Merge pull request #38192 from den-crane/patch-16

Doc. Examples for window functions
This commit is contained in:
Alexey Milovidov 2022-06-18 15:59:44 +03:00 committed by GitHub
commit 8c8cd6a21d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -55,3 +55,372 @@ https://dev.mysql.com/doc/refman/8.0/en/window-function-descriptions.html
https://dev.mysql.com/doc/refman/8.0/en/window-functions-usage.html https://dev.mysql.com/doc/refman/8.0/en/window-functions-usage.html
https://dev.mysql.com/doc/refman/8.0/en/window-functions-frames.html https://dev.mysql.com/doc/refman/8.0/en/window-functions-frames.html
## Syntax
```text
aggregate_function (column_name)
OVER ([PARTITION BY groupping_column] [ORDER BY sorting_column]
[ROWS or RANGE expression_to_bounds_of_frame])
```
- `PARTITION BY` - defines how to break a resultset into groups.
- `ORDER BY` - defines how to order rows inside the group during calculation aggregate_function.
- `ROWS or RANGE` - defines bounds of a frame, aggregate_function is calculated within a frame.
```text
PARTITION
┌─────────────────┐ <-- UNBOUNDED PRECEDING (BEGINNING of the PARTITION)
│ │
│ │
│=================│ <-- N PRECEDING <
│ N ROWS │ │ F
│ Before CURRENT │ │ R
│~~~~~~~~~~~~~~~~~│ <-- CURRENT ROW A
│ M ROWS │ │ M
│ After CURRENT │ │ E
│=================│ <-- M FOLLOWING <
│ │
│ │
└─────────────────┘ <--- UNBOUNDED FOLLOWING (END of the PARTITION)
```
## Examples
```sql
CREATE TABLE wf_partition
(
`part_key` UInt64,
`value` UInt64
)
ENGINE = Memory;
INSERT INTO wf_partition FORMAT Values
(1,1,1), (1,2,2), (1,3,3), (2,0,0), (3,0,0);
SELECT
part_key,
value,
order,
groupArray(value) OVER (PARTITION BY part_key) AS frame_values
FROM wf_partition
ORDER BY
part_key ASC,
value ASC;
┌─part_key─┬─value─┬─order─┬─frame_values─┐
│ 1 │ 1 │ 1 │ [1,2,3] │ <
│ 1 │ 2 │ 2 │ [1,2,3] │ │ 1-st group
│ 1 │ 3 │ 3 │ [1,2,3] │ <
│ 2 │ 0 │ 0 │ [0] │ <- 2-nd group
│ 3 │ 0 │ 0 │ [0] │ <- 3-d group
└──────────┴───────┴───────┴──────────────┘
```
```sql
CREATE TABLE wf_frame
(
`part_key` UInt64,
`value` UInt64,
`order` UInt64
)
ENGINE = Memory;
INSERT INTO wf_frame FORMAT Values
(1,1,1), (1,2,2), (1,3,3), (1,4,4), (1,5,5);
-- frame is bounded by bounds of a partition (BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING)
SELECT
part_key,
value,
order,
groupArray(value) OVER (PARTITION BY part_key ORDER BY order ASC
Rows BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS frame_values
FROM wf_frame
ORDER BY
part_key ASC,
value ASC;
┌─part_key─┬─value─┬─order─┬─frame_values─┐
│ 1 │ 1 │ 1 │ [1,2,3,4,5] │
│ 1 │ 2 │ 2 │ [1,2,3,4,5] │
│ 1 │ 3 │ 3 │ [1,2,3,4,5] │
│ 1 │ 4 │ 4 │ [1,2,3,4,5] │
│ 1 │ 5 │ 5 │ [1,2,3,4,5] │
└──────────┴───────┴───────┴──────────────┘
-- short form - no bound expression, no order by
SELECT
part_key,
value,
order,
groupArray(value) OVER (PARTITION BY part_key) AS frame_values
FROM wf_frame
ORDER BY
part_key ASC,
value ASC;
┌─part_key─┬─value─┬─order─┬─frame_values─┐
│ 1 │ 1 │ 1 │ [1,2,3,4,5] │
│ 1 │ 2 │ 2 │ [1,2,3,4,5] │
│ 1 │ 3 │ 3 │ [1,2,3,4,5] │
│ 1 │ 4 │ 4 │ [1,2,3,4,5] │
│ 1 │ 5 │ 5 │ [1,2,3,4,5] │
└──────────┴───────┴───────┴──────────────┘
-- frame is bounded by the beggining of a partition and the current row
SELECT
part_key,
value,
order,
groupArray(value) OVER (PARTITION BY part_key ORDER BY order ASC
Rows BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS frame_values
FROM wf_frame
ORDER BY
part_key ASC,
value ASC;
┌─part_key─┬─value─┬─order─┬─frame_values─┐
│ 1 │ 1 │ 1 │ [1] │
│ 1 │ 2 │ 2 │ [1,2] │
│ 1 │ 3 │ 3 │ [1,2,3] │
│ 1 │ 4 │ 4 │ [1,2,3,4] │
│ 1 │ 5 │ 5 │ [1,2,3,4,5] │
└──────────┴───────┴───────┴──────────────┘
-- short form (frame is bounded by the beggining of a partition and the current row)
SELECT
part_key,
value,
order,
groupArray(value) OVER (PARTITION BY part_key ORDER BY order ASC) AS frame_values
FROM wf_frame
ORDER BY
part_key ASC,
value ASC;
┌─part_key─┬─value─┬─order─┬─frame_values─┐
│ 1 │ 1 │ 1 │ [1] │
│ 1 │ 2 │ 2 │ [1,2] │
│ 1 │ 3 │ 3 │ [1,2,3] │
│ 1 │ 4 │ 4 │ [1,2,3,4] │
│ 1 │ 5 │ 5 │ [1,2,3,4,5] │
└──────────┴───────┴───────┴──────────────┘
-- frame is bounded by the beggining of a partition and the current row, but order is backward
SELECT
part_key,
value,
order,
groupArray(value) OVER (PARTITION BY part_key ORDER BY order DESC) AS frame_values
FROM wf_frame
ORDER BY
part_key ASC,
value ASC;
┌─part_key─┬─value─┬─order─┬─frame_values─┐
│ 1 │ 1 │ 1 │ [5,4,3,2,1] │
│ 1 │ 2 │ 2 │ [5,4,3,2] │
│ 1 │ 3 │ 3 │ [5,4,3] │
│ 1 │ 4 │ 4 │ [5,4] │
│ 1 │ 5 │ 5 │ [5] │
└──────────┴───────┴───────┴──────────────┘
-- sliding frame - 1 PRECEDING ROW AND CURRENT ROW
SELECT
part_key,
value,
order,
groupArray(value) OVER (PARTITION BY part_key ORDER BY order ASC
Rows BETWEEN 1 PRECEDING AND CURRENT ROW) AS frame_values
FROM wf_frame
ORDER BY
part_key ASC,
value ASC;
┌─part_key─┬─value─┬─order─┬─frame_values─┐
│ 1 │ 1 │ 1 │ [1] │
│ 1 │ 2 │ 2 │ [1,2] │
│ 1 │ 3 │ 3 │ [2,3] │
│ 1 │ 4 │ 4 │ [3,4] │
│ 1 │ 5 │ 5 │ [4,5] │
└──────────┴───────┴───────┴──────────────┘
-- sliding frame - Rows BETWEEN 1 PRECEDING AND UNBOUNDED FOLLOWING
SELECT
part_key,
value,
order,
groupArray(value) OVER (PARTITION BY part_key ORDER BY order ASC
Rows BETWEEN 1 PRECEDING AND UNBOUNDED FOLLOWING) AS frame_values
FROM wf_frame
ORDER BY
part_key ASC,
value ASC;
┌─part_key─┬─value─┬─order─┬─frame_values─┐
│ 1 │ 1 │ 1 │ [1,2,3,4,5] │
│ 1 │ 2 │ 2 │ [1,2,3,4,5] │
│ 1 │ 3 │ 3 │ [2,3,4,5] │
│ 1 │ 4 │ 4 │ [3,4,5] │
│ 1 │ 5 │ 5 │ [4,5] │
└──────────┴───────┴───────┴──────────────┘
```
## Real world examples
### Maximum/total salary per department.
```sql
CREATE TABLE employees
(
`department` String,
`employee_name` String,
`salary` Float
)
ENGINE = Memory;
INSERT INTO employees FORMAT Values
('Finance', 'Jonh', 200),
('Finance', 'Joan', 210),
('Finance', 'Jean', 505),
('IT', 'Tim', 200),
('IT', 'Anna', 300),
('IT', 'Elen', 500);
SELECT
department,
employee_name AS emp,
salary,
max_salary_per_dep,
total_salary_per_dep,
round((salary / total_salary_per_dep) * 100, 2) AS `share_per_dep(%)`
FROM
(
SELECT
department,
employee_name,
salary,
max(salary) OVER wndw AS max_salary_per_dep,
sum(salary) OVER wndw AS total_salary_per_dep
FROM employees
WINDOW wndw AS (PARTITION BY department
rows BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING)
ORDER BY
department ASC,
employee_name ASC
);
┌─department─┬─emp──┬─salary─┬─max_salary_per_dep─┬─total_salary_per_dep─┬─share_per_dep(%)─┐
│ Finance │ Jean │ 505 │ 505 │ 915 │ 55.19 │
│ Finance │ Joan │ 210 │ 505 │ 915 │ 22.95 │
│ Finance │ Jonh │ 200 │ 505 │ 915 │ 21.86 │
│ IT │ Anna │ 300 │ 500 │ 1000 │ 30 │
│ IT │ Elen │ 500 │ 500 │ 1000 │ 50 │
│ IT │ Tim │ 200 │ 500 │ 1000 │ 20 │
└────────────┴──────┴────────┴────────────────────┴──────────────────────┴──────────────────┘
```
### Cumulative sum.
```sql
CREATE TABLE events
(
`metric` String,
`ts` DateTime,
`value` Float
)
ENGINE = Memory
INSERT INTO warehouse VALUES
('sku38', '2020-01-01', 9),
('sku38', '2020-02-01', 1),
('sku38', '2020-03-01', -4),
('sku1', '2020-01-01', 1),
('sku1', '2020-02-01', 1),
('sku1', '2020-03-01', 1);
SELECT
item,
ts,
value,
sum(value) OVER (PARTITION BY item ORDER BY ts ASC) AS stock_balance
FROM warehouse
ORDER BY
item ASC,
ts ASC;
┌─item──┬──────────────────ts─┬─value─┬─stock_balance─┐
│ sku1 │ 2020-01-01 00:00:00 │ 1 │ 1 │
│ sku1 │ 2020-02-01 00:00:00 │ 1 │ 2 │
│ sku1 │ 2020-03-01 00:00:00 │ 1 │ 3 │
│ sku38 │ 2020-01-01 00:00:00 │ 9 │ 9 │
│ sku38 │ 2020-02-01 00:00:00 │ 1 │ 10 │
│ sku38 │ 2020-03-01 00:00:00 │ -4 │ 6 │
└───────┴─────────────────────┴───────┴───────────────┘
```
### Moving / Sliding Average (per 3 rows)
```sql
CREATE TABLE sensors
(
`metric` String,
`ts` DateTime,
`value` Float
)
ENGINE = Memory;
insert into sensors values('cpu_temp', '2020-01-01 00:00:00', 87),
('cpu_temp', '2020-01-01 00:00:01', 77),
('cpu_temp', '2020-01-01 00:00:02', 93),
('cpu_temp', '2020-01-01 00:00:03', 87),
('cpu_temp', '2020-01-01 00:00:04', 87),
('cpu_temp', '2020-01-01 00:00:05', 87),
('cpu_temp', '2020-01-01 00:00:06', 87),
('cpu_temp', '2020-01-01 00:00:07', 87);
SELECT
metric,
ts,
value,
avg(value) OVER
(PARTITION BY metric ORDER BY ts ASC Rows BETWEEN 2 PRECEDING AND CURRENT ROW)
AS moving_avg_temp
FROM sensors
ORDER BY
metric ASC,
ts ASC;
┌─metric───┬──────────────────ts─┬─value─┬───moving_avg_temp─┐
│ cpu_temp │ 2020-01-01 00:00:00 │ 87 │ 87 │
│ cpu_temp │ 2020-01-01 00:00:01 │ 77 │ 82 │
│ cpu_temp │ 2020-01-01 00:00:02 │ 93 │ 85.66666666666667 │
│ cpu_temp │ 2020-01-01 00:00:03 │ 87 │ 85.66666666666667 │
│ cpu_temp │ 2020-01-01 00:00:04 │ 87 │ 89 │
│ cpu_temp │ 2020-01-01 00:00:05 │ 87 │ 87 │
│ cpu_temp │ 2020-01-01 00:00:06 │ 87 │ 87 │
│ cpu_temp │ 2020-01-01 00:00:07 │ 87 │ 87 │
└──────────┴─────────────────────┴───────┴───────────────────┘
```
### Moving / Sliding Average (per 10 seconds)
```sql
SELECT
metric,
ts,
value,
avg(value) OVER (PARTITION BY metric ORDER BY ts
Range BETWEEN 10 PRECEDING AND CURRENT ROW) AS moving_avg_10_seconds_temp
FROM sensors
ORDER BY
metric ASC,
ts ASC;
┌─metric───┬──────────────────ts─┬─value─┬─moving_avg_10_seconds_temp─┐
│ cpu_temp │ 2020-01-01 00:00:00 │ 87 │ 87 │
│ cpu_temp │ 2020-01-01 00:01:10 │ 77 │ 77 │
│ cpu_temp │ 2020-01-01 00:02:20 │ 93 │ 93 │
│ cpu_temp │ 2020-01-01 00:03:30 │ 87 │ 87 │
│ cpu_temp │ 2020-01-01 00:04:40 │ 87 │ 87 │
│ cpu_temp │ 2020-01-01 00:05:50 │ 87 │ 87 │
│ cpu_temp │ 2020-01-01 00:06:00 │ 87 │ 87 │
│ cpu_temp │ 2020-01-01 00:07:10 │ 87 │ 87 │
└──────────┴─────────────────────┴───────┴────────────────────────────┘
```