
return Z_STREAM_ERROR;
state = (struct inflate_state *)strm->state;
/* Reset the state */
strm->msg = Z_NULL;
state->mode = TYPE;
state->last = 0;
state->whave = 0;
next = strm->next_in;
have = next != Z_NULL ? strm->avail_in : 0;
hold = 0;
bits = 0;
put = state->window;
left = state->wsize;
/* Inflate until end of block marked as last */
for (;;)
switch (state->mode) {
case TYPE:
/* determine and dispatch block type */
if (state->last) {
BYTEBITS();
state->mode = DONE;
break;
}
NEEDBITS(3);
state->last = BITS(1);
DROPBITS(1);
switch (BITS(2)) {
case 0: /* stored block */
Tracev((stderr, "inflate: stored block%s\n", state->last ? " (last)" : ""));
state->mode = STORED;
break;
case 1: /* fixed block */
fixedtables(state);
Tracev((stderr, "inflate: fixed codes block%s\n", state->last ? " (last)" : ""));
state->mode = LEN; /* decode codes */
break;
case 2: /* dynamic block */
Tracev((stderr, "inflate: dynamic codes block%s\n", state->last ? " (last)" : ""));
state->mode = TABLE;
break;
case 3:
strm->msg = (char *)"invalid block type";
state->mode = BAD;
}
DROPBITS(2);
break;
case STORED:
/* get and verify stored block length */
BYTEBITS(); /* go to byte boundary */
NEEDBITS(32);
if ((hold & 0xffff) != ((hold >> 16) ^ 0xffff)) {
strm->msg = (char *)"invalid stored block lengths";
state->mode = BAD;
break;
}
state->length = (uint16_t)hold;
Tracev((stderr, "inflate: stored length %u\n", state->length));
INITBITS();
/* copy stored block from input to output */
while (state->length != 0) {
copy = state->length;
PULL();
ROOM();
if (copy > have)
copy = have;
if (copy > left)
copy = left;
memcpy(put, next, copy);
have -= copy;
next += copy;
left -= copy;
put += copy;
state->length -= copy;
}
Tracev((stderr, "inflate: stored end\n"));
state->mode = TYPE;
break;
case TABLE:
/* get dynamic table entries descriptor */
NEEDBITS(14);
state->nlen = BITS(5) + 257;
DROPBITS(5);
state->ndist = BITS(5) + 1;
DROPBITS(5);
state->ncode = BITS(4) + 4;
DROPBITS(4);
#ifndef PKZIP_BUG_WORKAROUND
if (state->nlen > 286 || state->ndist > 30) {
strm->msg = (char *)"too many length or distance symbols";
state->mode = BAD;
break;
}
#endif
Tracev((stderr, "inflate: table sizes ok\n"));
/* get code length code lengths (not a typo) */
state->have = 0;
while (state->have < state->ncode) {
NEEDBITS(3);
state->lens[order[state->have++]] = (uint16_t)BITS(3);
DROPBITS(3);
}
while (state->have < 19)
state->lens[order[state->have++]] = 0;
state->next = state->codes;
state->lencode = (code const *)(state->next);
state->lenbits = 7;
ret = inflate_table(CODES, state->lens, 19, &(state->next), &(state->lenbits), state->work);
if (ret) {
strm->msg = (char *)"invalid code lengths set";
state->mode = BAD;
break;
}
Tracev((stderr, "inflate: code lengths ok\n"));
/* get length and distance code code lengths */
state->have = 0;
while (state->have < state->nlen + state->ndist) {
for (;;) {
here = state->lencode[BITS(state->lenbits)];
if (here.bits <= bits)
break;
PULLBYTE();
}
if (here.val < 16) {
DROPBITS(here.bits);
state->lens[state->have++] = here.val;
} else {
if (here.val == 16) {
NEEDBITS(here.bits + 2);
DROPBITS(here.bits);
if (state->have == 0) {
strm->msg = (char *)"invalid bit length repeat";
state->mode = BAD;
break;
}
len = (unsigned)(state->lens[state->have - 1]);
copy = 3 + BITS(2);
DROPBITS(2);
} else if (here.val == 17) {
NEEDBITS(here.bits + 3);
DROPBITS(here.bits);
len = 0;
copy = 3 + BITS(3);
DROPBITS(3);
} else {
NEEDBITS(here.bits + 7);
DROPBITS(here.bits);
len = 0;
copy = 11 + BITS(7);
DROPBITS(7);
}
if (state->have + copy > state->nlen + state->ndist) {
strm->msg = (char *)"invalid bit length repeat";
state->mode = BAD;
break;
}
while (copy--)
state->lens[state->have++] = (uint16_t)len;
}
}
/* handle error breaks in while */
if (state->mode == BAD)
break;
/* check for end-of-block code (better have one) */
if (state->lens[256] == 0) {
strm->msg = (char *)"invalid code -- missing end-of-block";
state->mode = BAD;
break;
}
/* build code tables -- note: do not change the lenbits or distbits
values here (9 and 6) without reading the comments in inftrees.h
concerning the ENOUGH constants, which depend on those values */
state->next = state->codes;
state->lencode = (code const *)(state->next);
state->lenbits = 9;
ret = inflate_table(LENS, state->lens, state->nlen, &(state->next), &(state->lenbits), state->work);
if (ret) {
strm->msg = (char *)"invalid literal/lengths set";
state->mode = BAD;
break;
}
state->distcode = (code const *)(state->next);
state->distbits = 6;
ret = inflate_table(DISTS, state->lens + state->nlen, state->ndist,
&(state->next), &(state->distbits), state->work);
if (ret) {
strm->msg = (char *)"invalid distances set";
state->mode = BAD;
break;
}
Tracev((stderr, "inflate: codes ok\n"));
state->mode = LEN;
case LEN:
/* use inflate_fast() if we have enough input and output */
if (have >= 6 && left >= 258) {
RESTORE();
if (state->whave < state->wsize)
state->whave = state->wsize - left;
inflate_fast(strm, state->wsize);
LOAD();
break;
}
/* get a literal, length, or end-of-block code */
for (;;) {
here = state->lencode[BITS(state->lenbits)];
if (here.bits <= bits)
break;
PULLBYTE();
}
if (here.op && (here.op & 0xf0) == 0) {
last = here;
for (;;) {
here = state->lencode[last.val +
(BITS(last.bits + last.op) >> last.bits)];
if ((unsigned)last.bits + (unsigned)here.bits <= bits)
break;
PULLBYTE();
}
DROPBITS(last.bits);
}
DROPBITS(here.bits);
state->length = here.val;
/* process literal */
if (here.op == 0) {
Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ?
"inflate: literal '%c'\n" :
"inflate: literal 0x%02x\n", here.val));
ROOM();
*put++ = (unsigned char)(state->length);
left--;
state->mode = LEN;
break;
}
/* process end of block */
if (here.op & 32) {
Tracevv((stderr, "inflate: end of block\n"));
state->mode = TYPE;
break;
}
/* invalid code */
if (here.op & 64) {
strm->msg = (char *)"invalid literal/length code";
state->mode = BAD;
break;
}
/* length code -- get extra bits, if any */
state->extra = (here.op & 15);
if (state->extra != 0) {
NEEDBITS(state->extra);
state->length += BITS(state->extra);
DROPBITS(state->extra);
}
Tracevv((stderr, "inflate: length %u\n", state->length));
/* get distance code */
for (;;) {
here = state->distcode[BITS(state->distbits)];
if (here.bits <= bits)
break;
PULLBYTE();
}
if ((here.op & 0xf0) == 0) {
last = here;
for (;;) {
here = state->distcode[last.val + (BITS(last.bits + last.op) >> last.bits)];
if ((unsigned)last.bits + (unsigned)here.bits <= bits)
break;
PULLBYTE();
}
DROPBITS(last.bits);
}
DROPBITS(here.bits);
if (here.op & 64) {
strm->msg = (char *)"invalid distance code";
state->mode = BAD;
break;
}
state->offset = here.val;
/* get distance extra bits, if any */
state->extra = (here.op & 15);
if (state->extra != 0) {
NEEDBITS(state->extra);
state->offset += BITS(state->extra);
DROPBITS(state->extra);
}
if (state->offset > state->wsize - (state->whave < state->wsize ? left : 0)) {
strm->msg = (char *)"invalid distance too far back";
state->mode = BAD;
break;
}
Tracevv((stderr, "inflate: distance %u\n", state->offset));
/* copy match from window to output */
do {
ROOM();
copy = state->wsize - state->offset;
if (copy < left) {
from = put + copy;
copy = left - copy;
} else {
from = put - state->offset;
copy = left;
}
if (copy > state->length)
copy = state->length;
state->length -= copy;
left -= copy;
do {
*put++ = *from++;
} while (--copy);
} while (state->length != 0);
break;
case DONE:
/* inflate stream terminated properly -- write leftover output */
ret = Z_STREAM_END;
if (left < state->wsize) {
if (out(out_desc, state->window, state->wsize - left))
ret = Z_BUF_ERROR;
}
goto inf_leave;
case BAD:
ret = Z_DATA_ERROR;
goto inf_leave;
default: /* can't happen, but makes compilers happy */
ret = Z_STREAM_ERROR;
goto inf_leave;
}
/* Return unused input */
inf_leave:
strm->next_in = next;
strm->avail_in = have;
return ret;
}
int ZEXPORT inflateBackEnd(z_stream *strm) {
if (strm == Z_NULL || strm->state == Z_NULL || strm->zfree == (free_func)0)
return Z_STREAM_ERROR;
ZFREE(strm, strm->state);
strm->state = Z_NULL;
Tracev((stderr, "inflate: end\n"));
return Z_OK;
}

View File

@ -1,328 +0,0 @@
/* inffast.c -- fast decoding
* Copyright (C) 1995-2008, 2010, 2013 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/
#include "zutil.h"
#include "inftrees.h"
#include "inflate.h"
#include "inffast.h"
/* Allow machine dependent optimization for post-increment or pre-increment.
Based on testing to date,
Pre-increment preferred for:
- PowerPC G3 (Adler)
- MIPS R5000 (Randers-Pehrson)
Post-increment preferred for:
- none
No measurable difference:
- Pentium III (Anderson)
- M68060 (Nikl)
*/
#ifdef POSTINC
# define OFF 0
# define PUP(a) *(a)++
#else
# define OFF 1
# define PUP(a) *++(a)
#endif
/* Return the low n bits of the bit accumulator (n < 16) */
#define BITS(n) \
(hold & ((1U << (n)) - 1))
/* Remove n bits from the bit accumulator */
#define DROPBITS(n) \
do { \
hold >>= (n); \
bits -= (unsigned)(n); \
} while (0)
/*
Decode literal, length, and distance codes and write out the resulting
literal and match bytes until either not enough input or output is
available, an end-of-block is encountered, or a data error is encountered.
When large enough input and output buffers are supplied to inflate(), for
example, a 16K input buffer and a 64K output buffer, more than 95% of the
inflate execution time is spent in this routine.
Entry assumptions:
state->mode == LEN
strm->avail_in >= 6
strm->avail_out >= 258
start >= strm->avail_out
state->bits < 8
On return, state->mode is one of:
LEN -- ran out of enough output space or enough available input
TYPE -- reached end of block code, inflate() to interpret next block
BAD -- error in block data
Notes:
- The maximum input bits used by a length/distance pair is 15 bits for the
length code, 5 bits for the length extra, 15 bits for the distance code,
and 13 bits for the distance extra. This totals 48 bits, or six bytes.
Therefore if strm->avail_in >= 6, then there is enough input to avoid
checking for available input while decoding.
- The maximum bytes that a single length/distance pair can output is 258
bytes, which is the maximum length that can be coded. inflate_fast()
requires strm->avail_out >= 258 for each loop to avoid checking for
output space.
*/
void ZLIB_INTERNAL inflate_fast(z_stream *strm, unsigned long start) {
/* start: inflate()'s starting value for strm->avail_out */
struct inflate_state *state;
const unsigned char *in; /* local strm->next_in */
const unsigned char *last; /* have enough input while in < last */
unsigned char *out; /* local strm->next_out */
unsigned char *beg; /* inflate()'s initial strm->next_out */
unsigned char *end; /* while out < end, enough space available */
#ifdef INFLATE_STRICT
unsigned dmax; /* maximum distance from zlib header */
#endif
unsigned wsize; /* window size or zero if not using window */
unsigned whave; /* valid bytes in the window */
unsigned wnext; /* window write index */
unsigned char *window; /* allocated sliding window, if wsize != 0 */
uint32_t hold; /* local strm->hold */
unsigned bits; /* local strm->bits */
code const *lcode; /* local strm->lencode */
code const *dcode; /* local strm->distcode */
unsigned lmask; /* mask for first level of length codes */
unsigned dmask; /* mask for first level of distance codes */
code here; /* retrieved table entry */
unsigned op; /* code bits, operation, extra bits, or */
/* window position, window bytes to copy */
unsigned len; /* match length, unused bytes */
unsigned dist; /* match distance */
unsigned char *from; /* where to copy match from */
/* copy state to local variables */
state = (struct inflate_state *)strm->state;
in = strm->next_in - OFF;
last = in + (strm->avail_in - 5);
out = strm->next_out - OFF;
beg = out - (start - strm->avail_out);
end = out + (strm->avail_out - 257);
#ifdef INFLATE_STRICT
dmax = state->dmax;
#endif
wsize = state->wsize;
whave = state->whave;
wnext = state->wnext;
window = state->window;
hold = state->hold;
bits = state->bits;
lcode = state->lencode;
dcode = state->distcode;
lmask = (1U << state->lenbits) - 1;
dmask = (1U << state->distbits) - 1;
/* decode literals and length/distances until end-of-block or not enough
input data or output space */
do {
if (bits < 15) {
hold += (PUP(in) << bits);
bits += 8;
hold += (PUP(in) << bits);
bits += 8;
}
here = lcode[hold & lmask];
dolen:
DROPBITS(here.bits);
op = here.op;
if (op == 0) { /* literal */
Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ?
"inflate: literal '%c'\n" :
"inflate: literal 0x%02x\n", here.val));
PUP(out) = (unsigned char)(here.val);
} else if (op & 16) { /* length base */
len = here.val;
op &= 15; /* number of extra bits */
if (op) {
if (bits < op) {
hold += (PUP(in) << bits);
bits += 8;
}
len += BITS(op);
DROPBITS(op);
}
Tracevv((stderr, "inflate: length %u\n", len));
if (bits < 15) {
hold += (PUP(in) << bits);
bits += 8;
hold += (PUP(in) << bits);
bits += 8;
}
here = dcode[hold & dmask];
dodist:
DROPBITS(here.bits);
op = here.op;
if (op & 16) { /* distance base */
dist = here.val;
op &= 15; /* number of extra bits */
if (bits < op) {
hold += (PUP(in) << bits);
bits += 8;
if (bits < op) {
hold += (PUP(in) << bits);
bits += 8;
}
}
dist += BITS(op);
#ifdef INFLATE_STRICT
if (dist > dmax) {
strm->msg = (char *)"invalid distance too far back";
state->mode = BAD;
break;
}
#endif
DROPBITS(op);
Tracevv((stderr, "inflate: distance %u\n", dist));
op = (unsigned)(out - beg); /* max distance in output */
if (dist > op) { /* see if copy from window */
op = dist - op; /* distance back in window */
if (op > whave) {
if (state->sane) {
strm->msg = (char *)"invalid distance too far back";
state->mode = BAD;
break;
}
#ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR
if (len <= op - whave) {
do {
PUP(out) = 0;
} while (--len);
continue;
}
len -= op - whave;
do {
PUP(out) = 0;
} while (--op > whave);
if (op == 0) {
from = out - dist;
do {
PUP(out) = PUP(from);
} while (--len);
continue;
}
#endif
}
from = window - OFF;
if (wnext == 0) { /* very common case */
from += wsize - op;
if (op < len) { /* some from window */
len -= op;
do {
PUP(out) = PUP(from);
} while (--op);
from = out - dist; /* rest from output */
}
} else if (wnext < op) { /* wrap around window */
from += wsize + wnext - op;
op -= wnext;
if (op < len) { /* some from end of window */
len -= op;
do {
PUP(out) = PUP(from);
} while (--op);
from = window - OFF;
if (wnext < len) { /* some from start of window */
op = wnext;
len -= op;
do {
PUP(out) = PUP(from);
} while (--op);
from = out - dist; /* rest from output */
}
}
} else { /* contiguous in window */
from += wnext - op;
if (op < len) { /* some from window */
len -= op;
do {
PUP(out) = PUP(from);
} while (--op);
from = out - dist; /* rest from output */
}
}
while (len > 2) {
PUP(out) = PUP(from);
PUP(out) = PUP(from);
PUP(out) = PUP(from);
len -= 3;
}
if (len) {
PUP(out) = PUP(from);
if (len > 1)
PUP(out) = PUP(from);
}
} else {
from = out - dist; /* copy direct from output */
do { /* minimum length is three */
PUP(out) = PUP(from);
PUP(out) = PUP(from);
PUP(out) = PUP(from);
len -= 3;
} while (len > 2);
if (len) {
PUP(out) = PUP(from);
if (len > 1)
PUP(out) = PUP(from);
}
}
} else if ((op & 64) == 0) { /* 2nd level distance code */
here = dcode[here.val + BITS(op)];
goto dodist;
} else {
strm->msg = (char *)"invalid distance code";
state->mode = BAD;
break;
}
} else if ((op & 64) == 0) { /* 2nd level length code */
here = lcode[here.val + BITS(op)];
goto dolen;
} else if (op & 32) { /* end-of-block */
Tracevv((stderr, "inflate: end of block\n"));
state->mode = TYPE;
break;
} else {
strm->msg = (char *)"invalid literal/length code";
state->mode = BAD;
break;
}
} while (in < last && out < end);
/* return unused bytes (on entry, bits < 8, so in won't go too far back) */
len = bits >> 3;
in -= len;
bits -= len << 3;
hold &= (1U << bits) - 1;
/* update state and return */
strm->next_in = in + OFF;
strm->next_out = out + OFF;
strm->avail_in = (unsigned)(in < last ? 5 + (last - in) : 5 - (in - last));
strm->avail_out = (unsigned)(out < end ? 257 + (end - out) : 257 - (out - end));
state->hold = hold;
state->bits = bits;
return;
}
/*
inflate_fast() speedups that turned out slower (on a PowerPC G3 750CXe):
- Using bit fields for code structure
- Different op definition to avoid & for extra bits (do & for table bits)
- Three separate decoding do-loops for direct, window, and wnext == 0
- Special case for distance > 1 copies to do overlapped load and store copy
- Explicit branch predictions (based on measured branch probabilities)
- Deferring match copy and interspersed it with decoding subsequent codes
- Swapping literal/length else
- Swapping window/direct else
- Larger unrolled copy loops (three is about right)
- Moving len -= 3 statement into middle of loop
*/

View File

@ -1,15 +0,0 @@
#ifndef INFFAST_H_
#define INFFAST_H_
/* inffast.h -- header to use inffast.c
* Copyright (C) 1995-2003, 2010 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/
/* WARNING: this file should *not* be used by applications. It is
part of the implementation of the compression library and is
subject to change. Applications should only use zlib.h.
*/
void ZLIB_INTERNAL inflate_fast(z_stream *strm, unsigned long start);
#endif /* INFFAST_H_ */

View File

@ -1,94 +0,0 @@
/* inffixed.h -- table for decoding fixed codes
* Generated automatically by makefixed().
*/
/* WARNING: this file should *not* be used by applications.
It is part of the implementation of this library and is
subject to change. Applications should only use zlib.h.
*/
static const code lenfix[512] = {
{96,7,0},{0,8,80},{0,8,16},{20,8,115},{18,7,31},{0,8,112},{0,8,48},
{0,9,192},{16,7,10},{0,8,96},{0,8,32},{0,9,160},{0,8,0},{0,8,128},
{0,8,64},{0,9,224},{16,7,6},{0,8,88},{0,8,24},{0,9,144},{19,7,59},
{0,8,120},{0,8,56},{0,9,208},{17,7,17},{0,8,104},{0,8,40},{0,9,176},
{0,8,8},{0,8,136},{0,8,72},{0,9,240},{16,7,4},{0,8,84},{0,8,20},
{21,8,227},{19,7,43},{0,8,116},{0,8,52},{0,9,200},{17,7,13},{0,8,100},
{0,8,36},{0,9,168},{0,8,4},{0,8,132},{0,8,68},{0,9,232},{16,7,8},
{0,8,92},{0,8,28},{0,9,152},{20,7,83},{0,8,124},{0,8,60},{0,9,216},
{18,7,23},{0,8,108},{0,8,44},{0,9,184},{0,8,12},{0,8,140},{0,8,76},
{0,9,248},{16,7,3},{0,8,82},{0,8,18},{21,8,163},{19,7,35},{0,8,114},
{0,8,50},{0,9,196},{17,7,11},{0,8,98},{0,8,34},{0,9,164},{0,8,2},
{0,8,130},{0,8,66},{0,9,228},{16,7,7},{0,8,90},{0,8,26},{0,9,148},
{20,7,67},{0,8,122},{0,8,58},{0,9,212},{18,7,19},{0,8,106},{0,8,42},
{0,9,180},{0,8,10},{0,8,138},{0,8,74},{0,9,244},{16,7,5},{0,8,86},
{0,8,22},{64,8,0},{19,7,51},{0,8,118},{0,8,54},{0,9,204},{17,7,15},
{0,8,102},{0,8,38},{0,9,172},{0,8,6},{0,8,134},{0,8,70},{0,9,236},
{16,7,9},{0,8,94},{0,8,30},{0,9,156},{20,7,99},{0,8,126},{0,8,62},
{0,9,220},{18,7,27},{0,8,110},{0,8,46},{0,9,188},{0,8,14},{0,8,142},
{0,8,78},{0,9,252},{96,7,0},{0,8,81},{0,8,17},{21,8,131},{18,7,31},
{0,8,113},{0,8,49},{0,9,194},{16,7,10},{0,8,97},{0,8,33},{0,9,162},
{0,8,1},{0,8,129},{0,8,65},{0,9,226},{16,7,6},{0,8,89},{0,8,25},
{0,9,146},{19,7,59},{0,8,121},{0,8,57},{0,9,210},{17,7,17},{0,8,105},
{0,8,41},{0,9,178},{0,8,9},{0,8,137},{0,8,73},{0,9,242},{16,7,4},
{0,8,85},{0,8,21},{16,8,258},{19,7,43},{0,8,117},{0,8,53},{0,9,202},
{17,7,13},{0,8,101},{0,8,37},{0,9,170},{0,8,5},{0,8,133},{0,8,69},
{0,9,234},{16,7,8},{0,8,93},{0,8,29},{0,9,154},{20,7,83},{0,8,125},
{0,8,61},{0,9,218},{18,7,23},{0,8,109},{0,8,45},{0,9,186},{0,8,13},
{0,8,141},{0,8,77},{0,9,250},{16,7,3},{0,8,83},{0,8,19},{21,8,195},
{19,7,35},{0,8,115},{0,8,51},{0,9,198},{17,7,11},{0,8,99},{0,8,35},
{0,9,166},{0,8,3},{0,8,131},{0,8,67},{0,9,230},{16,7,7},{0,8,91},
{0,8,27},{0,9,150},{20,7,67},{0,8,123},{0,8,59},{0,9,214},{18,7,19},
{0,8,107},{0,8,43},{0,9,182},{0,8,11},{0,8,139},{0,8,75},{0,9,246},
{16,7,5},{0,8,87},{0,8,23},{64,8,0},{19,7,51},{0,8,119},{0,8,55},
{0,9,206},{17,7,15},{0,8,103},{0,8,39},{0,9,174},{0,8,7},{0,8,135},
{0,8,71},{0,9,238},{16,7,9},{0,8,95},{0,8,31},{0,9,158},{20,7,99},
{0,8,127},{0,8,63},{0,9,222},{18,7,27},{0,8,111},{0,8,47},{0,9,190},
{0,8,15},{0,8,143},{0,8,79},{0,9,254},{96,7,0},{0,8,80},{0,8,16},
{20,8,115},{18,7,31},{0,8,112},{0,8,48},{0,9,193},{16,7,10},{0,8,96},
{0,8,32},{0,9,161},{0,8,0},{0,8,128},{0,8,64},{0,9,225},{16,7,6},
{0,8,88},{0,8,24},{0,9,145},{19,7,59},{0,8,120},{0,8,56},{0,9,209},
{17,7,17},{0,8,104},{0,8,40},{0,9,177},{0,8,8},{0,8,136},{0,8,72},
{0,9,241},{16,7,4},{0,8,84},{0,8,20},{21,8,227},{19,7,43},{0,8,116},
{0,8,52},{0,9,201},{17,7,13},{0,8,100},{0,8,36},{0,9,169},{0,8,4},
{0,8,132},{0,8,68},{0,9,233},{16,7,8},{0,8,92},{0,8,28},{0,9,153},
{20,7,83},{0,8,124},{0,8,60},{0,9,217},{18,7,23},{0,8,108},{0,8,44},
{0,9,185},{0,8,12},{0,8,140},{0,8,76},{0,9,249},{16,7,3},{0,8,82},
{0,8,18},{21,8,163},{19,7,35},{0,8,114},{0,8,50},{0,9,197},{17,7,11},
{0,8,98},{0,8,34},{0,9,165},{0,8,2},{0,8,130},{0,8,66},{0,9,229},
{16,7,7},{0,8,90},{0,8,26},{0,9,149},{20,7,67},{0,8,122},{0,8,58},
{0,9,213},{18,7,19},{0,8,106},{0,8,42},{0,9,181},{0,8,10},{0,8,138},
{0,8,74},{0,9,245},{16,7,5},{0,8,86},{0,8,22},{64,8,0},{19,7,51},
{0,8,118},{0,8,54},{0,9,205},{17,7,15},{0,8,102},{0,8,38},{0,9,173},
{0,8,6},{0,8,134},{0,8,70},{0,9,237},{16,7,9},{0,8,94},{0,8,30},
{0,9,157},{20,7,99},{0,8,126},{0,8,62},{0,9,221},{18,7,27},{0,8,110},
{0,8,46},{0,9,189},{0,8,14},{0,8,142},{0,8,78},{0,9,253},{96,7,0},
{0,8,81},{0,8,17},{21,8,131},{18,7,31},{0,8,113},{0,8,49},{0,9,195},
{16,7,10},{0,8,97},{0,8,33},{0,9,163},{0,8,1},{0,8,129},{0,8,65},
{0,9,227},{16,7,6},{0,8,89},{0,8,25},{0,9,147},{19,7,59},{0,8,121},
{0,8,57},{0,9,211},{17,7,17},{0,8,105},{0,8,41},{0,9,179},{0,8,9},
{0,8,137},{0,8,73},{0,9,243},{16,7,4},{0,8,85},{0,8,21},{16,8,258},
{19,7,43},{0,8,117},{0,8,53},{0,9,203},{17,7,13},{0,8,101},{0,8,37},
{0,9,171},{0,8,5},{0,8,133},{0,8,69},{0,9,235},{16,7,8},{0,8,93},
{0,8,29},{0,9,155},{20,7,83},{0,8,125},{0,8,61},{0,9,219},{18,7,23},
{0,8,109},{0,8,45},{0,9,187},{0,8,13},{0,8,141},{0,8,77},{0,9,251},
{16,7,3},{0,8,83},{0,8,19},{21,8,195},{19,7,35},{0,8,115},{0,8,51},
{0,9,199},{17,7,11},{0,8,99},{0,8,35},{0,9,167},{0,8,3},{0,8,131},
{0,8,67},{0,9,231},{16,7,7},{0,8,91},{0,8,27},{0,9,151},{20,7,67},
{0,8,123},{0,8,59},{0,9,215},{18,7,19},{0,8,107},{0,8,43},{0,9,183},
{0,8,11},{0,8,139},{0,8,75},{0,9,247},{16,7,5},{0,8,87},{0,8,23},
{64,8,0},{19,7,51},{0,8,119},{0,8,55},{0,9,207},{17,7,15},{0,8,103},
{0,8,39},{0,9,175},{0,8,7},{0,8,135},{0,8,71},{0,9,239},{16,7,9},
{0,8,95},{0,8,31},{0,9,159},{20,7,99},{0,8,127},{0,8,63},{0,9,223},
{18,7,27},{0,8,111},{0,8,47},{0,9,191},{0,8,15},{0,8,143},{0,8,79},
{0,9,255}
};
static const code distfix[32] = {
{16,5,1},{23,5,257},{19,5,17},{27,5,4097},{17,5,5},{25,5,1025},
{21,5,65},{29,5,16385},{16,5,3},{24,5,513},{20,5,33},{28,5,8193},
{18,5,9},{26,5,2049},{22,5,129},{64,5,0},{16,5,2},{23,5,385},
{19,5,25},{27,5,6145},{17,5,7},{25,5,1537},{21,5,97},{29,5,24577},
{16,5,4},{24,5,769},{20,5,49},{28,5,12289},{18,5,13},{26,5,3073},
{22,5,193},{64,5,0}
};

File diff suppressed because it is too large Load Diff

View File

@ -1,127 +0,0 @@
/* inflate.h -- internal inflate state definition
* Copyright (C) 1995-2009 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/
/* WARNING: this file should *not* be used by applications. It is
part of the implementation of the compression library and is
subject to change. Applications should only use zlib.h.
*/
#ifndef INFLATE_H_
#define INFLATE_H_
/* define NO_GZIP when compiling if you want to disable gzip header and
trailer decoding by inflate(). NO_GZIP would be used to avoid linking in
the crc code when it is not needed. For shared libraries, gzip decoding
should be left enabled. */
#ifndef NO_GZIP
# define GUNZIP
#endif
/* Possible inflate modes between inflate() calls */
typedef enum {
HEAD, /* i: waiting for magic header */
FLAGS, /* i: waiting for method and flags (gzip) */
TIME, /* i: waiting for modification time (gzip) */
OS, /* i: waiting for extra flags and operating system (gzip) */
EXLEN, /* i: waiting for extra length (gzip) */
EXTRA, /* i: waiting for extra bytes (gzip) */
NAME, /* i: waiting for end of file name (gzip) */
COMMENT, /* i: waiting for end of comment (gzip) */
HCRC, /* i: waiting for header crc (gzip) */
DICTID, /* i: waiting for dictionary check value */
DICT, /* waiting for inflateSetDictionary() call */
TYPE, /* i: waiting for type bits, including last-flag bit */
TYPEDO, /* i: same, but skip check to exit inflate on new block */
STORED, /* i: waiting for stored size (length and complement) */
COPY_, /* i/o: same as COPY below, but only first time in */
COPY, /* i/o: waiting for input or output to copy stored block */
TABLE, /* i: waiting for dynamic block table lengths */
LENLENS, /* i: waiting for code length code lengths */
CODELENS, /* i: waiting for length/lit and distance code lengths */
LEN_, /* i: same as LEN below, but only first time in */
LEN, /* i: waiting for length/lit/eob code */
LENEXT, /* i: waiting for length extra bits */
DIST, /* i: waiting for distance code */
DISTEXT, /* i: waiting for distance extra bits */
MATCH, /* o: waiting for output space to copy string */
LIT, /* o: waiting for output space to write literal */
CHECK, /* i: waiting for 32-bit check value */
LENGTH, /* i: waiting for 32-bit length (gzip) */
DONE, /* finished check, done -- remain here until reset */
BAD, /* got a data error -- remain here until reset */
MEM, /* got an inflate() memory error -- remain here until reset */
SYNC /* looking for synchronization bytes to restart inflate() */
} inflate_mode;
/*
State transitions between above modes -
(most modes can go to BAD or MEM on error -- not shown for clarity)
Process header:
HEAD -> (gzip) or (zlib) or (raw)
(gzip) -> FLAGS -> TIME -> OS -> EXLEN -> EXTRA -> NAME -> COMMENT ->
HCRC -> TYPE
(zlib) -> DICTID or TYPE
DICTID -> DICT -> TYPE
(raw) -> TYPEDO
Read deflate blocks:
TYPE -> TYPEDO -> STORED or TABLE or LEN_ or CHECK
STORED -> COPY_ -> COPY -> TYPE
TABLE -> LENLENS -> CODELENS -> LEN_
LEN_ -> LEN
Read deflate codes in fixed or dynamic block:
LEN -> LENEXT or LIT or TYPE
LENEXT -> DIST -> DISTEXT -> MATCH -> LEN
LIT -> LEN
Process trailer:
CHECK -> LENGTH -> DONE
*/
/* state maintained between inflate() calls. Approximately 10K bytes. */
struct inflate_state {
inflate_mode mode; /* current inflate mode */
int last; /* true if processing last block */
int wrap; /* bit 0 true for zlib, bit 1 true for gzip */
int havedict; /* true if dictionary provided */
int flags; /* gzip header method and flags (0 if zlib) */
unsigned dmax; /* zlib header max distance (INFLATE_STRICT) */
unsigned long check; /* protected copy of check value */
unsigned long total; /* protected copy of output count */
gz_headerp head; /* where to save gzip header information */
/* sliding window */
unsigned wbits; /* log base 2 of requested window size */
uint32_t wsize; /* window size or zero if not using window */
uint32_t whave; /* valid bytes in the window */
uint32_t wnext; /* window write index */
unsigned char *window; /* allocated sliding window, if needed */
/* bit accumulator */
uint32_t hold; /* input bit accumulator */
unsigned bits; /* number of bits in "in" */
/* for string and stored block copying */
uint32_t length; /* literal or length of data to copy */
unsigned offset; /* distance back to copy string from */
/* for table and code decoding */
unsigned extra; /* extra bits needed */
/* fixed and dynamic code tables */
code const *lencode; /* starting table for length/literal codes */
code const *distcode; /* starting table for distance codes */
unsigned lenbits; /* index bits for lencode */
unsigned distbits; /* index bits for distcode */
/* dynamic table building */
unsigned ncode; /* number of code length code lengths */
unsigned nlen; /* number of length code lengths */
unsigned ndist; /* number of distance code lengths */
uint32_t have; /* number of code lengths in lens[] */
code *next; /* next available space in codes[] */
uint16_t lens[320]; /* temporary storage for code lengths */
uint16_t work[288]; /* work area for code table building */
code codes[ENOUGH]; /* space for code tables */
int sane; /* if false, allow invalid distance too far */
int back; /* bits back of last unprocessed length/lit */
unsigned was; /* initial length of match */
};
#endif /* INFLATE_H_ */

View File

@ -1,298 +0,0 @@
/* inftrees.c -- generate Huffman trees for efficient decoding
* Copyright (C) 1995-2013 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/
#include "zutil.h"
#include "inftrees.h"
#define MAXBITS 15
const char inflate_copyright[] = " inflate 1.2.8.f Copyright 1995-2013 Mark Adler ";
/*
If you use the zlib library in a product, an acknowledgment is welcome
in the documentation of your product. If for some reason you cannot
include such an acknowledgment, I would appreciate that you keep this
copyright string in the executable of your product.
*/
/*
Build a set of tables to decode the provided canonical Huffman code.
The code lengths are lens[0..codes-1]. The result starts at *table,
whose indices are 0..2^bits-1. work is a writable array of at least
lens shorts, which is used as a work area. type is the type of code
to be generated, CODES, LENS, or DISTS. On return, zero is success,
-1 is an invalid code, and +1 means that ENOUGH isn't enough. table
on return points to the next available entry's address. bits is the
requested root table index bits, and on return it is the actual root
table index bits. It will differ if the request is greater than the
longest code or if it is less than the shortest code.
*/
int ZLIB_INTERNAL inflate_table(codetype type, uint16_t *lens, unsigned codes,
code * *table, unsigned *bits, uint16_t *work) {
unsigned len; /* a code's length in bits */
unsigned sym; /* index of code symbols */
unsigned min, max; /* minimum and maximum code lengths */
unsigned root; /* number of index bits for root table */
unsigned curr; /* number of index bits for current table */
unsigned drop; /* code bits to drop for sub-table */
int left; /* number of prefix codes available */
unsigned used; /* code entries in table used */
unsigned huff; /* Huffman code */
unsigned incr; /* for incrementing code, index */
unsigned fill; /* index for replicating entries */
unsigned low; /* low bits for current root entry */
unsigned mask; /* mask for low root bits */
code here; /* table entry for duplication */
code *next; /* next available space in table */
const uint16_t *base; /* base value table to use */
const uint16_t *extra; /* extra bits table to use */
int end; /* use base and extra for symbol > end */
uint16_t count[MAXBITS+1]; /* number of codes of each length */
uint16_t offs[MAXBITS+1]; /* offsets in table for each length */
static const uint16_t lbase[31] = { /* Length codes 257..285 base */
3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
static const uint16_t lext[31] = { /* Length codes 257..285 extra */
16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18,
19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 72, 78};
static const uint16_t dbase[32] = { /* Distance codes 0..29 base */
1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
8193, 12289, 16385, 24577, 0, 0};
static const uint16_t dext[32] = { /* Distance codes 0..29 extra */
16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22,
23, 23, 24, 24, 25, 25, 26, 26, 27, 27,
28, 28, 29, 29, 64, 64};
/*
Process a set of code lengths to create a canonical Huffman code. The
code lengths are lens[0..codes-1]. Each length corresponds to the
symbols 0..codes-1. The Huffman code is generated by first sorting the
symbols by length from short to long, and retaining the symbol order
for codes with equal lengths. Then the code starts with all zero bits
for the first code of the shortest length, and the codes are integer
increments for the same length, and zeros are appended as the length
increases. For the deflate format, these bits are stored backwards
from their more natural integer increment ordering, and so when the
decoding tables are built in the large loop below, the integer codes
are incremented backwards.
This routine assumes, but does not check, that all of the entries in
lens[] are in the range 0..MAXBITS. The caller must assure this.
1..MAXBITS is interpreted as that code length. zero means that that
symbol does not occur in this code.
The codes are sorted by computing a count of codes for each length,
creating from that a table of starting indices for each length in the
sorted table, and then entering the symbols in order in the sorted
table. The sorted table is work[], with that space being provided by
the caller.
The length counts are used for other purposes as well, i.e. finding
the minimum and maximum length codes, determining if there are any
codes at all, checking for a valid set of lengths, and looking ahead
at length counts to determine sub-table sizes when building the
decoding tables.
*/
/* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */
for (len = 0; len <= MAXBITS; len++)
count[len] = 0;
for (sym = 0; sym < codes; sym++)
count[lens[sym]]++;
/* bound code lengths, force root to be within code lengths */
root = *bits;
for (max = MAXBITS; max >= 1; max--)
if (count[max] != 0) break;
if (root > max) root = max;
if (max == 0) { /* no symbols to code at all */
here.op = (unsigned char)64; /* invalid code marker */
here.bits = (unsigned char)1;
here.val = (uint16_t)0;
*(*table)++ = here; /* make a table to force an error */
*(*table)++ = here;
*bits = 1;
return 0; /* no symbols, but wait for decoding to report error */
}
for (min = 1; min < max; min++)
if (count[min] != 0) break;
if (root < min) root = min;
/* check for an over-subscribed or incomplete set of lengths */
left = 1;
for (len = 1; len <= MAXBITS; len++) {
left <<= 1;
left -= count[len];
if (left < 0) return -1; /* over-subscribed */
}
if (left > 0 && (type == CODES || max != 1))
return -1; /* incomplete set */
/* generate offsets into symbol table for each length for sorting */
offs[1] = 0;
for (len = 1; len < MAXBITS; len++)
offs[len + 1] = offs[len] + count[len];
/* sort symbols by length, by symbol order within each length */
for (sym = 0; sym < codes; sym++)
if (lens[sym] != 0) work[offs[lens[sym]]++] = (uint16_t)sym;
/*
Create and fill in decoding tables. In this loop, the table being
filled is at next and has curr index bits. The code being used is huff
with length len. That code is converted to an index by dropping drop
bits off of the bottom. For codes where len is less than drop + curr,
those top drop + curr - len bits are incremented through all values to
fill the table with replicated entries.
root is the number of index bits for the root table. When len exceeds
root, sub-tables are created pointed to by the root entry with an index
of the low root bits of huff. This is saved in low to check for when a
new sub-table should be started. drop is zero when the root table is
being filled, and drop is root when sub-tables are being filled.
When a new sub-table is needed, it is necessary to look ahead in the
code lengths to determine what size sub-table is needed. The length
counts are used for this, and so count[] is decremented as codes are
entered in the tables.
used keeps track of how many table entries have been allocated from the
provided *table space. It is checked for LENS and DIST tables against
the constants ENOUGH_LENS and ENOUGH_DISTS to guard against changes in
the initial root table size constants. See the comments in inftrees.h
for more information.
sym increments through all symbols, and the loop terminates when
all codes of length max, i.e. all codes, have been processed. This
routine permits incomplete codes, so another loop after this one fills
in the rest of the decoding tables with invalid code markers.
*/
/* set up for code type */
switch (type) {
case CODES:
base = extra = work; /* dummy value--not used */
end = 19;
break;
case LENS:
base = lbase;
base -= 257;
extra = lext;
extra -= 257;
end = 256;
break;
default: /* DISTS */
base = dbase;
extra = dext;
end = -1;
}
/* initialize state for loop */
huff = 0; /* starting code */
sym = 0; /* starting code symbol */
len = min; /* starting code length */
next = *table; /* current table to fill in */
curr = root; /* current table index bits */
drop = 0; /* current bits to drop from code for index */
low = (unsigned)(-1); /* trigger new sub-table when len > root */
used = 1U << root; /* use root table entries */
mask = used - 1; /* mask for comparing low */
/* check available table space */
if ((type == LENS && used > ENOUGH_LENS) ||
(type == DISTS && used > ENOUGH_DISTS))
return 1;
/* process all codes and make table entries */
for (;;) {
/* create table entry */
here.bits = (unsigned char)(len - drop);
if ((int)(work[sym]) < end) {
here.op = (unsigned char)0;
here.val = work[sym];
} else if ((int)(work[sym]) > end) {
here.op = (unsigned char)(extra[work[sym]]);
here.val = base[work[sym]];
} else {
here.op = (unsigned char)(32 + 64); /* end of block */
here.val = 0;
}
/* replicate for those indices with low len bits equal to huff */
incr = 1U << (len - drop);
fill = 1U << curr;
min = fill; /* save offset to next table */
do {
fill -= incr;
next[(huff >> drop) + fill] = here;
} while (fill != 0);
/* backwards increment the len-bit code huff */
incr = 1U << (len - 1);
while (huff & incr)
incr >>= 1;
if (incr != 0) {
huff &= incr - 1;
huff += incr;
} else {
huff = 0;
}
/* go to next symbol, update count, len */
sym++;
if (--(count[len]) == 0) {
if (len == max)
break;
len = lens[work[sym]];
}
/* create new sub-table if needed */
if (len > root && (huff & mask) != low) {
/* if first time, transition to sub-tables */
if (drop == 0)
drop = root;
/* increment past last table */
next += min; /* here min is 1 << curr */
/* determine length of next table */
curr = len - drop;
left = (int)(1 << curr);
while (curr + drop < max) {
left -= count[curr + drop];
if (left <= 0)
break;
curr++;
left <<= 1;
}
/* check for enough space */
used += 1U << curr;
if ((type == LENS && used > ENOUGH_LENS) || (type == DISTS && used > ENOUGH_DISTS))
return 1;
/* point entry in root table to sub-table */
low = huff & mask;
(*table)[low].op = (unsigned char)curr;
(*table)[low].bits = (unsigned char)root;
(*table)[low].val = (uint16_t)(next - *table);
}
}
/* fill in remaining table entry if code is incomplete (guaranteed to have
at most one remaining entry, since if the code is incomplete, the
maximum code length that was allowed to get this far is one bit) */
if (huff != 0) {
here.op = (unsigned char)64; /* invalid code marker */
here.bits = (unsigned char)(len - drop);
here.val = (uint16_t)0;
next[huff] = here;
}
/* set return parameters */
*table += used;
*bits = root;
return 0;
}

View File

@ -1,66 +0,0 @@
#ifndef INFTREES_H_
#define INFTREES_H_
/* inftrees.h -- header to use inftrees.c
* Copyright (C) 1995-2005, 2010 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/
/* WARNING: this file should *not* be used by applications. It is
part of the implementation of the compression library and is
subject to change. Applications should only use zlib.h.
*/
/* Structure for decoding tables. Each entry provides either the
information needed to do the operation requested by the code that
indexed that table entry, or it provides a pointer to another
table that indexes more bits of the code. op indicates whether
the entry is a pointer to another table, a literal, a length or
distance, an end-of-block, or an invalid code. For a table
pointer, the low four bits of op is the number of index bits of
that table. For a length or distance, the low four bits of op
is the number of extra bits to get after the code. bits is
the number of bits in this code or part of the code to drop off
of the bit buffer. val is the actual byte to output in the case
of a literal, the base length or distance, or the offset from
the current table to the next table. Each entry is four bytes. */
typedef struct {
unsigned char op; /* operation, extra bits, table bits */
unsigned char bits; /* bits in this part of the code */
uint16_t val; /* offset in table or code value */
} code;
/* op values as set by inflate_table():
00000000 - literal
0000tttt - table link, tttt != 0 is the number of table index bits
0001eeee - length or distance, eeee is the number of extra bits
01100000 - end of block
01000000 - invalid code
*/
/* Maximum size of the dynamic table. The maximum number of code structures is
1444, which is the sum of 852 for literal/length codes and 592 for distance
codes. These values were found by exhaustive searches using the program
examples/enough.c found in the zlib distribtution. The arguments to that
program are the number of symbols, the initial root table size, and the
maximum bit length of a code. "enough 286 9 15" for literal/length codes
returns returns 852, and "enough 30 6 15" for distance codes returns 592.
The initial root table size (9 or 6) is found in the fifth argument of the
inflate_table() calls in inflate.c and infback.c. If the root table size is
changed, then these maximum sizes would be need to be recalculated and
updated. */
#define ENOUGH_LENS 852
#define ENOUGH_DISTS 592
#define ENOUGH (ENOUGH_LENS+ENOUGH_DISTS)
/* Type of code to build for inflate_table() */
typedef enum {
CODES,
LENS,
DISTS
} codetype;
int ZLIB_INTERNAL inflate_table (codetype type, uint16_t *lens, unsigned codes,
code * *table, unsigned *bits, uint16_t *work);
#endif /* INFTREES_H_ */

View File

@ -1,471 +0,0 @@
/*
* Set match_start to the longest match starting at the given string and
* return its length. Matches shorter or equal to prev_length are discarded,
* in which case the result is equal to prev_length and match_start is garbage.
*
* IN assertions: cur_match is the head of the hash chain for the current
* string (strstart) and its distance is <= MAX_DIST, and prev_length >=1
* OUT assertion: the match length is not greater than s->lookahead
*/
#include "deflate.h"
#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
/* Only use std3_longest_match for little_endian systems, also avoid using it with
non-gcc compilers since the __builtin_ctzl() function might not be optimized. */
# if defined(__GNUC__) && defined(HAVE_BUILTIN_CTZL) && ((__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
|| defined(__LITTLE_ENDIAN__))
# define std3_longest_match
# elif(defined(_MSC_VER) && defined(_WIN32))
# define std3_longest_match
# else
# define std2_longest_match
# endif
#else
# define std1_longest_match
#endif
#if defined(_MSC_VER) && !defined(__clang__)
#include <intrin.h>
/* This is not a general purpose replacement for __builtin_ctzl. The function expects that value is != 0
* Because of that assumption trailing_zero is not initialized and the return value of _BitScanForward is not checked
*/
static __forceinline unsigned long __builtin_ctzl(unsigned long value)
{
unsigned long trailing_zero;
_BitScanForward(&trailing_zero, value);
return trailing_zero;
}
#endif
#ifdef std1_longest_match
/*
* Standard longest_match
*
*/
ZLIB_INTERNAL unsigned longest_match(deflate_state *const s, IPos cur_match) {
const unsigned wmask = s->w_mask;
const Pos *prev = s->prev;
unsigned chain_length;
IPos limit;
unsigned int len, best_len, nice_match;
unsigned char *scan, *match, *strend, scan_end, scan_end1;
/*
* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple
* of 16. It is easy to get rid of this optimization if necessary.
*/
Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
/*
* Do not waste too much time if we already have a good match
*/
best_len = s->prev_length;
chain_length = s->max_chain_length;
if (best_len >= s->good_match)
chain_length >>= 2;
/*
* Do not looks for matches beyond the end of the input. This is
* necessary to make deflate deterministic
*/
nice_match = (unsigned int)s->nice_match > s->lookahead ? s->lookahead : s->nice_match;
/*
* Stop when cur_match becomes <= limit. To simplify the code,
* we prevent matches with the string of window index 0
*/
limit = s->strstart > MAX_DIST(s) ? s->strstart - MAX_DIST(s) : 0;
scan = s->window + s->strstart;
strend = s->window + s->strstart + MAX_MATCH;
scan_end1 = scan[best_len-1];
scan_end = scan[best_len];
Assert((unsigned long)s->strstart <= s->window_size - MIN_LOOKAHEAD, "need lookahead");
do {
Assert(cur_match < s->strstart, "no future");
match = s->window + cur_match;
/*
* Skip to next match if the match length cannot increase
* or if the match length is less than 2. Note that the checks
* below for insufficient lookahead only occur occasionally
* for performance reasons. Therefore uninitialized memory
* will be accessed and conditional jumps will be made that
* depend on those values. However the length of the match
* is limited to the lookahead, so the output of deflate is not
* affected by the uninitialized values.
*/
if (match[best_len] != scan_end ||
match[best_len-1] != scan_end1 ||
*match != *scan ||
*++match != scan[1])
continue;
/*
* The check at best_len-1 can be removed because it will
* be made again later. (This heuristic is not always a win.)
* It is not necessary to compare scan[2] and match[2] since
* they are always equal when the other bytes match, given
* that the hash keys are equal and that HASH_BITS >= 8.
*/
scan += 2;
match++;
Assert(*scan == *match, "match[2]?");
/*
* We check for insufficient lookahead only every 8th
* comparision; the 256th check will be made at strstart + 258.
*/
do {
} while (*++scan == *++match && *++scan == *++match &&
*++scan == *++match && *++scan == *++match &&
*++scan == *++match && *++scan == *++match &&
*++scan == *++match && *++scan == *++match &&
scan < strend);
Assert(scan <= s->window+(unsigned int)(s->window_size-1), "wild scan");
len = MAX_MATCH - (int)(strend - scan);
scan = strend - MAX_MATCH;
if (len > best_len) {
s->match_start = cur_match;
best_len = len;
if (len >= nice_match)
break;
scan_end1 = scan[best_len-1];
scan_end = scan[best_len];
} else {
/*
* The probability of finding a match later if we here
* is pretty low, so for performance it's best to
* outright stop here for the lower compression levels
*/
if (s->level < 6)
break;
}
} while ((cur_match = prev[cur_match & wmask]) > limit && --chain_length);
if ((unsigned int)best_len <= s->lookahead)
return best_len;
return s->lookahead;
}
#endif
#ifdef std2_longest_match
/*
* UNALIGNED_OK longest_match
*
*/
ZLIB_INTERNAL unsigned longest_match(deflate_state *const s, IPos cur_match) {
const unsigned wmask = s->w_mask;
const Pos *prev = s->prev;
uint16_t scan_start, scan_end;
unsigned chain_length;
IPos limit;
unsigned int len, best_len, nice_match;
unsigned char *scan, *strend;
/*
* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple
* of 16. It is easy to get rid of this optimization if necessary.
*/
Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
/*
* Do not waste too much time if we already have a good match
*/
best_len = s->prev_length;
chain_length = s->max_chain_length;
if (best_len >= s->good_match)
chain_length >>= 2;
/*
* Do not looks for matches beyond the end of the input. This is
* necessary to make deflate deterministic
*/
nice_match = (unsigned int)s->nice_match > s->lookahead ? s->lookahead : s->nice_match;
/*
* Stop when cur_match becomes <= limit. To simplify the code,
* we prevent matches with the string of window index 0
*/
limit = s->strstart > MAX_DIST(s) ? s->strstart - MAX_DIST(s) : 0;
scan = s->window + s->strstart;
strend = s->window + s->strstart + MAX_MATCH - 1;
scan_start = *(uint16_t *)scan;
scan_end = *(uint16_t *)(scan + best_len-1);
Assert((unsigned long)s->strstart <= s->window_size - MIN_LOOKAHEAD, "need lookahead");
do {
unsigned char *match;
Assert(cur_match < s->strstart, "no future");
match = s->window + cur_match;
/*
* Skip to next match if the match length cannot increase
* or if the match length is less than 2. Note that the checks
* below for insufficient lookahead only occur occasionally
* for performance reasons. Therefore uninitialized memory
* will be accessed and conditional jumps will be made that
* depend on those values. However the length of the match
* is limited to the lookahead, so the output of deflate is not
* affected by the uninitialized values.
*/
if (likely((*(uint16_t *)(match + best_len - 1) != scan_end)))
continue;
if (*(uint16_t *)match != scan_start)
continue;
/* It is not necessary to compare scan[2] and match[2] since
* they are always equal when the other bytes match, given that
* the hash keys are equal and that HASH_BITS >= 8. Compare 2
* bytes at a time at strstart+3, +5, ... up to strstart+257.
* We check for insufficient lookahead only every 4th
* comparison; the 128th check will be made at strstart+257.
* If MAX_MATCH-2 is not a multiple of 8, it is necessary to
* put more guard bytes at the end of the window, or to check
* more often for insufficient lookahead.
*/
Assert(scan[2] == match[2], "scan[2]?");
scan++;
match++;
do {
} while (*(uint16_t *)(scan += 2)== *(uint16_t *)(match += 2) &&
*(uint16_t *)(scan += 2)== *(uint16_t *)(match += 2) &&
*(uint16_t *)(scan += 2)== *(uint16_t *)(match += 2) &&
*(uint16_t *)(scan += 2)== *(uint16_t *)(match += 2) &&
scan < strend);
/*
* Here, scan <= window + strstart + 257
*/
Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
if (*scan == *match)
scan++;
len = (MAX_MATCH -1) - (int)(strend-scan);
scan = strend - (MAX_MATCH-1);
if (len > best_len) {
s->match_start = cur_match;
best_len = len;
if (len >= nice_match)
break;
scan_end = *(uint16_t *)(scan + best_len - 1);
} else {
/*
* The probability of finding a match later if we here
* is pretty low, so for performance it's best to
* outright stop here for the lower compression levels
*/
if (s->level < 6)
break;
}
} while (--chain_length && (cur_match = prev[cur_match & wmask]) > limit);
if ((unsigned)best_len <= s->lookahead)
return best_len;
return s->lookahead;
}
#endif
#ifdef std3_longest_match
/* longest_match() with minor change to improve performance (in terms of
* execution time).
*
* The pristine longest_match() function is sketched bellow (strip the
* then-clause of the "#ifdef UNALIGNED_OK"-directive)
*
* ------------------------------------------------------------
* unsigned int longest_match(...) {
* ...
* do {
* match = s->window + cur_match; //s0
* if (*(ushf*)(match+best_len-1) != scan_end || //s1
* *(ushf*)match != scan_start) continue; //s2
* ...
*
* do {
* } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
* *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
* *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
* *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
* scan < strend); //s3
*
* ...
* } while(cond); //s4
*
* -------------------------------------------------------------
*
* The change include:
*
* 1) The hottest statements of the function is: s0, s1 and s4. Pull them
* together to form a new loop. The benefit is two-fold:
*
* o. Ease the compiler to yield good code layout: the conditional-branch
* corresponding to s1 and its biased target s4 become very close (likely,
* fit in the same cache-line), hence improving instruction-fetching
* efficiency.
*
* o. Ease the compiler to promote "s->window" into register. "s->window"
* is loop-invariant; it is supposed to be promoted into register and keep
* the value throughout the entire loop. However, there are many such
* loop-invariant, and x86-family has small register file; "s->window" is
* likely to be chosen as register-allocation victim such that its value
* is reloaded from memory in every single iteration. By forming a new loop,
* "s->window" is loop-invariant of that newly created tight loop. It is
* lot easier for compiler to promote this quantity to register and keep
* its value throughout the entire small loop.
*
* 2) Transfrom s3 such that it examines sizeof(long)-byte-match at a time.
* This is done by:
* ------------------------------------------------
* v1 = load from "scan" by sizeof(long) bytes
* v2 = load from "match" by sizeof(lnog) bytes
* v3 = v1 xor v2
* match-bit = little-endian-machine(yes-for-x86) ?
* count-trailing-zero(v3) :
* count-leading-zero(v3);
*
* match-byte = match-bit/8
*
* "scan" and "match" advance if necessary
* -------------------------------------------------
*/
ZLIB_INTERNAL unsigned longest_match(deflate_state *const s, IPos cur_match) {
unsigned chain_length = s->max_chain_length;/* max hash chain length */
register unsigned char *scan = s->window + s->strstart; /* current string */
register unsigned char *match; /* matched string */
register unsigned int len; /* length of current match */
unsigned int best_len = s->prev_length; /* best match length so far */
unsigned int nice_match = s->nice_match; /* stop if match long enough */
IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
s->strstart - (IPos)MAX_DIST(s) : NIL;
/* Stop when cur_match becomes <= limit. To simplify the code,
* we prevent matches with the string of window index 0.
*/
Pos *prev = s->prev;
unsigned int wmask = s->w_mask;
register unsigned char *strend = s->window + s->strstart + MAX_MATCH;
register uint16_t scan_start = *(uint16_t*)scan;
register uint16_t scan_end = *(uint16_t*)(scan+best_len-1);
/* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
* It is easy to get rid of this optimization if necessary.
*/
Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
/* Do not waste too much time if we already have a good match: */
if (s->prev_length >= s->good_match) {
chain_length >>= 2;
}
/* Do not look for matches beyond the end of the input. This is necessary
* to make deflate deterministic.
*/
if ((unsigned int)nice_match > s->lookahead) nice_match = s->lookahead;
Assert((unsigned long)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
do {
Assert(cur_match < s->strstart, "no future");
/* Skip to next match if the match length cannot increase
* or if the match length is less than 2. Note that the checks below
* for insufficient lookahead only occur occasionally for performance
* reasons. Therefore uninitialized memory will be accessed, and
* conditional jumps will be made that depend on those values.
* However the length of the match is limited to the lookahead, so
* the output of deflate is not affected by the uninitialized values.
*/
unsigned char *win = s->window;
int cont = 1;
do {
match = win + cur_match;
if (likely(*(uint16_t*)(match+best_len-1) != scan_end)) {
if ((cur_match = prev[cur_match & wmask]) > limit
&& --chain_length != 0) {
continue;
} else {
cont = 0;
}
}
break;
} while (1);
if (!cont)
break;
if (*(uint16_t*)match != scan_start)
continue;
/* It is not necessary to compare scan[2] and match[2] since they are
* always equal when the other bytes match, given that the hash keys
* are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
* strstart+3, +5, ... up to strstart+257. We check for insufficient
* lookahead only every 4th comparison; the 128th check will be made
* at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
* necessary to put more guard bytes at the end of the window, or
* to check more often for insufficient lookahead.
*/
scan += 2, match+=2;
Assert(*scan == *match, "match[2]?");
do {
unsigned long sv = *(unsigned long*)(void*)scan;
unsigned long mv = *(unsigned long*)(void*)match;
unsigned long xor = sv ^ mv;
if (xor) {
int match_byte = __builtin_ctzl(xor) / 8;
scan += match_byte;
match += match_byte;
break;
} else {
scan += sizeof(unsigned long);
match += sizeof(unsigned long);
}
} while (scan < strend);
if (scan > strend)
scan = strend;
Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
len = MAX_MATCH - (int)(strend - scan);
scan = strend - MAX_MATCH;
if (len > best_len) {
s->match_start = cur_match;
best_len = len;
if (len >= nice_match)
break;
scan_end = *(uint16_t*)(scan+best_len-1);
} else {
/*
* The probability of finding a match later if we here
* is pretty low, so for performance it's best to
* outright stop here for the lower compression levels
*/
if (s->level < 6)
break;
}
} while ((cur_match = prev[cur_match & wmask]) > limit && --chain_length != 0);
if ((unsigned int)best_len <= s->lookahead)
return (unsigned int)best_len;
return s->lookahead;
}
#endif

View File

@ -1,6 +0,0 @@
#ifndef MATCH_H_
#define MATCH_H_
unsigned int longest_match (deflate_state *s, IPos cur_match);
#endif /* MATCH_H_ */

View File

@ -1,2 +0,0 @@
# ignore Makefiles; they're all automatically generated
Makefile

View File

@ -1,20 +0,0 @@
// http://www.securityfocus.com/archive/1/312869 --- originally by Richard Kettlewell
#include <stdlib.h>
#include <zlib.h>
#include <errno.h>
#include <stdio.h>
int main(void) {
gzFile f;
int ret;
if(!(f = gzopen("/dev/null", "w"))) {
perror("/dev/null");
exit(1);
}
ret = gzprintf(f, "%10240s", "");
printf("gzprintf -> %d\n", ret);
ret = gzclose(f);
printf("gzclose -> %d [%d]\n", ret, errno);
exit(0);
}

View File

@ -1,10 +0,0 @@
Makefile.in: template for Unix Makefile
CVE-2003-0107.c:
CVE-2002-0059 :
CVE-2004-0797 :
CVE-2005-1849 :
CVE-2005-2096 : test cases for the relevant CVEs
testCVEinputs.sh: script to run tests for CVEs where input data is supplied

View File

@ -1,77 +0,0 @@
# Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler
# Copyright 2015, Daniel Axtens, IBM Corporation
# zlib license, see zlib.h
CC=
CFLAGS=
EXE=
SRCDIR=
SRCTOP=
INCLUDES=
TEST_LDFLAGS=-L.. ../libz.a
COMPATTESTS =
all: oldtests cvetests $(COMPATTESTS)
oldtests: #set by ../configure
teststatic:
@TMPST=tmpst_$$; \
if echo hello world | ../minigzip | ../minigzip -d && ../example $$TMPST ; then \
echo ' *** zlib test OK ***'; \
else \
echo ' *** zlib test FAILED ***'; exit 1; \
fi; \
rm -f $$TMPST
testshared:
@LD_LIBRARY_PATH=`pwd`/..:$(LD_LIBRARY_PATH) ; export LD_LIBRARY_PATH; \
LD_LIBRARYN32_PATH=`pwd`/..:$(LD_LIBRARYN32_PATH) ; export LD_LIBRARYN32_PATH; \
DYLD_LIBRARY_PATH=`pwd`/..:$(DYLD_LIBRARY_PATH) ; export DYLD_LIBRARY_PATH; \
SHLIB_PATH=`pwd`/..:$(SHLIB_PATH) ; export SHLIB_PATH; \
TMPSH=tmpsh_$$; \
if echo hello world | ../minigzipsh | ../minigzipsh -d && ../examplesh $$TMPSH; then \
echo ' *** zlib shared test OK ***'; \
else \
echo ' *** zlib shared test FAILED ***'; exit 1; \
fi; \
rm -f $$TMPSH
test64:
@TMP64=tmp64_$$; \
if echo hello world | ../minigzip64 | ../minigzip64 -d && ../example64 $$TMP64; then \
echo ' *** zlib 64-bit test OK ***'; \
else \
echo ' *** zlib 64-bit test FAILED ***'; exit 1; \
fi; \
rm -f $$TMP64
cvetests: testCVEinputs
# Tests requiring zlib-ng to be built with --zlib-compat
compattests: testCVE-2003-0107
testCVEinputs:
@$(SRCDIR)/testCVEinputs.sh
testCVE-2003-0107: CVE-2003-0107$(EXE)
@if ./CVE-2003-0107$(EXE); then \
echo ' *** zlib not vulnerable to CVE-2003-0107 ***'; \
else \
echo ' *** zlib VULNERABLE to CVE-2003-0107 ***'; exit 1; \
fi
CVE-2003-0107.o: $(SRCDIR)/CVE-2003-0107.c
$(CC) $(CFLAGS) -I.. -I$(SRCTOP) -c -o $@ $(SRCDIR)/CVE-2003-0107.c
CVE-2003-0107$(EXE): CVE-2003-0107.o
$(CC) $(CFLAGS) -o $@ CVE-2003-0107.o $(TEST_LDFLAGS)
clean:
rm -f *.o *.gcda *.gcno *.gcov
rm -f CVE-2003-0107$(EXE)
distclean:
rm -f Makefile

View File

@ -1,544 +0,0 @@
/* example.c -- usage example of the zlib compression library
* Copyright (C) 1995-2006, 2011 Jean-loup Gailly.
* For conditions of distribution and use, see copyright notice in zlib.h
*/
/* @(#) $Id$ */
#include "zlib.h"
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <inttypes.h>
#define TESTFILE "foo.gz"
#define CHECK_ERR(err, msg) { \
if (err != Z_OK) { \
fprintf(stderr, "%s error: %d\n", msg, err); \
exit(1); \
} \
}
const char hello[] = "hello, hello!";
/* "hello world" would be more standard, but the repeated "hello"
* stresses the compression code better, sorry...
*/
const char dictionary[] = "hello";
unsigned long dictId; /* Adler32 value of the dictionary */
void test_deflate (unsigned char *compr, size_t comprLen);
void test_inflate (unsigned char *compr, size_t comprLen, unsigned char *uncompr, size_t uncomprLen);
void test_large_deflate (unsigned char *compr, size_t comprLen, unsigned char *uncompr, size_t uncomprLen);
void test_large_inflate (unsigned char *compr, size_t comprLen, unsigned char *uncompr, size_t uncomprLen);
void test_flush (unsigned char *compr, size_t *comprLen);
void test_sync (unsigned char *compr, size_t comprLen, unsigned char *uncompr, size_t uncomprLen);
void test_dict_deflate (unsigned char *compr, size_t comprLen);
void test_dict_inflate (unsigned char *compr, size_t comprLen, unsigned char *uncompr, size_t uncomprLen);
int main (int argc, char *argv[]);
static alloc_func zalloc = (alloc_func)0;
static free_func zfree = (free_func)0;
void test_compress (unsigned char *compr, size_t comprLen,
unsigned char *uncompr, size_t uncomprLen);
/* ===========================================================================
* Test compress() and uncompress()
*/
void test_compress(unsigned char *compr, size_t comprLen, unsigned char *uncompr, size_t uncomprLen)
{
int err;
size_t len = strlen(hello)+1;
err = compress(compr, &comprLen, (const unsigned char*)hello, len);
CHECK_ERR(err, "compress");
strcpy((char*)uncompr, "garbage");
err = uncompress(uncompr, &uncomprLen, compr, comprLen);
CHECK_ERR(err, "uncompress");
if (strcmp((char*)uncompr, hello)) {
fprintf(stderr, "bad uncompress\n");
exit(1);
} else {
printf("uncompress(): %s\n", (char *)uncompr);
}
}
#ifdef WITH_GZFILEOP
void test_gzio (const char *fname,
unsigned char *uncompr, unsigned long uncomprLen);
/* ===========================================================================
* Test read/write of .gz files
*/
void test_gzio(const char *fname, unsigned char *uncompr, unsigned long uncomprLen)
{
#ifdef NO_GZCOMPRESS
fprintf(stderr, "NO_GZCOMPRESS -- gz* functions cannot compress\n");
#else
int err;
int len = (int)strlen(hello)+1;
gzFile file;
z_off_t pos;
file = gzopen(fname, "wb");
if (file == NULL) {
fprintf(stderr, "gzopen error\n");
exit(1);
}
gzputc(file, 'h');
if (gzputs(file, "ello") != 4) {
fprintf(stderr, "gzputs err: %s\n", gzerror(file, &err));
exit(1);
}
if (gzprintf(file, ", %s!", "hello") != 8) {
fprintf(stderr, "gzprintf err: %s\n", gzerror(file, &err));
exit(1);
}
gzseek(file, 1L, SEEK_CUR); /* add one zero byte */
gzclose(file);
file = gzopen(fname, "rb");
if (file == NULL) {
fprintf(stderr, "gzopen error\n");
exit(1);
}
strcpy((char*)uncompr, "garbage");
if (gzread(file, uncompr, (unsigned)uncomprLen) != len) {
fprintf(stderr, "gzread err: %s\n", gzerror(file, &err));
exit(1);
}
if (strcmp((char*)uncompr, hello)) {
fprintf(stderr, "bad gzread: %s\n", (char*)uncompr);
exit(1);
} else {
printf("gzread(): %s\n", (char*)uncompr);
}
pos = gzseek(file, -8L, SEEK_CUR);
if (pos != 6 || gztell(file) != pos) {
fprintf(stderr, "gzseek error, pos=%ld, gztell=%ld\n",
(long)pos, (long)gztell(file));
exit(1);
}
if (gzgetc(file) != ' ') {
fprintf(stderr, "gzgetc error\n");
exit(1);
}
if (gzungetc(' ', file) != ' ') {
fprintf(stderr, "gzungetc error\n");
exit(1);
}
gzgets(file, (char*)uncompr, (int)uncomprLen);
if (strlen((char*)uncompr) != 7) { /* " hello!" */
fprintf(stderr, "gzgets err after gzseek: %s\n", gzerror(file, &err));
exit(1);
}
if (strcmp((char*)uncompr, hello + 6)) {
fprintf(stderr, "bad gzgets after gzseek\n");
exit(1);
} else {
printf("gzgets() after gzseek: %s\n", (char*)uncompr);
}
gzclose(file);
#endif
}
#endif /* WITH_GZFILEOP */
/* ===========================================================================
* Test deflate() with small buffers
*/
void test_deflate(unsigned char *compr, size_t comprLen)
{
z_stream c_stream; /* compression stream */
int err;
unsigned long len = (unsigned long)strlen(hello)+1;
c_stream.zalloc = zalloc;
c_stream.zfree = zfree;
c_stream.opaque = (void *)0;
err = deflateInit(&c_stream, Z_DEFAULT_COMPRESSION);
CHECK_ERR(err, "deflateInit");
c_stream.next_in = (const unsigned char *)hello;
c_stream.next_out = compr;
while (c_stream.total_in != len && c_stream.total_out < comprLen) {
c_stream.avail_in = c_stream.avail_out = 1; /* force small buffers */
err = deflate(&c_stream, Z_NO_FLUSH);
CHECK_ERR(err, "deflate");
}
/* Finish the stream, still forcing small buffers: */
for (;;) {
c_stream.avail_out = 1;
err = deflate(&c_stream, Z_FINISH);
if (err == Z_STREAM_END) break;
CHECK_ERR(err, "deflate");
}
err = deflateEnd(&c_stream);
CHECK_ERR(err, "deflateEnd");
}
/* ===========================================================================
* Test inflate() with small buffers
*/
void test_inflate(unsigned char *compr, size_t comprLen, unsigned char *uncompr, size_t uncomprLen)
{
int err;
z_stream d_stream; /* decompression stream */
strcpy((char*)uncompr, "garbage");
d_stream.zalloc = zalloc;
d_stream.zfree = zfree;
d_stream.opaque = (void *)0;
d_stream.next_in = compr;
d_stream.avail_in = 0;
d_stream.next_out = uncompr;
err = inflateInit(&d_stream);
CHECK_ERR(err, "inflateInit");
while (d_stream.total_out < uncomprLen && d_stream.total_in < comprLen) {
d_stream.avail_in = d_stream.avail_out = 1; /* force small buffers */
err = inflate(&d_stream, Z_NO_FLUSH);
if (err == Z_STREAM_END) break;
CHECK_ERR(err, "inflate");
}
err = inflateEnd(&d_stream);
CHECK_ERR(err, "inflateEnd");
if (strcmp((char*)uncompr, hello)) {
fprintf(stderr, "bad inflate\n");
exit(1);
} else {
printf("inflate(): %s\n", (char *)uncompr);
}
}
/* ===========================================================================
* Test deflate() with large buffers and dynamic change of compression level
*/
void test_large_deflate(unsigned char *compr, size_t comprLen, unsigned char *uncompr, size_t uncomprLen)
{
z_stream c_stream; /* compression stream */
int err;
c_stream.zalloc = zalloc;
c_stream.zfree = zfree;
c_stream.opaque = (void *)0;
err = deflateInit(&c_stream, Z_BEST_SPEED);
CHECK_ERR(err, "deflateInit");
c_stream.next_out = compr;
c_stream.avail_out = (unsigned int)comprLen;
/* At this point, uncompr is still mostly zeroes, so it should compress
* very well:
*/
c_stream.next_in = uncompr;
c_stream.avail_in = (unsigned int)uncomprLen;
err = deflate(&c_stream, Z_NO_FLUSH);
CHECK_ERR(err, "deflate");
if (c_stream.avail_in != 0) {
fprintf(stderr, "deflate not greedy\n");
exit(1);
}
/* Feed in already compressed data and switch to no compression: */
deflateParams(&c_stream, Z_NO_COMPRESSION, Z_DEFAULT_STRATEGY);
c_stream.next_in = compr;
c_stream.avail_in = (unsigned int)comprLen/2;
err = deflate(&c_stream, Z_NO_FLUSH);
CHECK_ERR(err, "deflate");
/* Switch back to compressing mode: */
deflateParams(&c_stream, Z_BEST_COMPRESSION, Z_FILTERED);
c_stream.next_in = uncompr;
c_stream.avail_in = (unsigned int)uncomprLen;
err = deflate(&c_stream, Z_NO_FLUSH);
CHECK_ERR(err, "deflate");
err = deflate(&c_stream, Z_FINISH);
if (err != Z_STREAM_END) {
fprintf(stderr, "deflate should report Z_STREAM_END\n");
exit(1);
}
err = deflateEnd(&c_stream);
CHECK_ERR(err, "deflateEnd");
}
/* ===========================================================================
* Test inflate() with large buffers
*/
void test_large_inflate(unsigned char *compr, size_t comprLen, unsigned char *uncompr, size_t uncomprLen)
{
int err;
z_stream d_stream; /* decompression stream */
strcpy((char*)uncompr, "garbage");
d_stream.zalloc = zalloc;
d_stream.zfree = zfree;
d_stream.opaque = (void *)0;
d_stream.next_in = compr;
d_stream.avail_in = (unsigned int)comprLen;
err = inflateInit(&d_stream);
CHECK_ERR(err, "inflateInit");
for (;;) {
d_stream.next_out = uncompr; /* discard the output */
d_stream.avail_out = (unsigned int)uncomprLen;
err = inflate(&d_stream, Z_NO_FLUSH);
if (err == Z_STREAM_END) break;
CHECK_ERR(err, "large inflate");
}
err = inflateEnd(&d_stream);
CHECK_ERR(err, "inflateEnd");
if (d_stream.total_out != 2*uncomprLen + comprLen/2) {
fprintf(stderr, "bad large inflate: %zu\n", d_stream.total_out);
exit(1);
} else {
printf("large_inflate(): OK\n");
}
}
/* ===========================================================================
* Test deflate() with full flush
*/
void test_flush(unsigned char *compr, size_t *comprLen)
{
z_stream c_stream; /* compression stream */
int err;
unsigned int len = (unsigned int)strlen(hello)+1;
c_stream.zalloc = zalloc;
c_stream.zfree = zfree;
c_stream.opaque = (void *)0;
err = deflateInit(&c_stream, Z_DEFAULT_COMPRESSION);
CHECK_ERR(err, "deflateInit");
c_stream.next_in = (const unsigned char *)hello;
c_stream.next_out = compr;
c_stream.avail_in = 3;
c_stream.avail_out = (unsigned int)*comprLen;
err = deflate(&c_stream, Z_FULL_FLUSH);
CHECK_ERR(err, "deflate");
compr[3]++; /* force an error in first compressed block */
c_stream.avail_in = len - 3;
err = deflate(&c_stream, Z_FINISH);
if (err != Z_STREAM_END) {
CHECK_ERR(err, "deflate");
}
err = deflateEnd(&c_stream);
CHECK_ERR(err, "deflateEnd");
*comprLen = c_stream.total_out;
}
/* ===========================================================================
* Test inflateSync()
*/
void test_sync(unsigned char *compr, size_t comprLen, unsigned char *uncompr, size_t uncomprLen)
{
int err;
z_stream d_stream; /* decompression stream */
strcpy((char*)uncompr, "garbage");
d_stream.zalloc = zalloc;
d_stream.zfree = zfree;
d_stream.opaque = (void *)0;
d_stream.next_in = compr;
d_stream.avail_in = 2; /* just read the zlib header */
err = inflateInit(&d_stream);
CHECK_ERR(err, "inflateInit");
d_stream.next_out = uncompr;
d_stream.avail_out = (unsigned int)uncomprLen;
err = inflate(&d_stream, Z_NO_FLUSH);
CHECK_ERR(err, "inflate");
d_stream.avail_in = (unsigned int)comprLen-2; /* read all compressed data */
err = inflateSync(&d_stream); /* but skip the damaged part */
CHECK_ERR(err, "inflateSync");
err = inflate(&d_stream, Z_FINISH);
if (err != Z_DATA_ERROR) {
fprintf(stderr, "inflate should report DATA_ERROR\n");
/* Because of incorrect adler32 */
exit(1);
}
err = inflateEnd(&d_stream);
CHECK_ERR(err, "inflateEnd");
printf("after inflateSync(): hel%s\n", (char *)uncompr);
}
/* ===========================================================================
* Test deflate() with preset dictionary
*/
void test_dict_deflate(unsigned char *compr, size_t comprLen)
{
z_stream c_stream; /* compression stream */
int err;
c_stream.zalloc = zalloc;
c_stream.zfree = zfree;
c_stream.opaque = (void *)0;
err = deflateInit(&c_stream, Z_BEST_COMPRESSION);
CHECK_ERR(err, "deflateInit");
err = deflateSetDictionary(&c_stream,
(const unsigned char*)dictionary, (int)sizeof(dictionary));
CHECK_ERR(err, "deflateSetDictionary");
dictId = c_stream.adler;
c_stream.next_out = compr;
c_stream.avail_out = (unsigned int)comprLen;
c_stream.next_in = (const unsigned char *)hello;
c_stream.avail_in = (unsigned int)strlen(hello)+1;
err = deflate(&c_stream, Z_FINISH);
if (err != Z_STREAM_END) {
fprintf(stderr, "deflate should report Z_STREAM_END\n");
exit(1);
}
err = deflateEnd(&c_stream);
CHECK_ERR(err, "deflateEnd");
}
/* ===========================================================================
* Test inflate() with a preset dictionary
*/
void test_dict_inflate(unsigned char *compr, size_t comprLen, unsigned char *uncompr, size_t uncomprLen)
{
int err;
z_stream d_stream; /* decompression stream */
strcpy((char*)uncompr, "garbage");
d_stream.zalloc = zalloc;
d_stream.zfree = zfree;
d_stream.opaque = (void *)0;
d_stream.next_in = compr;
d_stream.avail_in = (unsigned int)comprLen;
err = inflateInit(&d_stream);
CHECK_ERR(err, "inflateInit");
d_stream.next_out = uncompr;
d_stream.avail_out = (unsigned int)uncomprLen;
for (;;) {
err = inflate(&d_stream, Z_NO_FLUSH);
if (err == Z_STREAM_END) break;
if (err == Z_NEED_DICT) {
if (d_stream.adler != dictId) {
fprintf(stderr, "unexpected dictionary");
exit(1);
}
err = inflateSetDictionary(&d_stream, (const unsigned char*)dictionary,
(int)sizeof(dictionary));
}
CHECK_ERR(err, "inflate with dict");
}
err = inflateEnd(&d_stream);
CHECK_ERR(err, "inflateEnd");
if (strcmp((char*)uncompr, hello)) {
fprintf(stderr, "bad inflate with dict\n");
exit(1);
} else {
printf("inflate with dictionary: %s\n", (char *)uncompr);
}
}
/* ===========================================================================
* Usage: example [output.gz [input.gz]]
*/
int main(int argc, char *argv[])
{
unsigned char *compr, *uncompr;
size_t comprLen = 10000*sizeof(int); /* don't overflow on MSDOS */
size_t uncomprLen = comprLen;
static const char* myVersion = ZLIB_VERSION;
if (zlibVersion()[0] != myVersion[0]) {
fprintf(stderr, "incompatible zlib version\n");
exit(1);
} else if (strcmp(zlibVersion(), ZLIB_VERSION) != 0) {
fprintf(stderr, "warning: different zlib version\n");
}
printf("zlib version %s = 0x%04x, compile flags = 0x%lx\n",
ZLIB_VERSION, ZLIB_VERNUM, zlibCompileFlags());
compr = (unsigned char*)calloc((unsigned int)comprLen, 1);
uncompr = (unsigned char*)calloc((unsigned int)uncomprLen, 1);
/* compr and uncompr are cleared to avoid reading uninitialized
* data and to ensure that uncompr compresses well.
*/
if (compr == Z_NULL || uncompr == Z_NULL) {
printf("out of memory\n");
exit(1);
}
test_compress(compr, comprLen, uncompr, uncomprLen);
#ifdef WITH_GZFILEOP
test_gzio((argc > 1 ? argv[1] : TESTFILE),
uncompr, uncomprLen);
#endif
test_deflate(compr, comprLen);
test_inflate(compr, comprLen, uncompr, uncomprLen);
test_large_deflate(compr, comprLen, uncompr, uncomprLen);
test_large_inflate(compr, comprLen, uncompr, uncomprLen);
test_flush(compr, &comprLen);
test_sync(compr, comprLen, uncompr, uncomprLen);
comprLen = uncomprLen;
test_dict_deflate(compr, comprLen);
test_dict_inflate(compr, comprLen, uncompr, uncomprLen);
free(compr);
free(uncompr);
return 0;
}

View File

@ -1,668 +0,0 @@
/* infcover.c -- test zlib's inflate routines with full code coverage
* Copyright (C) 2011 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/
/* to use, do: ./configure --cover && make cover */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "zlib.h"
/* get definition of internal structure so we can mess with it (see pull()),
and so we can call inflate_trees() (see cover5()) */
#define ZLIB_INTERNAL
#include "inftrees.h"
#include "inflate.h"
/* -- memory tracking routines -- */
/*
These memory tracking routines are provided to zlib and track all of zlib's
allocations and deallocations, check for LIFO operations, keep a current
and high water mark of total bytes requested, optionally set a limit on the
total memory that can be allocated, and when done check for memory leaks.
They are used as follows:
z_stream strm;
mem_setup(&strm) initializes the memory tracking and sets the
zalloc, zfree, and opaque members of strm to use
memory tracking for all zlib operations on strm
mem_limit(&strm, limit) sets a limit on the total bytes requested -- a
request that exceeds this limit will result in an
allocation failure (returns NULL) -- setting the
limit to zero means no limit, which is the default
after mem_setup()
mem_used(&strm, "msg") prints to stderr "msg" and the total bytes used
mem_high(&strm, "msg") prints to stderr "msg" and the high water mark
mem_done(&strm, "msg") ends memory tracking, releases all allocations
for the tracking as well as leaked zlib blocks, if
any. If there was anything unusual, such as leaked
blocks, non-FIFO frees, or frees of addresses not
allocated, then "msg" and information about the
problem is printed to stderr. If everything is
normal, nothing is printed. mem_done resets the
strm members to Z_NULL to use the default memory
allocation routines on the next zlib initialization
using strm.
*/
/* these items are strung together in a linked list, one for each allocation */
struct mem_item {
void *ptr; /* pointer to allocated memory */
size_t size; /* requested size of allocation */
struct mem_item *next; /* pointer to next item in list, or NULL */
};
/* this structure is at the root of the linked list, and tracks statistics */
struct mem_zone {
struct mem_item *first; /* pointer to first item in list, or NULL */
size_t total, highwater; /* total allocations, and largest total */
size_t limit; /* memory allocation limit, or 0 if no limit */
int notlifo, rogue; /* counts of non-LIFO frees and rogue frees */
};
/* memory allocation routine to pass to zlib */
static void *mem_alloc(void *mem, unsigned count, unsigned size)
{
void *ptr;
struct mem_item *item;
struct mem_zone *zone = mem;
size_t len = count * (size_t)size;
/* induced allocation failure */
if (zone == NULL || (zone->limit && zone->total + len > zone->limit))
return NULL;
/* perform allocation using the standard library, fill memory with a
non-zero value to make sure that the code isn't depending on zeros */
ptr = malloc(len);
if (ptr == NULL)
return NULL;
memset(ptr, 0xa5, len);
/* create a new item for the list */
item = malloc(sizeof(struct mem_item));
if (item == NULL) {
free(ptr);
return NULL;
}
item->ptr = ptr;
item->size = len;
/* insert item at the beginning of the list */
item->next = zone->first;
zone->first = item;
/* update the statistics */
zone->total += item->size;
if (zone->total > zone->highwater)
zone->highwater = zone->total;
/* return the allocated memory */
return ptr;
}
/* memory free routine to pass to zlib */
static void mem_free(void *mem, void *ptr)
{
struct mem_item *item, *next;
struct mem_zone *zone = mem;
/* if no zone, just do a free */
if (zone == NULL) {
free(ptr);
return;
}
/* point next to the item that matches ptr, or NULL if not found -- remove
the item from the linked list if found */
next = zone->first;
if (next) {
if (next->ptr == ptr)
zone->first = next->next; /* first one is it, remove from list */
else {
do { /* search the linked list */
item = next;
next = item->next;
} while (next != NULL && next->ptr != ptr);
if (next) { /* if found, remove from linked list */
item->next = next->next;
zone->notlifo++; /* not a LIFO free */
}
}
}
/* if found, update the statistics and free the item */
if (next) {
zone->total -= next->size;
free(next);
}
/* if not found, update the rogue count */
else
zone->rogue++;
/* in any case, do the requested free with the standard library function */
free(ptr);
}
/* set up a controlled memory allocation space for monitoring, set the stream
parameters to the controlled routines, with opaque pointing to the space */
static void mem_setup(z_stream *strm)
{
struct mem_zone *zone;
zone = malloc(sizeof(struct mem_zone));
assert(zone != NULL);
zone->first = NULL;
zone->total = 0;
zone->highwater = 0;
zone->limit = 0;
zone->notlifo = 0;
zone->rogue = 0;
strm->opaque = zone;
strm->zalloc = mem_alloc;
strm->zfree = mem_free;
}
/* set a limit on the total memory allocation, or 0 to remove the limit */
static void mem_limit(z_stream *strm, size_t limit)
{
struct mem_zone *zone = strm->opaque;
zone->limit = limit;
}
/* show the current total requested allocations in bytes */
static void mem_used(z_stream *strm, char *prefix)
{
struct mem_zone *zone = strm->opaque;
fprintf(stderr, "%s: %zu allocated\n", prefix, zone->total);
}
/* show the high water allocation in bytes */
static void mem_high(z_stream *strm, char *prefix)
{
struct mem_zone *zone = strm->opaque;
fprintf(stderr, "%s: %zu high water mark\n", prefix, zone->highwater);
}
/* release the memory allocation zone -- if there are any surprises, notify */
static void mem_done(z_stream *strm, char *prefix)
{
int count = 0;
struct mem_item *item, *next;
struct mem_zone *zone = strm->opaque;
/* show high water mark */
mem_high(strm, prefix);
/* free leftover allocations and item structures, if any */
item = zone->first;
while (item != NULL) {
free(item->ptr);
next = item->next;
free(item);
item = next;
count++;
}
/* issue alerts about anything unexpected */
if (count || zone->total)
fprintf(stderr, "** %s: %zu bytes in %d blocks not freed\n",
prefix, zone->total, count);
if (zone->notlifo)
fprintf(stderr, "** %s: %d frees not LIFO\n", prefix, zone->notlifo);
if (zone->rogue)
fprintf(stderr, "** %s: %d frees not recognized\n",
prefix, zone->rogue);
/* free the zone and delete from the stream */
free(zone);
strm->opaque = Z_NULL;
strm->zalloc = Z_NULL;
strm->zfree = Z_NULL;
}
/* -- inflate test routines -- */
/* Decode a hexadecimal string, set *len to length, in[] to the bytes. This
decodes liberally, in that hex digits can be adjacent, in which case two in
a row writes a byte. Or they can be delimited by any non-hex character,
where the delimiters are ignored except when a single hex digit is followed
by a delimiter, where that single digit writes a byte. The returned data is
allocated and must eventually be freed. NULL is returned if out of memory.
If the length is not needed, then len can be NULL. */
static unsigned char *h2b(const char *hex, unsigned *len)
{
unsigned char *in, *re;
unsigned next, val;
in = malloc((strlen(hex) + 1) >> 1);
if (in == NULL)
return NULL;
next = 0;
val = 1;
do {
if (*hex >= '0' && *hex <= '9')
val = (val << 4) + *hex - '0';
else if (*hex >= 'A' && *hex <= 'F')
val = (val << 4) + *hex - 'A' + 10;
else if (*hex >= 'a' && *hex <= 'f')
val = (val << 4) + *hex - 'a' + 10;
else if (val != 1 && val < 32) /* one digit followed by delimiter */
val += 240; /* make it look like two digits */
if (val > 255) { /* have two digits */
in[next++] = val & 0xff; /* save the decoded byte */
val = 1; /* start over */
}
} while (*hex++); /* go through the loop with the terminating null */
if (len != NULL)
*len = next;
re = realloc(in, next);
return re == NULL ? in : re;
}
/* generic inflate() run, where hex is the hexadecimal input data, what is the
text to include in an error message, step is how much input data to feed
inflate() on each call, or zero to feed it all, win is the window bits
parameter to inflateInit2(), len is the size of the output buffer, and err
is the error code expected from the first inflate() call (the second
inflate() call is expected to return Z_STREAM_END). If win is 47, then
header information is collected with inflateGetHeader(). If a zlib stream
is looking for a dictionary, then an empty dictionary is provided.
inflate() is run until all of the input data is consumed. */
static void inf(char *hex, char *what, unsigned step, int win, unsigned len, int err)
{
int ret;
unsigned have;
unsigned char *in, *out;
z_stream strm, copy;
gz_header head;
mem_setup(&strm);
strm.avail_in = 0;
strm.next_in = Z_NULL;
ret = inflateInit2(&strm, win);
if (ret != Z_OK) {
mem_done(&strm, what);
return;
}
out = malloc(len); assert(out != NULL);
if (win == 47) {
head.extra = out;
head.extra_max = len;
head.name = out;
head.name_max = len;
head.comment = out;
head.comm_max = len;
ret = inflateGetHeader(&strm, &head); assert(ret == Z_OK);
}
in = h2b(hex, &have); assert(in != NULL);
if (step == 0 || step > have)
step = have;
strm.avail_in = step;
have -= step;
strm.next_in = in;
do {
strm.avail_out = len;
strm.next_out = out;
ret = inflate(&strm, Z_NO_FLUSH); assert(err == 9 || ret == err);
if (ret != Z_OK && ret != Z_BUF_ERROR && ret != Z_NEED_DICT)
break;
if (ret == Z_NEED_DICT) {
ret = inflateSetDictionary(&strm, in, 1);
assert(ret == Z_DATA_ERROR);
mem_limit(&strm, 1);
ret = inflateSetDictionary(&strm, out, 0);
assert(ret == Z_MEM_ERROR);
mem_limit(&strm, 0);
((struct inflate_state *)strm.state)->mode = DICT;
ret = inflateSetDictionary(&strm, out, 0);
assert(ret == Z_OK);
ret = inflate(&strm, Z_NO_FLUSH); assert(ret == Z_BUF_ERROR);
}
ret = inflateCopy(&copy, &strm); assert(ret == Z_OK);
ret = inflateEnd(&copy); assert(ret == Z_OK);
err = 9; /* don't care next time around */
have += strm.avail_in;
strm.avail_in = step > have ? have : step;
have -= strm.avail_in;
} while (strm.avail_in);
free(in);
free(out);
ret = inflateReset2(&strm, -8); assert(ret == Z_OK);
ret = inflateEnd(&strm); assert(ret == Z_OK);
mem_done(&strm, what);
}
/* cover all of the lines in inflate.c up to inflate() */
static void cover_support(void)
{
int ret;
z_stream strm;
mem_setup(&strm);
strm.avail_in = 0;
strm.next_in = Z_NULL;
ret = inflateInit(&strm); assert(ret == Z_OK);
mem_used(&strm, "inflate init");
ret = inflatePrime(&strm, 5, 31); assert(ret == Z_OK);
ret = inflatePrime(&strm, -1, 0); assert(ret == Z_OK);
ret = inflateSetDictionary(&strm, Z_NULL, 0);
assert(ret == Z_STREAM_ERROR);
ret = inflateEnd(&strm); assert(ret == Z_OK);
mem_done(&strm, "prime");
inf("63 0", "force window allocation", 0, -15, 1, Z_OK);
inf("63 18 5", "force window replacement", 0, -8, 259, Z_OK);
inf("63 18 68 30 d0 0 0", "force split window update", 4, -8, 259, Z_OK);
inf("3 0", "use fixed blocks", 0, -15, 1, Z_STREAM_END);
inf("", "bad window size", 0, 1, 0, Z_STREAM_ERROR);
mem_setup(&strm);
strm.avail_in = 0;
strm.next_in = Z_NULL;
ret = inflateInit_(&strm, ZLIB_VERSION + 1, (int)sizeof(z_stream));
assert(ret == Z_VERSION_ERROR);
mem_done(&strm, "wrong version");
strm.avail_in = 0;
strm.next_in = Z_NULL;
ret = inflateInit(&strm); assert(ret == Z_OK);
ret = inflateEnd(&strm); assert(ret == Z_OK);
fputs("inflate built-in memory routines\n", stderr);
}
/* cover all inflate() header and trailer cases and code after inflate() */
static void cover_wrap(void)
{
int ret;
z_stream strm, copy;
unsigned char dict[257];
ret = inflate(Z_NULL, 0); assert(ret == Z_STREAM_ERROR);
ret = inflateEnd(Z_NULL); assert(ret == Z_STREAM_ERROR);
ret = inflateCopy(Z_NULL, Z_NULL); assert(ret == Z_STREAM_ERROR);
fputs("inflate bad parameters\n", stderr);
inf("1f 8b 0 0", "bad gzip method", 0, 31, 0, Z_DATA_ERROR);
inf("1f 8b 8 80", "bad gzip flags", 0, 31, 0, Z_DATA_ERROR);
inf("77 85", "bad zlib method", 0, 15, 0, Z_DATA_ERROR);
inf("8 99", "set window size from header", 0, 0, 0, Z_OK);
inf("78 9c", "bad zlib window size", 0, 8, 0, Z_DATA_ERROR);
inf("78 9c 63 0 0 0 1 0 1", "check adler32", 0, 15, 1, Z_STREAM_END);
inf("1f 8b 8 1e 0 0 0 0 0 0 1 0 0 0 0 0 0", "bad header crc", 0, 47, 1,
Z_DATA_ERROR);
inf("1f 8b 8 2 0 0 0 0 0 0 1d 26 3 0 0 0 0 0 0 0 0 0", "check gzip length",
0, 47, 0, Z_STREAM_END);
inf("78 90", "bad zlib header check", 0, 47, 0, Z_DATA_ERROR);
inf("8 b8 0 0 0 1", "need dictionary", 0, 8, 0, Z_NEED_DICT);
inf("78 9c 63 0", "compute adler32", 0, 15, 1, Z_OK);
mem_setup(&strm);
strm.avail_in = 0;
strm.next_in = Z_NULL;
ret = inflateInit2(&strm, -8);
strm.avail_in = 2;
strm.next_in = (void *)"\x63";
strm.avail_out = 1;
strm.next_out = (void *)&ret;
mem_limit(&strm, 1);
ret = inflate(&strm, Z_NO_FLUSH); assert(ret == Z_MEM_ERROR);
ret = inflate(&strm, Z_NO_FLUSH); assert(ret == Z_MEM_ERROR);
mem_limit(&strm, 0);
memset(dict, 0, 257);
ret = inflateSetDictionary(&strm, dict, 257);
assert(ret == Z_OK);
mem_limit(&strm, (sizeof(struct inflate_state) << 1) + 256);
ret = inflatePrime(&strm, 16, 0); assert(ret == Z_OK);
strm.avail_in = 2;
strm.next_in = (void *)"\x80";
ret = inflateSync(&strm); assert(ret == Z_DATA_ERROR);
ret = inflate(&strm, Z_NO_FLUSH); assert(ret == Z_STREAM_ERROR);
strm.avail_in = 4;
strm.next_in = (void *)"\0\0\xff\xff";
ret = inflateSync(&strm); assert(ret == Z_OK);
(void)inflateSyncPoint(&strm);
ret = inflateCopy(&copy, &strm); assert(ret == Z_MEM_ERROR);
mem_limit(&strm, 0);
ret = inflateUndermine(&strm, 1); assert(ret == Z_DATA_ERROR);
(void)inflateMark(&strm);
ret = inflateEnd(&strm); assert(ret == Z_OK);
mem_done(&strm, "miscellaneous, force memory errors");
}
/* input and output functions for inflateBack() */
static unsigned pull(void *desc, const unsigned char **buf)
{
static unsigned int next = 0;
static unsigned char dat[] = {0x63, 0, 2, 0};
struct inflate_state *state;
if (desc == Z_NULL) {
next = 0;
return 0; /* no input (already provided at next_in) */
}
state = (void *)((z_stream *)desc)->state;
if (state != Z_NULL)
state->mode = SYNC; /* force an otherwise impossible situation */
return next < sizeof(dat) ? (*buf = dat + next++, 1) : 0;
}
static int push(void *desc, unsigned char *buf, unsigned len)
{
buf += len;
return desc != Z_NULL; /* force error if desc not null */
}
/* cover inflateBack() up to common deflate data cases and after those */
static void cover_back(void)
{
int ret;
z_stream strm;
unsigned char win[32768];
ret = inflateBackInit_(Z_NULL, 0, win, 0, 0);
assert(ret == Z_VERSION_ERROR);
ret = inflateBackInit(Z_NULL, 0, win); assert(ret == Z_STREAM_ERROR);
ret = inflateBack(Z_NULL, Z_NULL, Z_NULL, Z_NULL, Z_NULL);
assert(ret == Z_STREAM_ERROR);
ret = inflateBackEnd(Z_NULL); assert(ret == Z_STREAM_ERROR);
fputs("inflateBack bad parameters\n", stderr);
mem_setup(&strm);
ret = inflateBackInit(&strm, 15, win); assert(ret == Z_OK);
strm.avail_in = 2;
strm.next_in = (void *)"\x03";
ret = inflateBack(&strm, pull, Z_NULL, push, Z_NULL);
assert(ret == Z_STREAM_END);
/* force output error */
strm.avail_in = 3;
strm.next_in = (void *)"\x63\x00";
ret = inflateBack(&strm, pull, Z_NULL, push, &strm);
assert(ret == Z_BUF_ERROR);
/* force mode error by mucking with state */
ret = inflateBack(&strm, pull, &strm, push, Z_NULL);
assert(ret == Z_STREAM_ERROR);
ret = inflateBackEnd(&strm); assert(ret == Z_OK);
mem_done(&strm, "inflateBack bad state");
ret = inflateBackInit(&strm, 15, win); assert(ret == Z_OK);
ret = inflateBackEnd(&strm); assert(ret == Z_OK);
fputs("inflateBack built-in memory routines\n", stderr);
}
/* do a raw inflate of data in hexadecimal with both inflate and inflateBack */
static int try(char *hex, char *id, int err)
{
int ret;
unsigned len, size;
unsigned char *in, *out, *win;
char *prefix;
z_stream strm;
/* convert to hex */
in = h2b(hex, &len);
assert(in != NULL);
/* allocate work areas */
size = len << 3;
out = malloc(size);
assert(out != NULL);
win = malloc(32768);
assert(win != NULL);
prefix = malloc(strlen(id) + 6);
assert(prefix != NULL);
/* first with inflate */
strcpy(prefix, id);
strcat(prefix, "-late");
mem_setup(&strm);
strm.avail_in = 0;
strm.next_in = Z_NULL;
ret = inflateInit2(&strm, err < 0 ? 47 : -15);
assert(ret == Z_OK);
strm.avail_in = len;
strm.next_in = in;
do {
strm.avail_out = size;
strm.next_out = out;
ret = inflate(&strm, Z_TREES);
assert(ret != Z_STREAM_ERROR && ret != Z_MEM_ERROR);
if (ret == Z_DATA_ERROR || ret == Z_NEED_DICT)
break;
} while (strm.avail_in || strm.avail_out == 0);
if (err) {
assert(ret == Z_DATA_ERROR);
assert(strcmp(id, strm.msg) == 0);
}
inflateEnd(&strm);
mem_done(&strm, prefix);
/* then with inflateBack */
if (err >= 0) {
strcpy(prefix, id);
strcat(prefix, "-back");
mem_setup(&strm);
ret = inflateBackInit(&strm, 15, win);
assert(ret == Z_OK);
strm.avail_in = len;
strm.next_in = in;
ret = inflateBack(&strm, pull, Z_NULL, push, Z_NULL);
assert(ret != Z_STREAM_ERROR);
if (err) {
assert(ret == Z_DATA_ERROR);
assert(strcmp(id, strm.msg) == 0);
}
inflateBackEnd(&strm);
mem_done(&strm, prefix);
}
/* clean up */
free(prefix);
free(win);
free(out);
free(in);
return ret;
}
/* cover deflate data cases in both inflate() and inflateBack() */
static void cover_inflate(void)
{
try("0 0 0 0 0", "invalid stored block lengths", 1);
try("3 0", "fixed", 0);
try("6", "invalid block type", 1);
try("1 1 0 fe ff 0", "stored", 0);
try("fc 0 0", "too many length or distance symbols", 1);
try("4 0 fe ff", "invalid code lengths set", 1);
try("4 0 24 49 0", "invalid bit length repeat", 1);
try("4 0 24 e9 ff ff", "invalid bit length repeat", 1);
try("4 0 24 e9 ff 6d", "invalid code -- missing end-of-block", 1);
try("4 80 49 92 24 49 92 24 71 ff ff 93 11 0",
"invalid literal/lengths set", 1);
try("4 80 49 92 24 49 92 24 f b4 ff ff c3 84", "invalid distances set", 1);
try("4 c0 81 8 0 0 0 0 20 7f eb b 0 0", "invalid literal/length code", 1);
try("2 7e ff ff", "invalid distance code", 1);
try("c c0 81 0 0 0 0 0 90 ff 6b 4 0", "invalid distance too far back", 1);
/* also trailer mismatch just in inflate() */
try("1f 8b 8 0 0 0 0 0 0 0 3 0 0 0 0 1", "incorrect data check", -1);
try("1f 8b 8 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 1",
"incorrect length check", -1);
try("5 c0 21 d 0 0 0 80 b0 fe 6d 2f 91 6c", "pull 17", 0);
try("5 e0 81 91 24 cb b2 2c 49 e2 f 2e 8b 9a 47 56 9f fb fe ec d2 ff 1f",
"long code", 0);
try("ed c0 1 1 0 0 0 40 20 ff 57 1b 42 2c 4f", "length extra", 0);
try("ed cf c1 b1 2c 47 10 c4 30 fa 6f 35 1d 1 82 59 3d fb be 2e 2a fc f c",
"long distance and extra", 0);
try("ed c0 81 0 0 0 0 80 a0 fd a9 17 a9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "
"0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6", "window end", 0);
inf("2 8 20 80 0 3 0", "inflate_fast TYPE return", 0, -15, 258,
Z_STREAM_END);
inf("63 18 5 40 c 0", "window wrap", 3, -8, 300, Z_OK);
}
/* cover remaining lines in inftrees.c */
static void cover_trees(void)
{
int ret;
unsigned bits;
uint16_t lens[16], work[16];
code *next, table[ENOUGH_DISTS];
/* we need to call inflate_table() directly in order to manifest not-
enough errors, since zlib insures that enough is always enough */
for (bits = 0; bits < 15; bits++)
lens[bits] = (uint16_t)(bits + 1);
lens[15] = 15;
next = table;
bits = 15;
ret = inflate_table(DISTS, lens, 16, &next, &bits, work);
assert(ret == 1);
next = table;
bits = 1;
ret = inflate_table(DISTS, lens, 16, &next, &bits, work);
assert(ret == 1);
fputs("inflate_table not enough errors\n", stderr);
}
/* cover remaining inffast.c decoding and window copying */
static void cover_fast(void)
{
inf("e5 e0 81 ad 6d cb b2 2c c9 01 1e 59 63 ae 7d ee fb 4d fd b5 35 41 68"
" ff 7f 0f 0 0 0", "fast length extra bits", 0, -8, 258, Z_DATA_ERROR);
inf("25 fd 81 b5 6d 59 b6 6a 49 ea af 35 6 34 eb 8c b9 f6 b9 1e ef 67 49"
" 50 fe ff ff 3f 0 0", "fast distance extra bits", 0, -8, 258,
Z_DATA_ERROR);
inf("3 7e 0 0 0 0 0", "fast invalid distance code", 0, -8, 258,
Z_DATA_ERROR);
inf("1b 7 0 0 0 0 0", "fast invalid literal/length code", 0, -8, 258,
Z_DATA_ERROR);
inf("d c7 1 ae eb 38 c 4 41 a0 87 72 de df fb 1f b8 36 b1 38 5d ff ff 0",
"fast 2nd level codes and too far back", 0, -8, 258, Z_DATA_ERROR);
inf("63 18 5 8c 10 8 0 0 0 0", "very common case", 0, -8, 259, Z_OK);
inf("63 60 60 18 c9 0 8 18 18 18 26 c0 28 0 29 0 0 0",
"contiguous and wrap around window", 6, -8, 259, Z_OK);
inf("63 0 3 0 0 0 0 0", "copy direct from output", 0, -8, 259,
Z_STREAM_END);
}
int main(void)
{
fprintf(stderr, "%s\n", zlibVersion());
cover_support();
cover_wrap();
cover_back();
cover_inflate();
cover_trees();
cover_fast();
return 0;
}

View File

@ -1,530 +0,0 @@
/* minigzip.c -- simulate gzip using the zlib compression library
* Copyright (C) 1995-2006, 2010, 2011 Jean-loup Gailly.
* For conditions of distribution and use, see copyright notice in zlib.h
*/
/*
* minigzip is a minimal implementation of the gzip utility. This is
* only an example of using zlib and isn't meant to replace the
* full-featured gzip. No attempt is made to deal with file systems
* limiting names to 14 or 8+3 characters, etc... Error checking is
* very limited. So use minigzip only for testing; use gzip for the
* real thing.
*/
/* @(#) $Id$ */
#include "zlib.h"
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#ifdef USE_MMAP
# include <sys/types.h>
# include <sys/mman.h>
# include <sys/stat.h>
#endif
#if defined(WIN32) || defined(__CYGWIN__)
# include <fcntl.h>
# include <io.h>
# define SET_BINARY_MODE(file) setmode(fileno(file), O_BINARY)
#else
# define SET_BINARY_MODE(file)
#endif
#if defined(_MSC_VER) && _MSC_VER < 1900
# define snprintf _snprintf
#endif
#if !defined(Z_HAVE_UNISTD_H) && !defined(_LARGEFILE64_SOURCE)
#ifndef WIN32 /* unlink already in stdio.h for WIN32 */
extern int unlink (const char *);
#endif
#endif
#ifndef GZ_SUFFIX
# define GZ_SUFFIX ".gz"
#endif
#define SUFFIX_LEN (sizeof(GZ_SUFFIX)-1)
#define BUFLEN 16384 /* read buffer size */
#define BUFLENW (BUFLEN * 3) /* write buffer size */
#define MAX_NAME_LEN 1024
#ifndef WITH_GZFILEOP
/* without WITH_GZFILEOP, create simplified gz* functions using deflate and inflate */
#if defined(Z_HAVE_UNISTD_H) || defined(Z_LARGE)
# include <unistd.h> /* for unlink() */
#endif
void *myalloc (void *, unsigned, unsigned);
void myfree (void *, void *);
void *myalloc(void *q, unsigned n, unsigned m)
{
(void)q;
return calloc(n, m);
}
void myfree(void *q, void *p)
{
(void)q;
free(p);
}
typedef struct gzFile_s {
FILE *file;
int write;
int err;
const char *msg;
z_stream strm;
unsigned char *buf;
} *gzFile;
gzFile gzopen (const char *, const char *);
gzFile gzdopen (int, const char *);
gzFile gz_open (const char *, int, const char *);
gzFile gzopen(const char *path, const char *mode)
{
return gz_open(path, -1, mode);
}
gzFile gzdopen(int fd, const char *mode)
{
return gz_open(NULL, fd, mode);
}
gzFile gz_open(const char *path, int fd, const char *mode)
{
gzFile gz;
int ret;
int level = Z_DEFAULT_COMPRESSION;
const char *plevel = mode;
gz = malloc(sizeof(struct gzFile_s));
if (gz == NULL)
return NULL;
gz->write = strchr(mode, 'w') != NULL;
gz->strm.zalloc = myalloc;
gz->strm.zfree = myfree;
gz->strm.opaque = Z_NULL;
gz->buf = malloc(gz->write ? BUFLENW : BUFLEN);
if (gz->buf == NULL) {
free(gz);
return NULL;
}
while (*plevel) {
if (*plevel >= '0' && *plevel <= '9') {
level = *plevel - '0';
break;
}
plevel++;
}
if (gz->write)
ret = deflateInit2(&(gz->strm), level, 8, 15 + 16, 8, 0);
else {
gz->strm.next_in = 0;
gz->strm.avail_in = Z_NULL;
ret = inflateInit2(&(gz->strm), 15 + 16);
}
if (ret != Z_OK) {
free(gz);
return NULL;
}
gz->file = path == NULL ? fdopen(fd, gz->write ? "wb" : "rb") :
fopen(path, gz->write ? "wb" : "rb");
if (gz->file == NULL) {
gz->write ? deflateEnd(&(gz->strm)) : inflateEnd(&(gz->strm));
free(gz);
return NULL;
}
gz->err = 0;
gz->msg = "";
return gz;
}
int gzwrite (gzFile, const void *, unsigned);
int gzwrite(gzFile gz, const void *buf, unsigned len)
{
z_stream *strm;
if (gz == NULL || !gz->write)
return 0;
strm = &(gz->strm);
strm->next_in = (void *)buf;
strm->avail_in = len;
do {
strm->next_out = gz->buf;
strm->avail_out = BUFLENW;
(void)deflate(strm, Z_NO_FLUSH);
fwrite(gz->buf, 1, BUFLENW - strm->avail_out, gz->file);
} while (strm->avail_out == 0);
return len;
}
int gzread (gzFile, void *, unsigned);
int gzread(gzFile gz, void *buf, unsigned len)
{
z_stream *strm;
if (gz == NULL || gz->write || gz->err)
return 0;
strm = &(gz->strm);
strm->next_out = buf;
strm->avail_out = len;
do {
if (strm->avail_in == 0)
{
strm->next_in = gz->buf;
strm->avail_in = (uint32_t)fread(gz->buf, 1, BUFLEN, gz->file);
}
if (strm->avail_in > 0)
{
int ret = inflate(strm, Z_NO_FLUSH);
if (ret == Z_DATA_ERROR) {
gz->err = ret;
gz->msg = strm->msg;
return 0;
}
else if (ret == Z_STREAM_END)
inflateReset(strm);
}
else
break;
} while (strm->avail_out);
return len - strm->avail_out;
}
int gzclose (gzFile);
int gzclose(gzFile gz)
{
z_stream *strm;
if (gz == NULL)
return Z_STREAM_ERROR;
strm = &(gz->strm);
if (gz->write) {
strm->next_in = Z_NULL;
strm->avail_in = 0;
do {
strm->next_out = gz->buf;
strm->avail_out = BUFLENW;
(void)deflate(strm, Z_FINISH);
fwrite(gz->buf, 1, BUFLENW - strm->avail_out, gz->file);
} while (strm->avail_out == 0);
deflateEnd(strm);
}
else
inflateEnd(strm);
free(gz->buf);
fclose(gz->file);
free(gz);
return Z_OK;
}
const char *gzerror (gzFile, int *);
const char *gzerror(gzFile gz, int *err)
{
*err = gz->err;
return gz->msg;
}
#endif
char *prog;
void error (const char *msg);
void gz_compress (FILE *in, gzFile out);
#ifdef USE_MMAP
int gz_compress_mmap (FILE *in, gzFile out);
#endif
void gz_uncompress (gzFile in, FILE *out);
void file_compress (char *file, char *mode);
void file_uncompress (char *file);
int main (int argc, char *argv[]);
/* ===========================================================================
* Display error message and exit
*/
void error(const char *msg)
{
fprintf(stderr, "%s: %s\n", prog, msg);
exit(1);
}
/* ===========================================================================
* Compress input to output then close both files.
*/
void gz_compress(FILE *in, gzFile out)
{
char buf[BUFLEN];
int len;
int err;
#ifdef USE_MMAP
/* Try first compressing with mmap. If mmap fails (minigzip used in a
* pipe), use the normal fread loop.
*/
if (gz_compress_mmap(in, out) == Z_OK) return;
#endif
for (;;) {
len = (int)fread(buf, 1, sizeof(buf), in);
if (ferror(in)) {
perror("fread");
exit(1);
}
if (len == 0) break;
if (gzwrite(out, buf, (unsigned)len) != len) error(gzerror(out, &err));
}
fclose(in);
if (gzclose(out) != Z_OK) error("failed gzclose");
}
#ifdef USE_MMAP /* MMAP version, Miguel Albrecht <malbrech@eso.org> */
/* Try compressing the input file at once using mmap. Return Z_OK if
* if success, Z_ERRNO otherwise.
*/
int gz_compress_mmap(FILE *in, gzFile out)
{
int len;
int err;
int ifd = fileno(in);
caddr_t buf; /* mmap'ed buffer for the entire input file */
off_t buf_len; /* length of the input file */
struct stat sb;
/* Determine the size of the file, needed for mmap: */
if (fstat(ifd, &sb) < 0) return Z_ERRNO;
buf_len = sb.st_size;
if (buf_len <= 0) return Z_ERRNO;
/* Now do the actual mmap: */
buf = mmap((caddr_t) 0, buf_len, PROT_READ, MAP_SHARED, ifd, (off_t)0);
if (buf == (caddr_t)(-1)) return Z_ERRNO;
/* Compress the whole file at once: */
len = gzwrite(out, (char *)buf, (unsigned)buf_len);
if (len != (int)buf_len) error(gzerror(out, &err));
munmap(buf, buf_len);
fclose(in);
if (gzclose(out) != Z_OK) error("failed gzclose");
return Z_OK;
}
#endif /* USE_MMAP */
/* ===========================================================================
* Uncompress input to output then close both files.
*/
void gz_uncompress(gzFile in, FILE *out)
{
char buf[BUFLENW];
int len;
int err;
for (;;) {
len = gzread(in, buf, sizeof(buf));
if (len < 0) error (gzerror(in, &err));
if (len == 0) break;
if ((int)fwrite(buf, 1, (unsigned)len, out) != len) {
error("failed fwrite");
}
}
if (fclose(out)) error("failed fclose");
if (gzclose(in) != Z_OK) error("failed gzclose");
}
/* ===========================================================================
* Compress the given file: create a corresponding .gz file and remove the
* original.
*/
void file_compress(char *file, char *mode)
{
char outfile[MAX_NAME_LEN];
FILE *in;
gzFile out;
if (strlen(file) + strlen(GZ_SUFFIX) >= sizeof(outfile)) {
fprintf(stderr, "%s: filename too long\n", prog);
exit(1);
}
snprintf(outfile, sizeof(outfile), "%s%s", file, GZ_SUFFIX);
in = fopen(file, "rb");
if (in == NULL) {
perror(file);
exit(1);
}
out = gzopen(outfile, mode);
if (out == NULL) {
fprintf(stderr, "%s: can't gzopen %s\n", prog, outfile);
exit(1);
}
gz_compress(in, out);
unlink(file);
}
/* ===========================================================================
* Uncompress the given file and remove the original.
*/
void file_uncompress(char *file)
{
char buf[MAX_NAME_LEN];
char *infile, *outfile;
FILE *out;
gzFile in;
size_t len = strlen(file);
if (len + strlen(GZ_SUFFIX) >= sizeof(buf)) {
fprintf(stderr, "%s: filename too long\n", prog);
exit(1);
}
snprintf(buf, sizeof(buf), "%s", file);
if (len > SUFFIX_LEN && strcmp(file+len-SUFFIX_LEN, GZ_SUFFIX) == 0) {
infile = file;
outfile = buf;
outfile[len-3] = '\0';
} else {
outfile = file;
infile = buf;
snprintf(buf + len, sizeof(buf) - len, "%s", GZ_SUFFIX);
}
in = gzopen(infile, "rb");
if (in == NULL) {
fprintf(stderr, "%s: can't gzopen %s\n", prog, infile);
exit(1);
}
out = fopen(outfile, "wb");
if (out == NULL) {
perror(file);
exit(1);
}
gz_uncompress(in, out);
unlink(infile);
}
/* ===========================================================================
* Usage: minigzip [-c] [-d] [-f] [-h] [-r] [-1 to -9] [files...]
* -c : write to standard output
* -d : decompress
* -f : compress with Z_FILTERED
* -h : compress with Z_HUFFMAN_ONLY
* -r : compress with Z_RLE
* -1 to -9 : compression level
*/
int main(int argc, char *argv[])
{
int copyout = 0;
int uncompr = 0;
gzFile file;
char *bname, outmode[20];
snprintf(outmode, sizeof(outmode), "%s", "wb6 ");
prog = argv[0];
bname = strrchr(argv[0], '/');
if (bname)
bname++;
else
bname = argv[0];
argc--, argv++;
if (!strcmp(bname, "gunzip"))
uncompr = 1;
else if (!strcmp(bname, "zcat"))
copyout = uncompr = 1;
while (argc > 0) {
if (strcmp(*argv, "-c") == 0)
copyout = 1;
else if (strcmp(*argv, "-d") == 0)
uncompr = 1;
else if (strcmp(*argv, "-f") == 0)
outmode[3] = 'f';
else if (strcmp(*argv, "-h") == 0)
outmode[3] = 'h';
else if (strcmp(*argv, "-r") == 0)
outmode[3] = 'R';
else if ((*argv)[0] == '-' && (*argv)[1] >= '1' && (*argv)[1] <= '9' &&
(*argv)[2] == 0)
outmode[2] = (*argv)[1];
else
break;
argc--, argv++;
}
if (outmode[3] == ' ')
outmode[3] = 0;
if (argc == 0) {
SET_BINARY_MODE(stdin);
SET_BINARY_MODE(stdout);
if (uncompr) {
file = gzdopen(fileno(stdin), "rb");
if (file == NULL) error("can't gzdopen stdin");
gz_uncompress(file, stdout);
} else {
file = gzdopen(fileno(stdout), outmode);
if (file == NULL) error("can't gzdopen stdout");
gz_compress(stdin, file);
}
} else {
if (copyout) {
SET_BINARY_MODE(stdout);
}
do {
if (uncompr) {
if (copyout) {
file = gzopen(*argv, "rb");
if (file == NULL)
fprintf(stderr, "%s: can't gzopen %s\n", prog, *argv);
else
gz_uncompress(file, stdout);
} else {
file_uncompress(*argv);
}
} else {
if (copyout) {
FILE * in = fopen(*argv, "rb");
if (in == NULL) {
perror(*argv);
} else {
file = gzdopen(fileno(stdout), outmode);
if (file == NULL) error("can't gzdopen stdout");
gz_compress(in, file);
}
} else {
file_compress(*argv, outmode);
}
}
} while (argv++, --argc);
}
return 0;
}

View File

@ -1,22 +0,0 @@
#!/bin/bash
TESTDIR="$(dirname "$0")"
CVEs="CVE-2002-0059 CVE-2004-0797 CVE-2005-1849 CVE-2005-2096"
for CVE in $CVEs; do
fail=0
for testcase in ${TESTDIR}/${CVE}/*.gz; do
../minigzip -d < "$testcase"
# we expect that a 1 error code is OK
# for a vulnerable failure we'd expect 134 or similar
if [ $? -ne 1 ]; then
fail=1
fi
done
if [ $fail -eq 0 ]; then
echo " --- zlib not vulnerable to $CVE ---";
else
echo " --- zlib VULNERABLE to $CVE ---"; exit 1;
fi
done

View File

@ -1,116 +0,0 @@
<?xml version="1.0" ?>
<package name="zlib" version="1.2.8">
<library name="zlib" dlversion="1.2.8" dlname="z">
<property name="description"> zip compression library </property>
<property name="include-target-dir" value="$(@PACKAGE/install-includedir)" />
<!-- fixme: not implemented yet -->
<property name="compiler/c/inline" value="yes" />
<include-file name="zlib.h" scope="public" mode="644" />
<include-file name="zconf.h" scope="public" mode="644" />
<source name="adler32.c">
<depend name="zlib.h" />
<depend name="zconf.h" />
</source>
<source name="compress.c">
<depend name="zlib.h" />
<depend name="zconf.h" />
</source>
<source name="crc32.c">
<depend name="zlib.h" />
<depend name="zconf.h" />
<depend name="crc32.h" />
</source>
<source name="gzclose.c">
<depend name="zlib.h" />
<depend name="zconf.h" />
<depend name="gzguts.h" />
</source>
<source name="gzlib.c">
<depend name="zlib.h" />
<depend name="zconf.h" />
<depend name="gzguts.h" />
</source>
<source name="gzread.c">
<depend name="zlib.h" />
<depend name="zconf.h" />
<depend name="gzguts.h" />
</source>
<source name="gzwrite.c">
<depend name="zlib.h" />
<depend name="zconf.h" />
<depend name="gzguts.h" />
</source>
<source name="uncompr.c">
<depend name="zlib.h" />
<depend name="zconf.h" />
</source>
<source name="deflate.c">
<depend name="zlib.h" />
<depend name="zconf.h" />
<depend name="zutil.h" />
<depend name="deflate.h" />
</source>
<source name="trees.c">
<depend name="zlib.h" />
<depend name="zconf.h" />
<depend name="zutil.h" />
<depend name="deflate.h" />
<depend name="trees.h" />
</source>
<source name="zutil.c">
<depend name="zlib.h" />
<depend name="zconf.h" />
<depend name="zutil.h" />
</source>
<source name="inflate.c">
<depend name="zlib.h" />
<depend name="zconf.h" />
<depend name="zutil.h" />
<depend name="inftrees.h" />
<depend name="inflate.h" />
<depend name="inffast.h" />
</source>
<source name="infback.c">
<depend name="zlib.h" />
<depend name="zconf.h" />
<depend name="zutil.h" />
<depend name="inftrees.h" />
<depend name="inflate.h" />
<depend name="inffast.h" />
</source>
<source name="inftrees.c">
<depend name="zlib.h" />
<depend name="zconf.h" />
<depend name="zutil.h" />
<depend name="inftrees.h" />
</source>
<source name="inffast.c">
<depend name="zlib.h" />
<depend name="zconf.h" />
<depend name="zutil.h" />
<depend name="inftrees.h" />
<depend name="inflate.h" />
<depend name="inffast.h" />
</source>
</library>
</package>
<!--
CFLAGS=-O
#CFLAGS=-O -DMAX_WBITS=14 -DMAX_MEM_LEVEL=7
#CFLAGS=-g -DDEBUG
#CFLAGS=-O3 -Wall -Wwrite-strings -Wpointer-arith -Wconversion \
# -Wstrict-prototypes -Wmissing-prototypes
# OBJA =
# to use the asm code: make OBJA=match.o
#
match.o: match.S
$(CPP) match.S > _match.s
$(CC) -c _match.s
mv _match.o match.o
rm -f _match.s
-->

File diff suppressed because it is too large Load Diff

View File

@ -1,132 +0,0 @@
#ifndef TREES_H_
#define TREES_H_
/* header created automatically with -DGEN_TREES_H */
ZLIB_INTERNAL const ct_data static_ltree[L_CODES+2] = {
{{ 12},{ 8}}, {{140},{ 8}}, {{ 76},{ 8}}, {{204},{ 8}}, {{ 44},{ 8}},
{{172},{ 8}}, {{108},{ 8}}, {{236},{ 8}}, {{ 28},{ 8}}, {{156},{ 8}},
{{ 92},{ 8}}, {{220},{ 8}}, {{ 60},{ 8}}, {{188},{ 8}}, {{124},{ 8}},
{{252},{ 8}}, {{ 2},{ 8}}, {{130},{ 8}}, {{ 66},{ 8}}, {{194},{ 8}},
{{ 34},{ 8}}, {{162},{ 8}}, {{ 98},{ 8}}, {{226},{ 8}}, {{ 18},{ 8}},
{{146},{ 8}}, {{ 82},{ 8}}, {{210},{ 8}}, {{ 50},{ 8}}, {{178},{ 8}},
{{114},{ 8}}, {{242},{ 8}}, {{ 10},{ 8}}, {{138},{ 8}}, {{ 74},{ 8}},
{{202},{ 8}}, {{ 42},{ 8}}, {{170},{ 8}}, {{106},{ 8}}, {{234},{ 8}},
{{ 26},{ 8}}, {{154},{ 8}}, {{ 90},{ 8}}, {{218},{ 8}}, {{ 58},{ 8}},
{{186},{ 8}}, {{122},{ 8}}, {{250},{ 8}}, {{ 6},{ 8}}, {{134},{ 8}},
{{ 70},{ 8}}, {{198},{ 8}}, {{ 38},{ 8}}, {{166},{ 8}}, {{102},{ 8}},
{{230},{ 8}}, {{ 22},{ 8}}, {{150},{ 8}}, {{ 86},{ 8}}, {{214},{ 8}},
{{ 54},{ 8}}, {{182},{ 8}}, {{118},{ 8}}, {{246},{ 8}}, {{ 14},{ 8}},
{{142},{ 8}}, {{ 78},{ 8}}, {{206},{ 8}}, {{ 46},{ 8}}, {{174},{ 8}},
{{110},{ 8}}, {{238},{ 8}}, {{ 30},{ 8}}, {{158},{ 8}}, {{ 94},{ 8}},
{{222},{ 8}}, {{ 62},{ 8}}, {{190},{ 8}}, {{126},{ 8}}, {{254},{ 8}},
{{ 1},{ 8}}, {{129},{ 8}}, {{ 65},{ 8}}, {{193},{ 8}}, {{ 33},{ 8}},
{{161},{ 8}}, {{ 97},{ 8}}, {{225},{ 8}}, {{ 17},{ 8}}, {{145},{ 8}},
{{ 81},{ 8}}, {{209},{ 8}}, {{ 49},{ 8}}, {{177},{ 8}}, {{113},{ 8}},
{{241},{ 8}}, {{ 9},{ 8}}, {{137},{ 8}}, {{ 73},{ 8}}, {{201},{ 8}},
{{ 41},{ 8}}, {{169},{ 8}}, {{105},{ 8}}, {{233},{ 8}}, {{ 25},{ 8}},
{{153},{ 8}}, {{ 89},{ 8}}, {{217},{ 8}}, {{ 57},{ 8}}, {{185},{ 8}},
{{121},{ 8}}, {{249},{ 8}}, {{ 5},{ 8}}, {{133},{ 8}}, {{ 69},{ 8}},
{{197},{ 8}}, {{ 37},{ 8}}, {{165},{ 8}}, {{101},{ 8}}, {{229},{ 8}},
{{ 21},{ 8}}, {{149},{ 8}}, {{ 85},{ 8}}, {{213},{ 8}}, {{ 53},{ 8}},
{{181},{ 8}}, {{117},{ 8}}, {{245},{ 8}}, {{ 13},{ 8}}, {{141},{ 8}},
{{ 77},{ 8}}, {{205},{ 8}}, {{ 45},{ 8}}, {{173},{ 8}}, {{109},{ 8}},
{{237},{ 8}}, {{ 29},{ 8}}, {{157},{ 8}}, {{ 93},{ 8}}, {{221},{ 8}},
{{ 61},{ 8}}, {{189},{ 8}}, {{125},{ 8}}, {{253},{ 8}}, {{ 19},{ 9}},
{{275},{ 9}}, {{147},{ 9}}, {{403},{ 9}}, {{ 83},{ 9}}, {{339},{ 9}},
{{211},{ 9}}, {{467},{ 9}}, {{ 51},{ 9}}, {{307},{ 9}}, {{179},{ 9}},
{{435},{ 9}}, {{115},{ 9}}, {{371},{ 9}}, {{243},{ 9}}, {{499},{ 9}},
{{ 11},{ 9}}, {{267},{ 9}}, {{139},{ 9}}, {{395},{ 9}}, {{ 75},{ 9}},
{{331},{ 9}}, {{203},{ 9}}, {{459},{ 9}}, {{ 43},{ 9}}, {{299},{ 9}},
{{171},{ 9}}, {{427},{ 9}}, {{107},{ 9}}, {{363},{ 9}}, {{235},{ 9}},
{{491},{ 9}}, {{ 27},{ 9}}, {{283},{ 9}}, {{155},{ 9}}, {{411},{ 9}},
{{ 91},{ 9}}, {{347},{ 9}}, {{219},{ 9}}, {{475},{ 9}}, {{ 59},{ 9}},
{{315},{ 9}}, {{187},{ 9}}, {{443},{ 9}}, {{123},{ 9}}, {{379},{ 9}},
{{251},{ 9}}, {{507},{ 9}}, {{ 7},{ 9}}, {{263},{ 9}}, {{135},{ 9}},
{{391},{ 9}}, {{ 71},{ 9}}, {{327},{ 9}}, {{199},{ 9}}, {{455},{ 9}},
{{ 39},{ 9}}, {{295},{ 9}}, {{167},{ 9}}, {{423},{ 9}}, {{103},{ 9}},
{{359},{ 9}}, {{231},{ 9}}, {{487},{ 9}}, {{ 23},{ 9}}, {{279},{ 9}},
{{151},{ 9}}, {{407},{ 9}}, {{ 87},{ 9}}, {{343},{ 9}}, {{215},{ 9}},
{{471},{ 9}}, {{ 55},{ 9}}, {{311},{ 9}}, {{183},{ 9}}, {{439},{ 9}},
{{119},{ 9}}, {{375},{ 9}}, {{247},{ 9}}, {{503},{ 9}}, {{ 15},{ 9}},
{{271},{ 9}}, {{143},{ 9}}, {{399},{ 9}}, {{ 79},{ 9}}, {{335},{ 9}},
{{207},{ 9}}, {{463},{ 9}}, {{ 47},{ 9}}, {{303},{ 9}}, {{175},{ 9}},
{{431},{ 9}}, {{111},{ 9}}, {{367},{ 9}}, {{239},{ 9}}, {{495},{ 9}},
{{ 31},{ 9}}, {{287},{ 9}}, {{159},{ 9}}, {{415},{ 9}}, {{ 95},{ 9}},
{{351},{ 9}}, {{223},{ 9}}, {{479},{ 9}}, {{ 63},{ 9}}, {{319},{ 9}},
{{191},{ 9}}, {{447},{ 9}}, {{127},{ 9}}, {{383},{ 9}}, {{255},{ 9}},
{{511},{ 9}}, {{ 0},{ 7}}, {{ 64},{ 7}}, {{ 32},{ 7}}, {{ 96},{ 7}},
{{ 16},{ 7}}, {{ 80},{ 7}}, {{ 48},{ 7}}, {{112},{ 7}}, {{ 8},{ 7}},
{{ 72},{ 7}}, {{ 40},{ 7}}, {{104},{ 7}}, {{ 24},{ 7}}, {{ 88},{ 7}},
{{ 56},{ 7}}, {{120},{ 7}}, {{ 4},{ 7}}, {{ 68},{ 7}}, {{ 36},{ 7}},
{{100},{ 7}}, {{ 20},{ 7}}, {{ 84},{ 7}}, {{ 52},{ 7}}, {{116},{ 7}},
{{ 3},{ 8}}, {{131},{ 8}}, {{ 67},{ 8}}, {{195},{ 8}}, {{ 35},{ 8}},
{{163},{ 8}}, {{ 99},{ 8}}, {{227},{ 8}}
};
local const ct_data static_dtree[D_CODES] = {
{{ 0},{ 5}}, {{16},{ 5}}, {{ 8},{ 5}}, {{24},{ 5}}, {{ 4},{ 5}},
{{20},{ 5}}, {{12},{ 5}}, {{28},{ 5}}, {{ 2},{ 5}}, {{18},{ 5}},
{{10},{ 5}}, {{26},{ 5}}, {{ 6},{ 5}}, {{22},{ 5}}, {{14},{ 5}},
{{30},{ 5}}, {{ 1},{ 5}}, {{17},{ 5}}, {{ 9},{ 5}}, {{25},{ 5}},
{{ 5},{ 5}}, {{21},{ 5}}, {{13},{ 5}}, {{29},{ 5}}, {{ 3},{ 5}},
{{19},{ 5}}, {{11},{ 5}}, {{27},{ 5}}, {{ 7},{ 5}}, {{23},{ 5}}
};
const unsigned char ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {
0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8,
8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 16, 17,
18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22,
23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27,
27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29
};
const unsigned char ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {
0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 12, 12,
13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16,
17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19,
19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22,
22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23,
23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26,
26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28
};
local const int base_length[LENGTH_CODES] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56,
64, 80, 96, 112, 128, 160, 192, 224, 0
};
local const int base_dist[D_CODES] = {
0, 1, 2, 3, 4, 6, 8, 12, 16, 24,
32, 48, 64, 96, 128, 192, 256, 384, 512, 768,
1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576
};
#endif /* TREES_H_ */

View File

@ -1,75 +0,0 @@
/* uncompr.c -- decompress a memory buffer
* Copyright (C) 1995-2003, 2010, 2014 Jean-loup Gailly, Mark Adler.
* For conditions of distribution and use, see copyright notice in zlib.h
*/
/* @(#) $Id$ */
#define ZLIB_INTERNAL
#include "zlib.h"
/* ===========================================================================
Decompresses the source buffer into the destination buffer. sourceLen is
the byte length of the source buffer. Upon entry, destLen is the total
size of the destination buffer, which must be large enough to hold the
entire uncompressed data. (The size of the uncompressed data must have
been saved previously by the compressor and transmitted to the decompressor
by some mechanism outside the scope of this compression library.)
Upon exit, destLen is the actual size of the compressed buffer.
uncompress returns Z_OK if success, Z_MEM_ERROR if there was not
enough memory, Z_BUF_ERROR if there was not enough room in the output
buffer, or Z_DATA_ERROR if the input data was corrupted, including if the
input data is an incomplete zlib stream.
*/
int ZEXPORT uncompress(unsigned char *dest, size_t *destLen, const unsigned char *source, size_t sourceLen) {
z_stream stream;
int err;
const unsigned int max = (unsigned int)0 - 1;
size_t left;
unsigned char buf[1]; /* for detection of incomplete stream when *destLen == 0 */
if (*destLen) {
left = *destLen;
*destLen = 0;
}
else {
left = 1;
dest = buf;
}
stream.next_in = (const unsigned char *)source;
stream.avail_in = 0;
stream.zalloc = (alloc_func)0;
stream.zfree = (free_func)0;
stream.opaque = NULL;
err = inflateInit(&stream);
if (err != Z_OK) return err;
stream.next_out = dest;
stream.avail_out = 0;
do {
if (stream.avail_out == 0) {
stream.avail_out = left > (unsigned long)max ? max : (unsigned int)left;
left -= stream.avail_out;
}
if (stream.avail_in == 0) {
stream.avail_in = sourceLen > (unsigned long)max ? max : (unsigned int)sourceLen;
sourceLen -= stream.avail_in;
}
err = inflate(&stream, Z_NO_FLUSH);
} while (err == Z_OK);
if (dest != buf)
*destLen = stream.total_out;
else if (stream.total_out && err == Z_BUF_ERROR)
left = 1;
inflateEnd(&stream);
return err == Z_STREAM_END ? Z_OK :
err == Z_NEED_DICT ? Z_DATA_ERROR :
err == Z_BUF_ERROR && left + stream.avail_out ? Z_DATA_ERROR :
err;
}

View File

@ -1,397 +0,0 @@
Frequently Asked Questions about ZLIB1.DLL
This document describes the design, the rationale, and the usage
of the official DLL build of zlib, named ZLIB1.DLL. If you have
general questions about zlib, you should see the file "FAQ" found
in the zlib distribution, or at the following location:
http://www.gzip.org/zlib/zlib_faq.html
1. What is ZLIB1.DLL, and how can I get it?
- ZLIB1.DLL is the official build of zlib as a DLL.
(Please remark the character '1' in the name.)
Pointers to a precompiled ZLIB1.DLL can be found in the zlib
web site at:
http://www.zlib.net/
Applications that link to ZLIB1.DLL can rely on the following
specification:
* The exported symbols are exclusively defined in the source
files "zlib.h" and "zlib.def", found in an official zlib
source distribution.
* The symbols are exported by name, not by ordinal.
* The exported names are undecorated.
* The calling convention of functions is "C" (CDECL).
* The ZLIB1.DLL binary is linked to MSVCRT.DLL.
The archive in which ZLIB1.DLL is bundled contains compiled
test programs that must run with a valid build of ZLIB1.DLL.
It is recommended to download the prebuilt DLL from the zlib
web site, instead of building it yourself, to avoid potential
incompatibilities that could be introduced by your compiler
and build settings. If you do build the DLL yourself, please
make sure that it complies with all the above requirements,
and it runs with the precompiled test programs, bundled with
the original ZLIB1.DLL distribution.
If, for any reason, you need to build an incompatible DLL,
please use a different file name.
2. Why did you change the name of the DLL to ZLIB1.DLL?
What happened to the old ZLIB.DLL?
- The old ZLIB.DLL, built from zlib-1.1.4 or earlier, required
compilation settings that were incompatible to those used by
a static build. The DLL settings were supposed to be enabled
by defining the macro ZLIB_DLL, before including "zlib.h".
Incorrect handling of this macro was silently accepted at
build time, resulting in two major problems:
* ZLIB_DLL was missing from the old makefile. When building
the DLL, not all people added it to the build options. In
consequence, incompatible incarnations of ZLIB.DLL started
to circulate around the net.
* When switching from using the static library to using the
DLL, applications had to define the ZLIB_DLL macro and
to recompile all the sources that contained calls to zlib
functions. Failure to do so resulted in creating binaries
that were unable to run with the official ZLIB.DLL build.
The only possible solution that we could foresee was to make
a binary-incompatible change in the DLL interface, in order to
remove the dependency on the ZLIB_DLL macro, and to release
the new DLL under a different name.
We chose the name ZLIB1.DLL, where '1' indicates the major
zlib version number. We hope that we will not have to break
the binary compatibility again, at least not as long as the
zlib-1.x series will last.
There is still a ZLIB_DLL macro, that can trigger a more
efficient build and use of the DLL, but compatibility no
longer dependents on it.
3. Can I build ZLIB.DLL from the new zlib sources, and replace
an old ZLIB.DLL, that was built from zlib-1.1.4 or earlier?
- In principle, you can do it by assigning calling convention
keywords to the macros ZEXPORT and ZEXPORTVA. In practice,
it depends on what you mean by "an old ZLIB.DLL", because the
old DLL exists in several mutually-incompatible versions.
You have to find out first what kind of calling convention is
being used in your particular ZLIB.DLL build, and to use the
same one in the new build. If you don't know what this is all
about, you might be better off if you would just leave the old
DLL intact.
4. Can I compile my application using the new zlib interface, and
link it to an old ZLIB.DLL, that was built from zlib-1.1.4 or
earlier?
- The official answer is "no"; the real answer depends again on
what kind of ZLIB.DLL you have. Even if you are lucky, this
course of action is unreliable.
If you rebuild your application and you intend to use a newer
version of zlib (post- 1.1.4), it is strongly recommended to
link it to the new ZLIB1.DLL.
5. Why are the zlib symbols exported by name, and not by ordinal?
- Although exporting symbols by ordinal is a little faster, it
is risky. Any single glitch in the maintenance or use of the
DEF file that contains the ordinals can result in incompatible
builds and frustrating crashes. Simply put, the benefits of
exporting symbols by ordinal do not justify the risks.
Technically, it should be possible to maintain ordinals in
the DEF file, and still export the symbols by name. Ordinals
exist in every DLL, and even if the dynamic linking performed
at the DLL startup is searching for names, ordinals serve as
hints, for a faster name lookup. However, if the DEF file
contains ordinals, the Microsoft linker automatically builds
an implib that will cause the executables linked to it to use
those ordinals, and not the names. It is interesting to
notice that the GNU linker for Win32 does not suffer from this
problem.
It is possible to avoid the DEF file if the exported symbols
are accompanied by a "__declspec(dllexport)" attribute in the
source files. You can do this in zlib by predefining the
ZLIB_DLL macro.
6. I see that the ZLIB1.DLL functions use the "C" (CDECL) calling
convention. Why not use the STDCALL convention?
STDCALL is the standard convention in Win32, and I need it in
my Visual Basic project!
(For readability, we use CDECL to refer to the convention
triggered by the "__cdecl" keyword, STDCALL to refer to
the convention triggered by "__stdcall", and FASTCALL to
refer to the convention triggered by "__fastcall".)
- Most of the native Windows API functions (without varargs) use
indeed the WINAPI convention (which translates to STDCALL in
Win32), but the standard C functions use CDECL. If a user
application is intrinsically tied to the Windows API (e.g.
it calls native Windows API functions such as CreateFile()),
sometimes it makes sense to decorate its own functions with
WINAPI. But if ANSI C or POSIX portability is a goal (e.g.
it calls standard C functions such as fopen()), it is not a
sound decision to request the inclusion of <windows.h>, or to
use non-ANSI constructs, for the sole purpose to make the user
functions STDCALL-able.
The functionality offered by zlib is not in the category of
"Windows functionality", but is more like "C functionality".
Technically, STDCALL is not bad; in fact, it is slightly
faster than CDECL, and it works with variable-argument
functions, just like CDECL. It is unfortunate that, in spite
of using STDCALL in the Windows API, it is not the default
convention used by the C compilers that run under Windows.
The roots of the problem reside deep inside the unsafety of
the K&R-style function prototypes, where the argument types
are not specified; but that is another story for another day.
The remaining fact is that CDECL is the default convention.
Even if an explicit convention is hard-coded into the function
prototypes inside C headers, problems may appear. The
necessity to expose the convention in users' callbacks is one
of these problems.
The calling convention issues are also important when using
zlib in other programming languages. Some of them, like Ada
(GNAT) and Fortran (GNU G77), have C bindings implemented
initially on Unix, and relying on the C calling convention.
On the other hand, the pre- .NET versions of Microsoft Visual
Basic require STDCALL, while Borland Delphi prefers, although
it does not require, FASTCALL.
In fairness to all possible uses of zlib outside the C
programming language, we choose the default "C" convention.
Anyone interested in different bindings or conventions is
encouraged to maintain specialized projects. The "contrib/"
directory from the zlib distribution already holds a couple
of foreign bindings, such as Ada, C++, and Delphi.
7. I need a DLL for my Visual Basic project. What can I do?
- Define the ZLIB_WINAPI macro before including "zlib.h", when
building both the DLL and the user application (except that
you don't need to define anything when using the DLL in Visual
Basic). The ZLIB_WINAPI macro will switch on the WINAPI
(STDCALL) convention. The name of this DLL must be different
than the official ZLIB1.DLL.
Gilles Vollant has contributed a build named ZLIBWAPI.DLL,
with the ZLIB_WINAPI macro turned on, and with the minizip
functionality built in. For more information, please read
the notes inside "contrib/vstudio/readme.txt", found in the
zlib distribution.
8. I need to use zlib in my Microsoft .NET project. What can I
do?
- Henrik Ravn has contributed a .NET wrapper around zlib. Look
into contrib/dotzlib/, inside the zlib distribution.
9. If my application uses ZLIB1.DLL, should I link it to
MSVCRT.DLL? Why?
- It is not required, but it is recommended to link your
application to MSVCRT.DLL, if it uses ZLIB1.DLL.
The executables (.EXE, .DLL, etc.) that are involved in the
same process and are using the C run-time library (i.e. they
are calling standard C functions), must link to the same
library. There are several libraries in the Win32 system:
CRTDLL.DLL, MSVCRT.DLL, the static C libraries, etc.
Since ZLIB1.DLL is linked to MSVCRT.DLL, the executables that
depend on it should also be linked to MSVCRT.DLL.
10. Why are you saying that ZLIB1.DLL and my application should
be linked to the same C run-time (CRT) library? I linked my
application and my DLLs to different C libraries (e.g. my
application to a static library, and my DLLs to MSVCRT.DLL),
and everything works fine.
- If a user library invokes only pure Win32 API (accessible via
<windows.h> and the related headers), its DLL build will work
in any context. But if this library invokes standard C API,
things get more complicated.
There is a single Win32 library in a Win32 system. Every
function in this library resides in a single DLL module, that
is safe to call from anywhere. On the other hand, there are
multiple versions of the C library, and each of them has its
own separate internal state. Standalone executables and user
DLLs that call standard C functions must link to a C run-time
(CRT) library, be it static or shared (DLL). Intermixing
occurs when an executable (not necessarily standalone) and a
DLL are linked to different CRTs, and both are running in the
same process.
Intermixing multiple CRTs is possible, as long as their
internal states are kept intact. The Microsoft Knowledge Base
articles KB94248 "HOWTO: Use the C Run-Time" and KB140584
"HOWTO: Link with the Correct C Run-Time (CRT) Library"
mention the potential problems raised by intermixing.
If intermixing works for you, it's because your application
and DLLs are avoiding the corruption of each of the CRTs'
internal states, maybe by careful design, or maybe by fortune.
Also note that linking ZLIB1.DLL to non-Microsoft CRTs, such
as those provided by Borland, raises similar problems.
11. Why are you linking ZLIB1.DLL to MSVCRT.DLL?
- MSVCRT.DLL exists on every Windows 95 with a new service pack
installed, or with Microsoft Internet Explorer 4 or later, and
on all other Windows 4.x or later (Windows 98, Windows NT 4,
or later). It is freely distributable; if not present in the
system, it can be downloaded from Microsoft or from other
software provider for free.
The fact that MSVCRT.DLL does not exist on a virgin Windows 95
is not so problematic. Windows 95 is scarcely found nowadays,
Microsoft ended its support a long time ago, and many recent
applications from various vendors, including Microsoft, do not
even run on it. Furthermore, no serious user should run
Windows 95 without a proper update installed.
12. Why are you not linking ZLIB1.DLL to
<<my favorite C run-time library>> ?
- We considered and abandoned the following alternatives:
* Linking ZLIB1.DLL to a static C library (LIBC.LIB, or
LIBCMT.LIB) is not a good option. People are using the DLL
mainly to save disk space. If you are linking your program
to a static C library, you may as well consider linking zlib
in statically, too.
* Linking ZLIB1.DLL to CRTDLL.DLL looks appealing, because
CRTDLL.DLL is present on every Win32 installation.
Unfortunately, it has a series of problems: it does not
work properly with Microsoft's C++ libraries, it does not
provide support for 64-bit file offsets, (and so on...),
and Microsoft discontinued its support a long time ago.
* Linking ZLIB1.DLL to MSVCR70.DLL or MSVCR71.DLL, supplied
with the Microsoft .NET platform, and Visual C++ 7.0/7.1,
raises problems related to the status of ZLIB1.DLL as a
system component. According to the Microsoft Knowledge Base
article KB326922 "INFO: Redistribution of the Shared C
Runtime Component in Visual C++ .NET", MSVCR70.DLL and
MSVCR71.DLL are not supposed to function as system DLLs,
because they may clash with MSVCRT.DLL. Instead, the
application's installer is supposed to put these DLLs
(if needed) in the application's private directory.
If ZLIB1.DLL depends on a non-system runtime, it cannot
function as a redistributable system component.
* Linking ZLIB1.DLL to non-Microsoft runtimes, such as
Borland's, or Cygwin's, raises problems related to the
reliable presence of these runtimes on Win32 systems.
It's easier to let the DLL build of zlib up to the people
who distribute these runtimes, and who may proceed as
explained in the answer to Question 14.
13. If ZLIB1.DLL cannot be linked to MSVCR70.DLL or MSVCR71.DLL,
how can I build/use ZLIB1.DLL in Microsoft Visual C++ 7.0
(Visual Studio .NET) or newer?
- Due to the problems explained in the Microsoft Knowledge Base
article KB326922 (see the previous answer), the C runtime that
comes with the VC7 environment is no longer considered a
system component. That is, it should not be assumed that this
runtime exists, or may be installed in a system directory.
Since ZLIB1.DLL is supposed to be a system component, it may
not depend on a non-system component.
In order to link ZLIB1.DLL and your application to MSVCRT.DLL
in VC7, you need the library of Visual C++ 6.0 or older. If
you don't have this library at hand, it's probably best not to
use ZLIB1.DLL.
We are hoping that, in the future, Microsoft will provide a
way to build applications linked to a proper system runtime,
from the Visual C++ environment. Until then, you have a
couple of alternatives, such as linking zlib in statically.
If your application requires dynamic linking, you may proceed
as explained in the answer to Question 14.
14. I need to link my own DLL build to a CRT different than
MSVCRT.DLL. What can I do?
- Feel free to rebuild the DLL from the zlib sources, and link
it the way you want. You should, however, clearly state that
your build is unofficial. You should give it a different file
name, and/or install it in a private directory that can be
accessed by your application only, and is not visible to the
others (i.e. it's neither in the PATH, nor in the SYSTEM or
SYSTEM32 directories). Otherwise, your build may clash with
applications that link to the official build.
For example, in Cygwin, zlib is linked to the Cygwin runtime
CYGWIN1.DLL, and it is distributed under the name CYGZ.DLL.
15. May I include additional pieces of code that I find useful,
link them in ZLIB1.DLL, and export them?
- No. A legitimate build of ZLIB1.DLL must not include code
that does not originate from the official zlib source code.
But you can make your own private DLL build, under a different
file name, as suggested in the previous answer.
For example, zlib is a part of the VCL library, distributed
with Borland Delphi and C++ Builder. The DLL build of VCL
is a redistributable file, named VCLxx.DLL.
16. May I remove some functionality out of ZLIB1.DLL, by enabling
macros like NO_GZCOMPRESS or NO_GZIP at compile time?
- No. A legitimate build of ZLIB1.DLL must provide the complete
zlib functionality, as implemented in the official zlib source
code. But you can make your own private DLL build, under a
different file name, as suggested in the previous answer.
17. I made my own ZLIB1.DLL build. Can I test it for compliance?
- We prefer that you download the official DLL from the zlib
web site. If you need something peculiar from this DLL, you
can send your suggestion to the zlib mailing list.
However, in case you do rebuild the DLL yourself, you can run
it with the test programs found in the DLL distribution.
Running these test programs is not a guarantee of compliance,
but a failure can imply a detected problem.
**
This document is written and maintained by
Cosmin Truta <cosmint@cs.ubbcluj.ro>

View File

@ -1,154 +0,0 @@
# Makefile for zlib using Microsoft (Visual) C
# zlib is copyright (C) 1995-2006 Jean-loup Gailly and Mark Adler
#
# Usage:
# nmake -f win32/Makefile.msc (standard build)
# nmake -f win32/Makefile.msc LOC=-DFOO (nonstandard build)
# The toplevel directory of the source tree.
#
TOP = .
# optional build flags
LOC =
# variables
STATICLIB = zlib.lib
SHAREDLIB = zlib1.dll
IMPLIB = zdll.lib
CC = cl
LD = link
AR = lib
RC = rc
CP = copy /y
CFLAGS = -nologo -MD -W3 -O2 -Oy- -Zi -Fd"zlib" $(LOC)
WFLAGS = -D_CRT_SECURE_NO_DEPRECATE -D_CRT_NONSTDC_NO_DEPRECATE -DX86_PCLMULQDQ_CRC -DX86_SSE2_FILL_WINDOW -DX86_CPUID -DX86_SSE4_2_CRC_HASH -DUNALIGNED_OK -DUNROLL_LESS -DX86_QUICK_STRATEGY
LDFLAGS = -nologo -debug -incremental:no -opt:ref -manifest
ARFLAGS = -nologo
RCFLAGS = /dWIN32 /r
DEFFILE = zlib.def
WITH_GZFILEOP =
OBJS = adler32.obj compress.obj crc32.obj deflate.obj deflate_fast.obj deflate_quick.obj deflate_slow.obj \
infback.obj inflate.obj inftrees.obj inffast.obj match.obj trees.obj uncompr.obj zutil.obj x86.obj fill_window_sse.obj insert_string_sse.obj crc_folding.obj
!if "$(WITH_GZFILEOP)" != ""
WFLAGS = $(WFLAGS) -DWITH_GZFILEOP
OBJS = $(OBJS) gzclose.obj gzlib.obj gzread.obj gzwrite.obj
DEFFILE = zlibcompat.def
!endif
# targets
all: $(STATICLIB) $(SHAREDLIB) $(IMPLIB) \
example.exe minigzip.exe example_d.exe minigzip_d.exe
$(STATICLIB): $(OBJS)
$(AR) $(ARFLAGS) -out:$@ $(OBJS)
$(IMPLIB): $(SHAREDLIB)
$(SHAREDLIB): $(TOP)/win32/zlib.def $(OBJS) zlib1.res
$(LD) $(LDFLAGS) -def:$(TOP)/win32/$(DEFFILE) -dll -implib:$(IMPLIB) \
-out:$@ -base:0x5A4C0000 $(OBJS) zlib1.res
if exist $@.manifest \
mt -nologo -manifest $@.manifest -outputresource:$@;2
example.exe: example.obj $(STATICLIB)
$(LD) $(LDFLAGS) example.obj $(STATICLIB)
if exist $@.manifest \
mt -nologo -manifest $@.manifest -outputresource:$@;1
minigzip.exe: minigzip.obj $(STATICLIB)
$(LD) $(LDFLAGS) minigzip.obj $(STATICLIB)
if exist $@.manifest \
mt -nologo -manifest $@.manifest -outputresource:$@;1
example_d.exe: example.obj $(IMPLIB)
$(LD) $(LDFLAGS) -out:$@ example.obj $(IMPLIB)
if exist $@.manifest \
mt -nologo -manifest $@.manifest -outputresource:$@;1
minigzip_d.exe: minigzip.obj $(IMPLIB)
$(LD) $(LDFLAGS) -out:$@ minigzip.obj $(IMPLIB)
if exist $@.manifest \
mt -nologo -manifest $@.manifest -outputresource:$@;1
{$(TOP)}.c.obj:
$(CC) -c $(WFLAGS) $(CFLAGS) $<
{$(TOP)/arch/x86}.c.obj:
$(CC) -c -I$(TOP) $(WFLAGS) $(CFLAGS) $<
{$(TOP)/test}.c.obj:
$(CC) -c -I$(TOP) $(WFLAGS) $(CFLAGS) $<
$(TOP)/zconf.h: $(TOP)/zconf.h.in
$(CP) $(TOP)\zconf.h.in $(TOP)\zconf.h
adler32.obj: $(TOP)/adler32.c $(TOP)/zlib.h $(TOP)/zconf.h
compress.obj: $(TOP)/compress.c $(TOP)/zlib.h $(TOP)/zconf.h
crc32.obj: $(TOP)/crc32.c $(TOP)/zlib.h $(TOP)/zconf.h $(TOP)/crc32.h
deflate.obj: $(TOP)/deflate.c $(TOP)/deflate.h $(TOP)/zutil.h $(TOP)/zlib.h $(TOP)/zconf.h
gzclose.obj: $(TOP)/gzclose.c $(TOP)/zlib.h $(TOP)/zconf.h $(TOP)/gzguts.h
gzlib.obj: $(TOP)/gzlib.c $(TOP)/zlib.h $(TOP)/zconf.h $(TOP)/gzguts.h
gzread.obj: $(TOP)/gzread.c $(TOP)/zlib.h $(TOP)/zconf.h $(TOP)/gzguts.h
gzwrite.obj: $(TOP)/gzwrite.c $(TOP)/zlib.h $(TOP)/zconf.h $(TOP)/gzguts.h
infback.obj: $(TOP)/infback.c $(TOP)/zutil.h $(TOP)/zlib.h $(TOP)/zconf.h $(TOP)/inftrees.h $(TOP)/inflate.h \
$(TOP)/inffast.h $(TOP)/inffixed.h
inffast.obj: $(TOP)/inffast.c $(TOP)/zutil.h $(TOP)/zlib.h $(TOP)/zconf.h $(TOP)/inftrees.h $(TOP)/inflate.h \
$(TOP)/inffast.h
inflate.obj: $(TOP)/inflate.c $(TOP)/zutil.h $(TOP)/zlib.h $(TOP)/zconf.h $(TOP)/inftrees.h $(TOP)/inflate.h \
$(TOP)/inffast.h $(TOP)/inffixed.h
inftrees.obj: $(TOP)/inftrees.c $(TOP)/zutil.h $(TOP)/zlib.h $(TOP)/zconf.h $(TOP)/inftrees.h
match.obj: $(TOP)/match.c $(TOP)/deflate.h
trees.obj: $(TOP)/trees.c $(TOP)/zutil.h $(TOP)/zlib.h $(TOP)/zconf.h $(TOP)/deflate.h $(TOP)/trees.h
uncompr.obj: $(TOP)/uncompr.c $(TOP)/zlib.h $(TOP)/zconf.h
zutil.obj: $(TOP)/zutil.c $(TOP)/zutil.h $(TOP)/zlib.h $(TOP)/zconf.h
example.obj: $(TOP)/test/example.c $(TOP)/zlib.h $(TOP)/zconf.h
minigzip.obj: $(TOP)/test/minigzip.c $(TOP)/zlib.h $(TOP)/zconf.h
zlib1.res: $(TOP)/win32/zlib1.rc
$(RC) $(RCFLAGS) /fo$@ $(TOP)/win32/zlib1.rc
# testing
test: example.exe minigzip.exe
example
echo hello world | minigzip | minigzip -d
testdll: example_d.exe minigzip_d.exe
example_d
echo hello world | minigzip_d | minigzip_d -d
# cleanup
clean:
-del $(STATICLIB)
-del $(SHAREDLIB)
-del $(IMPLIB)
-del *.obj
-del *.res
-del *.exp
-del *.exe
-del *.pdb
-del *.manifest
-del foo.gz
distclean: clean
-del zconf.h

View File

@ -1,103 +0,0 @@
ZLIB DATA COMPRESSION LIBRARY
zlib 1.2.8 is a general purpose data compression library. All the code is
thread safe. The data format used by the zlib library is described by RFCs
(Request for Comments) 1950 to 1952 in the files
http://www.ietf.org/rfc/rfc1950.txt (zlib format), rfc1951.txt (deflate format)
and rfc1952.txt (gzip format).
All functions of the compression library are documented in the file zlib.h
(volunteer to write man pages welcome, contact zlib@gzip.org). Two compiled
examples are distributed in this package, example and minigzip. The example_d
and minigzip_d flavors validate that the zlib1.dll file is working correctly.
Questions about zlib should be sent to <zlib@gzip.org>. The zlib home page
is http://zlib.net/ . Before reporting a problem, please check this site to
verify that you have the latest version of zlib; otherwise get the latest
version and check whether the problem still exists or not.
PLEASE read DLL_FAQ.txt, and the the zlib FAQ http://zlib.net/zlib_faq.html
before asking for help.
Manifest:
The package zlib-1.2.8-win32-x86.zip will contain the following files:
README-WIN32.txt This document
ChangeLog Changes since previous zlib packages
DLL_FAQ.txt Frequently asked questions about zlib1.dll
zlib.3.pdf Documentation of this library in Adobe Acrobat format
example.exe A statically-bound example (using zlib.lib, not the dll)
example.pdb Symbolic information for debugging example.exe
example_d.exe A zlib1.dll bound example (using zdll.lib)
example_d.pdb Symbolic information for debugging example_d.exe
minigzip.exe A statically-bound test program (using zlib.lib, not the dll)
minigzip.pdb Symbolic information for debugging minigzip.exe
minigzip_d.exe A zlib1.dll bound test program (using zdll.lib)
minigzip_d.pdb Symbolic information for debugging minigzip_d.exe
zlib.h Install these files into the compilers' INCLUDE path to
zconf.h compile programs which use zlib.lib or zdll.lib
zdll.lib Install these files into the compilers' LIB path if linking
zdll.exp a compiled program to the zlib1.dll binary
zlib.lib Install these files into the compilers' LIB path to link zlib
zlib.pdb into compiled programs, without zlib1.dll runtime dependency
(zlib.pdb provides debugging info to the compile time linker)
zlib1.dll Install this binary shared library into the system PATH, or
the program's runtime directory (where the .exe resides)
zlib1.pdb Install in the same directory as zlib1.dll, in order to debug
an application crash using WinDbg or similar tools.
All .pdb files above are entirely optional, but are very useful to a developer
attempting to diagnose program misbehavior or a crash. Many additional
important files for developers can be found in the zlib127.zip source package
available from http://zlib.net/ - review that package's README file for details.
Acknowledgments:
The deflate format used by zlib was defined by Phil Katz. The deflate and
zlib specifications were written by L. Peter Deutsch. Thanks to all the
people who reported problems and suggested various improvements in zlib; they
are too numerous to cite here.
Copyright notice:
(C) 1995-2012 Jean-loup Gailly and Mark Adler
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu
If you use the zlib library in a product, we would appreciate *not* receiving
lengthy legal documents to sign. The sources are provided for free but without
warranty of any kind. The library has been entirely written by Jean-loup
Gailly and Mark Adler; it does not include third-party code.
If you redistribute modified sources, we would appreciate that you include in
the file ChangeLog history information documenting your changes. Please read
the FAQ for more information on the distribution of modified source versions.

View File

@ -1,3 +0,0 @@
To build zlib using the Microsoft Visual C++ environment,
use the appropriate project from the projects/ directory.

View File

@ -1,55 +0,0 @@
; zlib data compression library
EXPORTS
; basic functions
zlibVersion
deflate
deflateEnd
inflate
inflateEnd
; advanced functions
deflateSetDictionary
deflateCopy
deflateReset
deflateParams
deflateTune
deflateBound
deflatePending
deflatePrime
deflateSetHeader
inflateSetDictionary
inflateGetDictionary
inflateSync
inflateCopy
inflateReset
inflateReset2
inflatePrime
inflateMark
inflateGetHeader
inflateBack
inflateBackEnd
zlibCompileFlags
; utility functions
compress
compress2
compressBound
uncompress
; large file functions
adler32_combine64
crc32_combine64
; checksum functions
adler32
crc32
adler32_combine
crc32_combine
; various hacks, don't look :)
deflateInit_
deflateInit2_
inflateInit_
inflateInit2_
inflateBackInit_
zError
inflateSyncPoint
get_crc_table
inflateUndermine
inflateResetKeep
deflateResetKeep

View File

@ -1,40 +0,0 @@
#include <winver.h>
#include "../zlib.h"
#ifdef GCC_WINDRES
VS_VERSION_INFO VERSIONINFO
#else
VS_VERSION_INFO VERSIONINFO MOVEABLE IMPURE LOADONCALL DISCARDABLE
#endif
FILEVERSION ZLIB_VER_MAJOR,ZLIB_VER_MINOR,ZLIB_VER_REVISION,0
PRODUCTVERSION ZLIB_VER_MAJOR,ZLIB_VER_MINOR,ZLIB_VER_REVISION,0
FILEFLAGSMASK VS_FFI_FILEFLAGSMASK
#ifdef _DEBUG
FILEFLAGS 1
#else
FILEFLAGS 0
#endif
FILEOS VOS__WINDOWS32
FILETYPE VFT_DLL
FILESUBTYPE 0 // not used
BEGIN
BLOCK "StringFileInfo"
BEGIN
BLOCK "040904E4"
//language ID = U.S. English, char set = Windows, Multilingual
BEGIN
VALUE "FileDescription", "zlib data compression library\0"
VALUE "FileVersion", ZLIB_VERSION "\0"
VALUE "InternalName", "zlib1.dll\0"
VALUE "LegalCopyright", "(C) 1995-2013 Jean-loup Gailly & Mark Adler\0"
VALUE "OriginalFilename", "zlib1.dll\0"
VALUE "ProductName", "zlib\0"
VALUE "ProductVersion", ZLIB_VERSION "\0"
VALUE "Comments", "For more information visit http://www.zlib.net/\0"
END
END
BLOCK "VarFileInfo"
BEGIN
VALUE "Translation", 0x0409, 1252
END
END

View File

@ -1,86 +0,0 @@
; zlib data compression library
EXPORTS
; basic functions
zlibVersion
deflate
deflateEnd
inflate
inflateEnd
; advanced functions
deflateSetDictionary
deflateCopy
deflateReset
deflateParams
deflateTune
deflateBound
deflatePending
deflatePrime
deflateSetHeader
inflateSetDictionary
inflateGetDictionary
inflateSync
inflateCopy
inflateReset
inflateReset2
inflatePrime
inflateMark
inflateGetHeader
inflateBack
inflateBackEnd
zlibCompileFlags
; utility functions
compress
compress2
compressBound
uncompress
gzopen
gzdopen
gzbuffer
gzsetparams
gzread
gzwrite
gzprintf
gzvprintf
gzputs
gzgets
gzputc
gzgetc
gzungetc
gzflush
gzseek
gzrewind
gztell
gzoffset
gzeof
gzdirect
gzclose
gzclose_r
gzclose_w
gzerror
gzclearerr
; large file functions
gzopen64
gzseek64
gztell64
gzoffset64
adler32_combine64
crc32_combine64
; checksum functions
adler32
crc32
adler32_combine
crc32_combine
; various hacks, don't look :)
deflateInit_
deflateInit2_
inflateInit_
inflateInit2_
inflateBackInit_
gzgetc_
zError
inflateSyncPoint
get_crc_table
inflateUndermine
inflateResetKeep
deflateResetKeep
gzopen_w

View File

@ -1,176 +0,0 @@
/* zconf.h -- configuration of the zlib compression library
* Copyright (C) 1995-2013 Jean-loup Gailly.
* For conditions of distribution and use, see copyright notice in zlib.h
*/
/* @(#) $Id$ */
#ifndef ZCONF_H
#define ZCONF_H
#if defined(_WINDOWS) && !defined(WINDOWS)
# define WINDOWS
#endif
#if defined(_WIN32) || defined(__WIN32__)
# ifndef WIN32
# define WIN32
# endif
#endif
#ifdef __STDC_VERSION__
# if __STDC_VERSION__ >= 199901L
# ifndef STDC99
# define STDC99
# endif
# endif
#endif
/* Maximum value for memLevel in deflateInit2 */
#ifndef MAX_MEM_LEVEL
# define MAX_MEM_LEVEL 9
#endif
/* Maximum value for windowBits in deflateInit2 and inflateInit2.
* WARNING: reducing MAX_WBITS makes minigzip unable to extract .gz files
* created by gzip. (Files created by minigzip can still be extracted by
* gzip.)
*/
#ifndef MAX_WBITS
# define MAX_WBITS 15 /* 32K LZ77 window */
#endif
/* The memory requirements for deflate are (in bytes):
(1 << (windowBits+2)) + (1 << (memLevel+9))
that is: 128K for windowBits=15 + 128K for memLevel = 8 (default values)
plus a few kilobytes for small objects. For example, if you want to reduce
the default memory requirements from 256K to 128K, compile with
make CFLAGS="-O -DMAX_WBITS=14 -DMAX_MEM_LEVEL=7"
Of course this will generally degrade compression (there's no free lunch).
The memory requirements for inflate are (in bytes) 1 << windowBits
that is, 32K for windowBits=15 (default value) plus a few kilobytes
for small objects.
*/
/* Type declarations */
#if defined(WINDOWS) || defined(WIN32)
/* If building or using zlib as a DLL, define ZLIB_DLL.
* This is not mandatory, but it offers a little performance increase.
*/
# ifdef ZLIB_DLL
# if defined(WIN32) && (!defined(__BORLANDC__) || (__BORLANDC__ >= 0x500))
# ifdef ZLIB_INTERNAL
# define ZEXTERN extern __declspec(dllexport)
# else
# define ZEXTERN extern __declspec(dllimport)
# endif
# endif
# endif /* ZLIB_DLL */
/* If building or using zlib with the WINAPI/WINAPIV calling convention,
* define ZLIB_WINAPI.
* Caution: the standard ZLIB1.DLL is NOT compiled using ZLIB_WINAPI.
*/
# ifdef ZLIB_WINAPI
# include <windows.h>
/* No need for _export, use ZLIB.DEF instead. */
/* For complete Windows compatibility, use WINAPI, not __stdcall. */
# define ZEXPORT WINAPI
# define ZEXPORTVA WINAPIV
# endif
#endif
#ifndef ZEXTERN
# define ZEXTERN extern
#endif
#ifndef ZEXPORT
# define ZEXPORT
#endif
#ifndef ZEXPORTVA
# define ZEXPORTVA
#endif
/* Fallback for something that includes us. */
typedef unsigned char Byte;
typedef Byte Bytef;
typedef unsigned int uInt; /* 16 bits or more */
typedef unsigned long uLong; /* 32 bits or more */
typedef char charf;
typedef int intf;
typedef uInt uIntf;
typedef uLong uLongf;
typedef void const *voidpc;
typedef void *voidpf;
typedef void *voidp;
#ifdef HAVE_UNISTD_H /* may be set to #if 1 by ./configure */
# define Z_HAVE_UNISTD_H
#endif
#ifdef HAVE_STDARG_H /* may be set to #if 1 by ./configure */
# define Z_HAVE_STDARG_H
#endif
#include <sys/types.h> /* for off_t */
#include <stdarg.h> /* for va_list */
#ifdef WIN32
# include <stddef.h> /* for wchar_t */
#endif
/* a little trick to accommodate both "#define _LARGEFILE64_SOURCE" and
* "#define _LARGEFILE64_SOURCE 1" as requesting 64-bit operations, (even
* though the former does not conform to the LFS document), but considering
* both "#undef _LARGEFILE64_SOURCE" and "#define _LARGEFILE64_SOURCE 0" as
* equivalently requesting no 64-bit operations
*/
#if defined(_LARGEFILE64_SOURCE) && -_LARGEFILE64_SOURCE - -1 == 1
# undef _LARGEFILE64_SOURCE
#endif
#if defined(Z_HAVE_UNISTD_H) || defined(_LARGEFILE64_SOURCE)
# include <unistd.h> /* for SEEK_*, off_t, and _LFS64_LARGEFILE */
# ifndef z_off_t
# define z_off_t off_t
# endif
#endif
#if defined(_LFS64_LARGEFILE) && _LFS64_LARGEFILE-0
# define Z_LFS64
#endif
#if defined(_LARGEFILE64_SOURCE) && defined(Z_LFS64)
# define Z_LARGE64
#endif
#if defined(_FILE_OFFSET_BITS) && _FILE_OFFSET_BITS-0 == 64 && defined(Z_LFS64)
# define Z_WANT64
#endif
#if !defined(SEEK_SET) && defined(WITH_GZFILEOP)
# define SEEK_SET 0 /* Seek from beginning of file. */
# define SEEK_CUR 1 /* Seek from current position. */
# define SEEK_END 2 /* Set file pointer to EOF plus "offset" */
#endif
#ifndef z_off_t
# define z_off_t long
#endif
#if !defined(WIN32) && defined(Z_LARGE64)
# define z_off64_t off64_t
#else
# if defined(__MSYS__)
# define z_off64_t _off64_t
# elif defined(WIN32) && !defined(__GNUC__)
# define z_off64_t __int64
# else
# define z_off64_t z_off_t
# endif
#endif
#endif /* ZCONF_H */

View File

@ -1,169 +0,0 @@
.TH ZLIB 3 "7 July 2015"
.SH NAME
zlib \- compression/decompression library
.SH SYNOPSIS
[see
.I zlib.h
for full description]
.SH DESCRIPTION
The
.I zlib
library is a general purpose data compression library.
The code is thread safe, assuming that the standard library functions
used are thread safe, such as memory allocation routines.
It provides in-memory compression and decompression functions,
including integrity checks of the uncompressed data.
This version of the library supports only one compression method (deflation)
but other algorithms may be added later
with the same stream interface.
.LP
Compression can be done in a single step if the buffers are large enough
or can be done by repeated calls of the compression function.
In the latter case,
the application must provide more input and/or consume the output
(providing more output space) before each call.
.LP
The library also supports reading and writing files in
.IR gzip (1)
(.gz) format
with an interface similar to that of stdio.
.LP
The library does not install any signal handler.
The decoder checks the consistency of the compressed data,
so the library should never crash even in the case of corrupted input.
.LP
All functions of the compression library are documented in the file
.IR zlib.h .
The distribution source includes examples of use of the library
in the files
.I test/example.c
and
.IR test/minigzip.c,
as well as other examples in the
.IR examples/
directory.
.LP
Changes to this version are documented in the file
.I ChangeLog
that accompanies the source.
.LP
.I zlib
is available in Java using the java.util.zip package:
.IP
http://java.sun.com/developer/technicalArticles/Programming/compression/
.LP
A Perl interface to
.IR zlib ,
written by Paul Marquess (pmqs@cpan.org),
is available at CPAN (Comprehensive Perl Archive Network) sites,
including:
.IP
http://search.cpan.org/~pmqs/IO-Compress-Zlib/
.LP
A Python interface to
.IR zlib ,
written by A.M. Kuchling (amk@magnet.com),
is available in Python 1.5 and later versions:
.IP
http://docs.python.org/library/zlib.html
.LP
.I zlib
is built into
.IR tcl:
.IP
http://wiki.tcl.tk/4610
.LP
An experimental package to read and write files in .zip format,
written on top of
.I zlib
by Gilles Vollant (info@winimage.com),
is available at:
.IP
http://www.winimage.com/zLibDll/minizip.html
and also in the
.I contrib/minizip
directory of the main
.I zlib
source distribution.
.SH "SEE ALSO"
The
.I zlib
web site can be found at:
.IP
http://zlib.net/
.LP
The data format used by the zlib library is described by RFC
(Request for Comments) 1950 to 1952 in the files:
.IP
http://tools.ietf.org/html/rfc1950 (for the zlib header and trailer format)
.br
http://tools.ietf.org/html/rfc1951 (for the deflate compressed data format)
.br
http://tools.ietf.org/html/rfc1952 (for the gzip header and trailer format)
.LP
Mark Nelson wrote an article about
.I zlib
for the Jan. 1997 issue of Dr. Dobb's Journal;
a copy of the article is available at:
.IP
http://marknelson.us/1997/01/01/zlib-engine/
.SH "REPORTING PROBLEMS"
Before reporting a problem,
please check the
.I zlib
web site to verify that you have the latest version of
.IR zlib ;
otherwise,
obtain the latest version and see if the problem still exists.
Please read the
.I zlib
FAQ at:
.IP
http://zlib.net/zlib_faq.html
.LP
before asking for help.
Send questions and/or comments to zlib@gzip.org,
or (for the Windows DLL version) to Gilles Vollant (info@winimage.com).
.SH AUTHORS AND LICENSE
Version 1.2.8.1
.LP
Copyright (C) 1995-2015 Jean-loup Gailly and Mark Adler
.LP
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
.LP
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
.LP
.nr step 1 1
.IP \n[step]. 3
The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
.IP \n+[step].
Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
.IP \n+[step].
This notice may not be removed or altered from any source distribution.
.LP
Jean-loup Gailly Mark Adler
.br
jloup@gzip.org madler@alumni.caltech.edu
.LP
The deflate format used by
.I zlib
was defined by Phil Katz.
The deflate and
.I zlib
specifications were written by L. Peter Deutsch.
Thanks to all the people who reported problems and suggested various
improvements in
.IR zlib ;
who are too numerous to cite here.
.LP
UNIX manual page by R. P. C. Rodgers,
U.S. National Library of Medicine (rodgers@nlm.nih.gov).
.\" end of man page

Binary file not shown.

File diff suppressed because it is too large Load Diff

View File

@ -1,83 +0,0 @@
ZLIB_1.2.0 {
global:
compressBound;
deflateBound;
inflateBack;
inflateBackEnd;
inflateBackInit_;
inflateCopy;
local:
deflate_copyright;
inflate_copyright;
inflate_fast;
inflate_table;
zcalloc;
zcfree;
z_errmsg;
gz_error;
gz_intmax;
_*;
};
ZLIB_1.2.0.2 {
gzclearerr;
gzungetc;
zlibCompileFlags;
} ZLIB_1.2.0;
ZLIB_1.2.0.8 {
deflatePrime;
} ZLIB_1.2.0.2;
ZLIB_1.2.2 {
adler32_combine;
crc32_combine;
deflateSetHeader;
inflateGetHeader;
} ZLIB_1.2.0.8;
ZLIB_1.2.2.3 {
deflateTune;
gzdirect;
} ZLIB_1.2.2;
ZLIB_1.2.2.4 {
inflatePrime;
} ZLIB_1.2.2.3;
ZLIB_1.2.3.3 {
adler32_combine64;
crc32_combine64;
gzopen64;
gzseek64;
gztell64;
inflateUndermine;
} ZLIB_1.2.2.4;
ZLIB_1.2.3.4 {
inflateReset2;
inflateMark;
} ZLIB_1.2.3.3;
ZLIB_1.2.3.5 {
gzbuffer;
gzoffset;
gzoffset64;
gzclose_r;
gzclose_w;
} ZLIB_1.2.3.4;
ZLIB_1.2.5.1 {
deflatePending;
} ZLIB_1.2.3.5;
ZLIB_1.2.5.2 {
deflateResetKeep;
gzgetc_;
inflateResetKeep;
} ZLIB_1.2.5.1;
ZLIB_1.2.7.1 {
inflateGetDictionary;
gzvprintf;
} ZLIB_1.2.5.2;

View File

@ -1,13 +0,0 @@
prefix=@CMAKE_INSTALL_PREFIX@
exec_prefix=@CMAKE_INSTALL_PREFIX@
libdir=@INSTALL_LIB_DIR@
sharedlibdir=@INSTALL_LIB_DIR@
includedir=@INSTALL_INC_DIR@
Name: zlib
Description: zlib compression library
Version: @VERSION@
Requires:
Libs: -L${libdir} -L${sharedlibdir} -lz
Cflags: -I${includedir}

View File

@ -1,13 +0,0 @@
prefix=@prefix@
exec_prefix=@exec_prefix@
libdir=@libdir@
sharedlibdir=@sharedlibdir@
includedir=@includedir@
Name: zlib
Description: zlib compression library
Version: @VERSION@
Requires:
Libs: -L${libdir} -L${sharedlibdir} -lz
Cflags: -I${includedir}

View File

@ -1,124 +0,0 @@
/* zutil.c -- target dependent utility functions for the compression library
* Copyright (C) 1995-2005, 2010, 2011, 2012 Jean-loup Gailly.
* For conditions of distribution and use, see copyright notice in zlib.h
*/
/* @(#) $Id$ */
#include "zutil.h"
#ifdef WITH_GZFILEOP
# include "gzguts.h"
#endif
const char * const z_errmsg[10] = {
"need dictionary", /* Z_NEED_DICT 2 */
"stream end", /* Z_STREAM_END 1 */
"", /* Z_OK 0 */
"file error", /* Z_ERRNO (-1) */
"stream error", /* Z_STREAM_ERROR (-2) */
"data error", /* Z_DATA_ERROR (-3) */
"insufficient memory", /* Z_MEM_ERROR (-4) */
"buffer error", /* Z_BUF_ERROR (-5) */
"incompatible version",/* Z_VERSION_ERROR (-6) */
""};
const char zlibng_string[] =
" zlib-ng 1.9.9 forked from zlib 1.2.8 ";
const char * ZEXPORT zlibVersion(void)
{
return ZLIB_VERSION;
}
unsigned long ZEXPORT zlibCompileFlags(void)
{
unsigned long flags;
flags = 0;
switch ((int)(sizeof(unsigned int))) {
case 2: break;
case 4: flags += 1; break;
case 8: flags += 2; break;
default: flags += 3;
}
switch ((int)(sizeof(unsigned long))) {
case 2: break;
case 4: flags += 1 << 2; break;
case 8: flags += 2 << 2; break;
default: flags += 3 << 2;
}
switch ((int)(sizeof(void *))) {
case 2: break;
case 4: flags += 1 << 4; break;
case 8: flags += 2 << 4; break;
default: flags += 3 << 4;
}
switch ((int)(sizeof(z_off_t))) {
case 2: break;
case 4: flags += 1 << 6; break;
case 8: flags += 2 << 6; break;
default: flags += 3 << 6;
}
#ifdef DEBUG
flags += 1 << 8;
#endif
#ifdef ZLIB_WINAPI
flags += 1 << 10;
#endif
#ifdef BUILDFIXED
flags += 1 << 12;
#endif
#ifdef DYNAMIC_CRC_TABLE
flags += 1 << 13;
#endif
#ifdef NO_GZCOMPRESS
flags += 1L << 16;
#endif
#ifdef NO_GZIP
flags += 1L << 17;
#endif
#ifdef PKZIP_BUG_WORKAROUND
flags += 1L << 20;
#endif
return flags;
}
#ifdef DEBUG
# ifndef verbose
# define verbose 0
# endif
int ZLIB_INTERNAL z_verbose = verbose;
void ZLIB_INTERNAL z_error (m)
char *m;
{
fprintf(stderr, "%s\n", m);
exit(1);
}
#endif
/* exported to allow conversion of error code to string for compress() and
* uncompress()
*/
const char * ZEXPORT zError(int err)
{
return ERR_MSG(err);
}
#ifndef MY_ZCALLOC /* Any system without a special alloc function */
void ZLIB_INTERNAL *zcalloc (void *opaque, unsigned items, unsigned size)
{
(void)opaque;
return sizeof(unsigned int) > 2 ? (void *)malloc(items * size) :
(void *)calloc(items, size);
}
void ZLIB_INTERNAL zcfree (void *opaque, void *ptr)
{
(void)opaque;
free(ptr);
}
#endif /* MY_ZCALLOC */

View File

@ -1,185 +0,0 @@
#ifndef ZUTIL_H_
#define ZUTIL_H_
/* zutil.h -- internal interface and configuration of the compression library
* Copyright (C) 1995-2013 Jean-loup Gailly.
* For conditions of distribution and use, see copyright notice in zlib.h
*/
/* WARNING: this file should *not* be used by applications. It is
part of the implementation of the compression library and is
subject to change. Applications should only use zlib.h.
*/
/* @(#) $Id$ */
#if defined(HAVE_INTERNAL)
# define ZLIB_INTERNAL __attribute__((visibility ("internal")))
#elif defined(HAVE_HIDDEN)
# define ZLIB_INTERNAL __attribute__((visibility ("hidden")))
#else
# define ZLIB_INTERNAL
#endif
#include <stddef.h>
#include <string.h>
#include <stdlib.h>
#include <stdint.h>
#include "zlib.h"
#ifndef local
# define local static
#endif
/* compile with -Dlocal if your debugger can't find static symbols */
typedef unsigned char uch; /* Included for compatibility with external code only */
typedef uint16_t ush; /* Included for compatibility with external code only */
typedef unsigned long ulg;
extern const char * const z_errmsg[10]; /* indexed by 2-zlib_error */
/* (size given to avoid silly warnings with Visual C++) */
#define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)]
#define ERR_RETURN(strm, err) return (strm->msg = ERR_MSG(err), (err))
/* To be used only when the state is known to be valid */
/* common constants */
#ifndef DEF_WBITS
# define DEF_WBITS MAX_WBITS
#endif
/* default windowBits for decompression. MAX_WBITS is for compression only */
#if MAX_MEM_LEVEL >= 8
# define DEF_MEM_LEVEL 8
#else
# define DEF_MEM_LEVEL MAX_MEM_LEVEL
#endif
/* default memLevel */
#define STORED_BLOCK 0
#define STATIC_TREES 1
#define DYN_TREES 2
/* The three kinds of block type */
#define MIN_MATCH 3
#define MAX_MATCH 258
/* The minimum and maximum match lengths */
#define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */
/* target dependencies */
#ifdef WIN32
# ifndef __CYGWIN__ /* Cygwin is Unix, not Win32 */
# define OS_CODE 0x0b
# endif
#endif
#if (defined(_MSC_VER) && (_MSC_VER > 600))
# define fdopen(fd, type) _fdopen(fd, type)
#endif
/* provide prototypes for these when building zlib without LFS */
#if !defined(WIN32) && !defined(__MSYS__) && (!defined(_LARGEFILE64_SOURCE) || _LFS64_LARGEFILE-0 == 0)
ZEXTERN uint32_t ZEXPORT adler32_combine64(uint32_t, uint32_t, z_off_t);
ZEXTERN uint32_t ZEXPORT crc32_combine64(uint32_t, uint32_t, z_off_t);
#endif
/* MS Visual Studio does not allow inline in C, only C++.
But it provides __inline instead, so use that. */
#if defined(_MSC_VER) && !defined(inline)
# define inline __inline
#endif
/* common defaults */
#ifndef OS_CODE
# define OS_CODE 0x03 /* assume Unix */
#endif
#ifndef F_OPEN
# define F_OPEN(name, mode) fopen((name), (mode))
#endif
/* functions */
/* Diagnostic functions */
#ifdef DEBUG
# include <stdio.h>
extern int ZLIB_INTERNAL z_verbose;
extern void ZLIB_INTERNAL z_error(char *m);
# define Assert(cond, msg) {if(!(cond)) z_error(msg);}
# define Trace(x) {if (z_verbose >= 0) fprintf x;}
# define Tracev(x) {if (z_verbose > 0) fprintf x;}
# define Tracevv(x) {if (z_verbose > 1) fprintf x;}
# define Tracec(c, x) {if (z_verbose > 0 && (c)) fprintf x;}
# define Tracecv(c, x) {if (z_verbose > 1 && (c)) fprintf x;}
#else
# define Assert(cond, msg)
# define Trace(x)
# define Tracev(x)
# define Tracevv(x)
# define Tracec(c, x)
# define Tracecv(c, x)
#endif
void ZLIB_INTERNAL *zcalloc(void *opaque, unsigned items, unsigned size);
void ZLIB_INTERNAL zcfree(void *opaque, void *ptr);
#define ZALLOC(strm, items, size) (*((strm)->zalloc))((strm)->opaque, (items), (size))
#define ZFREE(strm, addr) (*((strm)->zfree))((strm)->opaque, (void *)(addr))
#define TRY_FREE(s, p) {if (p) ZFREE(s, p);}
/* Reverse the bytes in a 32-bit value. Use compiler intrinsics when
possible to take advantage of hardware implementations. */
#if defined(WIN32) && (_MSC_VER >= 1300)
# pragma intrinsic(_byteswap_ulong)
# define ZSWAP32(q) _byteswap_ulong(q)
#elif defined(__Clang__) || (defined(__GNUC__) && \
(__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 2)))
# define ZSWAP32(q) __builtin_bswap32(q)
#elif defined(__GNUC__) && (__GNUC__ >= 2) && defined(__linux__)
# include <byteswap.h>
# define ZSWAP32(q) bswap_32(q)
#elif defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__NetBSD__) || defined(__DragonFly__)
# include <sys/endian.h>
# define ZSWAP32(q) bswap32(q)
#elif defined(__INTEL_COMPILER)
# define ZSWAP32(q) _bswap(q)
#else
# define ZSWAP32(q) ((((q) >> 24) & 0xff) + (((q) >> 8) & 0xff00) + \
(((q) & 0xff00) << 8) + (((q) & 0xff) << 24))
#endif /* ZSWAP32 */
/* Only enable likely/unlikely if the compiler is known to support it */
#if (defined(__GNUC__) && (__GNUC__ >= 3)) || defined(__INTEL_COMPILER) || defined(__Clang__)
# ifndef likely
# define likely(x) __builtin_expect(!!(x), 1)
# endif
# ifndef unlikely
# define unlikely(x) __builtin_expect(!!(x), 0)
# endif
#else
# ifndef likely
# define likely(x) x
# endif
# ifndef unlikely
# define unlikely(x) x
# endif
#endif /* (un)likely */
#if defined(_MSC_VER)
#define ALIGNED_(x) __declspec(align(x))
#else
#if defined(__GNUC__)
#define ALIGNED_(x) __attribute__ ((aligned(x)))
#endif
#endif
#endif /* ZUTIL_H_ */

2
contrib/poco vendored

@ -1 +1 @@
Subproject commit e30352c2c24eebecbd82d41f7054d908ac7fdc37
Subproject commit bcf9ebad48b2162d25f5fc432b176d74a09f498d

1
contrib/zlib-ng vendored Submodule

@ -0,0 +1 @@
Subproject commit e07a52dbaa35d003f5659b221b29d220c091667b

View File

@ -36,7 +36,12 @@ set(dbms_headers)
set(dbms_sources)
include(${ClickHouse_SOURCE_DIR}/cmake/dbms_glob_sources.cmake)
add_headers_and_sources(dbms src/Parsers)
add_headers_and_sources(clickhouse_common_io src/Common)
add_headers_and_sources(clickhouse_common_io src/Common/HashTable)
add_headers_and_sources(clickhouse_common_io src/Common/ZooKeeper)
add_headers_and_sources(clickhouse_common_io src/IO)
add_headers_and_sources(dbms src/Analyzers)
add_headers_and_sources(dbms src/Core)
add_headers_and_sources(dbms src/DataStreams)
@ -46,20 +51,15 @@ add_headers_and_sources(dbms src/Dictionaries)
add_headers_and_sources(dbms src/Dictionaries/Embedded)
add_headers_and_sources(dbms src/Interpreters)
add_headers_and_sources(dbms src/Interpreters/ClusterProxy)
add_headers_and_sources(dbms src/Common)
add_headers_and_sources(dbms src/Common/HashTable)
add_headers_and_sources(dbms src/Common/ZooKeeper)
add_headers_and_sources(dbms src/IO)
add_headers_and_sources(dbms src/Columns)
add_headers_and_sources(dbms src/Storages)
add_headers_and_sources(dbms src/Storages/Distributed)
add_headers_and_sources(dbms src/Storages/MergeTree)
add_headers_and_sources(dbms src/Core)
add_headers_and_sources(dbms src/Client)
add_headers_only(dbms src/Server)
list (APPEND dbms_sources ${CONFIG_BUILD})
list (APPEND dbms_headers ${CONFIG_VERSION} ${CONFIG_COMMON})
list (APPEND clickhouse_common_io_sources ${CONFIG_BUILD})
list (APPEND clickhouse_common_io_headers ${CONFIG_VERSION} ${CONFIG_COMMON})
list (APPEND dbms_sources src/Functions/IFunction.cpp src/Functions/FunctionFactory.cpp src/Functions/FunctionHelpers.cpp)
list (APPEND dbms_headers src/Functions/IFunction.h src/Functions/FunctionFactory.h src/Functions/FunctionHelpers.h)
@ -91,19 +91,23 @@ list (APPEND dbms_sources src/TableFunctions/TableFunctionFactory.cpp)
list (APPEND dbms_headers src/TableFunctions/ITableFunction.h src/TableFunctions/TableFunctionFactory.h)
list(REMOVE_ITEM dbms_sources
list(REMOVE_ITEM clickhouse_common_io_sources
src/Common/StringUtils.cpp)
list(REMOVE_ITEM clickhouse_common_io_headers
src/Common/StringUtils.h)
if (APPLE OR CMAKE_SYSTEM MATCHES "FreeBSD")
list(REMOVE_ITEM dbms_headers
list(REMOVE_ITEM clickhouse_common_io_headers
src/Common/AIO.h
src/IO/WriteBufferAIO.h
src/IO/ReadBufferAIO.h)
list(REMOVE_ITEM dbms_sources
list(REMOVE_ITEM clickhouse_common_io_sources
src/IO/ReadBufferAIO.cpp
src/IO/WriteBufferAIO.cpp)
endif()
add_library(clickhouse_common_io ${SPLIT_SHARED} ${clickhouse_common_io_headers} ${clickhouse_common_io_sources})
if (MAKE_STATIC_LIBRARIES)
add_library(dbms ${dbms_headers} ${dbms_sources})
else ()
@ -144,18 +148,24 @@ else()
set(PLATFORM_LIBS "")
endif()
target_link_libraries (dbms
target_link_libraries (clickhouse_common_io
common
${MYSQLXX_LIBRARY}
${FARMHASH_LIBRARIES}
${METROHASH_LIBRARIES}
string_utils
${LINK_LIBRARIES_ONLY_ON_X86_64}
${LZ4_LIBRARY}
${ZSTD_LIBRARY}
${ZOOKEEPER_LIBRARY}
string_utils
${DOUBLE_CONVERSION_LIBRARIES}
${Poco_Net_LIBRARY}
)
target_link_libraries (dbms
clickhouse_common_io
clickhouse_parsers
${MYSQLXX_LIBRARY}
${FARMHASH_LIBRARIES}
${METROHASH_LIBRARIES}
${ZLIB_LIBRARIES}
${LINK_LIBRARIES_ONLY_ON_X86_64}
${RE2_LIBRARY}
${RE2_ST_LIBRARY}
${OPENSSL_CRYPTO_LIBRARY}
@ -173,7 +183,7 @@ if (Poco_MongoDB_FOUND)
endif()
if (Poco_NetSSL_FOUND)
target_link_libraries (dbms ${Poco_NetSSL_LIBRARY})
target_link_libraries (clickhouse_common_io ${Poco_NetSSL_LIBRARY})
endif()
target_link_libraries (dbms ${Poco_Foundation_LIBRARY})
@ -203,16 +213,16 @@ if (NOT USE_INTERNAL_ZSTD_LIBRARY)
endif ()
target_include_directories (dbms PUBLIC ${DBMS_INCLUDE_DIR})
target_include_directories (dbms PUBLIC ${PCG_RANDOM_INCLUDE_DIR})
target_include_directories (clickhouse_common_io PUBLIC ${DBMS_INCLUDE_DIR})
target_include_directories (clickhouse_common_io PUBLIC ${PCG_RANDOM_INCLUDE_DIR})
target_include_directories (clickhouse_common_io BEFORE PUBLIC ${DOUBLE_CONVERSION_INCLUDE_DIR})
if (USE_RDKAFKA)
target_link_libraries (dbms ${RDKAFKA_LIBRARY})
endif ()
# only for copy_headers.sh:
target_include_directories (dbms BEFORE PRIVATE ${COMMON_INCLUDE_DIR})
target_include_directories (dbms BEFORE PRIVATE ${DOUBLE_CONVERSION_INCLUDE_DIR})
# also for copy_headers.sh:
target_include_directories (clickhouse_common_io BEFORE PRIVATE ${COMMON_INCLUDE_DIR})
if (ENABLE_TESTS)
add_subdirectory (tests)

View File

@ -26,6 +26,6 @@ list(REMOVE_ITEM clickhouse_aggregate_functions_headers
parseAggregateFunctionParameters.h
)
add_library(clickhouse_aggregate_functions ${clickhouse_aggregate_functions_sources})
add_library(clickhouse_aggregate_functions ${SPLIT_SHARED} ${clickhouse_aggregate_functions_sources})
target_link_libraries(clickhouse_aggregate_functions dbms)
target_include_directories (clickhouse_aggregate_functions BEFORE PRIVATE ${COMMON_INCLUDE_DIR})

View File

@ -1,4 +1,4 @@
#include <Common/Collator.h>
#include <Columns/Collator.h>
#include <Common/config.h>

View File

@ -1,6 +1,6 @@
#include <Core/Defines.h>
#include <Common/Collator.h>
#include <Columns/Collator.h>
#include <Columns/ColumnString.h>
#include <Columns/ColumnsCommon.h>
#include <DataStreams/ColumnGathererStream.h>

View File

@ -57,7 +57,7 @@ void * Allocator<clear_memory_>::alloc(size_t size, size_t alignment)
if (size >= MMAP_THRESHOLD)
{
if (alignment > MMAP_MIN_ALIGNMENT)
throw DB::Exception("Too large alignment " + formatReadableSizeWithBinarySuffix(alignment) + ": more than page size when allocating "
throw DB::Exception("Too large alignment " + formatReadableSizeWithBinarySuffix(alignment) + ": more than page size when allocating "
+ formatReadableSizeWithBinarySuffix(size) + ".", DB::ErrorCodes::BAD_ARGUMENTS);
buf = mmap(nullptr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
@ -115,7 +115,11 @@ void Allocator<clear_memory_>::free(void * buf, size_t size)
template <bool clear_memory_>
void * Allocator<clear_memory_>::realloc(void * buf, size_t old_size, size_t new_size, size_t alignment)
{
if (old_size < MMAP_THRESHOLD && new_size < MMAP_THRESHOLD && alignment <= MALLOC_MIN_ALIGNMENT)
if (old_size == new_size)
{
/// nothing to do.
}
else if (old_size < MMAP_THRESHOLD && new_size < MMAP_THRESHOLD && alignment <= MALLOC_MIN_ALIGNMENT)
{
CurrentMemoryTracker::realloc(old_size, new_size);
@ -124,7 +128,7 @@ void * Allocator<clear_memory_>::realloc(void * buf, size_t old_size, size_t new
if (nullptr == buf)
DB::throwFromErrno("Allocator: Cannot realloc from " + formatReadableSizeWithBinarySuffix(old_size) + " to " + formatReadableSizeWithBinarySuffix(new_size) + ".", DB::ErrorCodes::CANNOT_ALLOCATE_MEMORY);
if (clear_memory)
if (clear_memory && new_size > old_size)
memset(reinterpret_cast<char *>(buf) + old_size, 0, new_size - old_size);
}
else if (old_size >= MMAP_THRESHOLD && new_size >= MMAP_THRESHOLD)
@ -138,6 +142,17 @@ void * Allocator<clear_memory_>::realloc(void * buf, size_t old_size, size_t new
/// No need for zero-fill, because mmap guarantees it.
}
else if (old_size >= MMAP_THRESHOLD && new_size < MMAP_THRESHOLD)
{
void * new_buf = alloc(new_size, alignment);
memcpy(new_buf, buf, new_size);
if (0 != munmap(buf, old_size))
{
::free(new_buf);
DB::throwFromErrno("Allocator: Cannot munmap " + formatReadableSizeWithBinarySuffix(old_size) + ".", DB::ErrorCodes::CANNOT_MUNMAP);
}
buf = new_buf;
}
else
{
void * new_buf = alloc(new_size, alignment);

View File

@ -0,0 +1,257 @@
#include <Common/BackgroundSchedulePool.h>
#include <Common/MemoryTracker.h>
#include <Common/CurrentMetrics.h>
#include <Common/Exception.h>
#include <Common/setThreadName.h>
#include <Common/Stopwatch.h>
#include <common/logger_useful.h>
#include <chrono>
namespace CurrentMetrics
{
extern const Metric BackgroundSchedulePoolTask;
extern const Metric MemoryTrackingInBackgroundSchedulePool;
}
namespace DB
{
// TaskNotification
class TaskNotification final : public Poco::Notification
{
public:
explicit TaskNotification(const BackgroundSchedulePool::TaskHandle & task) : task(task) {}
void execute() { task->execute(); }
private:
BackgroundSchedulePool::TaskHandle task;
};
// BackgroundSchedulePool::TaskInfo
BackgroundSchedulePool::TaskInfo::TaskInfo(BackgroundSchedulePool & pool, const std::string & name, const Task & function):
name(name),
pool(pool),
function(function)
{
}
bool BackgroundSchedulePool::TaskInfo::schedule()
{
std::lock_guard lock(mutex);
if (deactivated || scheduled)
return false;
scheduled = true;
if (delayed)
pool.cancelDelayedTask(shared_from_this(), lock);
pool.queue.enqueueNotification(new TaskNotification(shared_from_this()));
return true;
}
bool BackgroundSchedulePool::TaskInfo::scheduleAfter(size_t ms)
{
std::lock_guard lock(mutex);
if (deactivated || scheduled)
return false;
pool.scheduleDelayedTask(shared_from_this(), ms, lock);
return true;
}
void BackgroundSchedulePool::TaskInfo::deactivate()
{
if (deactivated)
return;
std::lock_guard lock(mutex);
deactivated = true;
scheduled = false;
if (delayed)
pool.cancelDelayedTask(shared_from_this(), lock);
}
void BackgroundSchedulePool::TaskInfo::activate()
{
std::lock_guard lock(mutex);
deactivated = false;
}
void BackgroundSchedulePool::TaskInfo::execute()
{
std::lock_guard lock(mutex);
if (deactivated)
return;
scheduled = false;
CurrentMetrics::Increment metric_increment{CurrentMetrics::BackgroundSchedulePoolTask};
Stopwatch watch;
function();
UInt64 milliseconds = watch.elapsedMilliseconds();
/// If the task is executed longer than specified time, it will be logged.
static const int32_t slow_execution_threshold_ms = 50;
if (milliseconds >= slow_execution_threshold_ms)
LOG_INFO(&Logger::get("BackgroundSchedulePool"), "Executing " << name << " took " << milliseconds << " ms.");
}
// BackgroundSchedulePool
BackgroundSchedulePool::BackgroundSchedulePool(size_t size)
: size(size)
{
LOG_INFO(&Logger::get("BackgroundSchedulePool"), "Create BackgroundSchedulePool with " << size << " threads");
threads.resize(size);
for (auto & thread : threads)
thread = std::thread([this] { threadFunction(); });
delayed_thread = std::thread([this] { delayExecutionThreadFunction(); });
}
BackgroundSchedulePool::~BackgroundSchedulePool()
{
try
{
shutdown = true;
wakeup_event.notify_all();
queue.wakeUpAll();
delayed_thread.join();
LOG_TRACE(&Logger::get("BackgroundSchedulePool"), "Waiting for threads to finish.");
for (std::thread & thread : threads)
thread.join();
}
catch (...)
{
tryLogCurrentException(__PRETTY_FUNCTION__);
}
}
BackgroundSchedulePool::TaskHandle BackgroundSchedulePool::addTask(const std::string & name, const Task & task)
{
return std::make_shared<TaskInfo>(*this, name, task);
}
void BackgroundSchedulePool::removeTask(const TaskHandle & task)
{
task->deactivate();
}
void BackgroundSchedulePool::scheduleDelayedTask(const TaskHandle & task, size_t ms, std::lock_guard<std::recursive_mutex> &)
{
Poco::Timestamp current_time;
{
std::lock_guard lock(delayed_tasks_lock);
if (task->delayed)
delayed_tasks.erase(task->iterator);
task->iterator = delayed_tasks.emplace(current_time + (ms * 1000), task);
task->delayed = true;
}
wakeup_event.notify_all();
}
void BackgroundSchedulePool::cancelDelayedTask(const TaskHandle & task, std::lock_guard<std::recursive_mutex> &)
{
{
std::lock_guard lock(delayed_tasks_lock);
delayed_tasks.erase(task->iterator);
task->delayed = false;
}
wakeup_event.notify_all();
}
void BackgroundSchedulePool::threadFunction()
{
setThreadName("BackgrSchedPool");
MemoryTracker memory_tracker;
memory_tracker.setMetric(CurrentMetrics::MemoryTrackingInBackgroundSchedulePool);
current_memory_tracker = &memory_tracker;
while (!shutdown)
{
if (Poco::AutoPtr<Poco::Notification> notification = queue.waitDequeueNotification())
{
TaskNotification & task_notification = static_cast<TaskNotification &>(*notification);
task_notification.execute();
}
}
current_memory_tracker = nullptr;
}
void BackgroundSchedulePool::delayExecutionThreadFunction()
{
setThreadName("BckSchPoolDelay");
while (!shutdown)
{
Poco::Timestamp min_time;
TaskHandle task;
{
std::lock_guard lock(delayed_tasks_lock);
if (!delayed_tasks.empty())
{
auto t = delayed_tasks.begin();
min_time = t->first;
task = t->second;
}
}
if (shutdown)
break;
if (!task)
{
std::unique_lock lock(delayed_tasks_lock);
wakeup_event.wait(lock);
continue;
}
Poco::Timestamp current_time;
if (min_time > current_time)
{
std::unique_lock lock(delayed_tasks_lock);
wakeup_event.wait_for(lock, std::chrono::microseconds(min_time - current_time));
}
else
{
task->schedule();
}
}
}
}

Some files were not shown because too many files have changed in this diff Show More