Merge pull request #22603 from tetafro/master

Fix grammar in RU docs
This commit is contained in:
Maksim Kita 2021-04-04 17:35:40 +03:00 committed by GitHub
commit 6d472d81f3
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -27,7 +27,7 @@ ClickHouse - полноценная колоночная СУБД. Данные
`IColumn` предоставляет методы для общих реляционных преобразований данных, но они не отвечают всем потребностям. Например, `ColumnUInt64` не имеет метода для вычисления суммы двух столбцов, а `ColumnString` не имеет метода для запуска поиска по подстроке. Эти бесчисленные процедуры реализованы вне `IColumn`.
Различные функции на колонках могут быть реализованы обобщенным, неэффективным путем, используя `IColumn` методы для извлечения значений `Field`, или специальным путем, используя знания о внутреннем распределение данных в памяти в конкретной реализации `IColumn`. Для этого функции приводятся к конкретному типу `IColumn` и работают напрямую с его внутренним представлением. Например, в `ColumnUInt64` есть метод getData, который возвращает ссылку на внутренний массив, чтение и заполнение которого, выполняется отдельной процедурой напрямую. Фактически, мы имеем "дырявую абстракции", обеспечивающие эффективные специализации различных процедур.
Различные функции на колонках могут быть реализованы обобщенным, неэффективным путем, используя `IColumn` методы для извлечения значений `Field`, или специальным путем, используя знания о внутреннем распределение данных в памяти в конкретной реализации `IColumn`. Для этого функции приводятся к конкретному типу `IColumn` и работают напрямую с его внутренним представлением. Например, в `ColumnUInt64` есть метод `getData`, который возвращает ссылку на внутренний массив, чтение и заполнение которого, выполняется отдельной процедурой напрямую. Фактически, мы имеем "дырявые абстракции", обеспечивающие эффективные специализации различных процедур.
## Типы данных (Data Types) {#data_types}
@ -42,7 +42,7 @@ ClickHouse - полноценная колоночная СУБД. Данные
## Блоки (Block) {#block}
`Block` это контейнер, который представляет фрагмент (chunk) таблицы в памяти. Это набор троек - `(IColumn, IDataType, имя колонки)`. В процессе выполнения запроса, данные обрабатываются `Block`ами. Если у нас есть `Block`, значит у нас есть данные (в объекте `IColumn`), информация о типе (в `IDataType`), которая говорит нам, как работать с колонкой, и имя колонки (оригинальное имя колонки таблицы или служебное имя, присвоенное для получения промежуточных результатов вычислений).
`Block` это контейнер, который представляет фрагмент (chunk) таблицы в памяти. Это набор троек - `(IColumn, IDataType, имя колонки)`. В процессе выполнения запроса, данные обрабатываются `Block`-ами. Если у нас есть `Block`, значит у нас есть данные (в объекте `IColumn`), информация о типе (в `IDataType`), которая говорит нам, как работать с колонкой, и имя колонки (оригинальное имя колонки таблицы или служебное имя, присвоенное для получения промежуточных результатов вычислений).
При вычислении некоторой функции на колонках в блоке мы добавляем еще одну колонку с результатами в блок, не трогая колонки аргументов функции, потому что операции иммутабельные. Позже ненужные колонки могут быть удалены из блока, но не модифицированы. Это удобно для устранения общих подвыражений.
@ -58,7 +58,7 @@ ClickHouse - полноценная колоночная СУБД. Данные
2. Реализацию форматов данных. Например, при выводе данных в терминал в формате `Pretty`, вы создаете выходной поток блоков, который форматирует поступающие в него блоки.
3. Трансформацию данных. Допустим, у вас есть `IBlockInputStream` и вы хотите создать отфильтрованный поток. Вы создаете `FilterBlockInputStream` и инициализируете его вашим потоком. Затем вы тянете (pull) блоки из `FilterBlockInputStream`, а он тянет блоки исходного потока, фильтрует их и возвращает отфильтрованные блоки вам. Таким образом построены конвейеры выполнения запросов.
Имеются и более сложные трансформации. Например, когда вы тянете блоки из `AggregatingBlockInputStream`, он считывает все данные из своего источника, агрегирует их, и возвращает поток агрегированных данных вам. Другой пример: конструктор `UnionBlockInputStream` принимает множество источников входных данных и число потоков. Такой `Stream` работает в несколько потоков и читает данные источников параллельно.
Имеются и более сложные трансформации. Например, когда вы тянете блоки из `AggregatingBlockInputStream`, он считывает все данные из своего источника, агрегирует их, и возвращает поток агрегированных данных вам. Другой пример: конструктор `UnionBlockInputStream` принимает множество источников входных данных и число потоков. Такой `Stream` работает в несколько потоков и читает данные источников параллельно.
> Потоки блоков используют «втягивающий» (pull) подход к управлению потоком выполнения: когда вы вытягиваете блок из первого потока, он, следовательно, вытягивает необходимые блоки из вложенных потоков, так и работает весь конвейер выполнения. Ни «pull» ни «push» не имеют явного преимущества, потому что поток управления неявный, и это ограничивает в реализации различных функций, таких как одновременное выполнение нескольких запросов (слияние нескольких конвейеров вместе). Это ограничение можно преодолеть с помощью сопрограмм (coroutines) или просто запуском дополнительных потоков, которые ждут друг друга. У нас может быть больше возможностей, если мы сделаем поток управления явным: если мы локализуем логику для передачи данных из одной расчетной единицы в другую вне этих расчетных единиц. Читайте эту [статью](http://journal.stuffwithstuff.com/2013/01/13/iteration-inside-and-out/) для углубленного изучения.
@ -110,9 +110,9 @@ ClickHouse - полноценная колоночная СУБД. Данные
> Генераторы парсеров не используются по историческим причинам.
## Интерпретаторы {#interpreters}
Интерпретаторы отвечают за создание конвейера выполнения запроса из `AST`. Есть простые интерпретаторы, такие как `InterpreterExistsQuery` и `InterpreterDropQuery` или более сложный `InterpreterSelectQuery`. Конвейер выполнения запроса представляет собой комбинацию входных и выходных потоков блоков. Например, результатом интерпретации `SELECT` запроса является `IBlockInputStream` для чтения результирующего набора данных; результат интерпретации `INSERT` запроса - это `IBlockOutputStream`, для записи данных, предназначенных для вставки; результат интерпретации `INSERT SELECT` запроса - это `IBlockInputStream`, который возвращает пустой результирующий набор при первом чтении, но копирует данные из `SELECT` к `INSERT`.
`InterpreterSelectQuery` использует `ExpressionAnalyzer` и `ExpressionActions` механизмы для анализа запросов и преобразований. Именно здесь выполняется большинство оптимизаций запросов на основе правил. `ExpressionAnalyzer` написан довольно грязно и должен быть переписан: различные преобразования запросов и оптимизации должны быть извлечены в отдельные классы, чтобы позволить модульные преобразования или запросы.
## Функции {#functions}
@ -162,9 +162,9 @@ ClickHouse имеет сильную типизацию, поэтому нет
Сервера в кластере в основном независимы. Вы можете создать `Распределенную` (`Distributed`) таблицу на одном или всех серверах в кластере. Такая таблица сама по себе не хранит данные - она только предоставляет возможность "просмотра" всех локальных таблиц на нескольких узлах кластера. При выполнении `SELECT` распределенная таблица переписывает запрос, выбирает удаленные узлы в соответствии с настройками балансировки нагрузки и отправляет им запрос. Распределенная таблица просит удаленные сервера обработать запрос до той стадии, когда промежуточные результаты с разных серверов могут быть объединены. Затем он получает промежуточные результаты и объединяет их. Распределенная таблица пытается возложить как можно больше работы на удаленные серверы и сократить объем промежуточных данных, передаваемых по сети.
Ситуация усложняется, при использовании подзапросы в случае IN или JOIN, когда каждый из них использует таблицу `Distributed`. Есть разные стратегии для выполнения таких запросов.
Ситуация усложняется, при использовании подзапросов в случае `IN` или `JOIN`, когда каждый из них использует таблицу `Distributed`. Есть разные стратегии для выполнения таких запросов.
Глобального плана выполнения распределенных запросов не существует. Каждый узел имеет собственный локальный план для своей части работы. У нас есть простое однонаправленное выполнение распределенных запросов: мы отправляем запросы на удаленные узлы и затем объединяем результаты. Но это невозможно для сложных запросов GROUP BY высокой кардинальности или запросов с большим числом временных данных в JOIN: в таких случаях нам необходимо перераспределить («reshuffle») данные между серверами, что требует дополнительной координации. ClickHouse не поддерживает выполнение запросов такого рода, и нам нужно работать над этим.
Глобального плана выполнения распределенных запросов не существует. Каждый узел имеет собственный локальный план для своей части работы. У нас есть простое однонаправленное выполнение распределенных запросов: мы отправляем запросы на удаленные узлы и затем объединяем результаты. Но это невозможно для сложных запросов `GROUP BY` высокой кардинальности или запросов с большим числом временных данных в `JOIN`: в таких случаях нам необходимо перераспределить («reshuffle») данные между серверами, что требует дополнительной координации. ClickHouse не поддерживает выполнение запросов такого рода, и нам нужно работать над этим.
## Merge Tree {#merge-tree}
@ -190,7 +190,7 @@ ClickHouse имеет сильную типизацию, поэтому нет
Репликация использует асинхронную multi-master схему. Вы можете вставить данные в любую реплику, которая имеет открытую сессию в `ZooKeeper`, и данные реплицируются на все другие реплики асинхронно. Поскольку ClickHouse не поддерживает UPDATE, репликация исключает конфликты (conflict-free replication). Поскольку подтверждение вставок кворумом не реализовано, только что вставленные данные могут быть потеряны в случае сбоя одного узла.
Метаданные для репликации хранятся в `ZooKeeper`. Существует журнал репликации, в котором перечислены действия, которые необходимо выполнить. Среди этих действий: получить часть (get the part); объединить части (merge parts); удалить партицию (drop a partition) и так далее. Каждая реплика копирует журнал репликации в свою очередь, а затем выполняет действия из очереди. Например, при вставке в журнале создается действие «получить часть» (get the part), и каждая реплика загружает эту часть. Слияния координируются между репликами, чтобы получить идентичные до байта результаты. Все части объединяются одинаково на всех репликах. Одна из реплик-лидеров инициирует новое слияние кусков первой и записывает действия «слияния частей» в журнал. Несколько реплик (или все) могут быть лидерами одновременно. Реплике можно запретить быть лидером с помощью `merge_tree` настройки `replicated_can_become_leader`.
Метаданные для репликации хранятся в `ZooKeeper`. Существует журнал репликации, в котором перечислены действия, которые необходимо выполнить. Среди этих действий: получить часть (get the part); объединить части (merge parts); удалить партицию (drop a partition) и так далее. Каждая реплика копирует журнал репликации в свою очередь, а затем выполняет действия из очереди. Например, при вставке в журнале создается действие «получить часть» (get the part), и каждая реплика загружает эту часть. Слияния координируются между репликами, чтобы получить идентичные до байта результаты. Все части объединяются одинаково на всех репликах. Одна из реплик-лидеров инициирует новое слияние кусков первой и записывает действия «слияния частей» в журнал. Несколько реплик (или все) могут быть лидерами одновременно. Реплике можно запретить быть лидером с помощью `merge_tree` настройки `replicated_can_become_leader`.
Репликация является физической: между узлами передаются только сжатые части, а не запросы. Слияния обрабатываются на каждой реплике независимо, в большинстве случаев, чтобы снизить затраты на сеть, во избежание усиления роли сети. Крупные объединенные части отправляются по сети только в случае значительной задержки репликации.