From 360ec76c29a6bbfc550ed3286661becc5d40642b Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jo=C3=A3o=20Figueiredo?= Date: Wed, 20 Oct 2021 22:35:17 +0200 Subject: [PATCH] Grammar suggestions to distributed.md * fixed some typos. * improved wording of some statements. --- docs/en/engines/table-engines/special/distributed.md | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/docs/en/engines/table-engines/special/distributed.md b/docs/en/engines/table-engines/special/distributed.md index 6593a5dc17f..708dab6fb7d 100644 --- a/docs/en/engines/table-engines/special/distributed.md +++ b/docs/en/engines/table-engines/special/distributed.md @@ -5,7 +5,7 @@ toc_title: Distributed # Distributed Table Engine {#distributed} -Tables with Distributed engine do not store any data by their own, but allow distributed query processing on multiple servers. +Tables with Distributed engine do not store any data of their own, but allow distributed query processing on multiple servers. Reading is automatically parallelized. During a read, the table indexes on remote servers are used, if there are any. The Distributed engine accepts parameters: @@ -167,20 +167,20 @@ If this parameter is set to `true`, the write operation selects the first health If it is set to `false` (the default), data is written to all replicas. In essence, this means that the Distributed table replicates data itself. This is worse than using replicated tables, because the consistency of replicas is not checked, and over time they will contain slightly different data. -To select the shard that a row of data is sent to, the sharding expression is analyzed, and its remainder is taken from dividing it by the total weight of the shards. The row is sent to the shard that corresponds to the half-interval of the remainders from `prev_weight` to `prev_weights + weight`, where `prev_weights` is the total weight of the shards with the smallest number, and `weight` is the weight of this shard. For example, if there are two shards, and the first has a weight of 9 while the second has a weight of 10, the row will be sent to the first shard for the remainders from the range \[0, 9), and to the second for the remainders from the range \[9, 19). +To select the shard that a row of data is sent to, the sharding expression is analyzed, and its remainder is taken from dividing it by the total weight of the shards. The row is sent to the shard that corresponds to the half-interval of the remainders from `prev_weights` to `prev_weights + weight`, where `prev_weights` is the total weight of the shards with the smallest number, and `weight` is the weight of this shard. For example, if there are two shards, and the first has a weight of 9 while the second has a weight of 10, the row will be sent to the first shard for the remainders from the range \[0, 9), and to the second for the remainders from the range \[9, 19). The sharding expression can be any expression from constants and table columns that returns an integer. For example, you can use the expression `rand()` for random distribution of data, or `UserID` for distribution by the remainder from dividing the user’s ID (then the data of a single user will reside on a single shard, which simplifies running IN and JOIN by users). If one of the columns is not distributed evenly enough, you can wrap it in a hash function: intHash64(UserID). -A simple reminder from the division is a limited solution for sharding and isn’t always appropriate. It works for medium and large volumes of data (dozens of servers), but not for very large volumes of data (hundreds of servers or more). In the latter case, use the sharding scheme required by the subject area, rather than using entries in Distributed tables. +A simple remainder from the division is a limited solution for sharding and isn’t always appropriate. It works for medium and large volumes of data (dozens of servers), but not for very large volumes of data (hundreds of servers or more). In the latter case, use the sharding scheme required by the subject area, rather than using entries in Distributed tables. -SELECT queries are sent to all the shards and work regardless of how data is distributed across the shards (they can be distributed completely randomly). When you add a new shard, you do not have to transfer the old data to it. You can write new data with a heavier weight – the data will be distributed slightly unevenly, but queries will work correctly and efficiently. +SELECT queries are sent to all the shards and work regardless of how data is distributed across the shards (they can be distributed completely randomly). When you add a new shard, you do not have to transfer old data into it. Instead, you can write new data to it by using a heavier weight – the data will be distributed slightly unevenly, but queries will work correctly and efficiently. You should be concerned about the sharding scheme in the following cases: - Queries are used that require joining data (IN or JOIN) by a specific key. If data is sharded by this key, you can use local IN or JOIN instead of GLOBAL IN or GLOBAL JOIN, which is much more efficient. - A large number of servers is used (hundreds or more) with a large number of small queries (queries of individual clients - websites, advertisers, or partners). In order for the small queries to not affect the entire cluster, it makes sense to locate data for a single client on a single shard. Alternatively, as we’ve done in Yandex.Metrica, you can set up bi-level sharding: divide the entire cluster into “layers”, where a layer may consist of multiple shards. Data for a single client is located on a single layer, but shards can be added to a layer as necessary, and data is randomly distributed within them. Distributed tables are created for each layer, and a single shared distributed table is created for global queries. -Data is written asynchronously. When inserted in the table, the data block is just written to the local file system. The data is sent to the remote servers in the background as soon as possible. The period for sending data is managed by the [distributed_directory_monitor_sleep_time_ms](../../../operations/settings/settings.md#distributed_directory_monitor_sleep_time_ms) and [distributed_directory_monitor_max_sleep_time_ms](../../../operations/settings/settings.md#distributed_directory_monitor_max_sleep_time_ms) settings. The `Distributed` engine sends each file with inserted data separately, but you can enable batch sending of files with the [distributed_directory_monitor_batch_inserts](../../../operations/settings/settings.md#distributed_directory_monitor_batch_inserts) setting. This setting improves cluster performance by better utilizing local server and network resources. You should check whether data is sent successfully by checking the list of files (data waiting to be sent) in the table directory: `/var/lib/clickhouse/data/database/table/`. The number of threads performing background tasks can be set by [background_distributed_schedule_pool_size](../../../operations/settings/settings.md#background_distributed_schedule_pool_size) setting. +Data is written asynchronously. When inserted in the table, the data block is just written to the local file system. The data is sent to the remote servers in the background as soon as possible. The periodicity for sending data is managed by the [distributed_directory_monitor_sleep_time_ms](../../../operations/settings/settings.md#distributed_directory_monitor_sleep_time_ms) and [distributed_directory_monitor_max_sleep_time_ms](../../../operations/settings/settings.md#distributed_directory_monitor_max_sleep_time_ms) settings. The `Distributed` engine sends each file with inserted data separately, but you can enable batch sending of files with the [distributed_directory_monitor_batch_inserts](../../../operations/settings/settings.md#distributed_directory_monitor_batch_inserts) setting. This setting improves cluster performance by better utilizing local server and network resources. You should check whether data is sent successfully by checking the list of files (data waiting to be sent) in the table directory: `/var/lib/clickhouse/data/database/table/`. The number of threads performing background tasks can be set by [background_distributed_schedule_pool_size](../../../operations/settings/settings.md#background_distributed_schedule_pool_size) setting. If the server ceased to exist or had a rough restart (for example, after a device failure) after an INSERT to a Distributed table, the inserted data might be lost. If a damaged data part is detected in the table directory, it is transferred to the `broken` subdirectory and no longer used.