mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-11-10 01:25:21 +00:00
update docs uniqhll12 212 -> 2^12
This commit is contained in:
parent
6cefb8e620
commit
7ca70a5839
@ -26,7 +26,7 @@ Function:
|
||||
|
||||
- Uses the HyperLogLog algorithm to approximate the number of different argument values.
|
||||
|
||||
212 5-bit cells are used. The size of the state is slightly more than 2.5 KB. The result is not very accurate (up to ~10% error) for small data sets (<10K elements). However, the result is fairly accurate for high-cardinality data sets (10K-100M), with a maximum error of ~1.6%. Starting from 100M, the estimation error increases, and the function will return very inaccurate results for data sets with extremely high cardinality (1B+ elements).
|
||||
2^12 5-bit cells are used. The size of the state is slightly more than 2.5 KB. The result is not very accurate (up to ~10% error) for small data sets (<10K elements). However, the result is fairly accurate for high-cardinality data sets (10K-100M), with a maximum error of ~1.6%. Starting from 100M, the estimation error increases, and the function will return very inaccurate results for data sets with extremely high cardinality (1B+ elements).
|
||||
|
||||
- Provides the determinate result (it doesn’t depend on the query processing order).
|
||||
|
||||
|
@ -624,7 +624,7 @@ uniqHLL12(x[, ...])
|
||||
|
||||
- HyperLogLogアルゴリズムを使用して、異なる引数値の数を近似します。
|
||||
|
||||
212 5-bit cells are used. The size of the state is slightly more than 2.5 KB. The result is not very accurate (up to ~10% error) for small data sets (<10K elements). However, the result is fairly accurate for high-cardinality data sets (10K-100M), with a maximum error of ~1.6%. Starting from 100M, the estimation error increases, and the function will return very inaccurate results for data sets with extremely high cardinality (1B+ elements).
|
||||
2^12 5-bit cells are used. The size of the state is slightly more than 2.5 KB. The result is not very accurate (up to ~10% error) for small data sets (<10K elements). However, the result is fairly accurate for high-cardinality data sets (10K-100M), with a maximum error of ~1.6%. Starting from 100M, the estimation error increases, and the function will return very inaccurate results for data sets with extremely high cardinality (1B+ elements).
|
||||
|
||||
- 決定的な結果を提供します(クエリ処理順序に依存しません)。
|
||||
|
||||
|
@ -26,7 +26,7 @@ uniqHLL12(x[, ...])
|
||||
|
||||
- Использует алгоритм HyperLogLog для аппроксимации числа различных значений аргументов.
|
||||
|
||||
Используется 212 5-битовых ячеек. Размер состояния чуть больше 2.5 КБ. Результат не точный (ошибка до ~10%) для небольших множеств (<10K элементов). Однако для множеств большой кардинальности (10K - 100M) результат довольно точен (ошибка до ~1.6%). Начиная с 100M ошибка оценки будет только расти и для множеств огромной кардинальности (1B+ элементов) функция возвращает результат с очень большой неточностью.
|
||||
Используется 2^12 5-битовых ячеек. Размер состояния чуть больше 2.5 КБ. Результат не точный (ошибка до ~10%) для небольших множеств (<10K элементов). Однако для множеств большой кардинальности (10K - 100M) результат довольно точен (ошибка до ~1.6%). Начиная с 100M ошибка оценки будет только расти и для множеств огромной кардинальности (1B+ элементов) функция возвращает результат с очень большой неточностью.
|
||||
|
||||
- Результат детерминирован (не зависит от порядка выполнения запроса).
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user