Merge pull request #38252 from bharatnc/ncb/weighted-quantile-approx

add quantileInterpolatedWeighted function
This commit is contained in:
Nikolay Degterinsky 2023-01-16 13:41:13 +01:00 committed by GitHub
commit 70e79de69b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
13 changed files with 503 additions and 3 deletions

View File

@ -0,0 +1,68 @@
---
slug: /en/sql-reference/aggregate-functions/reference/quantileInterpolatedWeighted
sidebar_position: 203
---
# quantileInterpolatedWeighted
Computes [quantile](https://en.wikipedia.org/wiki/Quantile) of a numeric data sequence using linear interpolation, taking into account the weight of each element.
To get the interpolated value, all the passed values are combined into an array, which are then sorted by their corresponding weights. Quantile interpolation is then performed using the [weighted percentile method](https://en.wikipedia.org/wiki/Percentile#The_weighted_percentile_method) by building a cumulative distribution based on weights and then a linear interpolation is performed using the weights and the values to compute the quantiles.
When using multiple `quantile*` functions with different levels in a query, the internal states are not combined (that is, the query works less efficiently than it could). In this case, use the [quantiles](../../../sql-reference/aggregate-functions/reference/quantiles.md#quantiles) function.
**Syntax**
``` sql
quantileInterpolatedWeighted(level)(expr, weight)
```
Alias: `medianInterpolatedWeighted`.
**Arguments**
- `level` — Level of quantile. Optional parameter. Constant floating-point number from 0 to 1. We recommend using a `level` value in the range of `[0.01, 0.99]`. Default value: 0.5. At `level=0.5` the function calculates [median](https://en.wikipedia.org/wiki/Median).
- `expr` — Expression over the column values resulting in numeric [data types](../../../sql-reference/data-types/index.md#data_types), [Date](../../../sql-reference/data-types/date.md) or [DateTime](../../../sql-reference/data-types/datetime.md).
- `weight` — Column with weights of sequence members. Weight is a number of value occurrences.
**Returned value**
- Quantile of the specified level.
Type:
- [Float64](../../../sql-reference/data-types/float.md) for numeric data type input.
- [Date](../../../sql-reference/data-types/date.md) if input values have the `Date` type.
- [DateTime](../../../sql-reference/data-types/datetime.md) if input values have the `DateTime` type.
**Example**
Input table:
``` text
┌─n─┬─val─┐
│ 0 │ 3 │
│ 1 │ 2 │
│ 2 │ 1 │
│ 5 │ 4 │
└───┴─────┘
```
Query:
``` sql
SELECT quantileInterpolatedWeighted(n, val) FROM t
```
Result:
``` text
┌─quantileInterpolatedWeighted(n, val)─┐
│ 1 │
└──────────────────────────────────────┘
```
**See Also**
- [median](../../../sql-reference/aggregate-functions/reference/median.md#median)
- [quantiles](../../../sql-reference/aggregate-functions/reference/quantiles.md#quantiles)

View File

@ -9,7 +9,7 @@ sidebar_position: 201
Syntax: `quantiles(level1, level2, …)(x)`
All the quantile functions also have corresponding quantiles functions: `quantiles`, `quantilesDeterministic`, `quantilesTiming`, `quantilesTimingWeighted`, `quantilesExact`, `quantilesExactWeighted`, `quantilesTDigest`, `quantilesBFloat16`. These functions calculate all the quantiles of the listed levels in one pass, and return an array of the resulting values.
All the quantile functions also have corresponding quantiles functions: `quantiles`, `quantilesDeterministic`, `quantilesTiming`, `quantilesTimingWeighted`, `quantilesExact`, `quantilesExactWeighted`, `quantileInterpolatedWeighted`, `quantilesTDigest`, `quantilesBFloat16`. These functions calculate all the quantiles of the listed levels in one pass, and return an array of the resulting values.
## quantilesExactExclusive

View File

@ -232,6 +232,9 @@ struct NameQuantilesExactInclusive { static constexpr auto name = "quantilesExac
struct NameQuantileExactWeighted { static constexpr auto name = "quantileExactWeighted"; };
struct NameQuantilesExactWeighted { static constexpr auto name = "quantilesExactWeighted"; };
struct NameQuantileInterpolatedWeighted { static constexpr auto name = "quantileInterpolatedWeighted"; };
struct NameQuantilesInterpolatedWeighted { static constexpr auto name = "quantilesInterpolatedWeighted"; };
struct NameQuantileTiming { static constexpr auto name = "quantileTiming"; };
struct NameQuantileTimingWeighted { static constexpr auto name = "quantileTimingWeighted"; };
struct NameQuantilesTiming { static constexpr auto name = "quantilesTiming"; };

View File

@ -0,0 +1,70 @@
#include <AggregateFunctions/AggregateFunctionQuantile.h>
#include <AggregateFunctions/QuantileInterpolatedWeighted.h>
#include <AggregateFunctions/AggregateFunctionFactory.h>
#include <AggregateFunctions/Helpers.h>
#include <DataTypes/DataTypeDate.h>
#include <DataTypes/DataTypeDateTime.h>
#include <Core/Field.h>
namespace DB
{
struct Settings;
namespace ErrorCodes
{
extern const int ILLEGAL_TYPE_OF_ARGUMENT;
}
namespace
{
template <typename Value, bool _> using FuncQuantileInterpolatedWeighted = AggregateFunctionQuantile<Value, QuantileInterpolatedWeighted<Value>, NameQuantileInterpolatedWeighted, true, void, false>;
template <typename Value, bool _> using FuncQuantilesInterpolatedWeighted = AggregateFunctionQuantile<Value, QuantileInterpolatedWeighted<Value>, NameQuantilesInterpolatedWeighted, true, void, true>;
template <template <typename, bool> class Function>
AggregateFunctionPtr createAggregateFunctionQuantile(
const std::string & name, const DataTypes & argument_types, const Array & params, const Settings *)
{
/// Second argument type check doesn't depend on the type of the first one.
Function<void, true>::assertSecondArg(argument_types);
const DataTypePtr & argument_type = argument_types[0];
WhichDataType which(argument_type);
#define DISPATCH(TYPE) \
if (which.idx == TypeIndex::TYPE) return std::make_shared<Function<TYPE, true>>(argument_types, params);
FOR_BASIC_NUMERIC_TYPES(DISPATCH)
#undef DISPATCH
if (which.idx == TypeIndex::Date) return std::make_shared<Function<DataTypeDate::FieldType, false>>(argument_types, params);
if (which.idx == TypeIndex::DateTime) return std::make_shared<Function<DataTypeDateTime::FieldType, false>>(argument_types, params);
if (which.idx == TypeIndex::Decimal32) return std::make_shared<Function<Decimal32, false>>(argument_types, params);
if (which.idx == TypeIndex::Decimal64) return std::make_shared<Function<Decimal64, false>>(argument_types, params);
if (which.idx == TypeIndex::Decimal128) return std::make_shared<Function<Decimal128, false>>(argument_types, params);
if (which.idx == TypeIndex::Decimal256) return std::make_shared<Function<Decimal256, false>>(argument_types, params);
if (which.idx == TypeIndex::DateTime64) return std::make_shared<Function<DateTime64, false>>(argument_types, params);
if (which.idx == TypeIndex::Int128) return std::make_shared<Function<Int128, true>>(argument_types, params);
if (which.idx == TypeIndex::UInt128) return std::make_shared<Function<UInt128, true>>(argument_types, params);
if (which.idx == TypeIndex::Int256) return std::make_shared<Function<Int256, true>>(argument_types, params);
if (which.idx == TypeIndex::UInt256) return std::make_shared<Function<UInt256, true>>(argument_types, params);
throw Exception("Illegal type " + argument_type->getName() + " of argument for aggregate function " + name,
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
}
}
void registerAggregateFunctionsQuantileInterpolatedWeighted(AggregateFunctionFactory & factory)
{
/// For aggregate functions returning array we cannot return NULL on empty set.
AggregateFunctionProperties properties = { .returns_default_when_only_null = true };
factory.registerFunction(NameQuantileInterpolatedWeighted::name, createAggregateFunctionQuantile<FuncQuantileInterpolatedWeighted>);
factory.registerFunction(NameQuantilesInterpolatedWeighted::name, { createAggregateFunctionQuantile<FuncQuantilesInterpolatedWeighted>, properties });
/// 'median' is an alias for 'quantile'
factory.registerAlias("medianInterpolatedWeighted", NameQuantileInterpolatedWeighted::name);
}
}

View File

@ -0,0 +1,308 @@
#pragma once
#include <base/sort.h>
#include <Common/HashTable/HashMap.h>
#include <Common/NaNUtils.h>
namespace DB
{
struct Settings;
namespace ErrorCodes
{
extern const int NOT_IMPLEMENTED;
}
/** Approximates Quantile by:
* - sorting input values and weights
* - building a cumulative distribution based on weights
* - performing linear interpolation between the weights and values
*
*/
template <typename Value>
struct QuantileInterpolatedWeighted
{
struct Int128Hash
{
size_t operator()(Int128 x) const
{
return CityHash_v1_0_2::Hash128to64({x >> 64, x & 0xffffffffffffffffll});
}
};
using Weight = UInt64;
using UnderlyingType = NativeType<Value>;
using Hasher = std::conditional_t<std::is_same_v<Value, Decimal128>, Int128Hash, HashCRC32<UnderlyingType>>;
/// When creating, the hash table must be small.
using Map = HashMapWithStackMemory<UnderlyingType, Weight, Hasher, 4>;
Map map;
void add(const Value & x)
{
/// We must skip NaNs as they are not compatible with comparison sorting.
if (!isNaN(x))
++map[x];
}
void add(const Value & x, Weight weight)
{
if (!isNaN(x))
map[x] += weight;
}
void merge(const QuantileInterpolatedWeighted & rhs)
{
for (const auto & pair : rhs.map)
map[pair.getKey()] += pair.getMapped();
}
void serialize(WriteBuffer & buf) const
{
map.write(buf);
}
void deserialize(ReadBuffer & buf)
{
typename Map::Reader reader(buf);
while (reader.next())
{
const auto & pair = reader.get();
map[pair.first] = pair.second;
}
}
Value get(Float64 level) const
{
return getImpl<Value>(level);
}
void getMany(const Float64 * levels, const size_t * indices, size_t size, Value * result) const
{
getManyImpl<Value>(levels, indices, size, result);
}
/// The same, but in the case of an empty state, NaN is returned.
Float64 getFloat(Float64) const
{
throw Exception("Method getFloat is not implemented for QuantileInterpolatedWeighted", ErrorCodes::NOT_IMPLEMENTED);
}
void getManyFloat(const Float64 *, const size_t *, size_t, Float64 *) const
{
throw Exception("Method getManyFloat is not implemented for QuantileInterpolatedWeighted", ErrorCodes::NOT_IMPLEMENTED);
}
private:
using Pair = typename std::pair<UnderlyingType, Float64>;
/// Get the value of the `level` quantile. The level must be between 0 and 1.
template <typename T>
T getImpl(Float64 level) const
{
size_t size = map.size();
if (0 == size)
return std::numeric_limits<Value>::quiet_NaN();
/// Maintain a vector of pair of values and weights for easier sorting and for building
/// a cumulative distribution using the provided weights.
std::vector<Pair> value_weight_pairs;
value_weight_pairs.reserve(size);
/// Note: weight provided must be a 64-bit integer
/// Float64 is used as accumulator here to get approximate results.
/// But weight used in the internal array is stored as Float64 as we
/// do some quantile estimation operation which involves division and
/// require Float64 level of precision.
Float64 sum_weight = 0;
for (const auto & pair : map)
{
sum_weight += pair.getMapped();
auto value = pair.getKey();
auto weight = pair.getMapped();
value_weight_pairs.push_back({value, weight});
}
::sort(value_weight_pairs.begin(), value_weight_pairs.end(), [](const Pair & a, const Pair & b) { return a.first < b.first; });
Float64 accumulated = 0;
/// vector for populating and storing the cumulative sum using the provided weights.
/// example: [0,1,2,3,4,5] -> [0,1,3,6,10,15]
std::vector<Float64> weights_cum_sum;
weights_cum_sum.reserve(size);
for (size_t idx = 0; idx < size; ++idx)
{
accumulated += value_weight_pairs[idx].second;
weights_cum_sum.push_back(accumulated);
}
/// The following estimation of quantile is general and the idea is:
/// https://en.wikipedia.org/wiki/Percentile#The_weighted_percentile_method
/// calculates a simple cumulative distribution based on weights
if (sum_weight != 0)
{
for (size_t idx = 0; idx < size; ++idx)
value_weight_pairs[idx].second = (weights_cum_sum[idx] - 0.5 * value_weight_pairs[idx].second) / sum_weight;
}
/// perform linear interpolation
size_t idx = 0;
if (size >= 2)
{
if (level >= value_weight_pairs[size - 2].second)
{
idx = size - 2;
}
else
{
size_t start = 0, end = size - 1;
while (start <= end)
{
size_t mid = start + (end - start) / 2;
if (mid > size)
break;
if (level > value_weight_pairs[mid + 1].second)
start = mid + 1;
else
{
idx = mid;
end = mid - 1;
}
}
}
}
size_t l = idx;
size_t u = idx + 1 < size ? idx + 1 : idx;
Float64 xl = value_weight_pairs[l].second, xr = value_weight_pairs[u].second;
UnderlyingType yl = value_weight_pairs[l].first, yr = value_weight_pairs[u].first;
if (level < xl)
yr = yl;
if (level > xr)
yl = yr;
return static_cast<T>(interpolate(level, xl, xr, yl, yr));
}
/// Get the `size` values of `levels` quantiles. Write `size` results starting with `result` address.
/// indices - an array of index levels such that the corresponding elements will go in ascending order.
template <typename T>
void getManyImpl(const Float64 * levels, const size_t * indices, size_t num_levels, Value * result) const
{
size_t size = map.size();
if (0 == size)
{
for (size_t i = 0; i < num_levels; ++i)
result[i] = Value();
return;
}
std::vector<Pair> value_weight_pairs;
value_weight_pairs.reserve(size);
Float64 sum_weight = 0;
for (const auto & pair : map)
{
sum_weight += pair.getMapped();
auto value = pair.getKey();
auto weight = pair.getMapped();
value_weight_pairs.push_back({value, weight});
}
::sort(value_weight_pairs.begin(), value_weight_pairs.end(), [](const Pair & a, const Pair & b) { return a.first < b.first; });
Float64 accumulated = 0;
/// vector for populating and storing the cumulative sum using the provided weights.
/// example: [0,1,2,3,4,5] -> [0,1,3,6,10,15]
std::vector<Float64> weights_cum_sum;
weights_cum_sum.reserve(size);
for (size_t idx = 0; idx < size; ++idx)
{
accumulated += value_weight_pairs[idx].second;
weights_cum_sum.emplace_back(accumulated);
}
/// The following estimation of quantile is general and the idea is:
/// https://en.wikipedia.org/wiki/Percentile#The_weighted_percentile_method
/// calculates a simple cumulative distribution based on weights
if (sum_weight != 0)
{
for (size_t idx = 0; idx < size; ++idx)
value_weight_pairs[idx].second = (weights_cum_sum[idx] - 0.5 * value_weight_pairs[idx].second) / sum_weight;
}
for (size_t level_index = 0; level_index < num_levels; ++level_index)
{
/// perform linear interpolation for every level
auto level = levels[indices[level_index]];
size_t idx = 0;
if (size >= 2)
{
if (level >= value_weight_pairs[size - 2].second)
{
idx = size - 2;
}
else
{
size_t start = 0, end = size - 1;
while (start <= end)
{
size_t mid = start + (end - start) / 2;
if (mid > size)
break;
if (level > value_weight_pairs[mid + 1].second)
start = mid + 1;
else
{
idx = mid;
end = mid - 1;
}
}
}
}
size_t l = idx;
size_t u = idx + 1 < size ? idx + 1 : idx;
Float64 xl = value_weight_pairs[l].second, xr = value_weight_pairs[u].second;
UnderlyingType yl = value_weight_pairs[l].first, yr = value_weight_pairs[u].first;
if (level < xl)
yr = yl;
if (level > xr)
yl = yr;
result[indices[level_index]] = static_cast<T>(interpolate(level, xl, xr, yl, yr));
}
}
/// This ignores overflows or NaN's that might arise during add, sub and mul operations and doesn't aim to provide exact
/// results since `the quantileInterpolatedWeighted` function itself relies mainly on approximation.
UnderlyingType NO_SANITIZE_UNDEFINED interpolate(Float64 level, Float64 xl, Float64 xr, UnderlyingType yl, UnderlyingType yr) const
{
UnderlyingType dy = yr - yl;
Float64 dx = xr - xl;
dx = dx == 0 ? 1 : dx; /// to handle NaN behavior that might arise during integer division below.
/// yl + (dy / dx) * (level - xl)
return static_cast<UnderlyingType>(yl + (dy / dx) * (level - xl));
}
};
}

View File

@ -21,6 +21,7 @@ void registerAggregateFunctionsQuantile(AggregateFunctionFactory &);
void registerAggregateFunctionsQuantileDeterministic(AggregateFunctionFactory &);
void registerAggregateFunctionsQuantileExact(AggregateFunctionFactory &);
void registerAggregateFunctionsQuantileExactWeighted(AggregateFunctionFactory &);
void registerAggregateFunctionsQuantileInterpolatedWeighted(AggregateFunctionFactory &);
void registerAggregateFunctionsQuantileExactLow(AggregateFunctionFactory &);
void registerAggregateFunctionsQuantileExactHigh(AggregateFunctionFactory &);
void registerAggregateFunctionsQuantileExactInclusive(AggregateFunctionFactory &);
@ -106,6 +107,7 @@ void registerAggregateFunctions()
registerAggregateFunctionsQuantileDeterministic(factory);
registerAggregateFunctionsQuantileExact(factory);
registerAggregateFunctionsQuantileExactWeighted(factory);
registerAggregateFunctionsQuantileInterpolatedWeighted(factory);
registerAggregateFunctionsQuantileExactLow(factory);
registerAggregateFunctionsQuantileExactHigh(factory);
registerAggregateFunctionsQuantileExactInclusive(factory);

View File

@ -25,6 +25,7 @@ static const std::unordered_map<String, String> quantile_fuse_name_mapping = {
{NameQuantileExactInclusive::name, NameQuantilesExactInclusive::name},
{NameQuantileExactLow::name, NameQuantilesExactLow::name},
{NameQuantileExactWeighted::name, NameQuantilesExactWeighted::name},
{NameQuantileInterpolatedWeighted::name, NameQuantilesInterpolatedWeighted::name},
{NameQuantileTDigest::name, NameQuantilesTDigest::name},
{NameQuantileTDigestWeighted::name, NameQuantilesTDigestWeighted::name},
{NameQuantileTiming::name, NameQuantilesTiming::name},
@ -61,9 +62,11 @@ void GatherFunctionQuantileData::FuseQuantileAggregatesData::addFuncNode(ASTPtr
const auto & arguments = func->arguments->children;
bool need_two_args = func->name == NameQuantileDeterministic::name || func->name == NameQuantileExactWeighted::name
|| func->name == NameQuantileTimingWeighted::name || func->name == NameQuantileTDigestWeighted::name
|| func->name == NameQuantileBFloat16Weighted::name;
|| func->name == NameQuantileInterpolatedWeighted::name || func->name == NameQuantileTimingWeighted::name
|| func->name == NameQuantileTDigestWeighted::name || func->name == NameQuantileBFloat16Weighted::name;
if (arguments.size() != (need_two_args ? 2 : 1))
return;

View File

@ -1,3 +1,4 @@
10 [1,1,1,1,10,10,10,10,100,100,100]
10 [1,1,2,4,7,10,35,61,87,100,100]
100 100
61 61

View File

@ -1,3 +1,4 @@
SELECT quantileExactWeighted(0.5)(x, 1) AS q5, quantilesExactWeighted(0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1)(x, 1) AS qs FROM (SELECT arrayJoin([1, 1, 1, 10, 10, 10, 10, 100, 100, 100]) AS x);
SELECT quantileInterpolatedWeighted(0.5)(x, 1) AS q5, quantilesInterpolatedWeighted(0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1)(x, 1) AS qs FROM (SELECT arrayJoin([1, 1, 1, 10, 10, 10, 10, 100, 100, 100]) AS x);
SELECT quantileExact(0)(x), quantileTiming(0)(x) FROM (SELECT number + 100 AS x FROM system.numbers LIMIT 10000);
SELECT quantileExact(x), quantileTiming(x) FROM (SELECT number % 123 AS x FROM system.numbers LIMIT 10000);

View File

@ -6,6 +6,8 @@
['2016-06-15 23:00:00']
2016-06-15 23:00:00
['2016-06-15 23:00:00']
2016-06-15 23:00:00
['2016-06-15 23:00:00']
30000
[30000]
30000

View File

@ -15,6 +15,9 @@ SELECT quantilesExact(0.2)(d) FROM datetime;
SELECT quantileExactWeighted(0.2)(d, 1) FROM datetime;
SELECT quantilesExactWeighted(0.2)(d, 1) FROM datetime;
SELECT quantileInterpolatedWeighted(0.2)(d, 1) FROM datetime;
SELECT quantilesInterpolatedWeighted(0.2)(d, 1) FROM datetime;
SELECT quantileTiming(0.2)(d) FROM datetime;
SELECT quantilesTiming(0.2)(d) FROM datetime;

View File

@ -0,0 +1,12 @@
quantileInterpolatedWeighted
0 0 0 Decimal(38, 8)
-25.5 -8.49999999 -5.1 Decimal(38, 8)
0 0 0
9.7 3.23333333 1.94
19.9 6.63333332 3.98
30.1 10.03333333 6.02
40.3 13.43333332 8.06
50 16.66666666 10
[-50,-40.4,-30.3,-20.2,-10.1,0,10.1,20.2,30.3,40.4,50]
[-16.66666666,-13.46666666,-10.09999999,-6.73333332,-3.36666666,0,3.36666666,6.73333332,10.09999999,13.46666666,16.66666666]
[-10,-8.08,-6.06,-4.04,-2.02,0,2.02,4.04,6.06,8.08,10]

View File

@ -0,0 +1,27 @@
DROP TABLE IF EXISTS decimal;
CREATE TABLE decimal
(
a Decimal32(4),
b Decimal64(8),
c Decimal128(8)
) ENGINE = Memory;
INSERT INTO decimal (a, b, c)
SELECT toDecimal32(number - 50, 4), toDecimal64(number - 50, 8) / 3, toDecimal128(number - 50, 8) / 5
FROM system.numbers LIMIT 101;
SELECT 'quantileInterpolatedWeighted';
SELECT medianInterpolatedWeighted(a, 1), medianInterpolatedWeighted(b, 2), medianInterpolatedWeighted(c, 3) as x, toTypeName(x) FROM decimal;
SELECT quantileInterpolatedWeighted(a, 1), quantileInterpolatedWeighted(b, 2), quantileInterpolatedWeighted(c, 3) as x, toTypeName(x) FROM decimal WHERE a < 0;
SELECT quantileInterpolatedWeighted(0.0)(a, 1), quantileInterpolatedWeighted(0.0)(b, 2), quantileInterpolatedWeighted(0.0)(c, 3) FROM decimal WHERE a >= 0;
SELECT quantileInterpolatedWeighted(0.2)(a, 1), quantileInterpolatedWeighted(0.2)(b, 2), quantileInterpolatedWeighted(0.2)(c, 3) FROM decimal WHERE a >= 0;
SELECT quantileInterpolatedWeighted(0.4)(a, 1), quantileInterpolatedWeighted(0.4)(b, 2), quantileInterpolatedWeighted(0.4)(c, 3) FROM decimal WHERE a >= 0;
SELECT quantileInterpolatedWeighted(0.6)(a, 1), quantileInterpolatedWeighted(0.6)(b, 2), quantileInterpolatedWeighted(0.6)(c, 3) FROM decimal WHERE a >= 0;
SELECT quantileInterpolatedWeighted(0.8)(a, 1), quantileInterpolatedWeighted(0.8)(b, 2), quantileInterpolatedWeighted(0.8)(c, 3) FROM decimal WHERE a >= 0;
SELECT quantileInterpolatedWeighted(1.0)(a, 1), quantileInterpolatedWeighted(1.0)(b, 2), quantileInterpolatedWeighted(1.0)(c, 3) FROM decimal WHERE a >= 0;
SELECT quantilesInterpolatedWeighted(0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0)(a, 1) FROM decimal;
SELECT quantilesInterpolatedWeighted(0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0)(b, 2) FROM decimal;
SELECT quantilesInterpolatedWeighted(0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0)(c, 3) FROM decimal;
DROP TABLE IF EXISTS decimal;