Revert "Fix bug window functions: revert #39631"

This commit is contained in:
Nikolai Kochetov 2023-12-19 13:30:59 +01:00 committed by GitHub
parent 91609a104c
commit 8ab6564538
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
13 changed files with 521 additions and 381 deletions

View File

@ -2942,6 +2942,7 @@ void InterpreterSelectQuery::executeWindow(QueryPlan & query_plan)
auto sorting_step = std::make_unique<SortingStep>(
query_plan.getCurrentDataStream(),
window.full_sort_description,
window.partition_by,
0 /* LIMIT */,
sort_settings,
settings.optimize_sorting_by_input_stream_properties);

View File

@ -915,6 +915,7 @@ void addWindowSteps(QueryPlan & query_plan,
auto sorting_step = std::make_unique<SortingStep>(
query_plan.getCurrentDataStream(),
window_description.full_sort_description,
window_description.partition_by,
0 /*limit*/,
sort_settings,
settings.optimize_sorting_by_input_stream_properties);

View File

@ -1,3 +1,4 @@
#include <memory>
#include <stdexcept>
#include <IO/Operators.h>
#include <Processors/Merges/MergingSortedTransform.h>
@ -9,6 +10,8 @@
#include <QueryPipeline/QueryPipelineBuilder.h>
#include <Common/JSONBuilder.h>
#include <Processors/ResizeProcessor.h>
#include <Processors/Transforms/ScatterByPartitionTransform.h>
namespace CurrentMetrics
{
@ -76,6 +79,21 @@ SortingStep::SortingStep(
output_stream->sort_scope = DataStream::SortScope::Global;
}
SortingStep::SortingStep(
const DataStream & input_stream,
const SortDescription & description_,
const SortDescription & partition_by_description_,
UInt64 limit_,
const Settings & settings_,
bool optimize_sorting_by_input_stream_properties_)
: SortingStep(input_stream, description_, limit_, settings_, optimize_sorting_by_input_stream_properties_)
{
partition_by_description = partition_by_description_;
output_stream->sort_description = result_description;
output_stream->sort_scope = DataStream::SortScope::Stream;
}
SortingStep::SortingStep(
const DataStream & input_stream_,
SortDescription prefix_description_,
@ -117,7 +135,11 @@ void SortingStep::updateOutputStream()
{
output_stream = createOutputStream(input_streams.front(), input_streams.front().header, getDataStreamTraits());
output_stream->sort_description = result_description;
if (partition_by_description.empty())
output_stream->sort_scope = DataStream::SortScope::Global;
else
output_stream->sort_scope = DataStream::SortScope::Stream;
}
void SortingStep::updateLimit(size_t limit_)
@ -135,6 +157,55 @@ void SortingStep::convertToFinishSorting(SortDescription prefix_description_)
prefix_description = std::move(prefix_description_);
}
void SortingStep::scatterByPartitionIfNeeded(QueryPipelineBuilder& pipeline)
{
size_t threads = pipeline.getNumThreads();
size_t streams = pipeline.getNumStreams();
if (!partition_by_description.empty() && threads > 1)
{
Block stream_header = pipeline.getHeader();
ColumnNumbers key_columns;
key_columns.reserve(partition_by_description.size());
for (auto & col : partition_by_description)
{
key_columns.push_back(stream_header.getPositionByName(col.column_name));
}
pipeline.transform([&](OutputPortRawPtrs ports)
{
Processors processors;
for (auto * port : ports)
{
auto scatter = std::make_shared<ScatterByPartitionTransform>(stream_header, threads, key_columns);
connect(*port, scatter->getInputs().front());
processors.push_back(scatter);
}
return processors;
});
if (streams > 1)
{
pipeline.transform([&](OutputPortRawPtrs ports)
{
Processors processors;
for (size_t i = 0; i < threads; ++i)
{
size_t output_it = i;
auto resize = std::make_shared<ResizeProcessor>(stream_header, streams, 1);
auto & inputs = resize->getInputs();
for (auto input_it = inputs.begin(); input_it != inputs.end(); output_it += threads, ++input_it)
connect(*ports[output_it], *input_it);
processors.push_back(resize);
}
return processors;
});
}
}
}
void SortingStep::finishSorting(
QueryPipelineBuilder & pipeline, const SortDescription & input_sort_desc, const SortDescription & result_sort_desc, const UInt64 limit_)
{
@ -260,10 +331,12 @@ void SortingStep::fullSortStreams(
void SortingStep::fullSort(
QueryPipelineBuilder & pipeline, const SortDescription & result_sort_desc, const UInt64 limit_, const bool skip_partial_sort)
{
scatterByPartitionIfNeeded(pipeline);
fullSortStreams(pipeline, sort_settings, result_sort_desc, limit_, skip_partial_sort);
/// If there are several streams, then we merge them into one
if (pipeline.getNumStreams() > 1)
if (pipeline.getNumStreams() > 1 && (partition_by_description.empty() || pipeline.getNumThreads() == 1))
{
auto transform = std::make_shared<MergingSortedTransform>(
pipeline.getHeader(),
@ -295,6 +368,7 @@ void SortingStep::transformPipeline(QueryPipelineBuilder & pipeline, const Build
{
bool need_finish_sorting = (prefix_description.size() < result_description.size());
mergingSorted(pipeline, prefix_description, (need_finish_sorting ? 0 : limit));
if (need_finish_sorting)
{
finishSorting(pipeline, prefix_description, result_description, limit);

View File

@ -40,6 +40,15 @@ public:
const Settings & settings_,
bool optimize_sorting_by_input_stream_properties_);
/// Full with partitioning
SortingStep(
const DataStream & input_stream,
const SortDescription & description_,
const SortDescription & partition_by_description_,
UInt64 limit_,
const Settings & settings_,
bool optimize_sorting_by_input_stream_properties_);
/// FinishSorting
SortingStep(
const DataStream & input_stream_,
@ -83,14 +92,24 @@ public:
bool skip_partial_sort = false);
private:
void scatterByPartitionIfNeeded(QueryPipelineBuilder& pipeline);
void updateOutputStream() override;
static void
mergeSorting(QueryPipelineBuilder & pipeline, const Settings & sort_settings, const SortDescription & result_sort_desc, UInt64 limit_);
static void mergeSorting(
QueryPipelineBuilder & pipeline,
const Settings & sort_settings,
const SortDescription & result_sort_desc,
UInt64 limit_);
void mergingSorted(QueryPipelineBuilder & pipeline, const SortDescription & result_sort_desc, UInt64 limit_);
void mergingSorted(
QueryPipelineBuilder & pipeline,
const SortDescription & result_sort_desc,
UInt64 limit_);
void finishSorting(
QueryPipelineBuilder & pipeline, const SortDescription & input_sort_desc, const SortDescription & result_sort_desc, UInt64 limit_);
QueryPipelineBuilder & pipeline,
const SortDescription & input_sort_desc,
const SortDescription & result_sort_desc,
UInt64 limit_);
void fullSort(
QueryPipelineBuilder & pipeline,
const SortDescription & result_sort_desc,
@ -101,6 +120,9 @@ private:
SortDescription prefix_description;
const SortDescription result_description;
SortDescription partition_by_description;
UInt64 limit;
bool always_read_till_end = false;

View File

@ -67,6 +67,7 @@ void WindowStep::transformPipeline(QueryPipelineBuilder & pipeline, const BuildQ
// This resize is needed for cases such as `over ()` when we don't have a
// sort node, and the input might have multiple streams. The sort node would
// have resized it.
if (window_description.full_sort_description.empty())
pipeline.resize(1);
pipeline.addSimpleTransform(

View File

@ -0,0 +1,129 @@
#include <Processors/Transforms/ScatterByPartitionTransform.h>
#include <Common/PODArray.h>
#include <Core/ColumnNumbers.h>
namespace DB
{
ScatterByPartitionTransform::ScatterByPartitionTransform(Block header, size_t output_size_, ColumnNumbers key_columns_)
: IProcessor(InputPorts{header}, OutputPorts{output_size_, header})
, output_size(output_size_)
, key_columns(std::move(key_columns_))
, hash(0)
{}
IProcessor::Status ScatterByPartitionTransform::prepare()
{
auto & input = getInputs().front();
/// Check all outputs are finished or ready to get data.
bool all_finished = true;
for (auto & output : outputs)
{
if (output.isFinished())
continue;
all_finished = false;
}
if (all_finished)
{
input.close();
return Status::Finished;
}
if (!all_outputs_processed)
{
auto output_it = outputs.begin();
bool can_push = false;
for (size_t i = 0; i < output_size; ++i, ++output_it)
if (!was_output_processed[i] && output_it->canPush())
can_push = true;
if (!can_push)
return Status::PortFull;
return Status::Ready;
}
/// Try get chunk from input.
if (input.isFinished())
{
for (auto & output : outputs)
output.finish();
return Status::Finished;
}
input.setNeeded();
if (!input.hasData())
return Status::NeedData;
chunk = input.pull();
has_data = true;
was_output_processed.assign(outputs.size(), false);
return Status::Ready;
}
void ScatterByPartitionTransform::work()
{
if (all_outputs_processed)
generateOutputChunks();
all_outputs_processed = true;
size_t chunk_number = 0;
for (auto & output : outputs)
{
auto & was_processed = was_output_processed[chunk_number];
auto & output_chunk = output_chunks[chunk_number];
++chunk_number;
if (was_processed)
continue;
if (output.isFinished())
continue;
if (!output.canPush())
{
all_outputs_processed = false;
continue;
}
output.push(std::move(output_chunk));
was_processed = true;
}
if (all_outputs_processed)
{
has_data = false;
output_chunks.clear();
}
}
void ScatterByPartitionTransform::generateOutputChunks()
{
auto num_rows = chunk.getNumRows();
const auto & columns = chunk.getColumns();
hash.reset(num_rows);
for (const auto & column_number : key_columns)
columns[column_number]->updateWeakHash32(hash);
const auto & hash_data = hash.getData();
IColumn::Selector selector(num_rows);
for (size_t row = 0; row < num_rows; ++row)
selector[row] = hash_data[row] % output_size;
output_chunks.resize(output_size);
for (const auto & column : columns)
{
auto filtered_columns = column->scatter(output_size, selector);
for (size_t i = 0; i < output_size; ++i)
output_chunks[i].addColumn(std::move(filtered_columns[i]));
}
}
}

View File

@ -0,0 +1,34 @@
#pragma once
#include <Common/WeakHash.h>
#include <Core/ColumnNumbers.h>
#include <Processors/IProcessor.h>
namespace DB
{
struct ScatterByPartitionTransform : IProcessor
{
ScatterByPartitionTransform(Block header, size_t output_size_, ColumnNumbers key_columns_);
String getName() const override { return "ScatterByPartitionTransform"; }
Status prepare() override;
void work() override;
private:
void generateOutputChunks();
size_t output_size;
ColumnNumbers key_columns;
bool has_data = false;
bool all_outputs_processed = true;
std::vector<char> was_output_processed;
Chunk chunk;
WeakHash32 hash;
Chunks output_chunks;
};
}

View File

@ -22,6 +22,16 @@ select sum(number) over w as x, max(number) over w as y from t_01568 window w as
21 8
21 8
21 8
select sum(number) over w, max(number) over w from t_01568 window w as (partition by p) order by p;
3 2
3 2
3 2
12 5
12 5
12 5
21 8
21 8
21 8
select sum(number) over w as x, max(number) over w as y from remote('127.0.0.{1,2}', '', t_01568) window w as (partition by p) order by x, y;
6 2
6 2
@ -41,6 +51,25 @@ select sum(number) over w as x, max(number) over w as y from remote('127.0.0.{1,
42 8
42 8
42 8
select sum(number) over w as x, max(number) over w as y from remote('127.0.0.{1,2}', '', t_01568) window w as (partition by p) order by x, y SETTINGS max_threads = 1;
6 2
6 2
6 2
6 2
6 2
6 2
24 5
24 5
24 5
24 5
24 5
24 5
42 8
42 8
42 8
42 8
42 8
42 8
select distinct sum(number) over w as x, max(number) over w as y from remote('127.0.0.{1,2}', '', t_01568) window w as (partition by p) order by x, y;
6 2
24 5

View File

@ -15,8 +15,12 @@ from numbers(9);
select sum(number) over w as x, max(number) over w as y from t_01568 window w as (partition by p) order by x, y;
select sum(number) over w, max(number) over w from t_01568 window w as (partition by p) order by p;
select sum(number) over w as x, max(number) over w as y from remote('127.0.0.{1,2}', '', t_01568) window w as (partition by p) order by x, y;
select sum(number) over w as x, max(number) over w as y from remote('127.0.0.{1,2}', '', t_01568) window w as (partition by p) order by x, y SETTINGS max_threads = 1;
select distinct sum(number) over w as x, max(number) over w as y from remote('127.0.0.{1,2}', '', t_01568) window w as (partition by p) order by x, y;
-- window functions + aggregation w/shards

View File

@ -0,0 +1,100 @@
1
-- { echoOn }
SELECT
nw,
sum(WR) AS R,
sumIf(WR, uniq_rows = 1) AS UNR
FROM
(
SELECT
uniq(nw) OVER (PARTITION BY ac) AS uniq_rows,
AVG(wg) AS WR,
ac,
nw
FROM window_funtion_threading
GROUP BY ac, nw
)
GROUP BY nw
ORDER BY nw ASC, R DESC
LIMIT 10;
0 2 0
1 2 0
2 2 0
SELECT
nw,
sum(WR) AS R,
sumIf(WR, uniq_rows = 1) AS UNR
FROM
(
SELECT
uniq(nw) OVER (PARTITION BY ac) AS uniq_rows,
AVG(wg) AS WR,
ac,
nw
FROM window_funtion_threading
GROUP BY ac, nw
)
GROUP BY nw
ORDER BY nw ASC, R DESC
LIMIT 10
SETTINGS max_threads = 1;
0 2 0
1 2 0
2 2 0
SELECT
nw,
sum(WR) AS R,
sumIf(WR, uniq_rows = 1) AS UNR
FROM
(
SELECT
uniq(nw) OVER (PARTITION BY ac) AS uniq_rows,
AVG(wg) AS WR,
ac,
nw
FROM window_funtion_threading
WHERE (ac % 4) = 0
GROUP BY
ac,
nw
UNION ALL
SELECT
uniq(nw) OVER (PARTITION BY ac) AS uniq_rows,
AVG(wg) AS WR,
ac,
nw
FROM window_funtion_threading
WHERE (ac % 4) = 1
GROUP BY
ac,
nw
UNION ALL
SELECT
uniq(nw) OVER (PARTITION BY ac) AS uniq_rows,
AVG(wg) AS WR,
ac,
nw
FROM window_funtion_threading
WHERE (ac % 4) = 2
GROUP BY
ac,
nw
UNION ALL
SELECT
uniq(nw) OVER (PARTITION BY ac) AS uniq_rows,
AVG(wg) AS WR,
ac,
nw
FROM window_funtion_threading
WHERE (ac % 4) = 3
GROUP BY
ac,
nw
)
GROUP BY nw
ORDER BY nw ASC, R DESC
LIMIT 10;
0 2 0
1 2 0
2 2 0

View File

@ -0,0 +1,119 @@
CREATE TABLE window_funtion_threading
Engine = MergeTree
ORDER BY (ac, nw)
AS SELECT
toUInt64(toFloat32(number % 2) % 20000000) as ac,
toFloat32(1) as wg,
toUInt16(toFloat32(number % 3) % 400) as nw
FROM numbers_mt(10000000);
SELECT count() FROM (EXPLAIN PIPELINE SELECT
nw,
sum(WR) AS R,
sumIf(WR, uniq_rows = 1) AS UNR
FROM
(
SELECT
uniq(nw) OVER (PARTITION BY ac) AS uniq_rows,
AVG(wg) AS WR,
ac,
nw
FROM window_funtion_threading
GROUP BY ac, nw
)
GROUP BY nw
ORDER BY nw ASC, R DESC
LIMIT 10) where explain ilike '%ScatterByPartitionTransform%' SETTINGS max_threads = 4;
-- { echoOn }
SELECT
nw,
sum(WR) AS R,
sumIf(WR, uniq_rows = 1) AS UNR
FROM
(
SELECT
uniq(nw) OVER (PARTITION BY ac) AS uniq_rows,
AVG(wg) AS WR,
ac,
nw
FROM window_funtion_threading
GROUP BY ac, nw
)
GROUP BY nw
ORDER BY nw ASC, R DESC
LIMIT 10;
SELECT
nw,
sum(WR) AS R,
sumIf(WR, uniq_rows = 1) AS UNR
FROM
(
SELECT
uniq(nw) OVER (PARTITION BY ac) AS uniq_rows,
AVG(wg) AS WR,
ac,
nw
FROM window_funtion_threading
GROUP BY ac, nw
)
GROUP BY nw
ORDER BY nw ASC, R DESC
LIMIT 10
SETTINGS max_threads = 1;
SELECT
nw,
sum(WR) AS R,
sumIf(WR, uniq_rows = 1) AS UNR
FROM
(
SELECT
uniq(nw) OVER (PARTITION BY ac) AS uniq_rows,
AVG(wg) AS WR,
ac,
nw
FROM window_funtion_threading
WHERE (ac % 4) = 0
GROUP BY
ac,
nw
UNION ALL
SELECT
uniq(nw) OVER (PARTITION BY ac) AS uniq_rows,
AVG(wg) AS WR,
ac,
nw
FROM window_funtion_threading
WHERE (ac % 4) = 1
GROUP BY
ac,
nw
UNION ALL
SELECT
uniq(nw) OVER (PARTITION BY ac) AS uniq_rows,
AVG(wg) AS WR,
ac,
nw
FROM window_funtion_threading
WHERE (ac % 4) = 2
GROUP BY
ac,
nw
UNION ALL
SELECT
uniq(nw) OVER (PARTITION BY ac) AS uniq_rows,
AVG(wg) AS WR,
ac,
nw
FROM window_funtion_threading
WHERE (ac % 4) = 3
GROUP BY
ac,
nw
)
GROUP BY nw
ORDER BY nw ASC, R DESC
LIMIT 10;

View File

@ -1,216 +0,0 @@
1 901 19
1 911 19
1 921 19
1 931 19
1 941 19
1 951 20
1 961 20
1 971 20
1 981 20
1 991 20
2 902 19
2 912 19
2 922 19
2 932 19
2 942 19
2 952 20
2 962 20
2 972 20
2 982 20
2 992 20
3 903 19
3 913 19
3 923 19
3 933 19
3 943 19
3 953 20
3 963 20
3 973 20
3 983 20
3 993 20
4 904 19
4 914 19
4 924 19
4 934 19
4 944 19
4 954 20
4 964 20
4 974 20
4 984 20
4 994 20
5 905 19
5 915 19
5 925 19
5 935 19
5 945 19
5 955 20
5 965 20
5 975 20
5 985 20
5 995 20
6 906 19
6 916 19
6 926 19
6 936 19
6 946 19
6 956 20
6 966 20
6 976 20
6 986 20
6 996 20
7 907 19
7 917 19
7 927 19
7 937 19
7 947 19
7 957 20
7 967 20
7 977 20
7 987 20
7 997 20
8 908 19
8 918 19
8 928 19
8 938 19
8 948 19
8 958 20
8 968 20
8 978 20
8 988 20
8 998 20
9 909 19
9 919 19
9 929 19
9 939 19
9 949 19
9 959 20
9 969 20
9 979 20
9 989 20
9 999 20
1 1301 19
1 1311 19
1 1321 19
1 1331 19
1 1341 19
1 1351 19
1 1361 19
1 1371 20
1 1381 20
1 1391 20
1 1401 20
1 1411 20
1 1421 20
1 1431 20
2 1302 19
2 1312 19
2 1322 19
2 1332 19
2 1342 19
2 1352 19
2 1362 19
2 1372 20
2 1382 20
2 1392 20
2 1402 20
2 1412 20
2 1422 20
2 1432 20
3 1303 19
3 1313 19
3 1323 19
3 1333 19
3 1343 19
3 1353 19
3 1363 19
3 1373 20
3 1383 20
3 1393 20
3 1403 20
3 1413 20
3 1423 20
3 1433 20
4 1304 19
4 1314 19
4 1324 19
4 1334 19
4 1344 19
4 1354 19
4 1364 19
4 1374 20
4 1384 20
4 1394 20
4 1404 20
4 1414 20
4 1424 20
4 1434 20
5 1305 19
5 1315 19
5 1325 19
5 1335 19
5 1345 19
5 1355 19
5 1365 19
5 1375 20
5 1385 20
5 1395 20
5 1405 20
5 1415 20
5 1425 20
5 1435 20
6 1306 19
6 1316 19
6 1326 19
6 1336 19
6 1346 19
6 1356 19
6 1366 19
6 1376 20
6 1386 20
6 1396 20
6 1406 20
6 1416 20
6 1426 20
6 1436 20
7 1307 19
7 1317 19
7 1327 19
7 1337 19
7 1347 19
7 1357 19
7 1367 19
7 1377 20
7 1387 20
7 1397 20
7 1407 20
7 1417 20
7 1427 20
7 1437 20
8 1308 19
8 1318 19
8 1328 19
8 1338 19
8 1348 19
8 1358 19
8 1368 19
8 1378 20
8 1388 20
8 1398 20
8 1408 20
8 1418 20
8 1428 20
8 1438 20
9 1309 19
9 1319 19
9 1329 19
9 1339 19
9 1349 19
9 1359 19
9 1369 19
9 1379 20
9 1389 20
9 1399 20
9 1409 20
9 1419 20
9 1429 20
9 1439 20

View File

@ -1,158 +0,0 @@
DROP TABLE IF EXISTS posts;
DROP TABLE IF EXISTS post_metrics;
CREATE TABLE IF NOT EXISTS posts
(
`page_id` LowCardinality(String),
`post_id` String CODEC(LZ4),
`host_id` UInt32 CODEC(T64, LZ4),
`path_id` UInt32,
`created` DateTime CODEC(T64, LZ4),
`as_of` DateTime CODEC(T64, LZ4)
)
ENGINE = ReplacingMergeTree(as_of)
PARTITION BY toStartOfMonth(created)
ORDER BY (page_id, post_id)
TTL created + toIntervalMonth(26);
INSERT INTO posts SELECT
repeat('a', (number % 10) + 1),
toString(number),
number % 10,
number,
now() - toIntervalMinute(number),
now()
FROM numbers(1000);
CREATE TABLE IF NOT EXISTS post_metrics
(
`page_id` LowCardinality(String),
`post_id` String CODEC(LZ4),
`created` DateTime CODEC(T64, LZ4),
`impressions` UInt32 CODEC(T64, LZ4),
`clicks` UInt32 CODEC(T64, LZ4),
`as_of` DateTime CODEC(T64, LZ4)
)
ENGINE = ReplacingMergeTree(as_of)
PARTITION BY toStartOfMonth(created)
ORDER BY (page_id, post_id)
TTL created + toIntervalMonth(26);
INSERT INTO post_metrics SELECT
repeat('a', (number % 10) + 1),
toString(number),
now() - toIntervalMinute(number),
number * 100,
number * 10,
now()
FROM numbers(1000);
SELECT
host_id,
path_id,
max(rank) AS rank
FROM
(
WITH
as_of_posts AS
(
SELECT
*,
row_number() OVER (PARTITION BY (page_id, post_id) ORDER BY as_of DESC) AS row_num
FROM posts
WHERE (created >= subtractHours(now(), 24)) AND (host_id > 0)
),
as_of_post_metrics AS
(
SELECT
*,
row_number() OVER (PARTITION BY (page_id, post_id) ORDER BY as_of DESC) AS row_num
FROM post_metrics
WHERE created >= subtractHours(now(), 24)
)
SELECT
page_id,
post_id,
host_id,
path_id,
impressions,
clicks,
ntile(20) OVER (PARTITION BY page_id ORDER BY clicks ASC ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS rank
FROM as_of_posts
GLOBAL LEFT JOIN as_of_post_metrics USING (page_id, post_id, row_num)
WHERE (row_num = 1) AND (impressions > 0)
) AS t
WHERE t.rank > 18
GROUP BY
host_id,
path_id
ORDER BY host_id, path_id;
INSERT INTO posts SELECT
repeat('a', (number % 10) + 1),
toString(number),
number % 10,
number,
now() - toIntervalMinute(number),
now()
FROM numbers(100000);
INSERT INTO post_metrics SELECT
repeat('a', (number % 10) + 1),
toString(number),
now() - toIntervalMinute(number),
number * 100,
number * 10,
now()
FROM numbers(100000);
SELECT
host_id,
path_id,
max(rank) AS rank
FROM
(
WITH
as_of_posts AS
(
SELECT
*,
row_number() OVER (PARTITION BY (page_id, post_id) ORDER BY as_of DESC) AS row_num
FROM posts
WHERE (created >= subtractHours(now(), 24)) AND (host_id > 0)
),
as_of_post_metrics AS
(
SELECT
*,
row_number() OVER (PARTITION BY (page_id, post_id) ORDER BY as_of DESC) AS row_num
FROM post_metrics
WHERE created >= subtractHours(now(), 24)
)
SELECT
page_id,
post_id,
host_id,
path_id,
impressions,
clicks,
ntile(20) OVER (PARTITION BY page_id ORDER BY clicks ASC ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS rank
FROM as_of_posts
GLOBAL LEFT JOIN as_of_post_metrics USING (page_id, post_id, row_num)
WHERE (row_num = 1) AND (impressions > 0)
) AS t
WHERE t.rank > 18
GROUP BY
host_id,
path_id
ORDER BY host_id, path_id;
DROP TABLE posts;
DROP TABLE post_metrics;