Merge pull request #3022 from yandex/padded-arena

Padded Arena
This commit is contained in:
alexey-milovidov 2018-09-03 05:39:42 +03:00 committed by GitHub
commit 7d8f0a6140
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 49 additions and 288 deletions

View File

@ -180,6 +180,21 @@ if (OS_LINUX AND CMAKE_CXX_COMPILER_ID STREQUAL "Clang")
endif ()
endif ()
if (CMAKE_CXX_COMPILER_ID STREQUAL "GNU")
# If we leave this optimization enabled, gcc-7 replaces a pair of SSE intrinsics (16 byte load, store) with a call to memcpy. It leads to slow code. This is compiler bug.
# It looks like this:
#
# (gdb) bt
#0 memcpy (destination=0x7faa6e9f1638, source=0x7faa81d9e9a8, size=16) at ../libs/libmemcpy/memcpy.h:11
#1 0x0000000005341c5f in _mm_storeu_si128 (__B=..., __P=<optimized out>) at /usr/lib/gcc/x86_64-linux-gnu/7/include/emmintrin.h:720
#2 memcpySmallAllowReadWriteOverflow15Impl (n=<optimized out>, src=<optimized out>, dst=<optimized out>) at ../dbms/src/Common/memcpySmall.h:37
#3 memcpySmallAllowReadWriteOverflow15 (n=<optimized out>, src=<optimized out>, dst=<optimized out>) at ../dbms/src/Common/memcpySmall.h:52
#4 extractKeysAndPlaceInPoolContiguous (pool=..., keys=..., key_columns=..., keys_size=<optimized out>, i=<optimized out>) at ../dbms/src/Interpreters/AggregationCommon.h:262
set (CMAKE_CXX_FLAGS_RELWITHDEBINFO "${CMAKE_CXX_FLAGS_RELWITHDEBINFO} -fno-tree-loop-distribute-patterns")
set (CMAKE_C_FLAGS_RELWITHDEBINFO "${CMAKE_C_FLAGS_RELWITHDEBINFO} -fno-tree-loop-distribute-patterns")
endif ()
if (USE_STATIC_LIBRARIES AND HAVE_NO_PIE)
set (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${FLAG_NO_PIE}")
set (CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${FLAG_NO_PIE}")

View File

@ -1,6 +1,7 @@
#include <cstring>
#include <cmath>
#include <common/unaligned.h>
#include <Common/Exception.h>
#include <Common/Arena.h>
#include <Common/SipHash.h>
@ -36,14 +37,14 @@ template <typename T>
StringRef ColumnVector<T>::serializeValueIntoArena(size_t n, Arena & arena, char const *& begin) const
{
auto pos = arena.allocContinue(sizeof(T), begin);
memcpy(pos, &data[n], sizeof(T));
unalignedStore(pos, data[n]);
return StringRef(pos, sizeof(T));
}
template <typename T>
const char * ColumnVector<T>::deserializeAndInsertFromArena(const char * pos)
{
data.push_back(*reinterpret_cast<const T *>(pos));
data.push_back(unalignedLoad<T>(pos));
return pos + sizeof(T);
}

View File

@ -6,6 +6,7 @@
#include <boost/noncopyable.hpp>
#include <common/likely.h>
#include <Core/Defines.h>
#include <Common/memcpySmall.h>
#include <Common/ProfileEvents.h>
#include <Common/Allocator.h>
@ -31,12 +32,15 @@ namespace DB
class Arena : private boost::noncopyable
{
private:
/// Padding allows to use 'memcpySmallAllowReadWriteOverflow15' instead of 'memcpy'.
static constexpr size_t pad_right = 15;
/// Contiguous chunk of memory and pointer to free space inside it. Member of single-linked list.
struct Chunk : private Allocator<false> /// empty base optimization
{
char * begin;
char * pos;
char * end;
char * end; /// does not include padding.
Chunk * prev;
@ -47,7 +51,7 @@ private:
begin = reinterpret_cast<char *>(Allocator::alloc(size_));
pos = begin;
end = begin + size_;
end = begin + size_ - pad_right;
prev = prev_;
}
@ -59,7 +63,7 @@ private:
delete prev;
}
size_t size() const { return end - begin; }
size_t size() const { return end + pad_right - begin; }
size_t remaining() const { return end - pos; }
};
@ -95,7 +99,7 @@ private:
/// Add next contiguous chunk of memory with size not less than specified.
void NO_INLINE addChunk(size_t min_size)
{
head = new Chunk(nextSize(min_size), head);
head = new Chunk(nextSize(min_size + pad_right), head);
size_in_bytes += head->size();
}
@ -216,7 +220,7 @@ public:
{
char * res = alloc(new_size);
if (old_data)
memcpy(res, old_data, old_size);
memcpySmallAllowReadWriteOverflow15(res, old_data, old_size);
return res;
}
@ -224,7 +228,7 @@ public:
{
char * res = alignedAlloc(new_size, alignment);
if (old_data)
memcpy(res, old_data, old_size);
memcpySmallAllowReadWriteOverflow15(res, old_data, old_size);
return res;
}
@ -232,14 +236,14 @@ public:
const char * insert(const char * data, size_t size)
{
char * res = alloc(size);
memcpy(res, data, size);
memcpySmallAllowReadWriteOverflow15(res, data, size);
return res;
}
const char * alignedInsert(const char * data, size_t size, size_t alignment)
{
char * res = alignedAlloc(size, alignment);
memcpy(res, data, size);
memcpySmallAllowReadWriteOverflow15(res, data, size);
return res;
}

View File

@ -6,6 +6,7 @@
#include <Common/Arena.h>
#include <Common/UInt128.h>
#include <Common/HashTable/Hash.h>
#include <Common/memcpySmall.h>
#include <Core/Defines.h>
#include <common/StringRef.h>
#include <Columns/IColumn.h>
@ -173,26 +174,6 @@ static inline T ALWAYS_INLINE packFixed(
/// Hash a set of keys into a UInt128 value.
static inline UInt128 ALWAYS_INLINE hash128(
size_t i, size_t keys_size, const ColumnRawPtrs & key_columns, StringRefs & keys)
{
UInt128 key;
SipHash hash;
for (size_t j = 0; j < keys_size; ++j)
{
/// Hashes the key.
keys[j] = key_columns[j]->getDataAtWithTerminatingZero(i);
hash.update(keys[j].data, keys[j].size);
}
hash.get128(key.low, key.high);
return key;
}
/// Almost the same as above but it doesn't return any reference to key data.
static inline UInt128 ALWAYS_INLINE hash128(
size_t i, size_t keys_size, const ColumnRawPtrs & key_columns)
{
@ -215,78 +196,18 @@ static inline StringRef * ALWAYS_INLINE placeKeysInPool(
for (size_t j = 0; j < keys_size; ++j)
{
char * place = pool.alloc(keys[j].size);
memcpy(place, keys[j].data, keys[j].size); /// TODO padding in Arena and memcpySmall
memcpySmallAllowReadWriteOverflow15(place, keys[j].data, keys[j].size);
keys[j].data = place;
}
/// Place the StringRefs on the newly copied keys in the pool.
char * res = pool.alloc(keys_size * sizeof(StringRef));
memcpy(res, keys.data(), keys_size * sizeof(StringRef));
char * res = pool.alignedAlloc(keys_size * sizeof(StringRef), alignof(StringRef));
memcpySmallAllowReadWriteOverflow15(res, keys.data(), keys_size * sizeof(StringRef));
return reinterpret_cast<StringRef *>(res);
}
/// Copy keys to the pool. Then put into pool StringRefs to them and return the pointer to the first.
static inline StringRef * ALWAYS_INLINE extractKeysAndPlaceInPool(
size_t i, size_t keys_size, const ColumnRawPtrs & key_columns, StringRefs & keys, Arena & pool)
{
for (size_t j = 0; j < keys_size; ++j)
{
keys[j] = key_columns[j]->getDataAtWithTerminatingZero(i);
char * place = pool.alloc(keys[j].size);
memcpy(place, keys[j].data, keys[j].size);
keys[j].data = place;
}
/// Place the StringRefs on the newly copied keys in the pool.
char * res = pool.alloc(keys_size * sizeof(StringRef));
memcpy(res, keys.data(), keys_size * sizeof(StringRef));
return reinterpret_cast<StringRef *>(res);
}
/// Copy the specified keys to a continuous memory chunk of a pool.
/// Subsequently append StringRef objects referring to each key.
///
/// [key1][key2]...[keyN][ref1][ref2]...[refN]
/// ^ ^ : | |
/// +-----|--------:-----+ |
/// : +--------:-----------+
/// : :
/// <-------------->
/// (1)
///
/// Return a StringRef object, referring to the area (1) of the memory
/// chunk that contains the keys. In other words, we ignore their StringRefs.
inline StringRef ALWAYS_INLINE extractKeysAndPlaceInPoolContiguous(
size_t i, size_t keys_size, const ColumnRawPtrs & key_columns, StringRefs & keys, Arena & pool)
{
size_t sum_keys_size = 0;
for (size_t j = 0; j < keys_size; ++j)
{
keys[j] = key_columns[j]->getDataAtWithTerminatingZero(i);
sum_keys_size += keys[j].size;
}
char * res = pool.alloc(sum_keys_size + keys_size * sizeof(StringRef));
char * place = res;
for (size_t j = 0; j < keys_size; ++j)
{
memcpy(place, keys[j].data, keys[j].size);
keys[j].data = place;
place += keys[j].size;
}
/// Place the StringRefs on the newly copied keys in the pool.
memcpy(place, keys.data(), keys_size * sizeof(StringRef));
return {res, sum_keys_size};
}
/** Serialize keys into a continuous chunk of memory.
*/
static inline StringRef ALWAYS_INLINE serializeKeysToPoolContiguous(

View File

@ -412,29 +412,19 @@ AggregatedDataVariants::Type Aggregator::chooseAggregationMethod()
*/
size_t keys_bytes = 0;
size_t num_contiguous_keys = 0;
size_t num_fixed_contiguous_keys = 0;
size_t num_string_keys = 0;
key_sizes.resize(params.keys_size);
for (size_t j = 0; j < params.keys_size; ++j)
{
if (types_removed_nullable[j]->isValueUnambiguouslyRepresentedInContiguousMemoryRegion())
{
++num_contiguous_keys;
if (types_removed_nullable[j]->isValueUnambiguouslyRepresentedInFixedSizeContiguousMemoryRegion())
{
++num_fixed_contiguous_keys;
key_sizes[j] = types_removed_nullable[j]->getSizeOfValueInMemory();
keys_bytes += key_sizes[j];
}
if (types_removed_nullable[j]->isString())
{
++num_string_keys;
}
}
}
@ -489,23 +479,7 @@ AggregatedDataVariants::Type Aggregator::chooseAggregationMethod()
if (params.keys_size == 1 && types_removed_nullable[0]->isFixedString())
return AggregatedDataVariants::Type::key_fixed_string;
/** If it is possible to use 'concat' method due to one-to-one correspondense. Otherwise the method will be 'serialized'.
*/
if (params.keys_size == num_contiguous_keys && num_fixed_contiguous_keys + 1 >= num_contiguous_keys)
return AggregatedDataVariants::Type::concat;
/** For case with multiple strings, we use 'concat' method despite the fact, that correspondense is not one-to-one.
* Concat will concatenate strings including its zero terminators.
* But if strings contains zero bytes in between, different keys may clash.
* For example, keys ('a\0b', 'c') and ('a', 'b\0c') will be aggregated as one key.
* This is documented behaviour. It may be avoided by just switching to 'serialized' method, which is less efficient.
*/
if (params.keys_size == num_fixed_contiguous_keys + num_string_keys)
return AggregatedDataVariants::Type::concat;
return AggregatedDataVariants::Type::serialized;
/// NOTE AggregatedDataVariants::Type::hashed is not used. It's proven to be less efficient than 'serialized' in most cases.
}
@ -2162,7 +2136,6 @@ Block Aggregator::mergeBlocks(BlocksList & blocks, bool final)
M(key_fixed_string) \
M(keys128) \
M(keys256) \
M(concat) \
M(serialized) \
#define M(NAME) \

View File

@ -67,13 +67,11 @@ using AggregatedDataWithUInt64Key = HashMap<UInt64, AggregateDataPtr, HashCRC32<
using AggregatedDataWithStringKey = HashMapWithSavedHash<StringRef, AggregateDataPtr>;
using AggregatedDataWithKeys128 = HashMap<UInt128, AggregateDataPtr, UInt128HashCRC32>;
using AggregatedDataWithKeys256 = HashMap<UInt256, AggregateDataPtr, UInt256HashCRC32>;
using AggregatedDataHashed = HashMap<UInt128, std::pair<StringRef*, AggregateDataPtr>, UInt128TrivialHash>;
using AggregatedDataWithUInt64KeyTwoLevel = TwoLevelHashMap<UInt64, AggregateDataPtr, HashCRC32<UInt64>>;
using AggregatedDataWithStringKeyTwoLevel = TwoLevelHashMapWithSavedHash<StringRef, AggregateDataPtr>;
using AggregatedDataWithKeys128TwoLevel = TwoLevelHashMap<UInt128, AggregateDataPtr, UInt128HashCRC32>;
using AggregatedDataWithKeys256TwoLevel = TwoLevelHashMap<UInt256, AggregateDataPtr, UInt256HashCRC32>;
using AggregatedDataHashedTwoLevel = TwoLevelHashMap<UInt128, std::pair<StringRef*, AggregateDataPtr>, UInt128TrivialHash>;
/** Variants with better hash function, using more than 32 bits for hash.
* Using for merging phase of external aggregation, where number of keys may be far greater than 4 billion,
@ -119,7 +117,7 @@ struct AggregationMethodOneNumber
}
/// Get the key from the key columns for insertion into the hash table.
Key getKey(
ALWAYS_INLINE Key getKey(
const ColumnRawPtrs & /*key_columns*/,
size_t /*keys_size*/, /// Number of key columns.
size_t i, /// From which row of the block, get the key.
@ -137,13 +135,13 @@ struct AggregationMethodOneNumber
/** Place additional data, if necessary, in case a new key was inserted into the hash table.
*/
static void onNewKey(typename Data::value_type & /*value*/, size_t /*keys_size*/, StringRefs & /*keys*/, Arena & /*pool*/)
static ALWAYS_INLINE void onNewKey(typename Data::value_type & /*value*/, size_t /*keys_size*/, StringRefs & /*keys*/, Arena & /*pool*/)
{
}
/** The action to be taken if the key is not new. For example, roll back the memory allocation in the pool.
*/
static void onExistingKey(const Key & /*key*/, StringRefs & /*keys*/, Arena & /*pool*/) {}
static ALWAYS_INLINE void onExistingKey(const Key & /*key*/, StringRefs & /*keys*/, Arena & /*pool*/) {}
/** Do not use optimization for consecutive keys.
*/
@ -188,7 +186,7 @@ struct AggregationMethodString
chars = &column_string.getChars();
}
Key getKey(
ALWAYS_INLINE Key getKey(
const ColumnRawPtrs & /*key_columns*/,
size_t /*keys_size*/,
size_t i,
@ -205,12 +203,12 @@ struct AggregationMethodString
static AggregateDataPtr & getAggregateData(Mapped & value) { return value; }
static const AggregateDataPtr & getAggregateData(const Mapped & value) { return value; }
static void onNewKey(typename Data::value_type & value, size_t /*keys_size*/, StringRefs & /*keys*/, Arena & pool)
static ALWAYS_INLINE void onNewKey(typename Data::value_type & value, size_t /*keys_size*/, StringRefs & /*keys*/, Arena & pool)
{
value.first.data = pool.insert(value.first.data, value.first.size);
}
static void onExistingKey(const Key & /*key*/, StringRefs & /*keys*/, Arena & /*pool*/) {}
static ALWAYS_INLINE void onExistingKey(const Key & /*key*/, StringRefs & /*keys*/, Arena & /*pool*/) {}
static const bool no_consecutive_keys_optimization = false;
@ -251,7 +249,7 @@ struct AggregationMethodFixedString
chars = &column_string.getChars();
}
Key getKey(
ALWAYS_INLINE Key getKey(
const ColumnRawPtrs &,
size_t,
size_t i,
@ -266,12 +264,12 @@ struct AggregationMethodFixedString
static AggregateDataPtr & getAggregateData(Mapped & value) { return value; }
static const AggregateDataPtr & getAggregateData(const Mapped & value) { return value; }
static void onNewKey(typename Data::value_type & value, size_t, StringRefs &, Arena & pool)
static ALWAYS_INLINE void onNewKey(typename Data::value_type & value, size_t, StringRefs &, Arena & pool)
{
value.first.data = pool.insert(value.first.data, value.first.size);
}
static void onExistingKey(const Key &, StringRefs &, Arena &) {}
static ALWAYS_INLINE void onExistingKey(const Key &, StringRefs &, Arena &) {}
static const bool no_consecutive_keys_optimization = false;
@ -407,7 +405,7 @@ struct AggregationMethodKeysFixed
Base::init(key_columns);
}
Key getKey(
ALWAYS_INLINE Key getKey(
const ColumnRawPtrs & key_columns,
size_t keys_size,
size_t i,
@ -428,11 +426,11 @@ struct AggregationMethodKeysFixed
static AggregateDataPtr & getAggregateData(Mapped & value) { return value; }
static const AggregateDataPtr & getAggregateData(const Mapped & value) { return value; }
static void onNewKey(typename Data::value_type &, size_t, StringRefs &, Arena &)
static ALWAYS_INLINE void onNewKey(typename Data::value_type &, size_t, StringRefs &, Arena &)
{
}
static void onExistingKey(const Key &, StringRefs &, Arena &) {}
static ALWAYS_INLINE void onExistingKey(const Key &, StringRefs &, Arena &) {}
static const bool no_consecutive_keys_optimization = false;
@ -487,88 +485,7 @@ struct AggregationMethodKeysFixed
};
/// Aggregates by key concatenation. (In this case, strings containing zeros in the middle can stick together.)
template <typename TData>
struct AggregationMethodConcat
{
using Data = TData;
using Key = typename Data::key_type;
using Mapped = typename Data::mapped_type;
using iterator = typename Data::iterator;
using const_iterator = typename Data::const_iterator;
Data data;
AggregationMethodConcat() {}
template <typename Other>
AggregationMethodConcat(const Other & other) : data(other.data) {}
struct State
{
void init(ColumnRawPtrs &)
{
}
Key getKey(
const ColumnRawPtrs & key_columns,
size_t keys_size,
size_t i,
const Sizes &,
StringRefs & keys,
Arena & pool) const
{
return extractKeysAndPlaceInPoolContiguous(i, keys_size, key_columns, keys, pool);
}
};
static AggregateDataPtr & getAggregateData(Mapped & value) { return value; }
static const AggregateDataPtr & getAggregateData(const Mapped & value) { return value; }
static void onNewKey(typename Data::value_type &, size_t, StringRefs &, Arena &)
{
}
static void onExistingKey(const Key & key, StringRefs & keys, Arena & pool)
{
pool.rollback(key.size + keys.size() * sizeof(keys[0]));
}
/// If the key already was, then it is removed from the pool (overwritten), and the next key can not be compared with it.
static const bool no_consecutive_keys_optimization = true;
static void insertKeyIntoColumns(const typename Data::value_type & value, MutableColumns & key_columns, size_t keys_size, const Sizes & key_sizes)
{
insertKeyIntoColumnsImpl(value, key_columns, keys_size, key_sizes);
}
private:
/// Insert the values of the specified keys into the corresponding columns.
static void insertKeyIntoColumnsImpl(const typename Data::value_type & value, MutableColumns & key_columns, size_t keys_size, const Sizes &)
{
/// See function extractKeysAndPlaceInPoolContiguous.
const StringRef * key_refs = reinterpret_cast<const StringRef *>(value.first.data + value.first.size);
if (unlikely(0 == value.first.size))
{
/** Fix if all keys are empty arrays. For them, a zero-length StringRef is written to the hash table, but with a non-zero pointer.
* But when inserted into a hash table, this StringRef occurs equal to another key of zero length,
* whose data pointer can be any garbage and can not be used.
*/
for (size_t i = 0; i < keys_size; ++i)
key_columns[i]->insertDefault();
}
else
{
for (size_t i = 0; i < keys_size; ++i)
key_columns[i]->insertDataWithTerminatingZero(key_refs[i].data, key_refs[i].size);
}
}
};
/** Aggregates by concatenating serialized key values.
* Similar to AggregationMethodConcat, but it is suitable, for example, for arrays of strings or multiple arrays.
* The serialized value differs in that it uniquely allows to deserialize it, having only the position with which it starts.
* That is, for example, for strings, it contains first the serialized length of the string, and then the bytes.
* Therefore, when aggregating by several strings, there is no ambiguity.
@ -595,7 +512,7 @@ struct AggregationMethodSerialized
{
}
Key getKey(
ALWAYS_INLINE Key getKey(
const ColumnRawPtrs & key_columns,
size_t keys_size,
size_t i,
@ -610,11 +527,11 @@ struct AggregationMethodSerialized
static AggregateDataPtr & getAggregateData(Mapped & value) { return value; }
static const AggregateDataPtr & getAggregateData(const Mapped & value) { return value; }
static void onNewKey(typename Data::value_type &, size_t, StringRefs &, Arena &)
static ALWAYS_INLINE void onNewKey(typename Data::value_type &, size_t, StringRefs &, Arena &)
{
}
static void onExistingKey(const Key & key, StringRefs &, Arena & pool)
static ALWAYS_INLINE void onExistingKey(const Key & key, StringRefs &, Arena & pool)
{
pool.rollback(key.size);
}
@ -631,61 +548,6 @@ struct AggregationMethodSerialized
};
/// For other cases. Aggregates by 128-bit hash from the key.
template <typename TData>
struct AggregationMethodHashed
{
using Data = TData;
using Key = typename Data::key_type;
using Mapped = typename Data::mapped_type;
using iterator = typename Data::iterator;
using const_iterator = typename Data::const_iterator;
Data data;
AggregationMethodHashed() {}
template <typename Other>
AggregationMethodHashed(const Other & other) : data(other.data) {}
struct State
{
void init(ColumnRawPtrs &)
{
}
Key getKey(
const ColumnRawPtrs & key_columns,
size_t keys_size,
size_t i,
const Sizes &,
StringRefs & keys,
Arena &) const
{
return hash128(i, keys_size, key_columns, keys);
}
};
static AggregateDataPtr & getAggregateData(Mapped & value) { return value.second; }
static const AggregateDataPtr & getAggregateData(const Mapped & value) { return value.second; }
static void onNewKey(typename Data::value_type & value, size_t keys_size, StringRefs & keys, Arena & pool)
{
value.second.first = placeKeysInPool(keys_size, keys, pool);
}
static void onExistingKey(const Key &, StringRefs &, Arena &) {}
static const bool no_consecutive_keys_optimization = false;
static void insertKeyIntoColumns(const typename Data::value_type & value, MutableColumns & key_columns, size_t keys_size, const Sizes &)
{
for (size_t i = 0; i < keys_size; ++i)
key_columns[i]->insertDataWithTerminatingZero(value.second.first[i].data, value.second.first[i].size);
}
};
class Aggregator;
struct AggregatedDataVariants : private boost::noncopyable
@ -729,8 +591,6 @@ struct AggregatedDataVariants : private boost::noncopyable
std::unique_ptr<AggregationMethodFixedString<AggregatedDataWithStringKey>> key_fixed_string;
std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys128>> keys128;
std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys256>> keys256;
std::unique_ptr<AggregationMethodHashed<AggregatedDataHashed>> hashed;
std::unique_ptr<AggregationMethodConcat<AggregatedDataWithStringKey>> concat;
std::unique_ptr<AggregationMethodSerialized<AggregatedDataWithStringKey>> serialized;
std::unique_ptr<AggregationMethodOneNumber<UInt32, AggregatedDataWithUInt64KeyTwoLevel>> key32_two_level;
@ -739,8 +599,6 @@ struct AggregatedDataVariants : private boost::noncopyable
std::unique_ptr<AggregationMethodFixedString<AggregatedDataWithStringKeyTwoLevel>> key_fixed_string_two_level;
std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys128TwoLevel>> keys128_two_level;
std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys256TwoLevel>> keys256_two_level;
std::unique_ptr<AggregationMethodHashed<AggregatedDataHashedTwoLevel>> hashed_two_level;
std::unique_ptr<AggregationMethodConcat<AggregatedDataWithStringKeyTwoLevel>> concat_two_level;
std::unique_ptr<AggregationMethodSerialized<AggregatedDataWithStringKeyTwoLevel>> serialized_two_level;
std::unique_ptr<AggregationMethodOneNumber<UInt64, AggregatedDataWithUInt64KeyHash64>> key64_hash64;
@ -748,7 +606,6 @@ struct AggregatedDataVariants : private boost::noncopyable
std::unique_ptr<AggregationMethodFixedString<AggregatedDataWithStringKeyHash64>> key_fixed_string_hash64;
std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys128Hash64>> keys128_hash64;
std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys256Hash64>> keys256_hash64;
std::unique_ptr<AggregationMethodConcat<AggregatedDataWithStringKeyHash64>> concat_hash64;
std::unique_ptr<AggregationMethodSerialized<AggregatedDataWithStringKeyHash64>> serialized_hash64;
/// Support for nullable keys.
@ -767,8 +624,6 @@ struct AggregatedDataVariants : private boost::noncopyable
M(key_fixed_string, false) \
M(keys128, false) \
M(keys256, false) \
M(hashed, false) \
M(concat, false) \
M(serialized, false) \
M(key32_two_level, true) \
M(key64_two_level, true) \
@ -776,15 +631,12 @@ struct AggregatedDataVariants : private boost::noncopyable
M(key_fixed_string_two_level, true) \
M(keys128_two_level, true) \
M(keys256_two_level, true) \
M(hashed_two_level, true) \
M(concat_two_level, true) \
M(serialized_two_level, true) \
M(key64_hash64, false) \
M(key_string_hash64, false) \
M(key_fixed_string_hash64, false) \
M(keys128_hash64, false) \
M(keys256_hash64, false) \
M(concat_hash64, false) \
M(serialized_hash64, false) \
M(nullable_keys128, false) \
M(nullable_keys256, false) \
@ -904,8 +756,6 @@ struct AggregatedDataVariants : private boost::noncopyable
M(key_fixed_string) \
M(keys128) \
M(keys256) \
M(hashed) \
M(concat) \
M(serialized) \
M(nullable_keys128) \
M(nullable_keys256) \
@ -918,7 +768,6 @@ struct AggregatedDataVariants : private boost::noncopyable
M(key_fixed_string_hash64) \
M(keys128_hash64) \
M(keys256_hash64) \
M(concat_hash64) \
M(serialized_hash64) \
#define APPLY_FOR_VARIANTS_SINGLE_LEVEL(M) \
@ -949,8 +798,6 @@ struct AggregatedDataVariants : private boost::noncopyable
M(key_fixed_string_two_level) \
M(keys128_two_level) \
M(keys256_two_level) \
M(hashed_two_level) \
M(concat_two_level) \
M(serialized_two_level) \
M(nullable_keys128_two_level) \
M(nullable_keys256_two_level)