Added bitmap function feature with roaring bitmap

This commit is contained in:
Andy Yang 2019-01-31 21:26:11 +08:00
parent 1fa8553cc6
commit 7e7a864fd4
21 changed files with 21708 additions and 0 deletions

View File

@ -44,6 +44,7 @@ if (USE_INTERNAL_METROHASH_LIBRARY)
endif ()
add_subdirectory (murmurhash)
add_subdirectory (croaring)
if (USE_INTERNAL_BTRIE_LIBRARY)
add_subdirectory (libbtrie)

View File

@ -0,0 +1,6 @@
add_library(roaring
roaring.c
roaring.h
roaring.hh)
target_include_directories (roaring PUBLIC ${CMAKE_CURRENT_SOURCE_DIR})

202
contrib/croaring/LICENSE Normal file
View File

@ -0,0 +1,202 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "{}"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright 2016 The CRoaring authors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@ -0,0 +1,2 @@
download from https://github.com/RoaringBitmap/CRoaring/archive/v0.2.57.tar.gz
and use ./amalgamation.sh generate

11093
contrib/croaring/roaring.c Normal file

File diff suppressed because it is too large Load Diff

7166
contrib/croaring/roaring.h Normal file

File diff suppressed because it is too large Load Diff

1732
contrib/croaring/roaring.hh Normal file

File diff suppressed because it is too large Load Diff

View File

@ -192,6 +192,7 @@ target_link_libraries (clickhouse_common_io
${RE2_LIBRARY}
${RE2_ST_LIBRARY}
${CITYHASH_LIBRARIES}
roaring
PRIVATE
${ZLIB_LIBRARIES}
${EXECINFO_LIBRARY}

View File

@ -0,0 +1,40 @@
#include <AggregateFunctions/AggregateFunctionFactory.h>
#include <AggregateFunctions/AggregateFunctionGroupBitmap.h>
#include <AggregateFunctions/Helpers.h>
#include <AggregateFunctions/FactoryHelpers.h>
namespace DB
{
namespace
{
template <template <typename> class Data>
AggregateFunctionPtr createAggregateFunctionBitmap(const std::string & name, const DataTypes & argument_types, const Array & parameters)
{
assertNoParameters(name, parameters);
assertUnary(name, argument_types);
if (!argument_types[0]->canBeUsedInBitOperations())
throw Exception("The type " + argument_types[0]->getName() + " of argument for aggregate function " + name
+ " is illegal, because it cannot be used in Bitmap operations",
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
AggregateFunctionPtr res(createWithUnsignedIntegerType<AggregateFunctionBitmap, Data>(*argument_types[0]));
if (!res)
throw Exception("Illegal type " + argument_types[0]->getName() + " of argument for aggregate function " + name, ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
return res;
}
}
void registerAggregateFunctionsBitmap(AggregateFunctionFactory & factory)
{
factory.registerFunction("groupBitmap", createAggregateFunctionBitmap<AggregateFunctionGroupBitmapData>);
}
}

View File

@ -0,0 +1,53 @@
#pragma once
#include <Columns/ColumnVector.h>
#include <boost/noncopyable.hpp>
#include <AggregateFunctions/IAggregateFunction.h>
#include <AggregateFunctions/AggregateFunctionGroupBitmapData.h>
#include <DataTypes/DataTypesNumber.h>
namespace DB
{
/// Counts bitmap operation on numbers.
template <typename T, typename Data>
class AggregateFunctionBitmap final : public IAggregateFunctionDataHelper<Data, AggregateFunctionBitmap<T, Data>>
{
public:
String getName() const override { return Data::name(); }
DataTypePtr getReturnType() const override
{
return std::make_shared<DataTypeNumber<T>>();
}
void add(AggregateDataPtr place, const IColumn ** columns, size_t row_num, Arena *) const override
{
this->data(place).rbs.add(static_cast<const ColumnVector<T> &>(*columns[0]).getData()[row_num]);
}
void merge(AggregateDataPtr place, ConstAggregateDataPtr rhs, Arena *) const override
{
this->data(place).rbs.merge(this->data(rhs).rbs);
}
void serialize(ConstAggregateDataPtr place, WriteBuffer & buf) const override
{
this->data(place).rbs.write(buf);
}
void deserialize(AggregateDataPtr place, ReadBuffer & buf, Arena *) const override
{
this->data(place).rbs.read(buf);
}
void insertResultInto(ConstAggregateDataPtr place, IColumn & to) const override
{
static_cast<ColumnVector<T> &>(to).getData().push_back(this->data(place).rbs.size());
}
const char * getHeaderFilePath() const override { return __FILE__; }
};
}

View File

@ -0,0 +1,492 @@
#pragma once
#include <IO/WriteHelpers.h>
#include <IO/ReadHelpers.h>
#include <boost/noncopyable.hpp>
#include <Common/HashTable/SmallTable.h>
#include <roaring.hh>
#include <roaring.h>
namespace DB
{
/**
* For a small number of values - an array of fixed size "on the stack".
* For large, roaring_bitmap_t is allocated.
* For a description of the roaring_bitmap_t, see: https://github.com/RoaringBitmap/CRoaring
*/
template <typename T, UInt8 small_set_size>
class RoaringBitmapWithSmallSet : private boost::noncopyable
{
private:
using Small = SmallSet<T, small_set_size>;
using ValueBuffer = std::vector<T>;
Small small;
roaring_bitmap_t * rb = nullptr;
void toLarge()
{
rb = roaring_bitmap_create();
for (const auto & x : small)
roaring_bitmap_add(rb, x);
}
public:
bool isLarge() const { return rb != nullptr; }
bool isSmall() const { return rb == nullptr; }
~RoaringBitmapWithSmallSet()
{
if (isLarge())
roaring_bitmap_free(rb);
}
void add(T value) {
if (isSmall())
{
if (small.find(value) == small.end())
{
if (!small.full())
small.insert(value);
else
{
toLarge();
roaring_bitmap_add(rb, value);
}
}
}
else
roaring_bitmap_add(rb, value);
}
UInt64 size() const
{
return isSmall() ? small.size() : roaring_bitmap_get_cardinality( rb );
}
void merge(const RoaringBitmapWithSmallSet & r1)
{
if (r1.isLarge())
{
if (isSmall())
toLarge();
roaring_bitmap_or_inplace( rb, r1.rb );
}
else
{
for (const auto & x : r1.small)
add(x);
}
}
void read(DB::ReadBuffer & in)
{
bool is_large;
readBinary(is_large, in);
if (is_large)
{
toLarge();
UInt32 cardinality;
readBinary( cardinality, in );
db_roaring_bitmap_add_many( in, rb, cardinality );
}
else
small.read(in);
}
void write(DB::WriteBuffer & out) const
{
writeBinary(isLarge(), out);
if (isLarge())
{
UInt32 cardinality = roaring_bitmap_get_cardinality(rb);
writePODBinary( cardinality, out );
db_ra_to_uint32_array( out, &rb->high_low_container );
} else
small.write(out);
}
roaring_bitmap_t * getRb() const
{
return rb;
}
Small& getSmall() const
{
return small;
}
/**
* Get a new roaring_bitmap_t from elements of small
*/
roaring_bitmap_t * getNewRbFromSmall() const
{
roaring_bitmap_t * smallRb = roaring_bitmap_create();
for (const auto & x : small)
roaring_bitmap_add(smallRb, x);
return smallRb;
}
/**
* Computes the intersection between two bitmaps
*/
void rb_and(const RoaringBitmapWithSmallSet & r1)
{
ValueBuffer buffer;
if(isSmall() && r1.isSmall())
{
// intersect
for (const auto & value : this->small)
if (r1.small.find(value) != r1.small.end()) buffer.push_back(value);
// Clear out the original values
this->small.clear();
for (const auto & value : buffer)
this->small.insert(value);
buffer.clear();
} else if(isSmall() && r1.isLarge()){
for (const auto & value : this->small)
if( roaring_bitmap_contains( r1.rb, value ) ) buffer.push_back( value );
// Clear out the original values
this->small.clear();
for (const auto & value : buffer)
this->small.insert(value);
buffer.clear();
} else {
roaring_bitmap_t * rb1 = r1.isSmall() ? r1.getNewRbFromSmall() : r1.getRb();
roaring_bitmap_and_inplace( rb, rb1 );
if ( r1.isSmall() ) roaring_bitmap_free(rb1);
}
}
/**
* Computes the union between two bitmaps.
*/
void rb_or(const RoaringBitmapWithSmallSet & r1)
{
this->merge( r1 );
}
/**
* Computes the symmetric difference (xor) between two bitmaps.
*/
void rb_xor(const RoaringBitmapWithSmallSet & r1)
{
if( this->isSmall() ) toLarge();
roaring_bitmap_t * rb1 = r1.isSmall() ? r1.getNewRbFromSmall() : r1.getRb();
roaring_bitmap_xor_inplace( rb, rb1 );
if ( r1.isSmall() ) roaring_bitmap_free(rb1);
}
/**
* Computes the difference (andnot) between two bitmaps
*/
void rb_andnot(const RoaringBitmapWithSmallSet & r1)
{
ValueBuffer buffer;
if(isSmall() && r1.isSmall())
{
// subtract
for (const auto & value : this->small)
if (r1.small.find(value) == r1.small.end()) buffer.push_back(value);
// Clear out the original values
this->small.clear();
for (const auto & value : buffer)
this->small.insert(value);
buffer.clear();
} else if(isSmall() && r1.isLarge()){
for (const auto & value : this->small)
if( !roaring_bitmap_contains( r1.rb, value ) ) buffer.push_back( value );
// Clear out the original values
this->small.clear();
for (const auto & value : buffer)
this->small.insert(value);
buffer.clear();
} else {
roaring_bitmap_t * rb1 = r1.isSmall() ? r1.getNewRbFromSmall() : r1.getRb();
roaring_bitmap_andnot_inplace( rb, rb1 );
if ( r1.isSmall() ) roaring_bitmap_free(rb1);
}
}
/**
* Computes the cardinality of the intersection between two bitmaps.
*/
UInt64 rb_and_cardinality(const RoaringBitmapWithSmallSet & r1) const
{
UInt64 retSize = 0;
if( isSmall() && r1.isSmall() ){
for (const auto & value : this->small)
if (r1.small.find( value ) != r1.small.end()) retSize++;
} else if( isSmall() && r1.isLarge() ){
for (const auto & value : this->small)
if( roaring_bitmap_contains( r1.rb, value ) ) retSize++;
} else {
roaring_bitmap_t * rb1 = r1.isSmall() ? r1.getNewRbFromSmall() : r1.getRb();
retSize = roaring_bitmap_and_cardinality( rb, rb1 );
if ( r1.isSmall() ) roaring_bitmap_free(rb1);
}
return retSize;
}
/**
* Computes the cardinality of the union between two bitmaps.
*/
UInt64 rb_or_cardinality(const RoaringBitmapWithSmallSet & r1) const
{
UInt64 c1 = this->size();
UInt64 c2 = r1.size();
UInt64 inter = this->rb_and_cardinality( r1 );
return c1 + c2 - inter;
}
/**
* Computes the cardinality of the symmetric difference (andnot) between two bitmaps.
*/
UInt64 rb_xor_cardinality(const RoaringBitmapWithSmallSet & r1) const
{
UInt64 c1 = this->size();
UInt64 c2 = r1.size();
UInt64 inter = this->rb_and_cardinality( r1 );
return c1 + c2 - 2 * inter;
}
/**
* Computes the cardinality of the difference (andnot) between two bitmaps.
*/
UInt64 rb_andnot_cardinality(const RoaringBitmapWithSmallSet & r1) const
{
UInt64 c1 = this->size();
UInt64 inter = this->rb_and_cardinality( r1 );
return c1 - inter;
}
/**
* Return 1 if the two bitmaps contain the same elements.
*/
UInt8 rb_equals(const RoaringBitmapWithSmallSet & r1)
{
if( this->isSmall() ) toLarge();
roaring_bitmap_t * rb1 = r1.isSmall() ? r1.getNewRbFromSmall() : r1.getRb();
UInt8 is_true = roaring_bitmap_equals( rb, rb1 );
if ( r1.isSmall() ) roaring_bitmap_free(rb1);
return is_true;
}
/**
* Check whether two bitmaps intersect.
*/
UInt8 rb_intersect(const RoaringBitmapWithSmallSet & r1)
{
if( this->isSmall() ) toLarge();
roaring_bitmap_t * rb1 = r1.isSmall() ? r1.getNewRbFromSmall() : r1.getRb();
UInt8 is_true = roaring_bitmap_intersect( rb, rb1 );
if ( r1.isSmall() ) roaring_bitmap_free(rb1);
return is_true;
}
/**
* Remove value
*/
void rb_remove(UInt64 offsetid)
{
if( this->isSmall() ) toLarge();
roaring_bitmap_remove( rb, offsetid );
}
/**
* compute (in place) the negation of the roaring bitmap within a specified
* interval: [range_start, range_end). The number of negated values is
* range_end - range_start.
* Areas outside the range are passed through unchanged.
*/
void rb_flip(UInt64 offsetstart, UInt64 offsetend)
{
if( this->isSmall() ) toLarge();
roaring_bitmap_flip_inplace( rb, offsetstart, offsetend );
}
/**
* returns the number of integers that are smaller or equal to offsetid.
*/
UInt64 rb_rank(UInt64 offsetid)
{
if( this->isSmall() ) toLarge();
return roaring_bitmap_rank( rb, offsetid );
}
/**
* Convert elements to integer array, return number of elements
*/
template <typename Element>
UInt64 rb_to_array(PaddedPODArray<Element> & res_data) const
{
UInt64 count = 0;
if (this->isSmall())
{
for (const auto & x : small)
{
res_data.emplace_back(x);
count++;
}
} else {
roaring_uint32_iterator_t iterator;
roaring_init_iterator(rb, &iterator);
while(iterator.has_value)
{
res_data.emplace_back(iterator.current_value);
roaring_advance_uint32_iterator(&iterator);
count++;
}
}
return count;
}
private:
/// To read and write the DB Buffer directly, migrate code from CRoaring
void db_roaring_bitmap_add_many( DB::ReadBuffer & dbBuf, roaring_bitmap_t * r, size_t n_args ) {
void *container = NULL; // hold value of last container touched
uint8_t typecode = 0; // typecode of last container touched
uint32_t prev = 0; // previous valued inserted
size_t i = 0; // index of value
int containerindex = 0;
if (n_args == 0) return;
uint32_t val;
readBinary( val, dbBuf );
container = containerptr_roaring_bitmap_add(r, val, &typecode, &containerindex);
prev = val;
i++;
for (; i < n_args; i++) {
readBinary( val, dbBuf );
if (((prev ^ val) >> 16) ==
0) { // no need to seek the container, it is at hand
// because we already have the container at hand, we can do the
// insertion
// automatically, bypassing the roaring_bitmap_add call
uint8_t newtypecode = typecode;
void * container2 =
container_add(container, val & 0xFFFF, typecode, &newtypecode);
// rare instance when we need to
if (container2 != container)
{
// change the container type
container_free(container, typecode);
ra_set_container_at_index(&r->high_low_container,
containerindex, container2,
newtypecode);
typecode = newtypecode;
container = container2;
}
} else {
container = containerptr_roaring_bitmap_add(r, val, &typecode,
&containerindex);
}
prev = val;
}
}
void db_ra_to_uint32_array( DB::WriteBuffer & dbBuf, roaring_array_t * ra ) const {
size_t ctr = 0;
for (Int32 i = 0; i < ra->size; ++i)
{
Int32 num_added = db_container_to_uint32_array( dbBuf, ra->containers[i], ra->typecodes[i],
((UInt32)ra->keys[i]) << 16);
ctr += num_added;
}
}
UInt32 db_container_to_uint32_array( DB::WriteBuffer & dbBuf, const void * container, UInt8 typecode, UInt32 base) const {
container = container_unwrap_shared(container, &typecode);
switch (typecode) {
case BITSET_CONTAINER_TYPE_CODE:
return db_bitset_container_to_uint32_array( dbBuf,
(const bitset_container_t *)container, base);
case ARRAY_CONTAINER_TYPE_CODE:
return db_array_container_to_uint32_array( dbBuf,
(const array_container_t *)container, base);
case RUN_CONTAINER_TYPE_CODE:
return db_run_container_to_uint32_array( dbBuf,
(const run_container_t *)container, base);
}
return 0;
}
UInt32 db_bitset_container_to_uint32_array( DB::WriteBuffer & dbBuf, const bitset_container_t * cont, UInt32 base) const {
return (UInt32) db_bitset_extract_setbits( dbBuf, cont->array, BITSET_CONTAINER_SIZE_IN_WORDS, base);
}
size_t db_bitset_extract_setbits( DB::WriteBuffer & dbBuf, UInt64 * bitset, size_t length, UInt32 base) const {
UInt32 outpos = 0;
for (size_t i = 0; i < length; ++i)
{
UInt64 w = bitset[i];
while (w != 0)
{
UInt64 t = w & (~w + 1); // on x64, should compile to BLSI (careful: the Intel compiler seems to fail)
UInt32 r = __builtin_ctzll(w); // on x64, should compile to TZCNT
UInt32 val = r + base;
writePODBinary( val, dbBuf );
outpos++;
w ^= t;
}
base += 64;
}
return outpos;
}
int db_array_container_to_uint32_array( DB::WriteBuffer & dbBuf, const array_container_t * cont, UInt32 base) const {
UInt32 outpos = 0;
for ( Int32 i = 0; i < cont->cardinality; ++i)
{
const UInt32 val = base + cont->array[i];
writePODBinary( val, dbBuf );
outpos++;
}
return outpos;
}
int db_run_container_to_uint32_array( DB::WriteBuffer & dbBuf, const run_container_t * cont, UInt32 base) const {
UInt32 outpos = 0;
for (Int32 i = 0; i < cont->n_runs; ++i)
{
UInt32 run_start = base + cont->runs[i].value;
UInt16 le = cont->runs[i].length;
for (Int32 j = 0; j <= le; ++j)
{
UInt32 val = run_start + j;
writePODBinary( val, dbBuf );
outpos++;
}
}
return outpos;
}
};
template <typename T>
struct AggregateFunctionGroupBitmapData
{
RoaringBitmapWithSmallSet<T,32> rbs;
static const char * name() { return "groupBitmap"; }
};
}

View File

@ -26,6 +26,7 @@ void registerAggregateFunctionUniqCombined(AggregateFunctionFactory &);
void registerAggregateFunctionUniqUpTo(AggregateFunctionFactory &);
void registerAggregateFunctionTopK(AggregateFunctionFactory &);
void registerAggregateFunctionsBitwise(AggregateFunctionFactory &);
void registerAggregateFunctionsBitmap(AggregateFunctionFactory &);
void registerAggregateFunctionsMaxIntersections(AggregateFunctionFactory &);
void registerAggregateFunctionCombinatorIf(AggregateFunctionCombinatorFactory &);
@ -62,6 +63,7 @@ void registerAggregateFunctions()
registerAggregateFunctionUniqUpTo(factory);
registerAggregateFunctionTopK(factory);
registerAggregateFunctionsBitwise(factory);
registerAggregateFunctionsBitmap(factory);
registerAggregateFunctionsMaxIntersections(factory);
registerAggregateFunctionHistogram(factory);
registerAggregateFunctionRetention(factory);

View File

@ -0,0 +1,25 @@
#include <Functions/FunctionFactory.h>
#include <Functions/FunctionsBitmap.h>
namespace DB
{
void registerFunctionsBitmap(FunctionFactory & factory)
{
factory.registerFunction<FunctionBitmapBuild>();
factory.registerFunction<FunctionBitmapToArray>();
factory.registerFunction<FunctionBitmapSelfCardinality>();
factory.registerFunction<FunctionBitmapAndCardinality>();
factory.registerFunction<FunctionBitmapOrCardinality>();
factory.registerFunction<FunctionBitmapXorCardinality>();
factory.registerFunction<FunctionBitmapAndnotCardinality>();
factory.registerFunction<FunctionBitmapAnd>();
factory.registerFunction<FunctionBitmapOr>();
factory.registerFunction<FunctionBitmapXor>();
factory.registerFunction<FunctionBitmapAndnot>();
}
}

View File

@ -0,0 +1,499 @@
#pragma once
#include <Common/typeid_cast.h>
#include <Columns/ColumnVector.h>
#include <Columns/ColumnArray.h>
#include <Columns/ColumnConst.h>
#include <Columns/ColumnFunction.h>
#include <DataTypes/DataTypeArray.h>
#include <DataTypes/DataTypesNumber.h>
#include <DataTypes/DataTypeAggregateFunction.h>
#include <Common/typeid_cast.h>
#include <Columns/ColumnAggregateFunction.h>
#include <Functions/IFunction.h>
#include <Functions/FunctionHelpers.h>
#include <AggregateFunctions/AggregateFunctionGroupBitmapData.h>
#include <AggregateFunctions/AggregateFunctionFactory.h>
namespace DB
{
namespace ErrorCodes
{
extern const int LOGICAL_ERROR;
extern const int NUMBER_OF_ARGUMENTS_DOESNT_MATCH;
}
/** Bitmap functions.
* Build a bitmap from integer array:
* bitmapBuild: integer[] -> bitmap
*
* Convert bitmap to integer array:
* bitmapToArray: bitmap -> integer[]
*
* Two bitmap and calculation:
* bitmapAnd: bitmap,bitmap -> bitmap
*
* Two bitmap or calculation:
* bitmapOr: bitmap,bitmap -> bitmap
*
* Two bitmap xor calculation:
* bitmapXor: bitmap,bitmap -> bitmap
*
* Two bitmap andnot calculation:
* bitmapAndnot: bitmap,bitmap -> bitmap
*
* Retrun bitmap cardinality:
* bitmapCardinality: bitmap -> integer
*
* Two bitmap and calculation, return cardinality:
* bitmapAndCardinality: bitmap,bitmap -> integer
*
* Two bitmap or calculation, return cardinality:
* bitmapOrCardinality: bitmap,bitmap -> integer
*
* Two bitmap xor calculation, return cardinality:
* bitmapXorCardinality: bitmap,bitmap -> integer
*
* Two bitmap andnot calculation, return cardinality:
* bitmapAndnotCardinality: bitmap,bitmap -> integer
*/
template <typename Name>
class FunctionBitmapBuildImpl : public IFunction
{
public:
static constexpr auto name = Name::name;
static FunctionPtr create(const Context &) { return std::make_shared<FunctionBitmapBuildImpl>(); }
String getName() const override { return name; }
bool isVariadic() const override { return false; }
size_t getNumberOfArguments() const override { return 1; }
DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override
{
if (arguments[0]->onlyNull())
return arguments[0];
auto array_type = typeid_cast<const DataTypeArray *>(arguments[0].get());
if (!array_type)
throw Exception("First argument for function " + getName() + " must be an array but it has type "
+ arguments[0]->getName() + ".", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
auto nested_type = array_type->getNestedType();
DataTypes argument_types = {nested_type};
Array params_row;
AggregateFunctionPtr bitmap_function = AggregateFunctionFactory::instance().get(AggregateFunctionGroupBitmapData<UInt32>::name(), argument_types, params_row);
return std::make_shared<DataTypeAggregateFunction>(bitmap_function, argument_types, params_row);
}
bool useDefaultImplementationForConstants() const override { return true; }
void executeImpl(Block & block, const ColumnNumbers & arguments, size_t result, size_t /* input_rows_count */) override
{
const IDataType * from_type = block.getByPosition(arguments[0]).type.get();
auto array_type = typeid_cast<const DataTypeArray *>(from_type);
auto nested_type = array_type->getNestedType();
DataTypes argument_types = {nested_type};
WhichDataType which(nested_type);
if (which.isUInt8()) executeBitmapData<UInt8>(block, argument_types, arguments, result);
else if (which.isUInt16()) executeBitmapData<UInt16>(block, argument_types, arguments, result);
else if (which.isUInt32()) executeBitmapData<UInt32>(block, argument_types, arguments, result);
else if (which.isUInt64()) executeBitmapData<UInt64>(block, argument_types, arguments, result);
else
throw Exception("Unexpected type " + from_type->getName() + " of argument of function " + getName(),
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
}
private:
template <typename T>
void executeBitmapData( Block & block, DataTypes & argument_types, const ColumnNumbers & arguments, size_t result)
{
// input data
const ColumnArray * array = typeid_cast<const ColumnArray *>(block.getByPosition(arguments[0]).column.get());
ColumnPtr mapped = array->getDataPtr();
const ColumnArray::Offsets & offsets = array->getOffsets();
const ColumnVector<T> * column = checkAndGetColumn<ColumnVector<T>>(&*mapped);
const typename ColumnVector<T>::Container & input_data = column->getData();
// output data
Array params_row;
AggregateFunctionPtr bitmap_function = AggregateFunctionFactory::instance().get(AggregateFunctionGroupBitmapData<UInt32>::name(), argument_types, params_row);
auto col_to = ColumnAggregateFunction::create(bitmap_function);
col_to->reserve(offsets.size());
size_t pos = 0;
for(size_t i = 0; i < offsets.size(); ++i)
{
col_to->insertDefault();
AggregateFunctionGroupBitmapData<T>& bitmap_data = *reinterpret_cast<AggregateFunctionGroupBitmapData<T> *>( col_to->getData()[i] );
for (; pos < offsets[i]; ++pos)
{
bitmap_data.rbs.add(input_data[pos]);
}
}
block.getByPosition(result).column = std::move(col_to);
}
};
template <typename Name>
class FunctionBitmapToArrayImpl : public IFunction
{
public:
static constexpr auto name = Name::name;
static FunctionPtr create(const Context &) { return std::make_shared<FunctionBitmapToArrayImpl>(); }
String getName() const override { return name; }
bool isVariadic() const override { return false; }
size_t getNumberOfArguments() const override { return 1; }
DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override
{
const DataTypeAggregateFunction * aggr_type = typeid_cast<const DataTypeAggregateFunction *>( arguments[0].get() );
if (!aggr_type)
throw Exception("First argument for function " + getName() + " must be an AggregateFunction but it has type "
+ arguments[0]->getName() + ".", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
const DataTypePtr data_type = aggr_type->getArgumentsDataTypes()[0];
return std::make_shared<DataTypeArray>(data_type);
}
bool useDefaultImplementationForConstants() const override { return true; }
void executeImpl(Block & block, const ColumnNumbers & arguments, size_t result, size_t input_rows_count) override
{
// input data
const auto & return_type = block.getByPosition(result).type;
auto res_ptr = return_type->createColumn();
ColumnArray & res = static_cast<ColumnArray &>(*res_ptr);
IColumn & res_data = res.getData();
ColumnArray::Offsets & res_offsets = res.getOffsets();
const IDataType * from_type = block.getByPosition(arguments[0]).type.get();
const DataTypeAggregateFunction * aggr_type = typeid_cast<const DataTypeAggregateFunction *>(from_type);
WhichDataType which(aggr_type->getArgumentsDataTypes()[0]);
if (which.isUInt8()) executeIntType<UInt8>(block, arguments, input_rows_count, res_data, res_offsets);
else if (which.isUInt16()) executeIntType<UInt16>(block, arguments, input_rows_count, res_data, res_offsets);
else if (which.isUInt32()) executeIntType<UInt32>(block, arguments, input_rows_count, res_data, res_offsets);
else if (which.isUInt64()) executeIntType<UInt64>(block, arguments, input_rows_count, res_data, res_offsets);
else
throw Exception("Unexpected type " + from_type->getName() + " of argument of function " + getName(),
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
block.getByPosition(result).column = std::move(res_ptr);
}
private:
using ToType = UInt64;
template <typename T>
void executeIntType( Block & block, const ColumnNumbers & arguments, size_t input_rows_count,
IColumn & res_data_col, ColumnArray::Offsets & res_offsets ) const
{
const ColumnAggregateFunction * column = typeid_cast<const ColumnAggregateFunction *>(block.getByPosition(arguments[0]).column.get());
PaddedPODArray<T> & res_data = typeid_cast<ColumnVector<T> &>(res_data_col).getData();
ColumnArray::Offset res_offset = 0;
for(size_t i = 0; i < input_rows_count; ++i)
{
const AggregateFunctionGroupBitmapData<T>& bd1 = *reinterpret_cast<const AggregateFunctionGroupBitmapData<T> *>( column->getData()[i] );
UInt64 count = bd1.rbs.rb_to_array( res_data );
res_offset += count;
res_offsets.emplace_back(res_offset);
}
}
};
template <typename Name>
class FunctionBitmapSelfCardinalityImpl : public IFunction
{
public:
static constexpr auto name = Name::name;
static FunctionPtr create(const Context &) { return std::make_shared<FunctionBitmapSelfCardinalityImpl>(); }
String getName() const override { return name; }
bool isVariadic() const override { return false; }
size_t getNumberOfArguments() const override { return 1; }
DataTypePtr getReturnTypeImpl(const DataTypes & /*arguments */) const override
{ return std::make_shared<DataTypeNumber<ToType>>(); }
bool useDefaultImplementationForConstants() const override { return true; }
void executeImpl(Block & block, const ColumnNumbers & arguments, size_t result, size_t input_rows_count) override
{
auto col_to = ColumnVector<ToType>::create(input_rows_count);
typename ColumnVector<ToType>::Container & vec_to = col_to->getData();
const IDataType * from_type = block.getByPosition(arguments[0]).type.get();
const DataTypeAggregateFunction * aggr_type = typeid_cast<const DataTypeAggregateFunction *>(from_type);
WhichDataType which(aggr_type->getArgumentsDataTypes()[0]);
if (which.isUInt8()) executeIntType<UInt8>(block, arguments, input_rows_count, vec_to);
else if (which.isUInt16()) executeIntType<UInt16>(block, arguments, input_rows_count, vec_to);
else if (which.isUInt32()) executeIntType<UInt32>(block, arguments, input_rows_count, vec_to);
else if (which.isUInt64()) executeIntType<UInt64>(block, arguments, input_rows_count, vec_to);
else
throw Exception("Unexpected type " + from_type->getName() + " of argument of function " + getName(),
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
block.getByPosition(result).column = std::move(col_to);
}
private:
using ToType = UInt64;
template <typename T>
void executeIntType( Block & block, const ColumnNumbers & arguments, size_t input_rows_count, typename ColumnVector<ToType>::Container & vec_to)
{
const ColumnAggregateFunction * column = typeid_cast<const ColumnAggregateFunction *>(block.getByPosition(arguments[0]).column.get());
for(size_t i = 0; i < input_rows_count; ++i)
{
const AggregateFunctionGroupBitmapData<T>& bd1 = *reinterpret_cast<const AggregateFunctionGroupBitmapData<T> *>( column->getData()[i] );
vec_to[i] = bd1.rbs.size();
}
}
};
template <typename T>
struct BitmapAndCardinalityImpl
{
using ReturnType = UInt64;
static UInt64 apply( const AggregateFunctionGroupBitmapData<T> & bd1, const AggregateFunctionGroupBitmapData<T> & bd2 )
{
// roaring_bitmap_and_cardinality( rb1, rb2 );
return bd1.rbs.rb_and_cardinality( bd2.rbs );
}
};
template <typename T>
struct BitmapOrCardinalityImpl
{
using ReturnType = UInt64;
static UInt64 apply( const AggregateFunctionGroupBitmapData<T> & bd1, const AggregateFunctionGroupBitmapData<T> & bd2 )
{
// return roaring_bitmap_or_cardinality( rb1, rb2 );
return bd1.rbs.rb_or_cardinality( bd2.rbs );
}
};
template <typename T>
struct BitmapXorCardinalityImpl
{
using ReturnType = UInt64;
static UInt64 apply( const AggregateFunctionGroupBitmapData<T> & bd1, const AggregateFunctionGroupBitmapData<T> & bd2 )
{
// return roaring_bitmap_xor_cardinality( rb1, rb2 );
return bd1.rbs.rb_xor_cardinality( bd2.rbs );
}
};
template <typename T>
struct BitmapAndnotCardinalityImpl
{
using ReturnType = UInt64;
static UInt64 apply( const AggregateFunctionGroupBitmapData<T> & bd1, const AggregateFunctionGroupBitmapData<T> & bd2 )
{
// roaring_bitmap_andnot_cardinality( rb1, rb2 );
return bd1.rbs.rb_andnot_cardinality( bd2.rbs );
}
};
template <template <typename> class Impl, typename Name>
class FunctionBitmapCardinality : public IFunction
{
public:
static constexpr auto name = Name::name;
static FunctionPtr create(const Context &) { return std::make_shared<FunctionBitmapCardinality>(); }
String getName() const override { return name; }
bool isVariadic() const override { return false; }
size_t getNumberOfArguments() const override { return 2; }
DataTypePtr getReturnTypeImpl(const DataTypes & /*arguments */) const override
{ return std::make_shared<DataTypeNumber<ToType>>(); }
bool useDefaultImplementationForConstants() const override { return true; }
void executeImpl(Block & block, const ColumnNumbers & arguments, size_t result, size_t input_rows_count) override
{
auto col_to = ColumnVector<ToType>::create(input_rows_count);
typename ColumnVector<ToType>::Container & vec_to = col_to->getData();
const IDataType * from_type = block.getByPosition(arguments[0]).type.get();
const DataTypeAggregateFunction * aggr_type = typeid_cast<const DataTypeAggregateFunction *>(from_type);
WhichDataType which(aggr_type->getArgumentsDataTypes()[0]);
if (which.isUInt8()) executeIntType<UInt8>(block, arguments, input_rows_count, vec_to);
else if (which.isUInt16()) executeIntType<UInt16>(block, arguments, input_rows_count, vec_to);
else if (which.isUInt32()) executeIntType<UInt32>(block, arguments, input_rows_count, vec_to);
else if (which.isUInt64()) executeIntType<UInt64>(block, arguments, input_rows_count, vec_to);
else
throw Exception("Unexpected type " + from_type->getName() + " of argument of function " + getName(),
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
block.getByPosition(result).column = std::move(col_to);
}
private:
using ToType = UInt64;
template <typename T>
void executeIntType( Block & block, const ColumnNumbers & arguments, size_t input_rows_count, typename ColumnVector<ToType>::Container & vec_to)
{
const ColumnAggregateFunction * columns[2];
for (size_t i = 0; i < 2; ++i)
columns[i] = typeid_cast<const ColumnAggregateFunction *>(block.getByPosition(arguments[i]).column.get());
for(size_t i = 0; i < input_rows_count; ++i)
{
const AggregateFunctionGroupBitmapData<T>& bd1 = *reinterpret_cast<const AggregateFunctionGroupBitmapData<T> *>( columns[0]->getData()[i] );
const AggregateFunctionGroupBitmapData<T>& bd2 = *reinterpret_cast<const AggregateFunctionGroupBitmapData<T> *>( columns[1]->getData()[i] );
vec_to[i] = Impl<T>::apply( bd1, bd2 );
}
}
};
template <typename T>
struct BitmapAndImpl
{
static void apply( AggregateFunctionGroupBitmapData<T> & toBd, const AggregateFunctionGroupBitmapData<T> & bd2 )
{
toBd.rbs.rb_and( bd2.rbs );
}
};
template <typename T>
struct BitmapOrImpl
{
static void apply( AggregateFunctionGroupBitmapData<T> & toBd, const AggregateFunctionGroupBitmapData<T> & bd2 )
{
toBd.rbs.rb_or( bd2.rbs );
}
};
template <typename T>
struct BitmapXorImpl
{
static void apply( AggregateFunctionGroupBitmapData<T> & toBd, const AggregateFunctionGroupBitmapData<T> & bd2 )
{
toBd.rbs.rb_xor( bd2.rbs );
}
};
template <typename T>
struct BitmapAndnotImpl
{
static void apply( AggregateFunctionGroupBitmapData<T> & toBd, const AggregateFunctionGroupBitmapData<T> & bd2 )
{
toBd.rbs.rb_andnot( bd2.rbs );
}
};
template <template <typename> class Impl, typename Name>
class FunctionBitmap : public IFunction
{
public:
static constexpr auto name = Name::name;
static FunctionPtr create(const Context &) { return std::make_shared<FunctionBitmap>(); }
String getName() const override { return name; }
bool isVariadic() const override { return false; }
size_t getNumberOfArguments() const override { return 2; }
DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override
{
const DataTypeAggregateFunction * aggr_type = typeid_cast<const DataTypeAggregateFunction *>( arguments[0].get() );
if (!aggr_type)
throw Exception("First argument for function " + getName() + " must be an AggregateFunction but it has type "
+ arguments[0]->getName() + ".", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
return arguments[0];
}
bool useDefaultImplementationForConstants() const override { return true; }
void executeImpl(Block & block, const ColumnNumbers & arguments, size_t result, size_t input_rows_count) override
{
const IDataType * from_type = block.getByPosition(arguments[0]).type.get();
const DataTypeAggregateFunction * aggr_type = typeid_cast<const DataTypeAggregateFunction *>(from_type);
WhichDataType which(aggr_type->getArgumentsDataTypes()[0]);
if (which.isUInt8()) executeBitmapData<UInt8>(block, arguments, result, input_rows_count);
else if (which.isUInt16()) executeBitmapData<UInt16>(block, arguments, result, input_rows_count);
else if (which.isUInt32()) executeBitmapData<UInt32>(block, arguments, result, input_rows_count);
else if (which.isUInt64()) executeBitmapData<UInt64>(block, arguments, result, input_rows_count);
else
throw Exception("Unexpected type " + from_type->getName() + " of argument of function " + getName(),
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
}
private:
template <typename T>
void executeBitmapData( Block & block, const ColumnNumbers & arguments, size_t result, size_t input_rows_count)
{
const ColumnAggregateFunction * columns[2];
for (size_t i = 0; i < 2; ++i)
columns[i] = typeid_cast<const ColumnAggregateFunction *>(block.getByPosition(arguments[i]).column.get());
auto col_to = ColumnAggregateFunction::create(columns[0]->getAggregateFunction());
col_to->reserve(input_rows_count);
for(size_t i = 0; i < input_rows_count; ++i)
{
col_to->insertFrom(columns[0]->getData()[i]);
AggregateFunctionGroupBitmapData<T>& toBd = *reinterpret_cast<AggregateFunctionGroupBitmapData<T> *>( col_to->getData()[i] );
const AggregateFunctionGroupBitmapData<T>& bd2 = *reinterpret_cast<const AggregateFunctionGroupBitmapData<T> *>( columns[1]->getData()[i] );
Impl<T>::apply( toBd, bd2 );
}
block.getByPosition(result).column = std::move(col_to);
}
};
struct NameBitmapBuild { static constexpr auto name = "bitmapBuild"; };
using FunctionBitmapBuild = FunctionBitmapBuildImpl<NameBitmapBuild>;
struct NameBitmapToArray { static constexpr auto name = "bitmapToArray"; };
using FunctionBitmapToArray = FunctionBitmapToArrayImpl<NameBitmapToArray>;
struct NameBitmapCardinality { static constexpr auto name = "bitmapCardinality"; };
struct NameBitmapAndCardinality { static constexpr auto name = "bitmapAndCardinality"; };
struct NameBitmapOrCardinality { static constexpr auto name = "bitmapOrCardinality"; };
struct NameBitmapXorCardinality { static constexpr auto name = "bitmapXorCardinality"; };
struct NameBitmapAndnotCardinality { static constexpr auto name = "bitmapAndnotCardinality"; };
using FunctionBitmapSelfCardinality = FunctionBitmapSelfCardinalityImpl<NameBitmapCardinality>;
using FunctionBitmapAndCardinality = FunctionBitmapCardinality<BitmapAndCardinalityImpl, NameBitmapAndCardinality>;
using FunctionBitmapOrCardinality = FunctionBitmapCardinality<BitmapOrCardinalityImpl, NameBitmapOrCardinality>;
using FunctionBitmapXorCardinality = FunctionBitmapCardinality<BitmapXorCardinalityImpl, NameBitmapXorCardinality>;
using FunctionBitmapAndnotCardinality = FunctionBitmapCardinality<BitmapAndnotCardinalityImpl, NameBitmapAndnotCardinality>;
struct NameBitmapAnd { static constexpr auto name = "bitmapAnd"; };
struct NameBitmapOr { static constexpr auto name = "bitmapOr"; };
struct NameBitmapXor { static constexpr auto name = "bitmapXor"; };
struct NameBitmapAndnot { static constexpr auto name = "bitmapAndnot"; };
using FunctionBitmapAnd = FunctionBitmap<BitmapAndImpl, NameBitmapAnd>;
using FunctionBitmapOr = FunctionBitmap<BitmapOrImpl, NameBitmapOr>;
using FunctionBitmapXor = FunctionBitmap<BitmapXorImpl, NameBitmapXor>;
using FunctionBitmapAndnot = FunctionBitmap<BitmapAndnotImpl, NameBitmapAndnot>;
}

View File

@ -13,6 +13,7 @@ namespace DB
void registerFunctionsArithmetic(FunctionFactory &);
void registerFunctionsArray(FunctionFactory &);
void registerFunctionsTuple(FunctionFactory &);
void registerFunctionsBitmap(FunctionFactory &);
void registerFunctionsCoding(FunctionFactory &);
void registerFunctionsComparison(FunctionFactory &);
void registerFunctionsConditional(FunctionFactory &);
@ -52,6 +53,7 @@ void registerFunctions()
registerFunctionsArithmetic(factory);
registerFunctionsArray(factory);
registerFunctionsTuple(factory);
registerFunctionsBitmap(factory);
registerFunctionsCoding(factory);
registerFunctionsComparison(factory);
registerFunctionsConditional(factory);

View File

@ -0,0 +1,15 @@
[1,2,3,4,5]
[3]
[1,2,3,4,5]
[1,2,4,5]
[1,2]
5
1
5
4
2
70
2019-01-01 50 [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50]
2019-01-02 60 [11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70]
60 50 70 40 20 30
60 50 70 40 20 30

View File

@ -0,0 +1,56 @@
SELECT bitmapToArray(bitmapBuild([1, 2, 3, 4, 5]));
SELECT bitmapToArray(bitmapAnd(bitmapBuild([1,2,3]),bitmapBuild([3,4,5])));
SELECT bitmapToArray(bitmapOr(bitmapBuild([1,2,3]),bitmapBuild([3,4,5])));
SELECT bitmapToArray(bitmapXor(bitmapBuild([1,2,3]),bitmapBuild([3,4,5])));
SELECT bitmapToArray(bitmapAndnot(bitmapBuild([1,2,3]),bitmapBuild([3,4,5])));
SELECT bitmapCardinality(bitmapBuild([1, 2, 3, 4, 5]));
SELECT bitmapAndCardinality(bitmapBuild([1,2,3]),bitmapBuild([3,4,5]));
SELECT bitmapOrCardinality(bitmapBuild([1,2,3]),bitmapBuild([3,4,5]));
SELECT bitmapXorCardinality(bitmapBuild([1,2,3]),bitmapBuild([3,4,5]));
SELECT bitmapAndnotCardinality(bitmapBuild([1,2,3]),bitmapBuild([3,4,5]));
DROP TABLE IF EXISTS test.bitmap_test;
CREATE TABLE test.bitmap_test(pickup_date Date, city_id UInt32, uid UInt32)ENGINE = Memory;
INSERT INTO test.bitmap_test SELECT '2019-01-01', 1, number FROM numbers(1,50);
INSERT INTO test.bitmap_test SELECT '2019-01-02', 1, number FROM numbers(11,60);
SELECT groupBitmap( uid ) AS user_num FROM test.bitmap_test;
SELECT pickup_date, groupBitmap( uid ) AS user_num, bitmapToArray(groupBitmapState( uid )) AS users FROM test.bitmap_test GROUP BY pickup_date;
SELECT
bitmapCardinality(day_today) AS today_users,
bitmapCardinality(day_before) AS before_users,
bitmapOrCardinality(day_today, day_before)ll_users,
bitmapAndCardinality(day_today, day_before) AS old_users,
bitmapAndnotCardinality(day_today, day_before) AS new_users,
bitmapXorCardinality(day_today, day_before) AS diff_users
FROM
(
SELECT city_id, groupBitmapState( uid ) AS day_today FROM test.bitmap_test WHERE pickup_date = '2019-01-02' GROUP BY city_id
)
ALL LEFT JOIN
(
SELECT city_id, groupBitmapState( uid ) AS day_before FROM test.bitmap_test WHERE pickup_date = '2019-01-01' GROUP BY city_id
)
USING city_id;
SELECT
bitmapCardinality(day_today) AS today_users,
bitmapCardinality(day_before) AS before_users,
bitmapCardinality(bitmapOr(day_today, day_before))ll_users,
bitmapCardinality(bitmapAnd(day_today, day_before)) AS old_users,
bitmapCardinality(bitmapAndnot(day_today, day_before)) AS new_users,
bitmapCardinality(bitmapXor(day_today, day_before)) AS diff_users
FROM
(
SELECT city_id, groupBitmapState( uid ) AS day_today FROM test.bitmap_test WHERE pickup_date = '2019-01-02' GROUP BY city_id
)
ALL LEFT JOIN
(
SELECT city_id, groupBitmapState( uid ) AS day_before FROM test.bitmap_test WHERE pickup_date = '2019-01-01' GROUP BY city_id
)
USING city_id;
DROP TABLE IF EXISTS test.bitmap_test;

View File

@ -179,6 +179,48 @@ binary decimal
01101000 = 104
```
##groupBitmap
Bitmap or Aggregate calculations from a unsigned integer column, return cardinality of type UInt64, if add suffix -State, then return [bitmap object](../functions/bitmap_functions.md).
```
groupBitmap(expr)
```
**Parameters**
`expr` An expression that results in `UInt*` type.
**Return value**
Value of the `UInt64` type.
**Example**
Test data:
```
userid
1
1
2
3
```
Query:
```
SELECT groupBitmap(userid) as num FROM t
```
Result:
```
num
3
```
## min(x) {#agg_function-min}
Calculates the minimum.

View File

@ -0,0 +1,277 @@
# Bitmap functions
Bitmap functions work for two bitmaps Object value calculation, it is to return new bitmap or cardinality while using formula calculation, such as and, or, xor, and not, etc.
There are 2 kinds of construction methods for Bitmap Object. One is to be constructed by aggregation function groupBitmap with -State, the other is to be constructed by Array Object. It is also to convert Bitmap Object to Array Object.
RoaringBitmap is wrapped into a data structure while actual storage of Bitmap objects. When the cardinality is less than or equal to 32, it uses Set objet. When the cardinality is greater than 32, it uses RoaringBitmap object. That is why storage of low cardinality set is faster.
For more information on RoaringBitmap, see: [CRoaring](https://github.com/RoaringBitmap/CRoaring).
## bitmapBuild
Build a bitmap from unsigned integer array.
```
bitmapBuild(array)
```
**Parameters**
- `array` unsigned integer array.
**Example**
``` sql
SELECT bitmapBuild([1, 2, 3, 4, 5]) AS res
```
## bitmapToArray
Convert bitmap to integer array.
```
bitmapToArray(bitmap)
```
**Parameters**
- `bitmap` bitmap object.
**Example**
``` sql
SELECT bitmapToArray(bitmapBuild([1, 2, 3, 4, 5])) AS res
```
```
┌─res─────────┐
│ [1,2,3,4,5] │
└─────────────┘
```
## bitmapAnd
Two bitmap and calculation, the result is a new bitmap.
```
bitmapAnd(bitmap,bitmap)
```
**Parameters**
- `bitmap` bitmap object.
**Example**
``` sql
SELECT bitmapToArray(bitmapAnd(bitmapBuild([1,2,3]),bitmapBuild([3,4,5]))) AS res
```
```
┌─res─┐
│ [3] │
└─────┘
```
## bitmapOr
Two bitmap or calculation, the result is a new bitmap.
```
bitmapOr(bitmap,bitmap)
```
**Parameters**
- `bitmap` bitmap object.
**Example**
``` sql
SELECT bitmapToArray(bitmapOr(bitmapBuild([1,2,3]),bitmapBuild([3,4,5]))) AS res
```
```
┌─res─────────┐
│ [1,2,3,4,5] │
└─────────────┘
```
## bitmapXor
Two bitmap xor calculation, the result is a new bitmap.
```
bitmapXor(bitmap,bitmap)
```
**Parameters**
- `bitmap` bitmap object.
**Example**
``` sql
SELECT bitmapToArray(bitmapXor(bitmapBuild([1,2,3]),bitmapBuild([3,4,5]))) AS res
```
```
┌─res───────┐
│ [1,2,4,5] │
└───────────┘
```
## bitmapAndnot
Two bitmap andnot calculation, the result is a new bitmap.
```
bitmapAndnot(bitmap,bitmap)
```
**Parameters**
- `bitmap` bitmap object.
**Example**
``` sql
SELECT bitmapToArray(bitmapAndnot(bitmapBuild([1,2,3]),bitmapBuild([3,4,5]))) AS res
```
```
┌─res───┐
│ [1,2] │
└───────┘
```
## bitmapCardinality
Retrun bitmap cardinality of type UInt64.
```
bitmapCardinality(bitmap)
```
**Parameters**
- `bitmap` bitmap object.
**Example**
``` sql
SELECT bitmapCardinality(bitmapBuild([1, 2, 3, 4, 5])) AS res
```
```
┌─res─┐
│ 5 │
└─────┘
```
## bitmapAndCardinality
Two bitmap and calculation, return cardinality of type UInt64.
```
bitmapAndCardinality(bitmap,bitmap)
```
**Parameters**
- `bitmap` bitmap object.
**Example**
``` sql
SELECT bitmapAndCardinality(bitmapBuild([1,2,3]),bitmapBuild([3,4,5])) AS res;
```
```
┌─res─┐
│ 1 │
└─────┘
```
## bitmapOrCardinality
Two bitmap or calculation, return cardinality of type UInt64.
```
bitmapOrCardinality(bitmap,bitmap)
```
**Parameters**
- `bitmap` bitmap object.
**Example**
``` sql
SELECT bitmapOrCardinality(bitmapBuild([1,2,3]),bitmapBuild([3,4,5])) AS res;
```
```
┌─res─┐
│ 5 │
└─────┘
```
## bitmapXorCardinality
Two bitmap xor calculation, return cardinality of type UInt64.
```
bitmapXorCardinality(bitmap,bitmap)
```
**Parameters**
- `bitmap` bitmap object.
**Example**
``` sql
SELECT bitmapXorCardinality(bitmapBuild([1,2,3]),bitmapBuild([3,4,5])) AS res;
```
```
┌─res─┐
│ 4 │
└─────┘
```
## bitmapAndnotCardinality
Two bitmap andnot calculation, return cardinality of type UInt64.
```
bitmapAndnotCardinality(bitmap,bitmap)
```
**Parameters**
- `bitmap` bitmap object.
**Example**
``` sql
SELECT bitmapAndnotCardinality(bitmapBuild([1,2,3]),bitmapBuild([3,4,5])) AS res;
```
```
┌─res─┐
│ 2 │
└─────┘
```
[Original article](https://clickhouse.yandex/docs/en/query_language/functions/bitmap_functions/) <!--hide-->

View File

@ -86,6 +86,7 @@ functions/arithmetic_functions.md query_language/functions/arithmetic_functions.
functions/array_functions.md query_language/functions/array_functions.md
functions/array_join.md query_language/functions/array_join.md
functions/bit_functions.md query_language/functions/bit_functions.md
functions/bitmap_functions.md query_language/functions/bitmap_functions.md
functions/comparison_functions.md query_language/functions/comparison_functions.md
functions/conditional_functions.md query_language/functions/conditional_functions.md
functions/date_time_functions.md query_language/functions/date_time_functions.md

View File

@ -80,6 +80,7 @@ nav:
- 'Working with Arrays': 'query_language/functions/array_functions.md'
- 'Splitting and Merging Strings and Arrays': 'query_language/functions/splitting_merging_functions.md'
- 'Bit': 'query_language/functions/bit_functions.md'
- 'Bitmap functions': 'query_language/functions/bitmap_functions.md'
- 'Hash': 'query_language/functions/hash_functions.md'
- 'Generating Pseudo-Random Numbers': 'query_language/functions/random_functions.md'
- 'Encoding': 'query_language/functions/encoding_functions.md'