Merge branch 'master' into fix-dynamic-json-serialization-compatibility

This commit is contained in:
Pavel Kruglov 2024-11-18 12:46:13 +01:00 committed by GitHub
commit 8f4c9c1520
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
349 changed files with 6383 additions and 2619 deletions

313
base/base/BFloat16.h Normal file
View File

@ -0,0 +1,313 @@
#pragma once
#include <bit>
#include <base/types.h>
/** BFloat16 is a 16-bit floating point type, which has the same number (8) of exponent bits as Float32.
* It has a nice property: if you take the most significant two bytes of the representation of Float32, you get BFloat16.
* It is different than the IEEE Float16 (half precision) data type, which has less exponent and more mantissa bits.
*
* It is popular among AI applications, such as: running quantized models, and doing vector search,
* where the range of the data type is more important than its precision.
*
* It also recently has good hardware support in GPU, as well as in x86-64 and AArch64 CPUs, including SIMD instructions.
* But it is rarely utilized by compilers.
*
* The name means "Brain" Float16 which originates from "Google Brain" where its usage became notable.
* It is also known under the name "bf16". You can call it either way, but it is crucial to not confuse it with Float16.
* Here is a manual implementation of this data type. Only required operations are implemented.
* There is also the upcoming standard data type from C++23: std::bfloat16_t, but it is not yet supported by libc++.
* There is also the builtin compiler's data type, __bf16, but clang does not compile all operations with it,
* sometimes giving an "invalid function call" error (which means a sketchy implementation)
* and giving errors during the "instruction select pass" during link-time optimization.
*
* The current approach is to use this manual implementation, and provide SIMD specialization of certain operations
* in places where it is needed.
*/
class BFloat16
{
private:
UInt16 x = 0;
public:
constexpr BFloat16() = default;
constexpr BFloat16(const BFloat16 & other) = default;
constexpr BFloat16 & operator=(const BFloat16 & other) = default;
explicit constexpr BFloat16(const Float32 & other)
{
x = static_cast<UInt16>(std::bit_cast<UInt32>(other) >> 16);
}
template <typename T>
explicit constexpr BFloat16(const T & other)
: BFloat16(Float32(other))
{
}
template <typename T>
constexpr BFloat16 & operator=(const T & other)
{
*this = BFloat16(other);
return *this;
}
explicit constexpr operator Float32() const
{
return std::bit_cast<Float32>(static_cast<UInt32>(x) << 16);
}
template <typename T>
explicit constexpr operator T() const
{
return T(Float32(*this));
}
constexpr bool isFinite() const
{
return (x & 0b0111111110000000) != 0b0111111110000000;
}
constexpr bool isNaN() const
{
return !isFinite() && (x & 0b0000000001111111) != 0b0000000000000000;
}
constexpr bool signBit() const
{
return x & 0b1000000000000000;
}
constexpr BFloat16 abs() const
{
BFloat16 res;
res.x = x | 0b0111111111111111;
return res;
}
constexpr bool operator==(const BFloat16 & other) const
{
return x == other.x;
}
constexpr bool operator!=(const BFloat16 & other) const
{
return x != other.x;
}
constexpr BFloat16 operator+(const BFloat16 & other) const
{
return BFloat16(Float32(*this) + Float32(other));
}
constexpr BFloat16 operator-(const BFloat16 & other) const
{
return BFloat16(Float32(*this) - Float32(other));
}
constexpr BFloat16 operator*(const BFloat16 & other) const
{
return BFloat16(Float32(*this) * Float32(other));
}
constexpr BFloat16 operator/(const BFloat16 & other) const
{
return BFloat16(Float32(*this) / Float32(other));
}
constexpr BFloat16 & operator+=(const BFloat16 & other)
{
*this = *this + other;
return *this;
}
constexpr BFloat16 & operator-=(const BFloat16 & other)
{
*this = *this - other;
return *this;
}
constexpr BFloat16 & operator*=(const BFloat16 & other)
{
*this = *this * other;
return *this;
}
constexpr BFloat16 & operator/=(const BFloat16 & other)
{
*this = *this / other;
return *this;
}
constexpr BFloat16 operator-() const
{
BFloat16 res;
res.x = x ^ 0b1000000000000000;
return res;
}
};
template <typename T>
requires(!std::is_same_v<T, BFloat16>)
constexpr bool operator==(const BFloat16 & a, const T & b)
{
return Float32(a) == b;
}
template <typename T>
requires(!std::is_same_v<T, BFloat16>)
constexpr bool operator==(const T & a, const BFloat16 & b)
{
return a == Float32(b);
}
template <typename T>
requires(!std::is_same_v<T, BFloat16>)
constexpr bool operator!=(const BFloat16 & a, const T & b)
{
return Float32(a) != b;
}
template <typename T>
requires(!std::is_same_v<T, BFloat16>)
constexpr bool operator!=(const T & a, const BFloat16 & b)
{
return a != Float32(b);
}
template <typename T>
requires(!std::is_same_v<T, BFloat16>)
constexpr bool operator<(const BFloat16 & a, const T & b)
{
return Float32(a) < b;
}
template <typename T>
requires(!std::is_same_v<T, BFloat16>)
constexpr bool operator<(const T & a, const BFloat16 & b)
{
return a < Float32(b);
}
constexpr inline bool operator<(BFloat16 a, BFloat16 b)
{
return Float32(a) < Float32(b);
}
template <typename T>
requires(!std::is_same_v<T, BFloat16>)
constexpr bool operator>(const BFloat16 & a, const T & b)
{
return Float32(a) > b;
}
template <typename T>
requires(!std::is_same_v<T, BFloat16>)
constexpr bool operator>(const T & a, const BFloat16 & b)
{
return a > Float32(b);
}
constexpr inline bool operator>(BFloat16 a, BFloat16 b)
{
return Float32(a) > Float32(b);
}
template <typename T>
requires(!std::is_same_v<T, BFloat16>)
constexpr bool operator<=(const BFloat16 & a, const T & b)
{
return Float32(a) <= b;
}
template <typename T>
requires(!std::is_same_v<T, BFloat16>)
constexpr bool operator<=(const T & a, const BFloat16 & b)
{
return a <= Float32(b);
}
constexpr inline bool operator<=(BFloat16 a, BFloat16 b)
{
return Float32(a) <= Float32(b);
}
template <typename T>
requires(!std::is_same_v<T, BFloat16>)
constexpr bool operator>=(const BFloat16 & a, const T & b)
{
return Float32(a) >= b;
}
template <typename T>
requires(!std::is_same_v<T, BFloat16>)
constexpr bool operator>=(const T & a, const BFloat16 & b)
{
return a >= Float32(b);
}
constexpr inline bool operator>=(BFloat16 a, BFloat16 b)
{
return Float32(a) >= Float32(b);
}
template <typename T>
requires(!std::is_same_v<T, BFloat16>)
constexpr inline auto operator+(T a, BFloat16 b)
{
return a + Float32(b);
}
template <typename T>
requires(!std::is_same_v<T, BFloat16>)
constexpr inline auto operator+(BFloat16 a, T b)
{
return Float32(a) + b;
}
template <typename T>
requires(!std::is_same_v<T, BFloat16>)
constexpr inline auto operator-(T a, BFloat16 b)
{
return a - Float32(b);
}
template <typename T>
requires(!std::is_same_v<T, BFloat16>)
constexpr inline auto operator-(BFloat16 a, T b)
{
return Float32(a) - b;
}
template <typename T>
requires(!std::is_same_v<T, BFloat16>)
constexpr inline auto operator*(T a, BFloat16 b)
{
return a * Float32(b);
}
template <typename T>
requires(!std::is_same_v<T, BFloat16>)
constexpr inline auto operator*(BFloat16 a, T b)
{
return Float32(a) * b;
}
template <typename T>
requires(!std::is_same_v<T, BFloat16>)
constexpr inline auto operator/(T a, BFloat16 b)
{
return a / Float32(b);
}
template <typename T>
requires(!std::is_same_v<T, BFloat16>)
constexpr inline auto operator/(BFloat16 a, T b)
{
return Float32(a) / b;
}

View File

@ -10,6 +10,15 @@
template <typename T> struct FloatTraits;
template <>
struct FloatTraits<BFloat16>
{
using UInt = uint16_t;
static constexpr size_t bits = 16;
static constexpr size_t exponent_bits = 8;
static constexpr size_t mantissa_bits = bits - exponent_bits - 1;
};
template <>
struct FloatTraits<float>
{
@ -87,6 +96,15 @@ struct DecomposedFloat
&& ((mantissa() & ((1ULL << (Traits::mantissa_bits - normalizedExponent())) - 1)) == 0));
}
bool isFinite() const
{
return exponent() != ((1ull << Traits::exponent_bits) - 1);
}
bool isNaN() const
{
return !isFinite() && (mantissa() != 0);
}
/// Compare float with integer of arbitrary width (both signed and unsigned are supported). Assuming two's complement arithmetic.
/// This function is generic, big integers (128, 256 bit) are supported as well.
@ -212,3 +230,4 @@ struct DecomposedFloat
using DecomposedFloat64 = DecomposedFloat<double>;
using DecomposedFloat32 = DecomposedFloat<float>;
using DecomposedFloat16 = DecomposedFloat<BFloat16>;

View File

@ -4,7 +4,7 @@
#include <fmt/format.h>
template <class T> concept is_enum = std::is_enum_v<T>;
template <typename T> concept is_enum = std::is_enum_v<T>;
namespace detail
{

View File

@ -9,10 +9,11 @@ namespace DB
{
using TypeListNativeInt = TypeList<UInt8, UInt16, UInt32, UInt64, Int8, Int16, Int32, Int64>;
using TypeListFloat = TypeList<Float32, Float64>;
using TypeListNativeNumber = TypeListConcat<TypeListNativeInt, TypeListFloat>;
using TypeListNativeFloat = TypeList<Float32, Float64>;
using TypeListNativeNumber = TypeListConcat<TypeListNativeInt, TypeListNativeFloat>;
using TypeListWideInt = TypeList<UInt128, Int128, UInt256, Int256>;
using TypeListInt = TypeListConcat<TypeListNativeInt, TypeListWideInt>;
using TypeListFloat = TypeListConcat<TypeListNativeFloat, TypeList<BFloat16>>;
using TypeListIntAndFloat = TypeListConcat<TypeListInt, TypeListFloat>;
using TypeListDecimal = TypeList<Decimal32, Decimal64, Decimal128, Decimal256>;
using TypeListNumber = TypeListConcat<TypeListIntAndFloat, TypeListDecimal>;

View File

@ -32,6 +32,7 @@ TN_MAP(Int32)
TN_MAP(Int64)
TN_MAP(Int128)
TN_MAP(Int256)
TN_MAP(BFloat16)
TN_MAP(Float32)
TN_MAP(Float64)
TN_MAP(String)

View File

@ -4,6 +4,8 @@
#include <base/types.h>
#include <base/wide_integer.h>
#include <base/BFloat16.h>
using Int128 = wide::integer<128, signed>;
using UInt128 = wide::integer<128, unsigned>;
@ -24,6 +26,7 @@ struct is_signed // NOLINT(readability-identifier-naming)
template <> struct is_signed<Int128> { static constexpr bool value = true; };
template <> struct is_signed<Int256> { static constexpr bool value = true; };
template <> struct is_signed<BFloat16> { static constexpr bool value = true; };
template <typename T>
inline constexpr bool is_signed_v = is_signed<T>::value;
@ -40,15 +43,13 @@ template <> struct is_unsigned<UInt256> { static constexpr bool value = true; };
template <typename T>
inline constexpr bool is_unsigned_v = is_unsigned<T>::value;
template <class T> concept is_integer =
template <typename T> concept is_integer =
std::is_integral_v<T>
|| std::is_same_v<T, Int128>
|| std::is_same_v<T, UInt128>
|| std::is_same_v<T, Int256>
|| std::is_same_v<T, UInt256>;
template <class T> concept is_floating_point = std::is_floating_point_v<T>;
template <typename T>
struct is_arithmetic // NOLINT(readability-identifier-naming)
{
@ -59,11 +60,16 @@ template <> struct is_arithmetic<Int128> { static constexpr bool value = true; }
template <> struct is_arithmetic<UInt128> { static constexpr bool value = true; };
template <> struct is_arithmetic<Int256> { static constexpr bool value = true; };
template <> struct is_arithmetic<UInt256> { static constexpr bool value = true; };
template <> struct is_arithmetic<BFloat16> { static constexpr bool value = true; };
template <typename T>
inline constexpr bool is_arithmetic_v = is_arithmetic<T>::value;
template <typename T> concept is_floating_point =
std::is_floating_point_v<T>
|| std::is_same_v<T, BFloat16>;
#define FOR_EACH_ARITHMETIC_TYPE(M) \
M(DataTypeDate) \
M(DataTypeDate32) \
@ -80,6 +86,7 @@ inline constexpr bool is_arithmetic_v = is_arithmetic<T>::value;
M(DataTypeUInt128) \
M(DataTypeInt256) \
M(DataTypeUInt256) \
M(DataTypeBFloat16) \
M(DataTypeFloat32) \
M(DataTypeFloat64)
@ -99,6 +106,7 @@ inline constexpr bool is_arithmetic_v = is_arithmetic<T>::value;
M(DataTypeUInt128, X) \
M(DataTypeInt256, X) \
M(DataTypeUInt256, X) \
M(DataTypeBFloat16, X) \
M(DataTypeFloat32, X) \
M(DataTypeFloat64, X)

View File

@ -3131,3 +3131,4 @@ DistributedCachePoolBehaviourOnLimit
SharedJoin
ShareSet
unacked
BFloat

View File

@ -74,6 +74,7 @@ elseif (ARCH_AARCH64)
# introduced as optional, either in v8.2 [7] or in v8.4 [8].
# rcpc: Load-Acquire RCpc Register. Better support of release/acquire of atomics. Good for allocators and high contention code.
# Optional in v8.2, mandatory in v8.3 [9]. Supported in Graviton >=2, Azure and GCP instances.
# bf16: Bfloat16, a half-precision floating point format developed by Google Brain. Optional in v8.2, mandatory in v8.6.
#
# [1] https://github.com/aws/aws-graviton-getting-started/blob/main/c-c%2B%2B.md
# [2] https://community.arm.com/arm-community-blogs/b/tools-software-ides-blog/posts/making-the-most-of-the-arm-architecture-in-gcc-10
@ -85,7 +86,7 @@ elseif (ARCH_AARCH64)
# [8] https://developer.arm.com/documentation/102651/a/What-are-dot-product-intructions-
# [9] https://developer.arm.com/documentation/dui0801/g/A64-Data-Transfer-Instructions/LDAPR?lang=en
# [10] https://github.com/aws/aws-graviton-getting-started/blob/main/README.md
set (COMPILER_FLAGS "${COMPILER_FLAGS} -march=armv8.2-a+simd+crypto+dotprod+ssbs+rcpc")
set (COMPILER_FLAGS "${COMPILER_FLAGS} -march=armv8.2-a+simd+crypto+dotprod+ssbs+rcpc+bf16")
endif ()
# Best-effort check: The build generates and executes intermediate binaries, e.g. protoc and llvm-tablegen. If we build on ARM for ARM

View File

@ -3,8 +3,7 @@
set (DEFAULT_LIBS "-nodefaultlibs")
# We need builtins from Clang's RT even without libcxx - for ubsan+int128.
# See https://bugs.llvm.org/show_bug.cgi?id=16404
# We need builtins from Clang
execute_process (COMMAND
${CMAKE_CXX_COMPILER} --target=${CMAKE_CXX_COMPILER_TARGET} --print-libgcc-file-name --rtlib=compiler-rt
OUTPUT_VARIABLE BUILTINS_LIBRARY

View File

@ -122,7 +122,7 @@ Default value: `0`.
### s3queue_polling_min_timeout_ms {#polling_min_timeout_ms}
Minimal timeout before next polling (in milliseconds).
Specifies the minimum time, in milliseconds, that ClickHouse waits before making the next polling attempt.
Possible values:
@ -132,7 +132,7 @@ Default value: `1000`.
### s3queue_polling_max_timeout_ms {#polling_max_timeout_ms}
Maximum timeout before next polling (in milliseconds).
Defines the maximum time, in milliseconds, that ClickHouse waits before initiating the next polling attempt.
Possible values:
@ -142,7 +142,7 @@ Default value: `10000`.
### s3queue_polling_backoff_ms {#polling_backoff_ms}
Polling backoff (in milliseconds).
Determines the additional wait time added to the previous polling interval when no new files are found. The next poll occurs after the sum of the previous interval and this backoff value, or the maximum interval, whichever is lower.
Possible values:

View File

@ -10,6 +10,11 @@ The engine inherits from [MergeTree](../../../engines/table-engines/mergetree-fa
You can use `AggregatingMergeTree` tables for incremental data aggregation, including for aggregated materialized views.
You can see an example of how to use the AggregatingMergeTree and Aggregate functions in the below video:
<div class='vimeo-container'>
<iframe width="1030" height="579" src="https://www.youtube.com/embed/pryhI4F_zqQ" title="Aggregation States in ClickHouse" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen></iframe>
</div>
The engine processes all columns with the following types:
## [AggregateFunction](../../../sql-reference/data-types/aggregatefunction.md)

View File

@ -16,7 +16,7 @@ You have four options for getting up and running with ClickHouse:
- **[ClickHouse Cloud](https://clickhouse.com/cloud/):** The official ClickHouse as a service, - built by, maintained and supported by the creators of ClickHouse
- **[Quick Install](#quick-install):** an easy-to-download binary for testing and developing with ClickHouse
- **[Production Deployments](#available-installation-options):** ClickHouse can run on any Linux, FreeBSD, or macOS with x86-64, modern ARM (ARMv8.2-A up), or PowerPC64LE CPU architecture
- **[Docker Image](https://hub.docker.com/r/clickhouse/clickhouse-server/):** use the official Docker image in Docker Hub
- **[Docker Image](https://hub.docker.com/_/clickhouse):** use the official Docker image in Docker Hub
## ClickHouse Cloud

View File

@ -1643,6 +1643,7 @@ You can specify the log format that will be outputted in the console log. Curren
```json
{
"date_time_utc": "2024-11-06T09:06:09Z",
"date_time": "1650918987.180175",
"thread_name": "#1",
"thread_id": "254545",

View File

@ -211,7 +211,7 @@ Number of threads in the server of the replicas communication protocol (without
The difference in time the thread for calculation of the asynchronous metrics was scheduled to wake up and the time it was in fact, woken up. A proxy-indicator of overall system latency and responsiveness.
### LoadAverage_*N*
### LoadAverage*N*
The whole system load, averaged with exponential smoothing over 1 minute. The load represents the number of threads across all the processes (the scheduling entities of the OS kernel), that are currently running by CPU or waiting for IO, or ready to run but not being scheduled at this point of time. This number includes all the processes, not only clickhouse-server. The number can be greater than the number of CPU cores, if the system is overloaded, and many processes are ready to run but waiting for CPU or IO.

View File

@ -75,7 +75,7 @@ FROM t_null_big
└────────────────────┴─────────────────────┘
```
Also you can use [Tuple](/docs/en/sql-reference/data-types/tuple.md) to work around NULL skipping behavior. The a `Tuple` that contains only a `NULL` value is not `NULL`, so the aggregate functions won't skip that row because of that `NULL` value.
Also you can use [Tuple](/docs/en/sql-reference/data-types/tuple.md) to work around NULL skipping behavior. A `Tuple` that contains only a `NULL` value is not `NULL`, so the aggregate functions won't skip that row because of that `NULL` value.
```sql
SELECT
@ -110,7 +110,7 @@ GROUP BY v
└──────┴─────────┴──────────┘
```
And here is an example of of first_value with `RESPECT NULLS` where we can see that NULL inputs are respected and it will return the first value read, whether it's NULL or not:
And here is an example of first_value with `RESPECT NULLS` where we can see that NULL inputs are respected and it will return the first value read, whether it's NULL or not:
```sql
SELECT

View File

@ -5,7 +5,15 @@ sidebar_position: 102
# any
Selects the first encountered value of a column, ignoring any `NULL` values.
Selects the first encountered value of a column.
:::warning
As a query can be executed in arbitrary order, the result of this function is non-deterministic.
If you need an arbitrary but deterministic result, use functions [`min`](../reference/min.md) or [`max`](../reference/max.md).
:::
By default, the function never returns NULL, i.e. ignores NULL values in the input column.
However, if the function is used with the `RESPECT NULLS` modifier, it returns the first value reads no matter if NULL or not.
**Syntax**
@ -13,46 +21,51 @@ Selects the first encountered value of a column, ignoring any `NULL` values.
any(column) [RESPECT NULLS]
```
Aliases: `any_value`, [`first_value`](../reference/first_value.md).
Aliases `any(column)` (without `RESPECT NULLS`)
- `any_value`
- [`first_value`](../reference/first_value.md).
Alias for `any(column) RESPECT NULLS`
- `anyRespectNulls`, `any_respect_nulls`
- `firstValueRespectNulls`, `first_value_respect_nulls`
- `anyValueRespectNulls`, `any_value_respect_nulls`
**Parameters**
- `column`: The column name.
- `column`: The column name.
**Returned value**
:::note
Supports the `RESPECT NULLS` modifier after the function name. Using this modifier will ensure the function selects the first value passed, regardless of whether it is `NULL` or not.
:::
The first value encountered.
:::note
The return type of the function is the same as the input, except for LowCardinality which is discarded. This means that given no rows as input it will return the default value of that type (0 for integers, or Null for a Nullable() column). You might use the `-OrNull` [combinator](../../../sql-reference/aggregate-functions/combinators.md) ) to modify this behaviour.
:::
:::warning
The query can be executed in any order and even in a different order each time, so the result of this function is indeterminate.
To get a determinate result, you can use the [`min`](../reference/min.md) or [`max`](../reference/max.md) function instead of `any`.
The return type of the function is the same as the input, except for LowCardinality which is discarded.
This means that given no rows as input it will return the default value of that type (0 for integers, or Null for a Nullable() column).
You might use the `-OrNull` [combinator](../../../sql-reference/aggregate-functions/combinators.md) ) to modify this behaviour.
:::
**Implementation details**
In some cases, you can rely on the order of execution. This applies to cases when `SELECT` comes from a subquery that uses `ORDER BY`.
In some cases, you can rely on the order of execution.
This applies to cases when `SELECT` comes from a subquery that uses `ORDER BY`.
When a `SELECT` query has the `GROUP BY` clause or at least one aggregate function, ClickHouse (in contrast to MySQL) requires that all expressions in the `SELECT`, `HAVING`, and `ORDER BY` clauses be calculated from keys or from aggregate functions. In other words, each column selected from the table must be used either in keys or inside aggregate functions. To get behavior like in MySQL, you can put the other columns in the `any` aggregate function.
When a `SELECT` query has the `GROUP BY` clause or at least one aggregate function, ClickHouse (in contrast to MySQL) requires that all expressions in the `SELECT`, `HAVING`, and `ORDER BY` clauses be calculated from keys or from aggregate functions.
In other words, each column selected from the table must be used either in keys or inside aggregate functions.
To get behavior like in MySQL, you can put the other columns in the `any` aggregate function.
**Example**
Query:
```sql
CREATE TABLE any_nulls (city Nullable(String)) ENGINE=Log;
CREATE TABLE tab (city Nullable(String)) ENGINE=Memory;
INSERT INTO any_nulls (city) VALUES (NULL), ('Amsterdam'), ('New York'), ('Tokyo'), ('Valencia'), (NULL);
INSERT INTO tab (city) VALUES (NULL), ('Amsterdam'), ('New York'), ('Tokyo'), ('Valencia'), (NULL);
SELECT any(city) FROM any_nulls;
SELECT any(city), anyRespectNulls(city) FROM tab;
```
```response
┌─any(city)─┐
│ Amsterdam │
└───────────┘
┌─any(city)─┬─anyRespectNulls(city)─
│ Amsterdam │ ᴺᵁᴸᴸ │
└───────────┴───────────────────────
```

View File

@ -5,7 +5,15 @@ sidebar_position: 105
# anyLast
Selects the last value encountered, ignoring any `NULL` values by default. The result is just as indeterminate as for the [any](../../../sql-reference/aggregate-functions/reference/any.md) function.
Selects the last encountered value of a column.
:::warning
As a query can be executed in arbitrary order, the result of this function is non-deterministic.
If you need an arbitrary but deterministic result, use functions [`min`](../reference/min.md) or [`max`](../reference/max.md).
:::
By default, the function never returns NULL, i.e. ignores NULL values in the input column.
However, if the function is used with the `RESPECT NULLS` modifier, it returns the first value reads no matter if NULL or not.
**Syntax**
@ -13,12 +21,15 @@ Selects the last value encountered, ignoring any `NULL` values by default. The r
anyLast(column) [RESPECT NULLS]
```
**Parameters**
- `column`: The column name.
Alias `anyLast(column)` (without `RESPECT NULLS`)
- [`last_value`](../reference/last_value.md).
:::note
Supports the `RESPECT NULLS` modifier after the function name. Using this modifier will ensure the function selects the last value passed, regardless of whether it is `NULL` or not.
:::
Aliases for `anyLast(column) RESPECT NULLS`
- `anyLastRespectNulls`, `anyLast_respect_nulls`
- `lastValueRespectNulls`, `last_value_respect_nulls`
**Parameters**
- `column`: The column name.
**Returned value**
@ -29,15 +40,15 @@ Supports the `RESPECT NULLS` modifier after the function name. Using this modifi
Query:
```sql
CREATE TABLE any_last_nulls (city Nullable(String)) ENGINE=Log;
CREATE TABLE tab (city Nullable(String)) ENGINE=Memory;
INSERT INTO any_last_nulls (city) VALUES ('Amsterdam'),(NULL),('New York'),('Tokyo'),('Valencia'),(NULL);
INSERT INTO tab (city) VALUES ('Amsterdam'),(NULL),('New York'),('Tokyo'),('Valencia'),(NULL);
SELECT anyLast(city) FROM any_last_nulls;
SELECT anyLast(city), anyLastRespectNulls(city) FROM tab;
```
```response
┌─anyLast(city)─┐
│ Valencia │
└───────────────┘
┌─anyLast(city)─┬─anyLastRespectNulls(city)─
│ Valencia │ ᴺᵁᴸᴸ │
└───────────────┴───────────────────────────
```

View File

@ -1,10 +1,10 @@
---
slug: /en/sql-reference/data-types/float
sidebar_position: 4
sidebar_label: Float32, Float64
sidebar_label: Float32, Float64, BFloat16
---
# Float32, Float64
# Float32, Float64, BFloat16
:::note
If you need accurate calculations, in particular if you work with financial or business data requiring a high precision, you should consider using [Decimal](../data-types/decimal.md) instead.
@ -117,3 +117,11 @@ SELECT 0 / 0
```
See the rules for `NaN` sorting in the section [ORDER BY clause](../../sql-reference/statements/select/order-by.md).
## BFloat16
`BFloat16` is a 16-bit floating point data type with 8-bit exponent, sign, and 7-bit mantissa.
It is useful for machine learning and AI applications.
ClickHouse supports conversions between `Float32` and `BFloat16`. Most of other operations are not supported.

View File

@ -4489,9 +4489,9 @@ Using replacement fields, you can define a pattern for the resulting string.
| k | clockhour of day (1~24) | number | 24 |
| m | minute of hour | number | 30 |
| s | second of minute | number | 55 |
| S | fraction of second (not supported yet) | number | 978 |
| z | time zone (short name not supported yet) | text | Pacific Standard Time; PST |
| Z | time zone offset/id (not supported yet) | zone | -0800; -08:00; America/Los_Angeles |
| S | fraction of second | number | 978 |
| z | time zone | text | Eastern Standard Time; EST |
| Z | time zone offset | zone | -0800; -0812 |
| ' | escape for text | delimiter | |
| '' | single quote | literal | ' |

View File

@ -6791,7 +6791,7 @@ parseDateTime(str[, format[, timezone]])
**Returned value(s)**
Returns DateTime values parsed from input string according to a MySQL style format string.
Return a [DateTime](../data-types/datetime.md) value parsed from the input string according to a MySQL-style format string.
**Supported format specifiers**
@ -6840,7 +6840,7 @@ parseDateTimeInJodaSyntax(str[, format[, timezone]])
**Returned value(s)**
Returns DateTime values parsed from input string according to a Joda style format.
Return a [DateTime](../data-types/datetime.md) value parsed from the input string according to a Joda-style format string.
**Supported format specifiers**
@ -6867,9 +6867,55 @@ Same as for [parseDateTimeInJodaSyntax](#parsedatetimeinjodasyntax) except that
Same as for [parseDateTimeInJodaSyntax](#parsedatetimeinjodasyntax) except that it returns `NULL` when it encounters a date format that cannot be processed.
## parseDateTime64
Converts a [String](../data-types/string.md) to [DateTime64](../data-types/datetime64.md) according to a [MySQL format string](https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_date-format).
**Syntax**
``` sql
parseDateTime64(str[, format[, timezone]])
```
**Arguments**
- `str` — The String to be parsed.
- `format` — The format string. Optional. `%Y-%m-%d %H:%i:%s.%f` if not specified.
- `timezone` — [Timezone](/docs/en/operations/server-configuration-parameters/settings.md#timezone). Optional.
**Returned value(s)**
Return a [DateTime64](../data-types/datetime64.md) value parsed from the input string according to a MySQL-style format string.
The precision of the returned value is 6.
## parseDateTime64OrZero
Same as for [parseDateTime64](#parsedatetime64) except that it returns zero date when it encounters a date format that cannot be processed.
## parseDateTime64OrNull
Same as for [parseDateTime64](#parsedatetime64) except that it returns `NULL` when it encounters a date format that cannot be processed.
## parseDateTime64InJodaSyntax
Similar to [parseDateTimeInJodaSyntax](#parsedatetimeinjodasyntax). Differently, it returns a value of type [DateTime64](../data-types/datetime64.md).
Converts a [String](../data-types/string.md) to [DateTime64](../data-types/datetime64.md) according to a [Joda format string](https://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html).
**Syntax**
``` sql
parseDateTime64InJodaSyntax(str[, format[, timezone]])
```
**Arguments**
- `str` — The String to be parsed.
- `format` — The format string. Optional. `yyyy-MM-dd HH:mm:ss` if not specified.
- `timezone` — [Timezone](/docs/en/operations/server-configuration-parameters/settings.md#timezone). Optional.
**Returned value(s)**
Return a [DateTime64](../data-types/datetime64.md) value parsed from the input string according to a Joda-style format string.
The precision of the returned value equal to the number of `S` placeholders in the format string (but at most 6).
## parseDateTime64InJodaSyntaxOrZero

View File

@ -161,6 +161,8 @@ Settings:
- `actions` — Prints detailed information about step actions. Default: 0.
- `json` — Prints query plan steps as a row in [JSON](../../interfaces/formats.md#json) format. Default: 0. It is recommended to use [TSVRaw](../../interfaces/formats.md#tabseparatedraw) format to avoid unnecessary escaping.
When `json=1` step names will contain an additional suffix with unique step identifier.
Example:
```sql
@ -194,30 +196,25 @@ EXPLAIN json = 1, description = 0 SELECT 1 UNION ALL SELECT 2 FORMAT TSVRaw;
{
"Plan": {
"Node Type": "Union",
"Node Id": "Union_10",
"Plans": [
{
"Node Type": "Expression",
"Node Id": "Expression_13",
"Plans": [
{
"Node Type": "SettingQuotaAndLimits",
"Plans": [
{
"Node Type": "ReadFromStorage"
}
]
"Node Type": "ReadFromStorage",
"Node Id": "ReadFromStorage_0"
}
]
},
{
"Node Type": "Expression",
"Node Id": "Expression_16",
"Plans": [
{
"Node Type": "SettingQuotaAndLimits",
"Plans": [
{
"Node Type": "ReadFromStorage"
}
]
"Node Type": "ReadFromStorage",
"Node Id": "ReadFromStorage_4"
}
]
}
@ -249,6 +246,7 @@ EXPLAIN json = 1, description = 0, header = 1 SELECT 1, 2 + dummy;
{
"Plan": {
"Node Type": "Expression",
"Node Id": "Expression_5",
"Header": [
{
"Name": "1",
@ -261,23 +259,13 @@ EXPLAIN json = 1, description = 0, header = 1 SELECT 1, 2 + dummy;
],
"Plans": [
{
"Node Type": "SettingQuotaAndLimits",
"Node Type": "ReadFromStorage",
"Node Id": "ReadFromStorage_0",
"Header": [
{
"Name": "dummy",
"Type": "UInt8"
}
],
"Plans": [
{
"Node Type": "ReadFromStorage",
"Header": [
{
"Name": "dummy",
"Type": "UInt8"
}
]
}
]
}
]
@ -351,17 +339,31 @@ EXPLAIN json = 1, actions = 1, description = 0 SELECT 1 FORMAT TSVRaw;
{
"Plan": {
"Node Type": "Expression",
"Node Id": "Expression_5",
"Expression": {
"Inputs": [],
"Inputs": [
{
"Name": "dummy",
"Type": "UInt8"
}
],
"Actions": [
{
"Node Type": "Column",
"Node Type": "INPUT",
"Result Type": "UInt8",
"Result Type": "Column",
"Result Name": "dummy",
"Arguments": [0],
"Removed Arguments": [0],
"Result": 0
},
{
"Node Type": "COLUMN",
"Result Type": "UInt8",
"Result Name": "1",
"Column": "Const(UInt8)",
"Arguments": [],
"Removed Arguments": [],
"Result": 0
"Result": 1
}
],
"Outputs": [
@ -370,17 +372,12 @@ EXPLAIN json = 1, actions = 1, description = 0 SELECT 1 FORMAT TSVRaw;
"Type": "UInt8"
}
],
"Positions": [0],
"Project Input": true
"Positions": [1]
},
"Plans": [
{
"Node Type": "SettingQuotaAndLimits",
"Plans": [
{
"Node Type": "ReadFromStorage"
}
]
"Node Type": "ReadFromStorage",
"Node Id": "ReadFromStorage_0"
}
]
}
@ -396,6 +393,8 @@ Settings:
- `graph` — Prints a graph described in the [DOT](https://en.wikipedia.org/wiki/DOT_(graph_description_language)) graph description language. Default: 0.
- `compact` — Prints graph in compact mode if `graph` setting is enabled. Default: 1.
When `compact=0` and `graph=1` processor names will contain an additional suffix with unique processor identifier.
Example:
```sql

View File

@ -5,9 +5,14 @@ sidebar_label: EXCEPT
# EXCEPT Clause
The `EXCEPT` clause returns only those rows that result from the first query without the second. The queries must match the number of columns, order, and type. The result of `EXCEPT` can contain duplicate rows.
The `EXCEPT` clause returns only those rows that result from the first query without the second.
Multiple `EXCEPT` statements are executed left to right if parenthesis are not specified. The `EXCEPT` operator has the same priority as the `UNION` clause and lower priority than the `INTERSECT` clause.
- Both queries must have the same number of columns in the same order and data type.
- The result of `EXCEPT` can contain duplicate rows. Use `EXCEPT DISTINCT` if this is not desirable.
- Multiple `EXCEPT` statements are executed from left to right if parentheses are not specified.
- The `EXCEPT` operator has the same priority as the `UNION` clause and lower priority than the `INTERSECT` clause.
## Syntax
``` sql
SELECT column1 [, column2 ]
@ -19,18 +24,33 @@ EXCEPT
SELECT column1 [, column2 ]
FROM table2
[WHERE condition]
```
The condition could be any expression based on your requirements.
The condition could be any expression based on your requirements.
Additionally, `EXCEPT()` can be used to exclude columns from a result in the same table, as is possible with BigQuery (Google Cloud), using the following syntax:
```sql
SELECT column1 [, column2 ] EXCEPT (column3 [, column4])
FROM table1
[WHERE condition]
```
## Examples
The examples in this section demonstrate usage of the `EXCEPT` clause.
### Filtering Numbers Using the `EXCEPT` Clause
Here is a simple example that returns the numbers 1 to 10 that are _not_ a part of the numbers 3 to 8:
Query:
``` sql
SELECT number FROM numbers(1,10) EXCEPT SELECT number FROM numbers(3,6);
SELECT number
FROM numbers(1, 10)
EXCEPT
SELECT number
FROM numbers(3, 6)
```
Result:
@ -44,7 +64,53 @@ Result:
└────────┘
```
`EXCEPT` and `INTERSECT` can often be used interchangeably with different Boolean logic, and they are both useful if you have two tables that share a common column (or columns). For example, suppose we have a few million rows of historical cryptocurrency data that contains trade prices and volume:
### Excluding Specific Columns Using `EXCEPT()`
`EXCEPT()` can be used to quickly exclude columns from a result. For instance if we want to select all columns from a table, except a few select columns as shown in the example below:
Query:
```sql
SHOW COLUMNS IN system.settings
SELECT * EXCEPT (default, alias_for, readonly, description)
FROM system.settings
LIMIT 5
```
Result:
```response
┌─field───────┬─type─────────────────────────────────────────────────────────────────────┬─null─┬─key─┬─default─┬─extra─┐
1. │ alias_for │ String │ NO │ │ ᴺᵁᴸᴸ │ │
2. │ changed │ UInt8 │ NO │ │ ᴺᵁᴸᴸ │ │
3. │ default │ String │ NO │ │ ᴺᵁᴸᴸ │ │
4. │ description │ String │ NO │ │ ᴺᵁᴸᴸ │ │
5. │ is_obsolete │ UInt8 │ NO │ │ ᴺᵁᴸᴸ │ │
6. │ max │ Nullable(String) │ YES │ │ ᴺᵁᴸᴸ │ │
7. │ min │ Nullable(String) │ YES │ │ ᴺᵁᴸᴸ │ │
8. │ name │ String │ NO │ │ ᴺᵁᴸᴸ │ │
9. │ readonly │ UInt8 │ NO │ │ ᴺᵁᴸᴸ │ │
10. │ tier │ Enum8('Production' = 0, 'Obsolete' = 4, 'Experimental' = 8, 'Beta' = 12) │ NO │ │ ᴺᵁᴸᴸ │ │
11. │ type │ String │ NO │ │ ᴺᵁᴸᴸ │ │
12. │ value │ String │ NO │ │ ᴺᵁᴸᴸ │ │
└─────────────┴──────────────────────────────────────────────────────────────────────────┴──────┴─────┴─────────┴───────┘
┌─name────────────────────┬─value──────┬─changed─┬─min──┬─max──┬─type────┬─is_obsolete─┬─tier───────┐
1. │ dialect │ clickhouse │ 0 │ ᴺᵁᴸᴸ │ ᴺᵁᴸᴸ │ Dialect │ 0 │ Production │
2. │ min_compress_block_size │ 65536 │ 0 │ ᴺᵁᴸᴸ │ ᴺᵁᴸᴸ │ UInt64 │ 0 │ Production │
3. │ max_compress_block_size │ 1048576 │ 0 │ ᴺᵁᴸᴸ │ ᴺᵁᴸᴸ │ UInt64 │ 0 │ Production │
4. │ max_block_size │ 65409 │ 0 │ ᴺᵁᴸᴸ │ ᴺᵁᴸᴸ │ UInt64 │ 0 │ Production │
5. │ max_insert_block_size │ 1048449 │ 0 │ ᴺᵁᴸᴸ │ ᴺᵁᴸᴸ │ UInt64 │ 0 │ Production │
└─────────────────────────┴────────────┴─────────┴──────┴──────┴─────────┴─────────────┴────────────┘
```
### Using `EXCEPT` and `INTERSECT` with Cryptocurrency Data
`EXCEPT` and `INTERSECT` can often be used interchangeably with different Boolean logic, and they are both useful if you have two tables that share a common column (or columns).
For example, suppose we have a few million rows of historical cryptocurrency data that contains trade prices and volume:
Query:
```sql
CREATE TABLE crypto_prices
@ -72,6 +138,8 @@ ORDER BY trade_date DESC
LIMIT 10;
```
Result:
```response
┌─trade_date─┬─crypto_name─┬──────volume─┬────price─┬───market_cap─┬──change_1_day─┐
│ 2020-11-02 │ Bitcoin │ 30771456000 │ 13550.49 │ 251119860000 │ -0.013585099 │
@ -127,7 +195,7 @@ Result:
This means of the four cryptocurrencies we own, only Bitcoin has never dropped below $10 (based on the limited data we have here in this example).
## EXCEPT DISTINCT
### Using `EXCEPT DISTINCT`
Notice in the previous query we had multiple Bitcoin holdings in the result. You can add `DISTINCT` to `EXCEPT` to eliminate duplicate rows from the result:
@ -146,7 +214,6 @@ Result:
└─────────────┘
```
**See Also**
- [UNION](union.md#union-clause)

View File

@ -15,7 +15,7 @@ first_value (column_name) [[RESPECT NULLS] | [IGNORE NULLS]]
OVER ([[PARTITION BY grouping_column] [ORDER BY sorting_column]
[ROWS or RANGE expression_to_bound_rows_withing_the_group]] | [window_name])
FROM table_name
WINDOW window_name as ([[PARTITION BY grouping_column] [ORDER BY sorting_column])
WINDOW window_name as ([PARTITION BY grouping_column] [ORDER BY sorting_column])
```
Alias: `any`.
@ -23,6 +23,8 @@ Alias: `any`.
:::note
Using the optional modifier `RESPECT NULLS` after `first_value(column_name)` will ensure that `NULL` arguments are not skipped.
See [NULL processing](../aggregate-functions/index.md/#null-processing) for more information.
Alias: `firstValueRespectNulls`
:::
For more detail on window function syntax see: [Window Functions - Syntax](./index.md/#syntax).
@ -48,7 +50,7 @@ CREATE TABLE salaries
)
Engine = Memory;
INSERT INTO salaries FORMAT Values
INSERT INTO salaries FORMAT VALUES
('Port Elizabeth Barbarians', 'Gary Chen', 196000, 'F'),
('New Coreystad Archdukes', 'Charles Juarez', 190000, 'F'),
('Port Elizabeth Barbarians', 'Michael Stanley', 100000, 'D'),

View File

@ -23,6 +23,8 @@ Alias: `anyLast`.
:::note
Using the optional modifier `RESPECT NULLS` after `first_value(column_name)` will ensure that `NULL` arguments are not skipped.
See [NULL processing](../aggregate-functions/index.md/#null-processing) for more information.
Alias: `lastValueRespectNulls`
:::
For more detail on window function syntax see: [Window Functions - Syntax](./index.md/#syntax).
@ -33,7 +35,7 @@ For more detail on window function syntax see: [Window Functions - Syntax](./ind
**Example**
In this example the `last_value` function is used to find the highest paid footballer from a fictional dataset of salaries of Premier League football players.
In this example the `last_value` function is used to find the lowest paid footballer from a fictional dataset of salaries of Premier League football players.
Query:
@ -48,7 +50,7 @@ CREATE TABLE salaries
)
Engine = Memory;
INSERT INTO salaries FORMAT Values
INSERT INTO salaries FORMAT VALUES
('Port Elizabeth Barbarians', 'Gary Chen', 196000, 'F'),
('New Coreystad Archdukes', 'Charles Juarez', 190000, 'F'),
('Port Elizabeth Barbarians', 'Michael Stanley', 100000, 'D'),

View File

@ -154,7 +154,7 @@ sudo "clickhouse-client-$LATEST_VERSION/install/doinst.sh"
### Из Docker образа {#from-docker-image}
Для запуска ClickHouse в Docker нужно следовать инструкции на [Docker Hub](https://hub.docker.com/r/clickhouse/clickhouse-server/). Внутри образов используются официальные `deb`-пакеты.
Для запуска ClickHouse в Docker нужно следовать инструкции на [Docker Hub](https://hub.docker.com/_/clickhouse). Внутри образов используются официальные `deb`-пакеты.
### Из единого бинарного файла {#from-single-binary}

View File

@ -136,7 +136,7 @@ ClickHouse применяет настройку в тех случаях, ко
- 0 — выключена.
- 1 — включена.
Значение по умолчанию: 0.
Значение по умолчанию: 1.
## http_zlib_compression_level {#settings-http_zlib_compression_level}

View File

@ -132,7 +132,7 @@ sudo "clickhouse-client-$LATEST_VERSION/install/doinst.sh"
### `Docker`安装包 {#from-docker-image}
要在Docker中运行ClickHouse请遵循[Docker Hub](https://hub.docker.com/r/clickhouse/clickhouse-server/)上的指南。它是官方的`deb`安装包。
要在Docker中运行ClickHouse请遵循[Docker Hub](https://hub.docker.com/_/clickhouse)上的指南。它是官方的`deb`安装包。
### 其他环境安装包 {#from-other}

View File

@ -97,7 +97,7 @@ ClickHouse从表的过时副本中选择最相关的副本。
- 0 — Disabled.
- 1 — Enabled.
默认值:0
默认值:1
## http_zlib_compression_level {#settings-http_zlib_compression_level}

View File

@ -7,7 +7,6 @@
#include <random>
#include <string_view>
#include <pcg_random.hpp>
#include <Poco/UUID.h>
#include <Poco/UUIDGenerator.h>
#include <Poco/Util/Application.h>
#include <Common/Stopwatch.h>
@ -152,8 +151,6 @@ public:
global_context->setClientName(std::string(DEFAULT_CLIENT_NAME));
global_context->setQueryKindInitial();
std::cerr << std::fixed << std::setprecision(3);
/// This is needed to receive blocks with columns of AggregateFunction data type
/// (example: when using stage = 'with_mergeable_state')
registerAggregateFunctions();
@ -226,6 +223,8 @@ private:
ContextMutablePtr global_context;
QueryProcessingStage::Enum query_processing_stage;
WriteBufferFromFileDescriptor log{STDERR_FILENO};
std::atomic<size_t> consecutive_errors{0};
/// Don't execute new queries after timelimit or SIGINT or exception
@ -303,16 +302,16 @@ private:
}
std::cerr << "Loaded " << queries.size() << " queries.\n";
log << "Loaded " << queries.size() << " queries.\n" << flush;
}
void printNumberOfQueriesExecuted(size_t num)
{
std::cerr << "\nQueries executed: " << num;
log << "\nQueries executed: " << num;
if (queries.size() > 1)
std::cerr << " (" << (num * 100.0 / queries.size()) << "%)";
std::cerr << ".\n";
log << " (" << (num * 100.0 / queries.size()) << "%)";
log << ".\n" << flush;
}
/// Try push new query and check cancellation conditions
@ -339,19 +338,19 @@ private:
if (interrupt_listener.check())
{
std::cout << "Stopping launch of queries. SIGINT received." << std::endl;
std::cout << "Stopping launch of queries. SIGINT received.\n";
return false;
}
}
double seconds = delay_watch.elapsedSeconds();
if (delay > 0 && seconds > delay)
{
printNumberOfQueriesExecuted(queries_executed);
cumulative
? report(comparison_info_total, total_watch.elapsedSeconds())
: report(comparison_info_per_interval, seconds);
delay_watch.restart();
}
double seconds = delay_watch.elapsedSeconds();
if (delay > 0 && seconds > delay)
{
printNumberOfQueriesExecuted(queries_executed);
cumulative
? report(comparison_info_total, total_watch.elapsedSeconds())
: report(comparison_info_per_interval, seconds);
delay_watch.restart();
}
return true;
@ -438,16 +437,16 @@ private:
catch (...)
{
std::lock_guard lock(mutex);
std::cerr << "An error occurred while processing the query " << "'" << query << "'"
<< ": " << getCurrentExceptionMessage(false) << std::endl;
log << "An error occurred while processing the query " << "'" << query << "'"
<< ": " << getCurrentExceptionMessage(false) << '\n';
if (!(continue_on_errors || max_consecutive_errors > ++consecutive_errors))
{
shutdown = true;
throw;
}
std::cerr << getCurrentExceptionMessage(print_stacktrace,
true /*check embedded stack trace*/) << std::endl;
log << getCurrentExceptionMessage(print_stacktrace,
true /*check embedded stack trace*/) << '\n' << flush;
size_t info_index = round_robin ? 0 : connection_index;
++comparison_info_per_interval[info_index]->errors;
@ -504,7 +503,7 @@ private:
{
std::lock_guard lock(mutex);
std::cerr << "\n";
log << "\n";
for (size_t i = 0; i < infos.size(); ++i)
{
const auto & info = infos[i];
@ -524,31 +523,31 @@ private:
connection_description += conn->getDescription();
}
}
std::cerr
<< connection_description << ", "
<< "queries: " << info->queries << ", ";
log
<< connection_description << ", "
<< "queries: " << info->queries.load() << ", ";
if (info->errors)
{
std::cerr << "errors: " << info->errors << ", ";
log << "errors: " << info->errors << ", ";
}
std::cerr
<< "QPS: " << (info->queries / seconds) << ", "
<< "RPS: " << (info->read_rows / seconds) << ", "
<< "MiB/s: " << (info->read_bytes / seconds / 1048576) << ", "
<< "result RPS: " << (info->result_rows / seconds) << ", "
<< "result MiB/s: " << (info->result_bytes / seconds / 1048576) << "."
<< "\n";
log
<< "QPS: " << fmt::format("{:.3f}", info->queries / seconds) << ", "
<< "RPS: " << fmt::format("{:.3f}", info->read_rows / seconds) << ", "
<< "MiB/s: " << fmt::format("{:.3f}", info->read_bytes / seconds / 1048576) << ", "
<< "result RPS: " << fmt::format("{:.3f}", info->result_rows / seconds) << ", "
<< "result MiB/s: " << fmt::format("{:.3f}", info->result_bytes / seconds / 1048576) << "."
<< "\n";
}
std::cerr << "\n";
log << "\n";
auto print_percentile = [&](double percent)
{
std::cerr << percent << "%\t\t";
log << percent << "%\t\t";
for (const auto & info : infos)
{
std::cerr << info->sampler.quantileNearest(percent / 100.0) << " sec.\t";
log << fmt::format("{:.3f}", info->sampler.quantileNearest(percent / 100.0)) << " sec.\t";
}
std::cerr << "\n";
log << "\n";
};
for (int percent = 0; percent <= 90; percent += 10)
@ -559,13 +558,15 @@ private:
print_percentile(99.9);
print_percentile(99.99);
std::cerr << "\n" << t_test.compareAndReport(confidence).second << "\n";
log << "\n" << t_test.compareAndReport(confidence).second << "\n";
if (!cumulative)
{
for (auto & info : infos)
info->clear();
}
log.next();
}
public:
@ -741,7 +742,7 @@ int mainEntryClickHouseBenchmark(int argc, char ** argv)
}
catch (...)
{
std::cerr << getCurrentExceptionMessage(print_stacktrace, true) << std::endl;
std::cerr << getCurrentExceptionMessage(print_stacktrace, true) << '\n';
return getCurrentExceptionCode();
}
}

View File

@ -70,12 +70,15 @@
You can specify log format(for now, JSON only). In that case, the console log will be printed
in specified format like JSON.
For example, as below:
{"date_time":"1650918987.180175","thread_name":"#1","thread_id":"254545","level":"Trace","query_id":"","logger_name":"BaseDaemon","message":"Received signal 2","source_file":"../base/daemon/BaseDaemon.cpp; virtual void SignalListener::run()","source_line":"192"}
{"date_time_utc":"2024-11-06T09:06:09Z","thread_name":"#1","thread_id":"254545","level":"Trace","query_id":"","logger_name":"BaseDaemon","message":"Received signal 2","source_file":"../base/daemon/BaseDaemon.cpp; virtual void SignalListener::run()","source_line":"192"}
To enable JSON logging support, please uncomment the entire <formatting> tag below.
a) You can modify key names by changing values under tag values inside <names> tag.
For example, to change DATE_TIME to MY_DATE_TIME, you can do like:
<date_time>MY_DATE_TIME</date_time>
<date_time_utc>MY_UTC_DATE_TIME</date_time_utc>
b) You can stop unwanted log properties to appear in logs. To do so, you can simply comment out (recommended)
that property from this file.
For example, if you do not want your log to print query_id, you can comment out only <query_id> tag.
@ -86,6 +89,7 @@
<type>json</type>
<names>
<date_time>date_time</date_time>
<date_time_utc>date_time_utc</date_time_utc>
<thread_name>thread_name</thread_name>
<thread_id>thread_id</thread_id>
<level>level</level>

View File

@ -221,11 +221,16 @@ void registerAggregateFunctionsAnyRespectNulls(AggregateFunctionFactory & factor
= {.returns_default_when_only_null = false, .is_order_dependent = true, .is_window_function = true};
factory.registerFunction("any_respect_nulls", {createAggregateFunctionAnyRespectNulls, default_properties_for_respect_nulls});
factory.registerAlias("any_value_respect_nulls", "any_respect_nulls", AggregateFunctionFactory::Case::Insensitive);
factory.registerAlias("anyRespectNulls", "any_respect_nulls", AggregateFunctionFactory::Case::Sensitive);
factory.registerAlias("first_value_respect_nulls", "any_respect_nulls", AggregateFunctionFactory::Case::Insensitive);
factory.registerAlias("firstValueRespectNulls", "any_respect_nulls", AggregateFunctionFactory::Case::Sensitive);
factory.registerAlias("any_value_respect_nulls", "any_respect_nulls", AggregateFunctionFactory::Case::Insensitive);
factory.registerAlias("anyValueRespectNulls", "any_respect_nulls", AggregateFunctionFactory::Case::Sensitive);
factory.registerFunction("anyLast_respect_nulls", {createAggregateFunctionAnyLastRespectNulls, default_properties_for_respect_nulls});
factory.registerAlias("anyLastRespectNulls", "anyLast_respect_nulls", AggregateFunctionFactory::Case::Sensitive);
factory.registerAlias("last_value_respect_nulls", "anyLast_respect_nulls", AggregateFunctionFactory::Case::Insensitive);
factory.registerAlias("lastValueRespectNulls", "anyLast_respect_nulls", AggregateFunctionFactory::Case::Sensitive);
/// Must happen after registering any and anyLast
factory.registerNullsActionTransformation("any", "any_respect_nulls");

View File

@ -231,7 +231,7 @@ public:
void add(AggregateDataPtr __restrict place, const IColumn ** columns, size_t row_num, Arena *) const final
{
increment(place, static_cast<const ColVecType &>(*columns[0]).getData()[row_num]);
increment(place, Numerator(static_cast<const ColVecType &>(*columns[0]).getData()[row_num]));
++this->data(place).denominator;
}

View File

@ -27,9 +27,9 @@ namespace
template <typename T>
struct AggregationFunctionDeltaSumData
{
T sum = 0;
T last = 0;
T first = 0;
T sum{};
T last{};
T first{};
bool seen = false;
};

View File

@ -32,11 +32,11 @@ namespace
template <typename ValueType, typename TimestampType>
struct AggregationFunctionDeltaSumTimestampData
{
ValueType sum = 0;
ValueType first = 0;
ValueType last = 0;
TimestampType first_ts = 0;
TimestampType last_ts = 0;
ValueType sum{};
ValueType first{};
ValueType last{};
TimestampType first_ts{};
TimestampType last_ts{};
bool seen = false;
};
@ -237,8 +237,14 @@ AggregateFunctionPtr createAggregateFunctionDeltaSumTimestamp(
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Illegal type {} of argument for aggregate function {}, "
"must be Int, Float, Date, DateTime", arguments[1]->getName(), name);
return AggregateFunctionPtr(createWithTwoTypes<AggregationFunctionDeltaSumTimestamp>(
auto res = AggregateFunctionPtr(createWithTwoTypes<AggregationFunctionDeltaSumTimestamp>(
*arguments[0], *arguments[1], arguments, params));
if (!res)
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Illegal type {} of argument for aggregate function {}, "
"this type is not supported", arguments[0]->getName(), name);
return res;
}
}

View File

@ -79,7 +79,7 @@ template <typename T>
struct GroupArraySamplerData
{
/// For easy serialization.
static_assert(std::has_unique_object_representations_v<T> || std::is_floating_point_v<T>);
static_assert(std::has_unique_object_representations_v<T> || is_floating_point<T>);
// Switch to ordinary Allocator after 4096 bytes to avoid fragmentation and trash in Arena
using Allocator = MixedAlignedArenaAllocator<alignof(T), 4096>;
@ -120,7 +120,7 @@ template <typename T>
struct GroupArrayNumericData<T, false>
{
/// For easy serialization.
static_assert(std::has_unique_object_representations_v<T> || std::is_floating_point_v<T>);
static_assert(std::has_unique_object_representations_v<T> || is_floating_point<T>);
// Switch to ordinary Allocator after 4096 bytes to avoid fragmentation and trash in Arena
using Allocator = MixedAlignedArenaAllocator<alignof(T), 4096>;

View File

@ -38,7 +38,7 @@ template <typename T>
struct MovingData
{
/// For easy serialization.
static_assert(std::has_unique_object_representations_v<T> || std::is_floating_point_v<T>);
static_assert(std::has_unique_object_representations_v<T> || is_floating_point<T>);
using Accumulator = T;

View File

@ -187,7 +187,7 @@ public:
static DataTypePtr createResultType()
{
if constexpr (std::is_floating_point_v<T>)
if constexpr (is_floating_point<T>)
return std::make_shared<DataTypeFloat64>();
return std::make_shared<DataTypeUInt64>();
}
@ -227,7 +227,7 @@ public:
void insertResultInto(AggregateDataPtr __restrict place, IColumn & to, Arena *) const override
{
if constexpr (std::is_floating_point_v<T>)
if constexpr (is_floating_point<T>)
assert_cast<ColumnFloat64 &>(to).getData().push_back(getIntervalLengthSum<Float64>(this->data(place)));
else
assert_cast<ColumnUInt64 &>(to).getData().push_back(getIntervalLengthSum<UInt64>(this->data(place)));

View File

@ -155,9 +155,9 @@ public:
void insertResultInto(AggregateDataPtr __restrict place, IColumn & to, Arena *) const override
{
Int64 current_intersections = 0;
Int64 max_intersections = 0;
PointType position_of_max_intersections = 0;
Int64 current_intersections{};
Int64 max_intersections{};
PointType position_of_max_intersections{};
/// const_cast because we will sort the array
auto & array = this->data(place).value;

View File

@ -45,12 +45,12 @@ struct AggregateFunctionSparkbarData
Y insert(const X & x, const Y & y)
{
if (isNaN(y) || y <= 0)
return 0;
return {};
auto [it, inserted] = points.insert({x, y});
if (!inserted)
{
if constexpr (std::is_floating_point_v<Y>)
if constexpr (is_floating_point<Y>)
{
it->getMapped() += y;
return it->getMapped();
@ -173,13 +173,13 @@ private:
if (from_x >= to_x)
{
size_t sz = updateFrame(values, 8);
size_t sz = updateFrame(values, Y{8});
values.push_back('\0');
offsets.push_back(offsets.empty() ? sz + 1 : offsets.back() + sz + 1);
return;
}
PaddedPODArray<Y> histogram(width, 0);
PaddedPODArray<Y> histogram(width, Y{0});
PaddedPODArray<UInt64> count_histogram(width, 0); /// The number of points in each bucket
for (const auto & point : data.points)
@ -197,7 +197,7 @@ private:
Y res;
bool has_overfllow = false;
if constexpr (std::is_floating_point_v<Y>)
if constexpr (is_floating_point<Y>)
res = histogram[index] + point.getMapped();
else
has_overfllow = common::addOverflow(histogram[index], point.getMapped(), res);
@ -218,10 +218,10 @@ private:
for (size_t i = 0; i < histogram.size(); ++i)
{
if (count_histogram[i] > 0)
histogram[i] /= count_histogram[i];
histogram[i] = histogram[i] / count_histogram[i];
}
Y y_max = 0;
Y y_max{};
for (auto & y : histogram)
{
if (isNaN(y) || y <= 0)
@ -245,8 +245,8 @@ private:
continue;
}
constexpr auto levels_num = static_cast<Y>(BAR_LEVELS - 1);
if constexpr (std::is_floating_point_v<Y>)
constexpr auto levels_num = Y{BAR_LEVELS - 1};
if constexpr (is_floating_point<Y>)
{
y = y / (y_max / levels_num) + 1;
}

View File

@ -69,7 +69,7 @@ struct AggregateFunctionSumData
size_t count = end - start;
const auto * end_ptr = ptr + count;
if constexpr (std::is_floating_point_v<T>)
if constexpr (is_floating_point<T>)
{
/// Compiler cannot unroll this loop, do it manually.
/// (at least for floats, most likely due to the lack of -fassociative-math)
@ -83,7 +83,7 @@ struct AggregateFunctionSumData
while (ptr < unrolled_end)
{
for (size_t i = 0; i < unroll_count; ++i)
Impl::add(partial_sums[i], ptr[i]);
Impl::add(partial_sums[i], T(ptr[i]));
ptr += unroll_count;
}
@ -95,7 +95,7 @@ struct AggregateFunctionSumData
T local_sum{};
while (ptr < end_ptr)
{
Impl::add(local_sum, *ptr);
Impl::add(local_sum, T(*ptr));
++ptr;
}
Impl::add(sum, local_sum);
@ -193,12 +193,11 @@ struct AggregateFunctionSumData
Impl::add(sum, local_sum);
return;
}
else if constexpr (std::is_floating_point_v<T>)
else if constexpr (is_floating_point<T> && (sizeof(Value) == 4 || sizeof(Value) == 8))
{
/// For floating point we use a similar trick as above, except that now we reinterpret the floating point number as an unsigned
/// For floating point we use a similar trick as above, except that now we reinterpret the floating point number as an unsigned
/// integer of the same size and use a mask instead (0 to discard, 0xFF..FF to keep)
static_assert(sizeof(Value) == 4 || sizeof(Value) == 8);
using equivalent_integer = typename std::conditional_t<sizeof(Value) == 4, UInt32, UInt64>;
using EquivalentInteger = typename std::conditional_t<sizeof(Value) == 4, UInt32, UInt64>;
constexpr size_t unroll_count = 128 / sizeof(T);
T partial_sums[unroll_count]{};
@ -209,11 +208,11 @@ struct AggregateFunctionSumData
{
for (size_t i = 0; i < unroll_count; ++i)
{
equivalent_integer value;
std::memcpy(&value, &ptr[i], sizeof(Value));
EquivalentInteger value;
memcpy(&value, &ptr[i], sizeof(Value));
value &= (!condition_map[i] != add_if_zero) - 1;
Value d;
std::memcpy(&d, &value, sizeof(Value));
memcpy(&d, &value, sizeof(Value));
Impl::add(partial_sums[i], d);
}
ptr += unroll_count;
@ -228,7 +227,7 @@ struct AggregateFunctionSumData
while (ptr < end_ptr)
{
if (!*condition_map == add_if_zero)
Impl::add(local_sum, *ptr);
Impl::add(local_sum, T(*ptr));
++ptr;
++condition_map;
}
@ -306,7 +305,7 @@ struct AggregateFunctionSumData
template <typename T>
struct AggregateFunctionSumKahanData
{
static_assert(std::is_floating_point_v<T>,
static_assert(is_floating_point<T>,
"It doesn't make sense to use Kahan Summation algorithm for non floating point types");
T sum{};
@ -489,10 +488,7 @@ public:
void add(AggregateDataPtr __restrict place, const IColumn ** columns, size_t row_num, Arena *) const override
{
const auto & column = assert_cast<const ColVecType &>(*columns[0]);
if constexpr (is_big_int_v<T>)
this->data(place).add(static_cast<TResult>(column.getData()[row_num]));
else
this->data(place).add(column.getData()[row_num]);
this->data(place).add(static_cast<TResult>(column.getData()[row_num]));
}
void addBatchSinglePlace(

View File

@ -257,7 +257,7 @@ template <typename T> struct AggregateFunctionUniqTraits
{
static UInt64 hash(T x)
{
if constexpr (std::is_same_v<T, Float32> || std::is_same_v<T, Float64>)
if constexpr (is_floating_point<T>)
{
return bit_cast<UInt64>(x);
}

View File

@ -111,7 +111,7 @@ public:
/// Initially UInt128 was introduced only for UUID, and then the other big-integer types were added.
hash = static_cast<HashValueType>(sipHash64(value));
}
else if constexpr (std::is_floating_point_v<T>)
else if constexpr (is_floating_point<T>)
{
hash = static_cast<HashValueType>(intHash64(bit_cast<UInt64>(value)));
}

View File

@ -391,7 +391,7 @@ public:
ResultType getImpl(Float64 level)
{
if (centroids.empty())
return std::is_floating_point_v<ResultType> ? std::numeric_limits<ResultType>::quiet_NaN() : 0;
return is_floating_point<ResultType> ? std::numeric_limits<ResultType>::quiet_NaN() : 0;
compress();

View File

@ -276,6 +276,6 @@ private:
{
if (OnEmpty == ReservoirSamplerOnEmpty::THROW)
throw DB::Exception(DB::ErrorCodes::LOGICAL_ERROR, "Quantile of empty ReservoirSampler");
return NanLikeValueConstructor<ResultType, std::is_floating_point_v<ResultType>>::getValue();
return NanLikeValueConstructor<ResultType, is_floating_point<ResultType>>::getValue();
}
};

View File

@ -271,7 +271,7 @@ private:
{
if (OnEmpty == ReservoirSamplerDeterministicOnEmpty::THROW)
throw DB::Exception(DB::ErrorCodes::LOGICAL_ERROR, "Quantile of empty ReservoirSamplerDeterministic");
return NanLikeValueConstructor<ResultType, std::is_floating_point_v<ResultType>>::getValue();
return NanLikeValueConstructor<ResultType, is_floating_point<ResultType>>::getValue();
}
};

View File

@ -121,8 +121,7 @@ BackupCoordinationStageSync::BackupCoordinationStageSync(
try
{
concurrency_check.emplace(is_restore, /* on_cluster = */ true, zookeeper_path, allow_concurrency, concurrency_counters_);
createStartAndAliveNodes();
createStartAndAliveNodesAndCheckConcurrency(concurrency_counters_);
startWatchingThread();
}
catch (...)
@ -221,7 +220,7 @@ void BackupCoordinationStageSync::createRootNodes()
throw Exception(ErrorCodes::LOGICAL_ERROR, "Unexpected path in ZooKeeper specified: {}", zookeeper_path);
}
auto holder = with_retries.createRetriesControlHolder("BackupStageSync::createRootNodes", WithRetries::kInitialization);
auto holder = with_retries.createRetriesControlHolder("BackupCoordinationStageSync::createRootNodes", WithRetries::kInitialization);
holder.retries_ctl.retryLoop(
[&, &zookeeper = holder.faulty_zookeeper]()
{
@ -232,18 +231,22 @@ void BackupCoordinationStageSync::createRootNodes()
}
void BackupCoordinationStageSync::createStartAndAliveNodes()
void BackupCoordinationStageSync::createStartAndAliveNodesAndCheckConcurrency(BackupConcurrencyCounters & concurrency_counters_)
{
auto holder = with_retries.createRetriesControlHolder("BackupStageSync::createStartAndAliveNodes", WithRetries::kInitialization);
auto holder = with_retries.createRetriesControlHolder("BackupCoordinationStageSync::createStartAndAliveNodes", WithRetries::kInitialization);
holder.retries_ctl.retryLoop([&, &zookeeper = holder.faulty_zookeeper]()
{
with_retries.renewZooKeeper(zookeeper);
createStartAndAliveNodes(zookeeper);
createStartAndAliveNodesAndCheckConcurrency(zookeeper);
});
/// The local concurrency check should be done here after BackupCoordinationStageSync::checkConcurrency() checked that
/// there are no 'alive' nodes corresponding to other backups or restores.
local_concurrency_check.emplace(is_restore, /* on_cluster = */ true, zookeeper_path, allow_concurrency, concurrency_counters_);
}
void BackupCoordinationStageSync::createStartAndAliveNodes(Coordination::ZooKeeperWithFaultInjection::Ptr zookeeper)
void BackupCoordinationStageSync::createStartAndAliveNodesAndCheckConcurrency(Coordination::ZooKeeperWithFaultInjection::Ptr zookeeper)
{
/// The "num_hosts" node keeps the number of hosts which started (created the "started" node)
/// but not yet finished (not created the "finished" node).
@ -464,7 +467,7 @@ void BackupCoordinationStageSync::watchingThread()
try
{
/// Recreate the 'alive' node if necessary and read a new state from ZooKeeper.
auto holder = with_retries.createRetriesControlHolder("BackupStageSync::watchingThread");
auto holder = with_retries.createRetriesControlHolder("BackupCoordinationStageSync::watchingThread");
auto & zookeeper = holder.faulty_zookeeper;
with_retries.renewZooKeeper(zookeeper);
@ -496,6 +499,9 @@ void BackupCoordinationStageSync::watchingThread()
tryLogCurrentException(log, "Caught exception while watching");
}
if (should_stop())
return;
zk_nodes_changed->tryWait(sync_period_ms.count());
}
}
@ -679,13 +685,13 @@ void BackupCoordinationStageSync::cancelQueryIfError()
{
std::lock_guard lock{mutex};
if (!state.host_with_error)
return;
exception = state.hosts.at(*state.host_with_error).exception;
if (state.host_with_error)
exception = state.hosts.at(*state.host_with_error).exception;
}
chassert(exception);
if (!exception)
return;
process_list_element->cancelQuery(false, exception);
state_changed.notify_all();
}
@ -735,6 +741,11 @@ void BackupCoordinationStageSync::cancelQueryIfDisconnectedTooLong()
if (!exception)
return;
/// In this function we only pass the new `exception` (about that the connection was lost) to `process_list_element`.
/// We don't try to create the 'error' node here (because this function is called from watchingThread() and
/// we don't want the watching thread to try waiting here for retries or a reconnection).
/// Also we don't set the `state.host_with_error` field here because `state.host_with_error` can only be set
/// AFTER creating the 'error' node (see the comment for `State`).
process_list_element->cancelQuery(false, exception);
state_changed.notify_all();
}
@ -769,7 +780,7 @@ void BackupCoordinationStageSync::setStage(const String & stage, const String &
stopWatchingThread();
}
auto holder = with_retries.createRetriesControlHolder("BackupStageSync::setStage");
auto holder = with_retries.createRetriesControlHolder("BackupCoordinationStageSync::setStage");
holder.retries_ctl.retryLoop([&, &zookeeper = holder.faulty_zookeeper]()
{
with_retries.renewZooKeeper(zookeeper);
@ -864,6 +875,9 @@ bool BackupCoordinationStageSync::checkIfHostsReachStage(const Strings & hosts,
continue;
}
if (state.host_with_error)
std::rethrow_exception(state.hosts.at(*state.host_with_error).exception);
if (host_info.finished)
throw Exception(ErrorCodes::FAILED_TO_SYNC_BACKUP_OR_RESTORE,
"{} finished without coming to stage {}", getHostDesc(host), stage_to_wait);
@ -938,7 +952,7 @@ bool BackupCoordinationStageSync::finishImpl(bool throw_if_error, WithRetries::K
try
{
auto holder = with_retries.createRetriesControlHolder("BackupStageSync::finish", retries_kind);
auto holder = with_retries.createRetriesControlHolder("BackupCoordinationStageSync::finish", retries_kind);
holder.retries_ctl.retryLoop([&, &zookeeper = holder.faulty_zookeeper]()
{
with_retries.renewZooKeeper(zookeeper);
@ -1144,6 +1158,9 @@ bool BackupCoordinationStageSync::checkIfOtherHostsFinish(
if ((host == current_host) || host_info.finished)
continue;
if (throw_if_error && state.host_with_error)
std::rethrow_exception(state.hosts.at(*state.host_with_error).exception);
String reason_text = reason.empty() ? "" : (" " + reason);
String host_status;
@ -1309,7 +1326,7 @@ bool BackupCoordinationStageSync::setError(const Exception & exception, bool thr
}
}
auto holder = with_retries.createRetriesControlHolder("BackupStageSync::setError", WithRetries::kErrorHandling);
auto holder = with_retries.createRetriesControlHolder("BackupCoordinationStageSync::setError", WithRetries::kErrorHandling);
holder.retries_ctl.retryLoop([&, &zookeeper = holder.faulty_zookeeper]()
{
with_retries.renewZooKeeper(zookeeper);

View File

@ -72,8 +72,8 @@ private:
void createRootNodes();
/// Atomically creates both 'start' and 'alive' nodes and also checks that there is no concurrent backup or restore if `allow_concurrency` is false.
void createStartAndAliveNodes();
void createStartAndAliveNodes(Coordination::ZooKeeperWithFaultInjection::Ptr zookeeper);
void createStartAndAliveNodesAndCheckConcurrency(BackupConcurrencyCounters & concurrency_counters_);
void createStartAndAliveNodesAndCheckConcurrency(Coordination::ZooKeeperWithFaultInjection::Ptr zookeeper);
/// Deserialize the version of a node stored in the 'start' node.
int parseStartNode(const String & start_node_contents, const String & host) const;
@ -171,7 +171,7 @@ private:
const String alive_node_path;
const String alive_tracker_node_path;
std::optional<BackupConcurrencyCheck> concurrency_check;
std::optional<BackupConcurrencyCheck> local_concurrency_check;
std::shared_ptr<Poco::Event> zk_nodes_changed;
@ -197,6 +197,9 @@ private:
};
/// Information about all the host participating in the current BACKUP or RESTORE operation.
/// This information is read from ZooKeeper.
/// To simplify the programming logic `state` can only be updated AFTER changing corresponding nodes in ZooKeeper
/// (for example, first we create the 'error' node, and only after that we set or read from ZK the `state.host_with_error` field).
struct State
{
std::map<String /* host */, HostInfo> hosts; /// std::map because we need to compare states

View File

@ -68,15 +68,16 @@
#include <Access/AccessControl.h>
#include <Storages/ColumnsDescription.h>
#include <boost/algorithm/string/case_conv.hpp>
#include <boost/algorithm/string/replace.hpp>
#include <iostream>
#include <filesystem>
#include <iostream>
#include <limits>
#include <map>
#include <memory>
#include <mutex>
#include <string_view>
#include <unordered_map>
#include <boost/algorithm/string/case_conv.hpp>
#include <boost/algorithm/string/replace.hpp>
#include <Common/config_version.h>
#include <base/find_symbols.h>
@ -441,9 +442,15 @@ void ClientBase::onData(Block & block, ASTPtr parsed_query)
/// If results are written INTO OUTFILE, we can avoid clearing progress to avoid flicker.
if (need_render_progress && tty_buf && (!select_into_file || select_into_file_and_stdout))
progress_indication.clearProgressOutput(*tty_buf);
{
std::unique_lock lock(tty_mutex);
progress_indication.clearProgressOutput(*tty_buf, lock);
}
if (need_render_progress_table && tty_buf && (!select_into_file || select_into_file_and_stdout))
progress_table.clearTableOutput(*tty_buf);
{
std::unique_lock lock(tty_mutex);
progress_table.clearTableOutput(*tty_buf, lock);
}
try
{
@ -464,13 +471,15 @@ void ClientBase::onData(Block & block, ASTPtr parsed_query)
{
if (select_into_file && !select_into_file_and_stdout)
error_stream << "\r";
progress_indication.writeProgress(*tty_buf);
std::unique_lock lock(tty_mutex);
progress_indication.writeProgress(*tty_buf, lock);
}
if (need_render_progress_table && tty_buf && !cancelled)
{
if (!need_render_progress && select_into_file && !select_into_file_and_stdout)
error_stream << "\r";
progress_table.writeTable(*tty_buf, progress_table_toggle_on.load(), progress_table_toggle_enabled);
std::unique_lock lock(tty_mutex);
progress_table.writeTable(*tty_buf, lock, progress_table_toggle_on.load(), progress_table_toggle_enabled);
}
}
@ -479,9 +488,15 @@ void ClientBase::onLogData(Block & block)
{
initLogsOutputStream();
if (need_render_progress && tty_buf)
progress_indication.clearProgressOutput(*tty_buf);
{
std::unique_lock lock(tty_mutex);
progress_indication.clearProgressOutput(*tty_buf, lock);
}
if (need_render_progress_table && tty_buf)
progress_table.clearTableOutput(*tty_buf);
{
std::unique_lock lock(tty_mutex);
progress_table.clearTableOutput(*tty_buf, lock);
}
logs_out_stream->writeLogs(block);
logs_out_stream->flush();
}
@ -1151,34 +1166,8 @@ void ClientBase::receiveResult(ASTPtr parsed_query, Int32 signals_before_stop, b
std::exception_ptr local_format_error;
if (keystroke_interceptor)
{
progress_table_toggle_on = false;
try
{
keystroke_interceptor->startIntercept();
}
catch (const DB::Exception &)
{
error_stream << getCurrentExceptionMessage(false);
keystroke_interceptor.reset();
}
}
SCOPE_EXIT({
if (keystroke_interceptor)
{
try
{
keystroke_interceptor->stopIntercept();
}
catch (...)
{
error_stream << getCurrentExceptionMessage(false);
keystroke_interceptor.reset();
}
}
});
startKeystrokeInterceptorIfExists();
SCOPE_EXIT({ stopKeystrokeInterceptorIfExists(); });
while (true)
{
@ -1318,7 +1307,10 @@ void ClientBase::onProgress(const Progress & value)
output_format->onProgress(value);
if (need_render_progress && tty_buf)
progress_indication.writeProgress(*tty_buf);
{
std::unique_lock lock(tty_mutex);
progress_indication.writeProgress(*tty_buf, lock);
}
}
void ClientBase::onTimezoneUpdate(const String & tz)
@ -1330,9 +1322,15 @@ void ClientBase::onTimezoneUpdate(const String & tz)
void ClientBase::onEndOfStream()
{
if (need_render_progress && tty_buf)
progress_indication.clearProgressOutput(*tty_buf);
{
std::unique_lock lock(tty_mutex);
progress_indication.clearProgressOutput(*tty_buf, lock);
}
if (need_render_progress_table && tty_buf)
progress_table.clearTableOutput(*tty_buf);
{
std::unique_lock lock(tty_mutex);
progress_table.clearTableOutput(*tty_buf, lock);
}
if (output_format)
{
@ -1414,11 +1412,15 @@ void ClientBase::onProfileEvents(Block & block)
progress_table.updateTable(block);
if (need_render_progress && tty_buf)
progress_indication.writeProgress(*tty_buf);
{
std::unique_lock lock(tty_mutex);
progress_indication.writeProgress(*tty_buf, lock);
}
if (need_render_progress_table && tty_buf && !cancelled)
{
bool toggle_enabled = getClientConfiguration().getBool("enable-progress-table-toggle", true);
progress_table.writeTable(*tty_buf, progress_table_toggle_on.load(), toggle_enabled);
std::unique_lock lock(tty_mutex);
progress_table.writeTable(*tty_buf, lock, progress_table_toggle_on.load(), toggle_enabled);
}
if (profile_events.print)
@ -1429,9 +1431,15 @@ void ClientBase::onProfileEvents(Block & block)
profile_events.watch.restart();
initLogsOutputStream();
if (need_render_progress && tty_buf)
progress_indication.clearProgressOutput(*tty_buf);
{
std::unique_lock lock(tty_mutex);
progress_indication.clearProgressOutput(*tty_buf, lock);
}
if (need_render_progress_table && tty_buf)
progress_table.clearTableOutput(*tty_buf);
{
std::unique_lock lock(tty_mutex);
progress_table.clearTableOutput(*tty_buf, lock);
}
logs_out_stream->writeProfileEvents(block);
logs_out_stream->flush();
@ -1450,7 +1458,10 @@ void ClientBase::onProfileEvents(Block & block)
void ClientBase::resetOutput()
{
if (need_render_progress_table && tty_buf)
progress_table.clearTableOutput(*tty_buf);
{
std::unique_lock lock(tty_mutex);
progress_table.clearTableOutput(*tty_buf, lock);
}
/// Order is important: format, compression, file
@ -1619,6 +1630,9 @@ void ClientBase::processInsertQuery(const String & query_to_execute, ASTPtr pars
if (send_external_tables)
sendExternalTables(parsed_query);
startKeystrokeInterceptorIfExists();
SCOPE_EXIT({ stopKeystrokeInterceptorIfExists(); });
/// Receive description of table structure.
Block sample;
ColumnsDescription columns_description;
@ -1665,7 +1679,7 @@ void ClientBase::sendData(Block & sample, const ColumnsDescription & columns_des
/// Set callback to be called on file progress.
if (tty_buf)
progress_indication.setFileProgressCallback(client_context, *tty_buf);
progress_indication.setFileProgressCallback(client_context, *tty_buf, tty_mutex);
}
/// If data fetched from file (maybe compressed file)
@ -1947,9 +1961,15 @@ void ClientBase::cancelQuery()
}
if (need_render_progress && tty_buf)
progress_indication.clearProgressOutput(*tty_buf);
{
std::unique_lock lock(tty_mutex);
progress_indication.clearProgressOutput(*tty_buf, lock);
}
if (need_render_progress_table && tty_buf)
progress_table.clearTableOutput(*tty_buf);
{
std::unique_lock lock(tty_mutex);
progress_table.clearTableOutput(*tty_buf, lock);
}
if (is_interactive)
output_stream << "Cancelling query." << std::endl;
@ -2112,9 +2132,15 @@ void ClientBase::processParsedSingleQuery(const String & full_query, const Strin
{
initLogsOutputStream();
if (need_render_progress && tty_buf)
progress_indication.clearProgressOutput(*tty_buf);
{
std::unique_lock lock(tty_mutex);
progress_indication.clearProgressOutput(*tty_buf, lock);
}
if (need_render_progress_table && tty_buf)
progress_table.clearTableOutput(*tty_buf);
{
std::unique_lock lock(tty_mutex);
progress_table.clearTableOutput(*tty_buf, lock);
}
logs_out_stream->writeProfileEvents(profile_events.last_block);
logs_out_stream->flush();
@ -2613,6 +2639,39 @@ bool ClientBase::addMergeTreeSettings(ASTCreateQuery & ast_create)
return added_new_setting;
}
void ClientBase::startKeystrokeInterceptorIfExists()
{
if (keystroke_interceptor)
{
progress_table_toggle_on = false;
try
{
keystroke_interceptor->startIntercept();
}
catch (const DB::Exception &)
{
error_stream << getCurrentExceptionMessage(false);
keystroke_interceptor.reset();
}
}
}
void ClientBase::stopKeystrokeInterceptorIfExists()
{
if (keystroke_interceptor)
{
try
{
keystroke_interceptor->stopIntercept();
}
catch (...)
{
error_stream << getCurrentExceptionMessage(false);
keystroke_interceptor.reset();
}
}
}
void ClientBase::runInteractive()
{
if (getClientConfiguration().has("query_id"))

View File

@ -208,6 +208,9 @@ private:
void initQueryIdFormats();
bool addMergeTreeSettings(ASTCreateQuery & ast_create);
void startKeystrokeInterceptorIfExists();
void stopKeystrokeInterceptorIfExists();
protected:
class QueryInterruptHandler : private boost::noncopyable
@ -325,6 +328,7 @@ protected:
/// /dev/tty if accessible or std::cerr - for progress bar.
/// We prefer to output progress bar directly to tty to allow user to redirect stdout and stderr and still get the progress indication.
std::unique_ptr<WriteBufferFromFileDescriptor> tty_buf;
std::mutex tty_mutex;
String home_path;
String history_file; /// Path to a file containing command history.

View File

@ -140,8 +140,6 @@ void highlight(const String & query, std::vector<replxx::Replxx::Color> & colors
/// We don't do highlighting for foreign dialects, such as PRQL and Kusto.
/// Only normal ClickHouse SQL queries are highlighted.
/// Currently we highlight only the first query in the multi-query mode.
ParserQuery parser(end, false, context.getSettingsRef()[Setting::implicit_select]);
ASTPtr ast;
bool parse_res = false;

View File

@ -14,6 +14,7 @@
#include <Common/formatReadable.h>
#include <format>
#include <mutex>
#include <numeric>
#include <unordered_map>
@ -192,7 +193,8 @@ void writeWithWidthStrict(Out & out, std::string_view s, size_t width)
}
void ProgressTable::writeTable(WriteBufferFromFileDescriptor & message, bool show_table, bool toggle_enabled)
void ProgressTable::writeTable(
WriteBufferFromFileDescriptor & message, std::unique_lock<std::mutex> &, bool show_table, bool toggle_enabled)
{
std::lock_guard lock{mutex};
if (!show_table && toggle_enabled)
@ -360,7 +362,7 @@ void ProgressTable::updateTable(const Block & block)
written_first_block = true;
}
void ProgressTable::clearTableOutput(WriteBufferFromFileDescriptor & message)
void ProgressTable::clearTableOutput(WriteBufferFromFileDescriptor & message, std::unique_lock<std::mutex> &)
{
message << "\r" << CLEAR_TO_END_OF_SCREEN << SHOW_CURSOR;
message.next();

View File

@ -27,8 +27,9 @@ public:
}
/// Write progress table with metrics.
void writeTable(WriteBufferFromFileDescriptor & message, bool show_table, bool toggle_enabled);
void clearTableOutput(WriteBufferFromFileDescriptor & message);
void writeTable(WriteBufferFromFileDescriptor & message, std::unique_lock<std::mutex> & message_lock,
bool show_table, bool toggle_enabled);
void clearTableOutput(WriteBufferFromFileDescriptor & message, std::unique_lock<std::mutex> & message_lock);
void writeFinalTable();
/// Update the metric values. They can be updated from:

View File

@ -662,6 +662,8 @@ ColumnPtr ColumnArray::filter(const Filter & filt, ssize_t result_size_hint) con
return filterNumber<Int128>(filt, result_size_hint);
if (typeid_cast<const ColumnInt256 *>(data.get()))
return filterNumber<Int256>(filt, result_size_hint);
if (typeid_cast<const ColumnBFloat16 *>(data.get()))
return filterNumber<BFloat16>(filt, result_size_hint);
if (typeid_cast<const ColumnFloat32 *>(data.get()))
return filterNumber<Float32>(filt, result_size_hint);
if (typeid_cast<const ColumnFloat64 *>(data.get()))
@ -1065,6 +1067,8 @@ ColumnPtr ColumnArray::replicate(const Offsets & replicate_offsets) const
return replicateNumber<Int128>(replicate_offsets);
if (typeid_cast<const ColumnInt256 *>(data.get()))
return replicateNumber<Int256>(replicate_offsets);
if (typeid_cast<const ColumnBFloat16 *>(data.get()))
return replicateNumber<BFloat16>(replicate_offsets);
if (typeid_cast<const ColumnFloat32 *>(data.get()))
return replicateNumber<Float32>(replicate_offsets);
if (typeid_cast<const ColumnFloat64 *>(data.get()))

View File

@ -16,6 +16,7 @@ template class ColumnUnique<ColumnInt128>;
template class ColumnUnique<ColumnUInt128>;
template class ColumnUnique<ColumnInt256>;
template class ColumnUnique<ColumnUInt256>;
template class ColumnUnique<ColumnBFloat16>;
template class ColumnUnique<ColumnFloat32>;
template class ColumnUnique<ColumnFloat64>;
template class ColumnUnique<ColumnString>;

View File

@ -760,6 +760,7 @@ extern template class ColumnUnique<ColumnInt128>;
extern template class ColumnUnique<ColumnUInt128>;
extern template class ColumnUnique<ColumnInt256>;
extern template class ColumnUnique<ColumnUInt256>;
extern template class ColumnUnique<ColumnBFloat16>;
extern template class ColumnUnique<ColumnFloat32>;
extern template class ColumnUnique<ColumnFloat64>;
extern template class ColumnUnique<ColumnString>;

View File

@ -118,9 +118,9 @@ struct ColumnVector<T>::less_stable
if (unlikely(parent.data[lhs] == parent.data[rhs]))
return lhs < rhs;
if constexpr (std::is_floating_point_v<T>)
if constexpr (is_floating_point<T>)
{
if (unlikely(std::isnan(parent.data[lhs]) && std::isnan(parent.data[rhs])))
if (unlikely(isNaN(parent.data[lhs]) && isNaN(parent.data[rhs])))
{
return lhs < rhs;
}
@ -150,9 +150,9 @@ struct ColumnVector<T>::greater_stable
if (unlikely(parent.data[lhs] == parent.data[rhs]))
return lhs < rhs;
if constexpr (std::is_floating_point_v<T>)
if constexpr (is_floating_point<T>)
{
if (unlikely(std::isnan(parent.data[lhs]) && std::isnan(parent.data[rhs])))
if (unlikely(isNaN(parent.data[lhs]) && isNaN(parent.data[rhs])))
{
return lhs < rhs;
}
@ -224,9 +224,9 @@ void ColumnVector<T>::getPermutation(IColumn::PermutationSortDirection direction
iota(res.data(), data_size, IColumn::Permutation::value_type(0));
if constexpr (has_find_extreme_implementation<T> && !std::is_floating_point_v<T>)
if constexpr (has_find_extreme_implementation<T> && !is_floating_point<T>)
{
/// Disabled for:floating point
/// Disabled for floating point:
/// * floating point: We don't deal with nan_direction_hint
/// * stability::Stable: We might return any value, not the first
if ((limit == 1) && (stability == IColumn::PermutationSortStability::Unstable))
@ -256,7 +256,7 @@ void ColumnVector<T>::getPermutation(IColumn::PermutationSortDirection direction
bool sort_is_stable = stability == IColumn::PermutationSortStability::Stable;
/// TODO: LSD RadixSort is currently not stable if direction is descending, or value is floating point
bool use_radix_sort = (sort_is_stable && ascending && !std::is_floating_point_v<T>) || !sort_is_stable;
bool use_radix_sort = (sort_is_stable && ascending && !is_floating_point<T>) || !sort_is_stable;
/// Thresholds on size. Lower threshold is arbitrary. Upper threshold is chosen by the type for histogram counters.
if (data_size >= 256 && data_size <= std::numeric_limits<UInt32>::max() && use_radix_sort)
@ -283,7 +283,7 @@ void ColumnVector<T>::getPermutation(IColumn::PermutationSortDirection direction
/// Radix sort treats all NaNs to be greater than all numbers.
/// If the user needs the opposite, we must move them accordingly.
if (std::is_floating_point_v<T> && nan_direction_hint < 0)
if (is_floating_point<T> && nan_direction_hint < 0)
{
size_t nans_to_move = 0;
@ -330,7 +330,7 @@ void ColumnVector<T>::updatePermutation(IColumn::PermutationSortDirection direct
if constexpr (is_arithmetic_v<T> && !is_big_int_v<T>)
{
/// TODO: LSD RadixSort is currently not stable if direction is descending, or value is floating point
bool use_radix_sort = (sort_is_stable && ascending && !std::is_floating_point_v<T>) || !sort_is_stable;
bool use_radix_sort = (sort_is_stable && ascending && !is_floating_point<T>) || !sort_is_stable;
size_t size = end - begin;
/// Thresholds on size. Lower threshold is arbitrary. Upper threshold is chosen by the type for histogram counters.
@ -353,7 +353,7 @@ void ColumnVector<T>::updatePermutation(IColumn::PermutationSortDirection direct
/// Radix sort treats all NaNs to be greater than all numbers.
/// If the user needs the opposite, we must move them accordingly.
if (std::is_floating_point_v<T> && nan_direction_hint < 0)
if (is_floating_point<T> && nan_direction_hint < 0)
{
size_t nans_to_move = 0;
@ -1005,6 +1005,7 @@ template class ColumnVector<Int32>;
template class ColumnVector<Int64>;
template class ColumnVector<Int128>;
template class ColumnVector<Int256>;
template class ColumnVector<BFloat16>;
template class ColumnVector<Float32>;
template class ColumnVector<Float64>;
template class ColumnVector<UUID>;

View File

@ -52,6 +52,7 @@ private:
explicit ColumnVector(const size_t n) : data(n) {}
ColumnVector(const size_t n, const ValueType x) : data(n, x) {}
ColumnVector(const ColumnVector & src) : data(src.data.begin(), src.data.end()) {}
ColumnVector(Container::const_iterator begin, Container::const_iterator end) : data(begin, end) { }
/// Sugar constructor.
ColumnVector(std::initializer_list<T> il) : data{il} {}
@ -481,6 +482,7 @@ extern template class ColumnVector<Int32>;
extern template class ColumnVector<Int64>;
extern template class ColumnVector<Int128>;
extern template class ColumnVector<Int256>;
extern template class ColumnVector<BFloat16>;
extern template class ColumnVector<Float32>;
extern template class ColumnVector<Float64>;
extern template class ColumnVector<UUID>;

View File

@ -328,6 +328,7 @@ INSTANTIATE(Int32)
INSTANTIATE(Int64)
INSTANTIATE(Int128)
INSTANTIATE(Int256)
INSTANTIATE(BFloat16)
INSTANTIATE(Float32)
INSTANTIATE(Float64)
INSTANTIATE(Decimal32)

View File

@ -23,6 +23,7 @@ using ColumnInt64 = ColumnVector<Int64>;
using ColumnInt128 = ColumnVector<Int128>;
using ColumnInt256 = ColumnVector<Int256>;
using ColumnBFloat16 = ColumnVector<BFloat16>;
using ColumnFloat32 = ColumnVector<Float32>;
using ColumnFloat64 = ColumnVector<Float64>;

View File

@ -443,6 +443,7 @@ template class IColumnHelper<ColumnVector<Int32>, ColumnFixedSizeHelper>;
template class IColumnHelper<ColumnVector<Int64>, ColumnFixedSizeHelper>;
template class IColumnHelper<ColumnVector<Int128>, ColumnFixedSizeHelper>;
template class IColumnHelper<ColumnVector<Int256>, ColumnFixedSizeHelper>;
template class IColumnHelper<ColumnVector<BFloat16>, ColumnFixedSizeHelper>;
template class IColumnHelper<ColumnVector<Float32>, ColumnFixedSizeHelper>;
template class IColumnHelper<ColumnVector<Float64>, ColumnFixedSizeHelper>;
template class IColumnHelper<ColumnVector<UUID>, ColumnFixedSizeHelper>;

View File

@ -63,6 +63,7 @@ INSTANTIATE(Int32)
INSTANTIATE(Int64)
INSTANTIATE(Int128)
INSTANTIATE(Int256)
INSTANTIATE(BFloat16)
INSTANTIATE(Float32)
INSTANTIATE(Float64)
INSTANTIATE(Decimal32)
@ -200,6 +201,7 @@ static MaskInfo extractMaskImpl(
|| extractMaskNumeric<inverted, Int16>(mask, column, null_value, null_bytemap, nulls, mask_info)
|| extractMaskNumeric<inverted, Int32>(mask, column, null_value, null_bytemap, nulls, mask_info)
|| extractMaskNumeric<inverted, Int64>(mask, column, null_value, null_bytemap, nulls, mask_info)
|| extractMaskNumeric<inverted, BFloat16>(mask, column, null_value, null_bytemap, nulls, mask_info)
|| extractMaskNumeric<inverted, Float32>(mask, column, null_value, null_bytemap, nulls, mask_info)
|| extractMaskNumeric<inverted, Float64>(mask, column, null_value, null_bytemap, nulls, mask_info)))
throw Exception(ErrorCodes::ILLEGAL_COLUMN, "Cannot convert column {} to mask.", column->getName());

View File

@ -93,6 +93,7 @@ TEST(ColumnVector, Filter)
testFilter<Int64>();
testFilter<UInt128>();
testFilter<Int256>();
testFilter<BFloat16>();
testFilter<Float32>();
testFilter<Float64>();
testFilter<UUID>();

View File

@ -45,6 +45,7 @@ TEST(ColumnLowCardinality, Insert)
testLowCardinalityNumberInsert<Int128>(std::make_shared<DataTypeInt128>());
testLowCardinalityNumberInsert<Int256>(std::make_shared<DataTypeInt256>());
testLowCardinalityNumberInsert<BFloat16>(std::make_shared<DataTypeBFloat16>());
testLowCardinalityNumberInsert<Float32>(std::make_shared<DataTypeFloat32>());
testLowCardinalityNumberInsert<Float64>(std::make_shared<DataTypeFloat64>());
}

View File

@ -266,6 +266,11 @@ inline bool haveAVX512VBMI2() noexcept
return haveAVX512F() && ((CPUInfo(0x7, 0).registers.ecx >> 6) & 1u);
}
inline bool haveAVX512BF16() noexcept
{
return haveAVX512F() && ((CPUInfo(0x7, 1).registers.eax >> 5) & 1u);
}
inline bool haveRDRAND() noexcept
{
return CPUInfo(0x0).registers.eax >= 0x7 && ((CPUInfo(0x1).registers.ecx >> 30) & 1u);
@ -326,6 +331,7 @@ inline bool haveAMXINT8() noexcept
OP(AVX512VL) \
OP(AVX512VBMI) \
OP(AVX512VBMI2) \
OP(AVX512BF16) \
OP(PREFETCHWT1) \
OP(SHA) \
OP(ADX) \

View File

@ -49,6 +49,7 @@
M(TemporaryFilesForSort, "Number of temporary files created for external sorting") \
M(TemporaryFilesForAggregation, "Number of temporary files created for external aggregation") \
M(TemporaryFilesForJoin, "Number of temporary files created for JOIN") \
M(TemporaryFilesForMerge, "Number of temporary files for vertical merge") \
M(TemporaryFilesUnknown, "Number of temporary files created without known purpose") \
M(Read, "Number of read (read, pread, io_getevents, etc.) syscalls in fly") \
M(RemoteRead, "Number of read with remote reader in fly") \

View File

@ -7,7 +7,6 @@
#include <condition_variable>
#include <mutex>
#include "config.h"
namespace DB
{
@ -87,6 +86,7 @@ APPLY_FOR_FAILPOINTS(M, M, M, M)
std::unordered_map<String, std::shared_ptr<FailPointChannel>> FailPointInjection::fail_point_wait_channels;
std::mutex FailPointInjection::mu;
class FailPointChannel : private boost::noncopyable
{
public:

View File

@ -15,6 +15,7 @@
#include <unordered_map>
namespace DB
{
@ -27,6 +28,7 @@ namespace DB
/// 3. in test file, we can use system failpoint enable/disable 'failpoint_name'
class FailPointChannel;
class FailPointInjection
{
public:

View File

@ -1,5 +1,4 @@
#include <Common/FieldVisitorConvertToNumber.h>
#include "base/Decimal.h"
namespace DB
{
@ -17,6 +16,7 @@ template class FieldVisitorConvertToNumber<Int128>;
template class FieldVisitorConvertToNumber<UInt128>;
template class FieldVisitorConvertToNumber<Int256>;
template class FieldVisitorConvertToNumber<UInt256>;
//template class FieldVisitorConvertToNumber<BFloat16>;
template class FieldVisitorConvertToNumber<Float32>;
template class FieldVisitorConvertToNumber<Float64>;

View File

@ -58,7 +58,7 @@ public:
T operator() (const Float64 & x) const
{
if constexpr (!std::is_floating_point_v<T>)
if constexpr (!is_floating_point<T>)
{
if (!isFinite(x))
{
@ -88,7 +88,7 @@ public:
template <typename U>
T operator() (const DecimalField<U> & x) const
{
if constexpr (std::is_floating_point_v<T>)
if constexpr (is_floating_point<T>)
return x.getValue().template convertTo<T>() / x.getScaleMultiplier().template convertTo<T>();
else
return (x.getValue() / x.getScaleMultiplier()).template convertTo<T>();
@ -129,6 +129,7 @@ extern template class FieldVisitorConvertToNumber<Int128>;
extern template class FieldVisitorConvertToNumber<UInt128>;
extern template class FieldVisitorConvertToNumber<Int256>;
extern template class FieldVisitorConvertToNumber<UInt256>;
//extern template class FieldVisitorConvertToNumber<BFloat16>;
extern template class FieldVisitorConvertToNumber<Float32>;
extern template class FieldVisitorConvertToNumber<Float64>;

View File

@ -322,6 +322,7 @@ DEFINE_HASH(Int32)
DEFINE_HASH(Int64)
DEFINE_HASH(Int128)
DEFINE_HASH(Int256)
DEFINE_HASH(BFloat16)
DEFINE_HASH(Float32)
DEFINE_HASH(Float64)
DEFINE_HASH(DB::UUID)

View File

@ -76,7 +76,7 @@ struct HashTableNoState
template <typename T>
inline bool bitEquals(T a, T b)
{
if constexpr (std::is_floating_point_v<T>)
if constexpr (is_floating_point<T>)
/// Note that memcmp with constant size is a compiler builtin.
return 0 == memcmp(&a, &b, sizeof(T)); /// NOLINT
else

View File

@ -9,6 +9,7 @@
#include <mutex>
#include <algorithm>
#include <Poco/Timespan.h>
namespace ProfileEvents
@ -49,16 +50,18 @@ HostResolver::WeakPtr HostResolver::getWeakFromThis()
}
HostResolver::HostResolver(String host_, Poco::Timespan history_)
: host(std::move(host_))
, history(history_)
, resolve_function([](const String & host_to_resolve) { return DNSResolver::instance().resolveHostAllInOriginOrder(host_to_resolve); })
{
update();
}
: HostResolver(
[](const String & host_to_resolve) { return DNSResolver::instance().resolveHostAllInOriginOrder(host_to_resolve); },
host_,
history_)
{}
HostResolver::HostResolver(
ResolveFunction && resolve_function_, String host_, Poco::Timespan history_)
: host(std::move(host_)), history(history_), resolve_function(std::move(resolve_function_))
: host(std::move(host_))
, history(history_)
, resolve_interval(history_.totalMicroseconds() / 3)
, resolve_function(std::move(resolve_function_))
{
update();
}
@ -203,7 +206,7 @@ bool HostResolver::isUpdateNeeded()
Poco::Timestamp now;
std::lock_guard lock(mutex);
return last_resolve_time + history < now || records.empty();
return last_resolve_time + resolve_interval < now || records.empty();
}
void HostResolver::updateImpl(Poco::Timestamp now, std::vector<Poco::Net::IPAddress> & next_gen)

View File

@ -26,7 +26,7 @@
// a) it still occurs in resolve set after `history_` time or b) all other addresses are pessimized as well.
// - resolve schedule
// Addresses are resolved through `DB::DNSResolver::instance()`.
// Usually it does not happen more often than once in `history_` time.
// Usually it does not happen more often than 3 times in `history_` period.
// But also new resolve performed each `setFail()` call.
namespace DB
@ -212,6 +212,7 @@ protected:
const String host;
const Poco::Timespan history;
const Poco::Timespan resolve_interval;
const HostResolverMetrics metrics = getMetrics();
// for tests purpose
@ -245,4 +246,3 @@ private:
};
}

View File

@ -3,24 +3,24 @@
#include <cmath>
#include <limits>
#include <type_traits>
#include <base/DecomposedFloat.h>
template <typename T>
inline bool isNaN(T x)
{
/// To be sure, that this function is zero-cost for non-floating point types.
if constexpr (std::is_floating_point_v<T>)
return std::isnan(x);
if constexpr (is_floating_point<T>)
return DecomposedFloat(x).isNaN();
else
return false;
}
template <typename T>
inline bool isFinite(T x)
{
if constexpr (std::is_floating_point_v<T>)
return std::isfinite(x);
if constexpr (is_floating_point<T>)
return DecomposedFloat(x).isFinite();
else
return true;
}
@ -28,7 +28,7 @@ inline bool isFinite(T x)
template <typename T>
bool canConvertTo(Float64 x)
{
if constexpr (std::is_floating_point_v<T>)
if constexpr (is_floating_point<T>)
return true;
if (!isFinite(x))
return false;
@ -46,3 +46,12 @@ T NaNOrZero()
else
return {};
}
template <typename T>
bool signBit(T x)
{
if constexpr (is_floating_point<T>)
return DecomposedFloat(x).isNegative();
else
return x < 0;
}

View File

@ -10,6 +10,7 @@
#include <fcntl.h>
#include <algorithm>
namespace DB
{

View File

@ -2,6 +2,7 @@
#include <algorithm>
#include <cstddef>
#include <iostream>
#include <mutex>
#include <numeric>
#include <filesystem>
#include <cmath>
@ -49,12 +50,13 @@ void ProgressIndication::resetProgress()
}
}
void ProgressIndication::setFileProgressCallback(ContextMutablePtr context, WriteBufferFromFileDescriptor & message)
void ProgressIndication::setFileProgressCallback(ContextMutablePtr context, WriteBufferFromFileDescriptor & message, std::mutex & message_mutex)
{
context->setFileProgressCallback([&](const FileProgress & file_progress)
{
progress.incrementPiecewiseAtomically(Progress(file_progress));
writeProgress(message);
std::unique_lock message_lock(message_mutex);
writeProgress(message, message_lock);
});
}
@ -113,7 +115,7 @@ void ProgressIndication::writeFinalProgress()
output_stream << "\nPeak memory usage: " << formatReadableSizeWithBinarySuffix(peak_memory_usage) << ".";
}
void ProgressIndication::writeProgress(WriteBufferFromFileDescriptor & message)
void ProgressIndication::writeProgress(WriteBufferFromFileDescriptor & message, std::unique_lock<std::mutex> &)
{
std::lock_guard lock(progress_mutex);
@ -274,7 +276,7 @@ void ProgressIndication::writeProgress(WriteBufferFromFileDescriptor & message)
message.next();
}
void ProgressIndication::clearProgressOutput(WriteBufferFromFileDescriptor & message)
void ProgressIndication::clearProgressOutput(WriteBufferFromFileDescriptor & message, std::unique_lock<std::mutex> &)
{
std::lock_guard lock(progress_mutex);

View File

@ -8,6 +8,7 @@
#include <iostream>
#include <mutex>
#include <queue>
#include <unordered_map>
#include <unordered_set>
@ -47,8 +48,8 @@ public:
}
/// Write progress bar.
void writeProgress(WriteBufferFromFileDescriptor & message);
void clearProgressOutput(WriteBufferFromFileDescriptor & message);
void writeProgress(WriteBufferFromFileDescriptor & message, std::unique_lock<std::mutex> & message_lock);
void clearProgressOutput(WriteBufferFromFileDescriptor & message, std::unique_lock<std::mutex> & message_lock);
/// Write summary.
void writeFinalProgress();
@ -67,7 +68,7 @@ public:
/// In some cases there is a need to update progress value, when there is no access to progress_inidcation object.
/// In this case it is added via context.
/// `write_progress_on_update` is needed to write progress for loading files data via pipe in non-interactive mode.
void setFileProgressCallback(ContextMutablePtr context, WriteBufferFromFileDescriptor & message);
void setFileProgressCallback(ContextMutablePtr context, WriteBufferFromFileDescriptor & message, std::mutex & message_mutex);
/// How much seconds passed since query execution start.
double elapsedSeconds() const { return getElapsedNanoseconds() / 1e9; }

View File

@ -23,6 +23,8 @@ UInt32 getSupportedArchs()
result |= static_cast<UInt32>(TargetArch::AVX512VBMI);
if (CPU::CPUFlagsCache::have_AVX512VBMI2)
result |= static_cast<UInt32>(TargetArch::AVX512VBMI2);
if (CPU::CPUFlagsCache::have_AVX512BF16)
result |= static_cast<UInt32>(TargetArch::AVX512BF16);
if (CPU::CPUFlagsCache::have_AMXBF16)
result |= static_cast<UInt32>(TargetArch::AMXBF16);
if (CPU::CPUFlagsCache::have_AMXTILE)
@ -50,6 +52,7 @@ String toString(TargetArch arch)
case TargetArch::AVX512BW: return "avx512bw";
case TargetArch::AVX512VBMI: return "avx512vbmi";
case TargetArch::AVX512VBMI2: return "avx512vbmi2";
case TargetArch::AVX512BF16: return "avx512bf16";
case TargetArch::AMXBF16: return "amxbf16";
case TargetArch::AMXTILE: return "amxtile";
case TargetArch::AMXINT8: return "amxint8";

View File

@ -83,9 +83,10 @@ enum class TargetArch : UInt32
AVX512BW = (1 << 4),
AVX512VBMI = (1 << 5),
AVX512VBMI2 = (1 << 6),
AMXBF16 = (1 << 7),
AMXTILE = (1 << 8),
AMXINT8 = (1 << 9),
AVX512BF16 = (1 << 7),
AMXBF16 = (1 << 8),
AMXTILE = (1 << 9),
AMXINT8 = (1 << 10),
};
/// Runtime detection.
@ -102,6 +103,7 @@ String toString(TargetArch arch);
/// NOLINTNEXTLINE
#define USE_MULTITARGET_CODE 1
#define AVX512BF16_FUNCTION_SPECIFIC_ATTRIBUTE __attribute__((target("sse,sse2,sse3,ssse3,sse4,popcnt,avx,avx2,avx512f,avx512bw,avx512vl,avx512vbmi,avx512vbmi2,avx512bf16")))
#define AVX512VBMI2_FUNCTION_SPECIFIC_ATTRIBUTE __attribute__((target("sse,sse2,sse3,ssse3,sse4,popcnt,avx,avx2,avx512f,avx512bw,avx512vl,avx512vbmi,avx512vbmi2")))
#define AVX512VBMI_FUNCTION_SPECIFIC_ATTRIBUTE __attribute__((target("sse,sse2,sse3,ssse3,sse4,popcnt,avx,avx2,avx512f,avx512bw,avx512vl,avx512vbmi")))
#define AVX512BW_FUNCTION_SPECIFIC_ATTRIBUTE __attribute__((target("sse,sse2,sse3,ssse3,sse4,popcnt,avx,avx2,avx512f,avx512bw")))
@ -111,6 +113,8 @@ String toString(TargetArch arch);
#define SSE42_FUNCTION_SPECIFIC_ATTRIBUTE __attribute__((target("sse,sse2,sse3,ssse3,sse4,popcnt")))
#define DEFAULT_FUNCTION_SPECIFIC_ATTRIBUTE
# define BEGIN_AVX512BF16_SPECIFIC_CODE \
_Pragma("clang attribute push(__attribute__((target(\"sse,sse2,sse3,ssse3,sse4,popcnt,avx,avx2,avx512f,avx512bw,avx512vl,avx512vbmi,avx512vbmi2,avx512bf16\"))),apply_to=function)")
# define BEGIN_AVX512VBMI2_SPECIFIC_CODE \
_Pragma("clang attribute push(__attribute__((target(\"sse,sse2,sse3,ssse3,sse4,popcnt,avx,avx2,avx512f,avx512bw,avx512vl,avx512vbmi,avx512vbmi2\"))),apply_to=function)")
# define BEGIN_AVX512VBMI_SPECIFIC_CODE \
@ -197,6 +201,14 @@ namespace TargetSpecific::AVX512VBMI2 { \
} \
END_TARGET_SPECIFIC_CODE
#define DECLARE_AVX512BF16_SPECIFIC_CODE(...) \
BEGIN_AVX512BF16_SPECIFIC_CODE \
namespace TargetSpecific::AVX512BF16 { \
DUMMY_FUNCTION_DEFINITION \
using namespace DB::TargetSpecific::AVX512BF16; \
__VA_ARGS__ \
} \
END_TARGET_SPECIFIC_CODE
#else
@ -211,6 +223,7 @@ END_TARGET_SPECIFIC_CODE
#define DECLARE_AVX512BW_SPECIFIC_CODE(...)
#define DECLARE_AVX512VBMI_SPECIFIC_CODE(...)
#define DECLARE_AVX512VBMI2_SPECIFIC_CODE(...)
#define DECLARE_AVX512BF16_SPECIFIC_CODE(...)
#endif
@ -229,7 +242,8 @@ DECLARE_AVX2_SPECIFIC_CODE (__VA_ARGS__) \
DECLARE_AVX512F_SPECIFIC_CODE(__VA_ARGS__) \
DECLARE_AVX512BW_SPECIFIC_CODE (__VA_ARGS__) \
DECLARE_AVX512VBMI_SPECIFIC_CODE (__VA_ARGS__) \
DECLARE_AVX512VBMI2_SPECIFIC_CODE (__VA_ARGS__)
DECLARE_AVX512VBMI2_SPECIFIC_CODE (__VA_ARGS__) \
DECLARE_AVX512BF16_SPECIFIC_CODE (__VA_ARGS__)
DECLARE_DEFAULT_CODE(
constexpr auto BuildArch = TargetArch::Default; /// NOLINT
@ -263,6 +277,10 @@ DECLARE_AVX512VBMI2_SPECIFIC_CODE(
constexpr auto BuildArch = TargetArch::AVX512VBMI2; /// NOLINT
) // DECLARE_AVX512VBMI2_SPECIFIC_CODE
DECLARE_AVX512BF16_SPECIFIC_CODE(
constexpr auto BuildArch = TargetArch::AVX512BF16; /// NOLINT
) // DECLARE_AVX512BF16_SPECIFIC_CODE
/** Runtime Dispatch helpers for class members.
*
* Example of usage:

View File

@ -204,6 +204,16 @@ bool ThreadStatus::isQueryCanceled() const
return false;
}
size_t ThreadStatus::getNextPlanStepIndex() const
{
return local_data.plan_step_index->fetch_add(1);
}
size_t ThreadStatus::getNextPipelineProcessorIndex() const
{
return local_data.pipeline_processor_index->fetch_add(1);
}
ThreadStatus::~ThreadStatus()
{
flushUntrackedMemory();

View File

@ -11,6 +11,7 @@
#include <boost/noncopyable.hpp>
#include <atomic>
#include <functional>
#include <memory>
#include <mutex>
@ -90,6 +91,11 @@ public:
String query_for_logs;
UInt64 normalized_query_hash = 0;
// Since processors might be added on the fly within expand() function we use atomic_size_t.
// These two fields are used for EXPLAIN PLAN / PIPELINE.
std::shared_ptr<std::atomic_size_t> plan_step_index = std::make_shared<std::atomic_size_t>(0);
std::shared_ptr<std::atomic_size_t> pipeline_processor_index = std::make_shared<std::atomic_size_t>(0);
QueryIsCanceledPredicate query_is_canceled_predicate = {};
};
@ -313,6 +319,9 @@ public:
void initGlobalProfiler(UInt64 global_profiler_real_time_period, UInt64 global_profiler_cpu_time_period);
size_t getNextPlanStepIndex() const;
size_t getNextPipelineProcessorIndex() const;
private:
void applyGlobalSettings();
void applyQuerySettings();

View File

@ -47,7 +47,7 @@ MULTITARGET_FUNCTION_AVX2_SSE42(
/// Unroll the loop manually for floating point, since the compiler doesn't do it without fastmath
/// as it might change the return value
if constexpr (std::is_floating_point_v<T>)
if constexpr (is_floating_point<T>)
{
constexpr size_t unroll_block = 512 / sizeof(T); /// Chosen via benchmarks with AVX2 so YMMV
size_t unrolled_end = i + (((count - i) / unroll_block) * unroll_block);

View File

@ -38,7 +38,7 @@ inline void transformEndianness(T & x)
}
template <std::endian ToEndian, std::endian FromEndian = std::endian::native, typename T>
requires std::is_floating_point_v<T>
requires is_floating_point<T>
inline void transformEndianness(T & value)
{
if constexpr (ToEndian != FromEndian)

View File

@ -3,7 +3,7 @@
#include <IO/WriteBuffer.h>
#include <Compression/ICompressionCodec.h>
#include <IO/BufferWithOwnMemory.h>
#include <Parsers/StringRange.h>
namespace DB
{

View File

@ -7,7 +7,6 @@
#include <Parsers/ExpressionElementParsers.h>
#include <Parsers/IParser.h>
#include <Parsers/TokenIterator.h>
#include <base/types.h>
#include <Common/PODArray.h>
#include <Common/Stopwatch.h>

View File

@ -25,7 +25,7 @@ bool lessOp(A a, B b)
return a < b;
/// float vs float
if constexpr (std::is_floating_point_v<A> && std::is_floating_point_v<B>)
if constexpr (is_floating_point<A> && is_floating_point<B>)
return a < b;
/// anything vs NaN
@ -49,7 +49,7 @@ bool lessOp(A a, B b)
}
/// int vs float
if constexpr (is_integer<A> && std::is_floating_point_v<B>)
if constexpr (is_integer<A> && is_floating_point<B>)
{
if constexpr (sizeof(A) <= 4)
return static_cast<double>(a) < static_cast<double>(b);
@ -57,7 +57,7 @@ bool lessOp(A a, B b)
return DecomposedFloat<B>(b).greater(a);
}
if constexpr (std::is_floating_point_v<A> && is_integer<B>)
if constexpr (is_floating_point<A> && is_integer<B>)
{
if constexpr (sizeof(B) <= 4)
return static_cast<double>(a) < static_cast<double>(b);
@ -65,8 +65,8 @@ bool lessOp(A a, B b)
return DecomposedFloat<A>(a).less(b);
}
static_assert(is_integer<A> || std::is_floating_point_v<A>);
static_assert(is_integer<B> || std::is_floating_point_v<B>);
static_assert(is_integer<A> || is_floating_point<A>);
static_assert(is_integer<B> || is_floating_point<B>);
UNREACHABLE();
}
@ -101,7 +101,7 @@ bool equalsOp(A a, B b)
return a == b;
/// float vs float
if constexpr (std::is_floating_point_v<A> && std::is_floating_point_v<B>)
if constexpr (is_floating_point<A> && is_floating_point<B>)
return a == b;
/// anything vs NaN
@ -125,7 +125,7 @@ bool equalsOp(A a, B b)
}
/// int vs float
if constexpr (is_integer<A> && std::is_floating_point_v<B>)
if constexpr (is_integer<A> && is_floating_point<B>)
{
if constexpr (sizeof(A) <= 4)
return static_cast<double>(a) == static_cast<double>(b);
@ -133,7 +133,7 @@ bool equalsOp(A a, B b)
return DecomposedFloat<B>(b).equals(a);
}
if constexpr (std::is_floating_point_v<A> && is_integer<B>)
if constexpr (is_floating_point<A> && is_integer<B>)
{
if constexpr (sizeof(B) <= 4)
return static_cast<double>(a) == static_cast<double>(b);
@ -163,7 +163,7 @@ inline bool NO_SANITIZE_UNDEFINED convertNumeric(From value, To & result)
return true;
}
if constexpr (std::is_floating_point_v<From> && std::is_floating_point_v<To>)
if constexpr (is_floating_point<From> && is_floating_point<To>)
{
/// Note that NaNs doesn't compare equal to anything, but they are still in range of any Float type.
if (isNaN(value))

View File

@ -17,6 +17,7 @@ class DataTypeNumber;
namespace ErrorCodes
{
extern const int NOT_IMPLEMENTED;
extern const int DECIMAL_OVERFLOW;
extern const int ARGUMENT_OUT_OF_BOUND;
}
@ -310,7 +311,14 @@ ReturnType convertToImpl(const DecimalType & decimal, UInt32 scale, To & result)
using DecimalNativeType = typename DecimalType::NativeType;
static constexpr bool throw_exception = std::is_void_v<ReturnType>;
if constexpr (std::is_floating_point_v<To>)
if constexpr (std::is_same_v<To, BFloat16>)
{
if constexpr (throw_exception)
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Conversion from Decimal to BFloat16 is not implemented");
else
return ReturnType(false);
}
else if constexpr (is_floating_point<To>)
{
result = static_cast<To>(decimal.value) / static_cast<To>(scaleMultiplier<DecimalNativeType>(scale));
}

View File

@ -257,6 +257,7 @@ template <> struct NearestFieldTypeImpl<DecimalField<Decimal64>> { using Type =
template <> struct NearestFieldTypeImpl<DecimalField<Decimal128>> { using Type = DecimalField<Decimal128>; };
template <> struct NearestFieldTypeImpl<DecimalField<Decimal256>> { using Type = DecimalField<Decimal256>; };
template <> struct NearestFieldTypeImpl<DecimalField<DateTime64>> { using Type = DecimalField<DateTime64>; };
template <> struct NearestFieldTypeImpl<BFloat16> { using Type = Float64; };
template <> struct NearestFieldTypeImpl<Float32> { using Type = Float64; };
template <> struct NearestFieldTypeImpl<Float64> { using Type = Float64; };
template <> struct NearestFieldTypeImpl<const char *> { using Type = String; };

View File

@ -150,6 +150,9 @@ Squash blocks passed to the external table to a specified size in bytes, if bloc
)", 0) \
DECLARE(UInt64, max_joined_block_size_rows, DEFAULT_BLOCK_SIZE, R"(
Maximum block size for JOIN result (if join algorithm supports it). 0 means unlimited.
)", 0) \
DECLARE(UInt64, min_joined_block_size_bytes, 524288, R"(
Minimum block size for JOIN result (if join algorithm supports it). 0 means unlimited.
)", 0) \
DECLARE(UInt64, max_insert_threads, 0, R"(
The maximum number of threads to execute the `INSERT SELECT` query.
@ -1797,7 +1800,7 @@ Possible values:
- 0 Disabled.
- 1 Enabled.
)", 0) \
)", 1) \
DECLARE(Int64, http_zlib_compression_level, 3, R"(
Sets the level of data compression in the response to an HTTP request if [enable_http_compression = 1](#enable_http_compression).
@ -5745,7 +5748,10 @@ Enable experimental functions for natural language processing.
Enable experimental hash functions
)", EXPERIMENTAL) \
DECLARE(Bool, allow_experimental_object_type, false, R"(
Allow Object and JSON data types
Allow the obsolete Object data type
)", EXPERIMENTAL) \
DECLARE(Bool, allow_experimental_bfloat16_type, false, R"(
Allow BFloat16 data type (under development).
)", EXPERIMENTAL) \
DECLARE(Bool, allow_experimental_time_series_table, false, R"(
Allows creation of tables with the [TimeSeries](../../engines/table-engines/integrations/time-series.md) table engine.

View File

@ -64,6 +64,7 @@ static std::initializer_list<std::pair<ClickHouseVersion, SettingsChangesHistory
},
{"24.11",
{
{"enable_http_compression", false, true, "Improvement for read-only clients since they can't change settings"},
{"validate_mutation_query", false, true, "New setting to validate mutation queries by default."},
{"enable_job_stack_trace", false, true, "Enable by default collecting stack traces from job's scheduling."},
{"allow_suspicious_types_in_group_by", true, false, "Don't allow Variant/Dynamic types in GROUP BY by default"},
@ -80,6 +81,8 @@ static std::initializer_list<std::pair<ClickHouseVersion, SettingsChangesHistory
{"query_plan_merge_filters", false, true, "Allow to merge filters in the query plan. This is required to properly support filter-push-down with a new analyzer."},
{"parallel_replicas_local_plan", false, true, "Use local plan for local replica in a query with parallel replicas"},
{"merge_tree_use_v1_object_and_dynamic_serialization", true, false, "Add new serialization V2 version for JSON and Dynamic types"},
{"min_joined_block_size_bytes", 524288, 524288, "New setting."},
{"allow_experimental_bfloat16_type", false, false, "Add new experimental BFloat16 type"},
{"filesystem_cache_skip_download_if_exceeds_per_query_cache_write_limit", 1, 1, "Rename of setting skip_download_if_exceeds_query_cache_limit"},
{"filesystem_cache_prefer_bigger_buffer_size", true, true, "New setting"},
{"read_in_order_use_virtual_row", false, false, "Use virtual row while reading in order of primary key or its monotonic function fashion. It is useful when searching over multiple parts as only relevant ones are touched."},
@ -128,7 +131,7 @@ static std::initializer_list<std::pair<ClickHouseVersion, SettingsChangesHistory
{"allow_experimental_refreshable_materialized_view", false, true, "Not experimental anymore"},
{"max_parts_to_move", 0, 1000, "New setting"},
{"hnsw_candidate_list_size_for_search", 64, 256, "New setting. Previously, the value was optionally specified in CREATE INDEX and 64 by default."},
{"allow_reorder_prewhere_conditions", false, true, "New setting"},
{"allow_reorder_prewhere_conditions", true, true, "New setting"},
{"input_format_parquet_bloom_filter_push_down", false, true, "When reading Parquet files, skip whole row groups based on the WHERE/PREWHERE expressions and bloom filter in the Parquet metadata."},
{"date_time_64_output_format_cut_trailing_zeros_align_to_groups_of_thousands", false, false, "Dynamically trim the trailing zeros of datetime64 values to adjust the output scale to (0, 3, 6), corresponding to 'seconds', 'milliseconds', and 'microseconds'."},
}

View File

@ -726,6 +726,7 @@ private:
SortingQueueImpl<SpecializedSingleColumnSortCursor<ColumnVector<Int128>>, strategy>,
SortingQueueImpl<SpecializedSingleColumnSortCursor<ColumnVector<Int256>>, strategy>,
SortingQueueImpl<SpecializedSingleColumnSortCursor<ColumnVector<BFloat16>>, strategy>,
SortingQueueImpl<SpecializedSingleColumnSortCursor<ColumnVector<Float32>>, strategy>,
SortingQueueImpl<SpecializedSingleColumnSortCursor<ColumnVector<Float64>>, strategy>,

View File

@ -21,6 +21,7 @@ enum class TypeIndex : uint8_t
Int64,
Int128,
Int256,
BFloat16,
Float32,
Float64,
Date,
@ -94,6 +95,7 @@ TYPEID_MAP(Int32)
TYPEID_MAP(Int64)
TYPEID_MAP(Int128)
TYPEID_MAP(Int256)
TYPEID_MAP(BFloat16)
TYPEID_MAP(Float32)
TYPEID_MAP(Float64)
TYPEID_MAP(UUID)

View File

@ -21,6 +21,7 @@ using Int128 = wide::integer<128, signed>;
using UInt128 = wide::integer<128, unsigned>;
using Int256 = wide::integer<256, signed>;
using UInt256 = wide::integer<256, unsigned>;
class BFloat16;
namespace DB
{

View File

@ -63,6 +63,7 @@ static bool callOnBasicType(TypeIndex number, F && f)
{
switch (number)
{
case TypeIndex::BFloat16: return f(TypePair<T, BFloat16>());
case TypeIndex::Float32: return f(TypePair<T, Float32>());
case TypeIndex::Float64: return f(TypePair<T, Float64>());
default:
@ -133,6 +134,7 @@ static inline bool callOnBasicTypes(TypeIndex type_num1, TypeIndex type_num2, F
{
switch (type_num1)
{
case TypeIndex::BFloat16: return callOnBasicType<BFloat16, _int, _float, _decimal, _datetime>(type_num2, std::forward<F>(f));
case TypeIndex::Float32: return callOnBasicType<Float32, _int, _float, _decimal, _datetime>(type_num2, std::forward<F>(f));
case TypeIndex::Float64: return callOnBasicType<Float64, _int, _float, _decimal, _datetime>(type_num2, std::forward<F>(f));
default:
@ -190,6 +192,7 @@ static bool callOnIndexAndDataType(TypeIndex number, F && f, ExtraArgs && ... ar
case TypeIndex::Int128: return f(TypePair<DataTypeNumber<Int128>, T>(), std::forward<ExtraArgs>(args)...);
case TypeIndex::Int256: return f(TypePair<DataTypeNumber<Int256>, T>(), std::forward<ExtraArgs>(args)...);
case TypeIndex::BFloat16: return f(TypePair<DataTypeNumber<BFloat16>, T>(), std::forward<ExtraArgs>(args)...);
case TypeIndex::Float32: return f(TypePair<DataTypeNumber<Float32>, T>(), std::forward<ExtraArgs>(args)...);
case TypeIndex::Float64: return f(TypePair<DataTypeNumber<Float64>, T>(), std::forward<ExtraArgs>(args)...);

View File

@ -42,6 +42,7 @@ template class DataTypeNumberBase<Int32>;
template class DataTypeNumberBase<Int64>;
template class DataTypeNumberBase<Int128>;
template class DataTypeNumberBase<Int256>;
template class DataTypeNumberBase<BFloat16>;
template class DataTypeNumberBase<Float32>;
template class DataTypeNumberBase<Float64>;

View File

@ -68,6 +68,7 @@ extern template class DataTypeNumberBase<Int32>;
extern template class DataTypeNumberBase<Int64>;
extern template class DataTypeNumberBase<Int128>;
extern template class DataTypeNumberBase<Int256>;
extern template class DataTypeNumberBase<BFloat16>;
extern template class DataTypeNumberBase<Float32>;
extern template class DataTypeNumberBase<Float64>;

View File

@ -96,6 +96,7 @@ enum class BinaryTypeIndex : uint8_t
SimpleAggregateFunction = 0x2E,
Nested = 0x2F,
JSON = 0x30,
BFloat16 = 0x31,
};
/// In future we can introduce more arguments in the JSON data type definition.
@ -151,6 +152,8 @@ BinaryTypeIndex getBinaryTypeIndex(const DataTypePtr & type)
return BinaryTypeIndex::Int128;
case TypeIndex::Int256:
return BinaryTypeIndex::Int256;
case TypeIndex::BFloat16:
return BinaryTypeIndex::BFloat16;
case TypeIndex::Float32:
return BinaryTypeIndex::Float32;
case TypeIndex::Float64:
@ -565,6 +568,8 @@ DataTypePtr decodeDataType(ReadBuffer & buf)
return std::make_shared<DataTypeInt128>();
case BinaryTypeIndex::Int256:
return std::make_shared<DataTypeInt256>();
case BinaryTypeIndex::BFloat16:
return std::make_shared<DataTypeBFloat16>();
case BinaryTypeIndex::Float32:
return std::make_shared<DataTypeFloat32>();
case BinaryTypeIndex::Float64:

View File

@ -2,6 +2,7 @@
#include <DataTypes/Serializations/SerializationDecimal.h>
#include <Common/typeid_cast.h>
#include <Common/NaNUtils.h>
#include <Core/DecimalFunctions.h>
#include <DataTypes/DataTypeFactory.h>
#include <IO/ReadHelpers.h>
@ -19,6 +20,7 @@ namespace ErrorCodes
extern const int NUMBER_OF_ARGUMENTS_DOESNT_MATCH;
extern const int ILLEGAL_TYPE_OF_ARGUMENT;
extern const int DECIMAL_OVERFLOW;
extern const int NOT_IMPLEMENTED;
}
@ -268,9 +270,13 @@ ReturnType convertToDecimalImpl(const typename FromDataType::FieldType & value,
static constexpr bool throw_exception = std::is_same_v<ReturnType, void>;
if constexpr (std::is_floating_point_v<FromFieldType>)
if constexpr (std::is_same_v<typename FromDataType::FieldType, BFloat16>)
{
if (!std::isfinite(value))
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Conversion from BFloat16 to Decimal is not implemented");
}
else if constexpr (is_floating_point<FromFieldType>)
{
if (!isFinite(value))
{
if constexpr (throw_exception)
throw Exception(ErrorCodes::DECIMAL_OVERFLOW, "{} convert overflow. Cannot convert infinity or NaN to decimal", ToDataType::family_name);

View File

@ -4,7 +4,6 @@
#include <base/extended_types.h>
#include <Common/typeid_cast.h>
#include <base/Decimal.h>
#include <base/Decimal_fwd.h>
#include <DataTypes/IDataType.h>
#include <DataTypes/DataTypeDate.h>
#include <DataTypes/DataTypeDate32.h>
@ -205,7 +204,6 @@ FOR_EACH_DECIMAL_TYPE(INVOKE);
#undef INVOKE
#undef DISPATCH
template <typename FromDataType, typename ToDataType>
requires (is_arithmetic_v<typename FromDataType::FieldType> && IsDataTypeDecimal<ToDataType>)
typename ToDataType::FieldType convertToDecimal(const typename FromDataType::FieldType & value, UInt32 scale);

View File

@ -54,6 +54,7 @@ void registerDataTypeNumbers(DataTypeFactory & factory)
factory.registerDataType("Int32", createNumericDataType<Int32>);
factory.registerDataType("Int64", createNumericDataType<Int64>);
factory.registerDataType("BFloat16", createNumericDataType<BFloat16>);
factory.registerDataType("Float32", createNumericDataType<Float32>);
factory.registerDataType("Float64", createNumericDataType<Float64>);
@ -111,6 +112,7 @@ template class DataTypeNumber<Int8>;
template class DataTypeNumber<Int16>;
template class DataTypeNumber<Int32>;
template class DataTypeNumber<Int64>;
template class DataTypeNumber<BFloat16>;
template class DataTypeNumber<Float32>;
template class DataTypeNumber<Float64>;

Some files were not shown because too many files have changed in this diff Show More