Make the code less bad

This commit is contained in:
Alexey Milovidov 2020-11-02 12:50:08 +03:00
parent 90dcc135b4
commit 911cd77c1a
6 changed files with 222 additions and 883 deletions

View File

@ -8,6 +8,7 @@
#include <IO/ReadHelpers.h>
#include <AggregateFunctions/IAggregateFunction.h>
#include <AggregateFunctions/Moments.h>
#include <DataTypes/DataTypesNumber.h>
#include <DataTypes/DataTypesDecimal.h>
@ -30,310 +31,6 @@
namespace DB
{
namespace ErrorCodes
{
extern const int DECIMAL_OVERFLOW;
}
/**
Calculating univariate central moments
Levels:
level 2 (pop & samp): var, stddev
level 3: skewness
level 4: kurtosis
References:
https://en.wikipedia.org/wiki/Moment_(mathematics)
https://en.wikipedia.org/wiki/Skewness
https://en.wikipedia.org/wiki/Kurtosis
*/
template <typename T, size_t _level>
struct VarMoments
{
T m[_level + 1]{};
void add(T x)
{
++m[0];
m[1] += x;
m[2] += x * x;
if constexpr (_level >= 3) m[3] += x * x * x;
if constexpr (_level >= 4) m[4] += x * x * x * x;
}
void merge(const VarMoments & rhs)
{
m[0] += rhs.m[0];
m[1] += rhs.m[1];
m[2] += rhs.m[2];
if constexpr (_level >= 3) m[3] += rhs.m[3];
if constexpr (_level >= 4) m[4] += rhs.m[4];
}
void write(WriteBuffer & buf) const
{
writePODBinary(*this, buf);
}
void read(ReadBuffer & buf)
{
readPODBinary(*this, buf);
}
T getPopulation() const
{
if (m[0] == 0)
return std::numeric_limits<T>::quiet_NaN();
/// Due to numerical errors, the result can be slightly less than zero,
/// but it should be impossible. Trim to zero.
return std::max(T{}, (m[2] - m[1] * m[1] / m[0]) / m[0]);
}
T getSample() const
{
if (m[0] <= 1)
return std::numeric_limits<T>::quiet_NaN();
return std::max(T{}, (m[2] - m[1] * m[1] / m[0]) / (m[0] - 1));
}
T getMoment3() const
{
if (m[0] == 0)
return std::numeric_limits<T>::quiet_NaN();
// to avoid accuracy problem
if (m[0] == 1)
return 0;
return (m[3]
- (3 * m[2]
- 2 * m[1] * m[1] / m[0]
) * m[1] / m[0]
) / m[0];
}
T getMoment4() const
{
if (m[0] == 0)
return std::numeric_limits<T>::quiet_NaN();
// to avoid accuracy problem
if (m[0] == 1)
return 0;
return (m[4]
- (4 * m[3]
- (6 * m[2]
- 3 * m[1] * m[1] / m[0]
) * m[1] / m[0]
) * m[1] / m[0]
) / m[0];
}
};
template <typename T, size_t _level>
class VarMomentsDecimal
{
public:
using NativeType = typename T::NativeType;
void add(NativeType x)
{
++m0;
getM(1) += x;
NativeType tmp;
bool overflow = common::mulOverflow(x, x, tmp) || common::addOverflow(getM(2), tmp, getM(2));
if constexpr (_level >= 3)
overflow = overflow || common::mulOverflow(tmp, x, tmp) || common::addOverflow(getM(3), tmp, getM(3));
if constexpr (_level >= 4)
overflow = overflow || common::mulOverflow(tmp, x, tmp) || common::addOverflow(getM(4), tmp, getM(4));
if (overflow)
throw Exception("Decimal math overflow", ErrorCodes::DECIMAL_OVERFLOW);
}
void merge(const VarMomentsDecimal & rhs)
{
m0 += rhs.m0;
getM(1) += rhs.getM(1);
bool overflow = common::addOverflow(getM(2), rhs.getM(2), getM(2));
if constexpr (_level >= 3)
overflow = overflow || common::addOverflow(getM(3), rhs.getM(3), getM(3));
if constexpr (_level >= 4)
overflow = overflow || common::addOverflow(getM(4), rhs.getM(4), getM(4));
if (overflow)
throw Exception("Decimal math overflow", ErrorCodes::DECIMAL_OVERFLOW);
}
void write(WriteBuffer & buf) const { writePODBinary(*this, buf); }
void read(ReadBuffer & buf) { readPODBinary(*this, buf); }
Float64 getPopulation(UInt32 scale) const
{
if (m0 == 0)
return std::numeric_limits<Float64>::infinity();
NativeType tmp;
if (common::mulOverflow(getM(1), getM(1), tmp) ||
common::subOverflow(getM(2), NativeType(tmp / m0), tmp))
throw Exception("Decimal math overflow", ErrorCodes::DECIMAL_OVERFLOW);
return std::max(Float64{}, DecimalUtils::convertTo<Float64>(T(tmp / m0), scale));
}
Float64 getSample(UInt32 scale) const
{
if (m0 == 0)
return std::numeric_limits<Float64>::quiet_NaN();
if (m0 == 1)
return std::numeric_limits<Float64>::infinity();
NativeType tmp;
if (common::mulOverflow(getM(1), getM(1), tmp) ||
common::subOverflow(getM(2), NativeType(tmp / m0), tmp))
throw Exception("Decimal math overflow", ErrorCodes::DECIMAL_OVERFLOW);
return std::max(Float64{}, DecimalUtils::convertTo<Float64>(T(tmp / (m0 - 1)), scale));
}
Float64 getMoment3(UInt32 scale) const
{
if (m0 == 0)
return std::numeric_limits<Float64>::infinity();
NativeType tmp;
if (common::mulOverflow(2 * getM(1), getM(1), tmp) ||
common::subOverflow(3 * getM(2), NativeType(tmp / m0), tmp) ||
common::mulOverflow(tmp, getM(1), tmp) ||
common::subOverflow(getM(3), NativeType(tmp / m0), tmp))
throw Exception("Decimal math overflow", ErrorCodes::DECIMAL_OVERFLOW);
return DecimalUtils::convertTo<Float64>(T(tmp / m0), scale);
}
Float64 getMoment4(UInt32 scale) const
{
if (m0 == 0)
return std::numeric_limits<Float64>::infinity();
NativeType tmp;
if (common::mulOverflow(3 * getM(1), getM(1), tmp) ||
common::subOverflow(6 * getM(2), NativeType(tmp / m0), tmp) ||
common::mulOverflow(tmp, getM(1), tmp) ||
common::subOverflow(4 * getM(3), NativeType(tmp / m0), tmp) ||
common::mulOverflow(tmp, getM(1), tmp) ||
common::subOverflow(getM(4), NativeType(tmp / m0), tmp))
throw Exception("Decimal math overflow", ErrorCodes::DECIMAL_OVERFLOW);
return DecimalUtils::convertTo<Float64>(T(tmp / m0), scale);
}
private:
UInt64 m0{};
NativeType m[_level]{};
NativeType & getM(size_t i) { return m[i - 1]; }
const NativeType & getM(size_t i) const { return m[i - 1]; }
};
/**
Calculating multivariate central moments
Levels:
level 2 (pop & samp): covar
References:
https://en.wikipedia.org/wiki/Moment_(mathematics)
*/
template <typename T>
struct CovarMoments
{
T m0{};
T x1{};
T y1{};
T xy{};
void add(T x, T y)
{
++m0;
x1 += x;
y1 += y;
xy += x * y;
}
void merge(const CovarMoments & rhs)
{
m0 += rhs.m0;
x1 += rhs.x1;
y1 += rhs.y1;
xy += rhs.xy;
}
void write(WriteBuffer & buf) const
{
writePODBinary(*this, buf);
}
void read(ReadBuffer & buf)
{
readPODBinary(*this, buf);
}
T NO_SANITIZE_UNDEFINED getPopulation() const
{
return (xy - x1 * y1 / m0) / m0;
}
T NO_SANITIZE_UNDEFINED getSample() const
{
if (m0 == 0)
return std::numeric_limits<T>::quiet_NaN();
return (xy - x1 * y1 / m0) / (m0 - 1);
}
};
template <typename T>
struct CorrMoments
{
T m0{};
T x1{};
T y1{};
T xy{};
T x2{};
T y2{};
void add(T x, T y)
{
++m0;
x1 += x;
y1 += y;
xy += x * y;
x2 += x * x;
y2 += y * y;
}
void merge(const CorrMoments & rhs)
{
m0 += rhs.m0;
x1 += rhs.x1;
y1 += rhs.y1;
xy += rhs.xy;
x2 += rhs.x2;
y2 += rhs.y2;
}
void write(WriteBuffer & buf) const
{
writePODBinary(*this, buf);
}
void read(ReadBuffer & buf)
{
readPODBinary(*this, buf);
}
T NO_SANITIZE_UNDEFINED get() const
{
return (m0 * xy - x1 * y1) / sqrt((m0 * x2 - x1 * x1) * (m0 * y2 - y1 * y1));
}
};
enum class StatisticsFunctionKind
{
varPop, varSamp,

View File

@ -1,52 +1,70 @@
#include <AggregateFunctions/AggregateFunctionFactory.h>
#include <AggregateFunctions/AggregateFunctionStudentTTest.h>
#include <AggregateFunctions/AggregateFunctionTTest.h>
#include <AggregateFunctions/FactoryHelpers.h>
#include <AggregateFunctions/Moments.h>
#include "registerAggregateFunctions.h"
#include <AggregateFunctions/Helpers.h>
#include <DataTypes/DataTypeAggregateFunction.h>
// the return type is boolean (we use UInt8 as we do not have boolean in clickhouse)
namespace ErrorCodes
{
extern const int NOT_IMPLEMENTED;
extern const int BAD_ARGUMENTS;
}
namespace DB
{
namespace
{
struct StudentTTestData : public TTestMoments<Float64>
{
static constexpr auto name = "studentTTest";
std::pair<Float64, Float64> getResult() const
{
Float64 degrees_of_freedom = 2.0 * (m0 - 1);
Float64 mean_x = x1 / m0;
Float64 mean_y = y1 / m0;
/// Calculate s^2
/// The original formulae looks like
/// \frac{\sum_{i = 1}^{n_x}{(x_i - \bar{x}) ^ 2} + \sum_{i = 1}^{n_y}{(y_i - \bar{y}) ^ 2}}{n_x + n_y - 2}
/// But we made some mathematical transformations not to store original sequences.
/// Also we dropped sqrt, because later it will be squared later.
Float64 all_x = x2 + m0 * mean_x * mean_x - 2 * mean_x * m0;
Float64 all_y = y2 + m0 * mean_y * mean_y - 2 * mean_y * m0;
Float64 s2 = (all_x + all_y) / degrees_of_freedom;
Float64 std_err2 = 2.0 * s2 / m0;
/// t-statistic, squared
Float64 t_stat = (mean_x - mean_y) / sqrt(std_err2);
return {t_stat, getPValue(degrees_of_freedom, t_stat * t_stat)};
}
};
AggregateFunctionPtr createAggregateFunctionStudentTTest(const std::string & name, const DataTypes & argument_types, const Array & parameters)
{
assertBinary(name, argument_types);
assertNoParameters(name, parameters);
AggregateFunctionPtr res;
if (!isNumber(argument_types[0]) || !isNumber(argument_types[1]))
throw Exception("Aggregate function " + name + " only supports numerical types", ErrorCodes::BAD_ARGUMENTS);
if (isDecimal(argument_types[0]) || isDecimal(argument_types[1]))
{
throw Exception("Aggregate function " + name + " only supports numerical types", ErrorCodes::NOT_IMPLEMENTED);
}
else
{
res.reset(createWithTwoNumericTypes<AggregateFunctionStudentTTest>(*argument_types[0], *argument_types[1], argument_types));
}
if (!res)
{
throw Exception("Aggregate function " + name + " only supports numerical types", ErrorCodes::NOT_IMPLEMENTED);
}
return res;
return std::make_shared<AggregateFunctionTTest<StudentTTestData>>(argument_types);
}
}
void registerAggregateFunctionStudentTTest(AggregateFunctionFactory & factory)
{
factory.registerFunction("studentTTest", createAggregateFunctionStudentTTest);
}
}

View File

@ -1,262 +0,0 @@
#pragma once
#include <AggregateFunctions/IAggregateFunction.h>
#include <Columns/ColumnVector.h>
#include <Columns/ColumnTuple.h>
#include <Common/assert_cast.h>
#include <Common/FieldVisitors.h>
#include <Core/Types.h>
#include <DataTypes/DataTypesDecimal.h>
#include <DataTypes/DataTypeNullable.h>
#include <DataTypes/DataTypesNumber.h>
#include <DataTypes/DataTypeTuple.h>
#include <IO/ReadHelpers.h>
#include <IO/WriteHelpers.h>
#include <limits>
#include <cmath>
#include <functional>
#include <type_traits>
namespace ErrorCodes
{
extern const int BAD_ARGUMENTS;
}
#if defined(OS_DARWIN)
extern "C"
{
double lgammal_r(double x, int * signgamp);
}
#endif
namespace DB
{
template <typename X = Float64, typename Y = Float64>
struct AggregateFunctionStudentTTestData final
{
size_t size_x = 0;
size_t size_y = 0;
X sum_x = static_cast<X>(0);
Y sum_y = static_cast<Y>(0);
X square_sum_x = static_cast<X>(0);
Y square_sum_y = static_cast<Y>(0);
Float64 mean_x = static_cast<Float64>(0);
Float64 mean_y = static_cast<Float64>(0);
void add(X x, Y y)
{
sum_x += x;
sum_y += y;
size_x++;
size_y++;
mean_x = static_cast<Float64>(sum_x) / size_x;
mean_y = static_cast<Float64>(sum_y) / size_y;
square_sum_x += x * x;
square_sum_y += y * y;
}
void merge(const AggregateFunctionStudentTTestData &other)
{
sum_x += other.sum_x;
sum_y += other.sum_y;
size_x += other.size_x;
size_y += other.size_y;
mean_x = static_cast<Float64>(sum_x) / size_x;
mean_y = static_cast<Float64>(sum_y) / size_y;
square_sum_x += other.square_sum_x;
square_sum_y += other.square_sum_y;
}
void serialize(WriteBuffer &buf) const
{
writeBinary(mean_x, buf);
writeBinary(mean_y, buf);
writeBinary(sum_x, buf);
writeBinary(sum_y, buf);
writeBinary(square_sum_x, buf);
writeBinary(square_sum_y, buf);
writeBinary(size_x, buf);
writeBinary(size_y, buf);
}
void deserialize(ReadBuffer &buf)
{
readBinary(mean_x, buf);
readBinary(mean_y, buf);
readBinary(sum_x, buf);
readBinary(sum_y, buf);
readBinary(square_sum_x, buf);
readBinary(square_sum_y, buf);
readBinary(size_x, buf);
readBinary(size_y, buf);
}
size_t getSizeY() const
{
return size_y;
}
size_t getSizeX() const
{
return size_x;
}
Float64 getSSquared() const
{
/// The original formulae looks like
/// \frac{\sum_{i = 1}^{n_x}{(x_i - \bar{x}) ^ 2} + \sum_{i = 1}^{n_y}{(y_i - \bar{y}) ^ 2}}{n_x + n_y - 2}
/// But we made some mathematical transformations not to store original sequences.
/// Also we dropped sqrt, because later it will be squared later.
const Float64 all_x = square_sum_x + size_x * std::pow(mean_x, 2) - 2 * mean_x * sum_x;
const Float64 all_y = square_sum_y + size_y * std::pow(mean_y, 2) - 2 * mean_y * sum_y;
return static_cast<Float64>(all_x + all_y) / (size_x + size_y - 2);
}
Float64 getTStatisticSquared() const
{
return std::pow(mean_x - mean_y, 2) / getStandartErrorSquared();
}
Float64 getTStatistic() const
{
return (mean_x - mean_y) / std::sqrt(getStandartErrorSquared());
}
Float64 getStandartErrorSquared() const
{
if (size_x == 0 || size_y == 0)
throw Exception("Division by zero encountered in Aggregate function StudentTTest", ErrorCodes::BAD_ARGUMENTS);
return getSSquared() * (1.0 / static_cast<Float64>(size_x) + 1.0 / static_cast<Float64>(size_y));
}
Float64 getDegreesOfFreedom() const
{
return static_cast<Float64>(size_x + size_y - 2);
}
static Float64 integrateSimpson(Float64 a, Float64 b, std::function<Float64(Float64)> func)
{
const size_t iterations = std::max(1e6, 1e4 * std::abs(std::round(b)));
const long double h = (b - a) / iterations;
Float64 sum_odds = 0.0;
for (size_t i = 1; i < iterations; i += 2)
sum_odds += func(a + i * h);
Float64 sum_evens = 0.0;
for (size_t i = 2; i < iterations; i += 2)
sum_evens += func(a + i * h);
return (func(a) + func(b) + 2 * sum_evens + 4 * sum_odds) * h / 3;
}
Float64 getPValue() const
{
const Float64 v = getDegreesOfFreedom();
const Float64 t = getTStatisticSquared();
auto f = [&v] (double x) { return std::pow(x, v/2 - 1) / std::sqrt(1 - x); };
Float64 numenator = integrateSimpson(0, v / (t + v), f);
int unused;
Float64 denominator = std::exp(lgammal_r(v / 2, &unused) + lgammal_r(0.5, &unused) - lgammal_r(v / 2 + 0.5, &unused));
return numenator / denominator;
}
std::pair<Float64, Float64> getResult() const
{
return std::make_pair(getTStatistic(), getPValue());
}
};
/// Returns tuple of (t-statistic, p-value)
/// https://cpb-us-w2.wpmucdn.com/voices.uchicago.edu/dist/9/1193/files/2016/01/05b-TandP.pdf
template <typename X = Float64, typename Y = Float64>
class AggregateFunctionStudentTTest :
public IAggregateFunctionDataHelper<AggregateFunctionStudentTTestData<X, Y>,AggregateFunctionStudentTTest<X, Y>>
{
public:
AggregateFunctionStudentTTest(const DataTypes & arguments)
: IAggregateFunctionDataHelper<AggregateFunctionStudentTTestData<X, Y>, AggregateFunctionStudentTTest<X, Y>> ({arguments}, {})
{}
String getName() const override
{
return "studentTTest";
}
DataTypePtr getReturnType() const override
{
DataTypes types
{
std::make_shared<DataTypeNumber<Float64>>(),
std::make_shared<DataTypeNumber<Float64>>(),
};
Strings names
{
"t-statistic",
"p-value"
};
return std::make_shared<DataTypeTuple>(
std::move(types),
std::move(names)
);
}
void add(AggregateDataPtr place, const IColumn ** columns, size_t row_num, Arena *) const override
{
auto col_x = assert_cast<const ColumnVector<X> *>(columns[0]);
auto col_y = assert_cast<const ColumnVector<Y> *>(columns[1]);
X x = col_x->getData()[row_num];
Y y = col_y->getData()[row_num];
this->data(place).add(x, y);
}
void merge(AggregateDataPtr place, ConstAggregateDataPtr rhs, Arena *) const override
{
this->data(place).merge(this->data(rhs));
}
void serialize(ConstAggregateDataPtr place, WriteBuffer & buf) const override
{
this->data(place).serialize(buf);
}
void deserialize(AggregateDataPtr place, ReadBuffer & buf, Arena *) const override
{
this->data(place).deserialize(buf);
}
void insertResultInto(AggregateDataPtr place, IColumn & to, Arena * /*arena*/) const override
{
size_t size_x = this->data(place).getSizeX();
size_t size_y = this->data(place).getSizeY();
if (size_x < 2 || size_y < 2)
{
throw Exception("Aggregate function " + getName() + " requires samples to be of size > 1", ErrorCodes::BAD_ARGUMENTS);
}
Float64 t_statistic = 0.0;
Float64 p_value = 0.0;
std::tie(t_statistic, p_value) = this->data(place).getResult();
/// Because p-value is a probability.
p_value = std::min(1.0, std::max(0.0, p_value));
auto & column_tuple = assert_cast<ColumnTuple &>(to);
auto & column_stat = assert_cast<ColumnVector<Float64> &>(column_tuple.getColumn(0));
auto & column_value = assert_cast<ColumnVector<Float64> &>(column_tuple.getColumn(1));
column_stat.getData().push_back(t_statistic);
column_value.getData().push_back(p_value);
}
};
};

View File

@ -0,0 +1,135 @@
#pragma once
#include <AggregateFunctions/IAggregateFunction.h>
#include <Columns/ColumnVector.h>
#include <Columns/ColumnTuple.h>
#include <Common/assert_cast.h>
#include <Core/Types.h>
#include <DataTypes/DataTypesNumber.h>
#include <DataTypes/DataTypeTuple.h>
#include <cmath>
/// This function is used in implementations of different T-Tests.
/// On Darwin it's unavailable in math.h but actually exists in the library (can be linked successfully).
#if defined(OS_DARWIN)
extern "C"
{
double lgamma_r(double x, int * signgamp);
}
#endif
namespace DB
{
class ReadBuffer;
class WriteBuffer;
template <typename F>
static Float64 integrateSimpson(Float64 a, Float64 b, F && func)
{
const size_t iterations = std::max(1e6, 1e4 * std::abs(std::round(b)));
const long double h = (b - a) / iterations;
Float64 sum_odds = 0.0;
for (size_t i = 1; i < iterations; i += 2)
sum_odds += func(a + i * h);
Float64 sum_evens = 0.0;
for (size_t i = 2; i < iterations; i += 2)
sum_evens += func(a + i * h);
return (func(a) + func(b) + 2 * sum_evens + 4 * sum_odds) * h / 3;
}
static inline Float64 getPValue(Float64 degrees_of_freedom, Float64 t_stat2)
{
Float64 numerator = integrateSimpson(0, degrees_of_freedom / (t_stat2 + degrees_of_freedom),
[degrees_of_freedom](double x) { return std::pow(x, degrees_of_freedom / 2 - 1) / std::sqrt(1 - x); });
int unused;
Float64 denominator = std::exp(
lgamma_r(degrees_of_freedom / 2, &unused)
+ lgamma_r(0.5, &unused)
- lgamma_r(degrees_of_freedom / 2 + 0.5, &unused));
return std::min(1.0, std::max(0.0, numerator / denominator));
}
/// Returns tuple of (t-statistic, p-value)
/// https://cpb-us-w2.wpmucdn.com/voices.uchicago.edu/dist/9/1193/files/2016/01/05b-TandP.pdf
template <typename Data>
class AggregateFunctionTTest :
public IAggregateFunctionDataHelper<Data, AggregateFunctionTTest<Data>>
{
public:
AggregateFunctionTTest(const DataTypes & arguments)
: IAggregateFunctionDataHelper<Data, AggregateFunctionTTest<Data>>({arguments}, {})
{
}
String getName() const override
{
return Data::name;
}
DataTypePtr getReturnType() const override
{
DataTypes types
{
std::make_shared<DataTypeNumber<Float64>>(),
std::make_shared<DataTypeNumber<Float64>>(),
};
Strings names
{
"t_statistic",
"p_value"
};
return std::make_shared<DataTypeTuple>(
std::move(types),
std::move(names)
);
}
void add(AggregateDataPtr place, const IColumn ** columns, size_t row_num, Arena *) const override
{
Float64 x = columns[0]->getFloat64(row_num);
Float64 y = columns[1]->getFloat64(row_num);
this->data(place).add(x, y);
}
void merge(AggregateDataPtr place, ConstAggregateDataPtr rhs, Arena *) const override
{
this->data(place).merge(this->data(rhs));
}
void serialize(ConstAggregateDataPtr place, WriteBuffer & buf) const override
{
this->data(place).write(buf);
}
void deserialize(AggregateDataPtr place, ReadBuffer & buf, Arena *) const override
{
this->data(place).read(buf);
}
void insertResultInto(AggregateDataPtr place, IColumn & to, Arena *) const override
{
auto [t_statistic, p_value] = this->data(place).getResult();
/// Because p-value is a probability.
p_value = std::min(1.0, std::max(0.0, p_value));
auto & column_tuple = assert_cast<ColumnTuple &>(to);
auto & column_stat = assert_cast<ColumnVector<Float64> &>(column_tuple.getColumn(0));
auto & column_value = assert_cast<ColumnVector<Float64> &>(column_tuple.getColumn(1));
column_stat.getData().push_back(t_statistic);
column_value.getData().push_back(p_value);
}
};
};

View File

@ -1,49 +1,74 @@
#include <AggregateFunctions/AggregateFunctionFactory.h>
#include <AggregateFunctions/AggregateFunctionWelchTTest.h>
#include <AggregateFunctions/AggregateFunctionTTest.h>
#include <AggregateFunctions/FactoryHelpers.h>
#include <AggregateFunctions/Moments.h>
#include "registerAggregateFunctions.h"
#include <AggregateFunctions/Helpers.h>
#include <DataTypes/DataTypeAggregateFunction.h>
namespace ErrorCodes
{
extern const int NOT_IMPLEMENTED;
extern const int BAD_ARGUMENTS;
}
namespace DB
{
namespace
{
struct WelchTTestData : public TTestMoments<Float64>
{
static constexpr auto name = "welchTTest";
std::pair<Float64, Float64> getResult() const
{
Float64 mean_x = x1 / m0;
Float64 mean_y = y1 / m0;
/// s_x^2, s_y^2
/// The original formulae looks like \frac{1}{size_x - 1} \sum_{i = 1}^{size_x}{(x_i - \bar{x}) ^ 2}
/// But we made some mathematical transformations not to store original sequences.
/// Also we dropped sqrt, because later it will be squared later.
Float64 sx2 = (x2 + m0 * mean_x * mean_x - 2 * mean_x * x1) / (m0 - 1);
Float64 sy2 = (y2 + m0 * mean_y * mean_y - 2 * mean_y * y1) / (m0 - 1);
/// t-statistic, squared
Float64 t_stat = (mean_x - mean_y) / sqrt(sx2 / m0 + sy2 / m0);
/// degrees of freedom
Float64 numerator_sqrt = sx2 / m0 + sy2 / m0;
Float64 numerator = numerator_sqrt * numerator_sqrt;
Float64 denominator_x = sx2 * sx2 / (m0 * m0 * (m0 - 1));
Float64 denominator_y = sy2 * sy2 / (m0 * m0 * (m0 - 1));
Float64 degrees_of_freedom = numerator / (denominator_x + denominator_y);
return {t_stat, getPValue(degrees_of_freedom, t_stat * t_stat)};
}
};
AggregateFunctionPtr createAggregateFunctionWelchTTest(const std::string & name, const DataTypes & argument_types, const Array & parameters)
{
assertBinary(name, argument_types);
assertNoParameters(name, parameters);
AggregateFunctionPtr res;
if (!isNumber(argument_types[0]) || !isNumber(argument_types[1]))
throw Exception("Aggregate function " + name + " only supports numerical types", ErrorCodes::BAD_ARGUMENTS);
if (isDecimal(argument_types[0]) || isDecimal(argument_types[1]))
{
throw Exception("Aggregate function " + name + " only supports numerical types", ErrorCodes::NOT_IMPLEMENTED);
}
else
{
res.reset(createWithTwoNumericTypes<AggregateFunctionWelchTTest>(*argument_types[0], *argument_types[1], argument_types));
}
if (!res)
{
throw Exception("Aggregate function " + name + " only supports numerical types", ErrorCodes::NOT_IMPLEMENTED);
}
return res;
return std::make_shared<AggregateFunctionTTest<WelchTTestData>>(argument_types);
}
}
void registerAggregateFunctionWelchTTest(AggregateFunctionFactory & factory)
{
factory.registerFunction("welchTTest", createAggregateFunctionWelchTTest);
}
}

View File

@ -1,274 +0,0 @@
#pragma once
#include <AggregateFunctions/IAggregateFunction.h>
#include <Columns/ColumnVector.h>
#include <Columns/ColumnTuple.h>
#include <Common/assert_cast.h>
#include <Common/FieldVisitors.h>
#include <Core/Types.h>
#include <DataTypes/DataTypesDecimal.h>
#include <DataTypes/DataTypeNullable.h>
#include <DataTypes/DataTypesNumber.h>
#include <DataTypes/DataTypeTuple.h>
#include <IO/ReadHelpers.h>
#include <IO/WriteHelpers.h>
#include <limits>
#include <cmath>
#include <functional>
#include <type_traits>
namespace ErrorCodes
{
extern const int BAD_ARGUMENTS;
}
#if defined(OS_DARWIN)
extern "C"
{
double lgammal_r(double x, int * signgamp);
}
#endif
namespace DB
{
template <typename X = Float64, typename Y = Float64>
struct AggregateFunctionWelchTTestData final
{
size_t size_x = 0;
size_t size_y = 0;
X sum_x = static_cast<X>(0);
Y sum_y = static_cast<Y>(0);
X square_sum_x = static_cast<X>(0);
Y square_sum_y = static_cast<Y>(0);
Float64 mean_x = static_cast<Float64>(0);
Float64 mean_y = static_cast<Float64>(0);
void add(X x, Y y)
{
sum_x += x;
sum_y += y;
size_x++;
size_y++;
mean_x = static_cast<Float64>(sum_x) / size_x;
mean_y = static_cast<Float64>(sum_y) / size_y;
square_sum_x += x * x;
square_sum_y += y * y;
}
void merge(const AggregateFunctionWelchTTestData &other)
{
sum_x += other.sum_x;
sum_y += other.sum_y;
size_x += other.size_x;
size_y += other.size_y;
mean_x = static_cast<Float64>(sum_x) / size_x;
mean_y = static_cast<Float64>(sum_y) / size_y;
square_sum_x += other.square_sum_x;
square_sum_y += other.square_sum_y;
}
void serialize(WriteBuffer &buf) const
{
writeBinary(mean_x, buf);
writeBinary(mean_y, buf);
writeBinary(sum_x, buf);
writeBinary(sum_y, buf);
writeBinary(square_sum_x, buf);
writeBinary(square_sum_y, buf);
writeBinary(size_x, buf);
writeBinary(size_y, buf);
}
void deserialize(ReadBuffer &buf)
{
readBinary(mean_x, buf);
readBinary(mean_y, buf);
readBinary(sum_x, buf);
readBinary(sum_y, buf);
readBinary(square_sum_x, buf);
readBinary(square_sum_y, buf);
readBinary(size_x, buf);
readBinary(size_y, buf);
}
size_t getSizeY() const
{
return size_y;
}
size_t getSizeX() const
{
return size_x;
}
Float64 getSxSquared() const
{
/// The original formulae looks like \frac{1}{size_x - 1} \sum_{i = 1}^{size_x}{(x_i - \bar{x}) ^ 2}
/// But we made some mathematical transformations not to store original sequences.
/// Also we dropped sqrt, because later it will be squared later.
return static_cast<Float64>(square_sum_x + size_x * std::pow(mean_x, 2) - 2 * mean_x * sum_x) / (size_x - 1);
}
Float64 getSySquared() const
{
/// The original formulae looks like \frac{1}{size_y - 1} \sum_{i = 1}^{size_y}{(y_i - \bar{y}) ^ 2}
/// But we made some mathematical transformations not to store original sequences.
/// Also we dropped sqrt, because later it will be squared later.
return static_cast<Float64>(square_sum_y + size_y * std::pow(mean_y, 2) - 2 * mean_y * sum_y) / (size_y - 1);
}
Float64 getTStatisticSquared() const
{
if (size_x == 0 || size_y == 0)
{
throw Exception("Division by zero encountered in Aggregate function WelchTTest", ErrorCodes::BAD_ARGUMENTS);
}
return std::pow(mean_x - mean_y, 2) / (getSxSquared() / size_x + getSySquared() / size_y);
}
Float64 getTStatistic() const
{
if (size_x == 0 || size_y == 0)
{
throw Exception("Division by zero encountered in Aggregate function WelchTTest", ErrorCodes::BAD_ARGUMENTS);
}
return (mean_x - mean_y) / std::sqrt(getSxSquared() / size_x + getSySquared() / size_y);
}
Float64 getDegreesOfFreedom() const
{
auto sx = getSxSquared();
auto sy = getSySquared();
Float64 numerator = std::pow(sx / size_x + sy / size_y, 2);
Float64 denominator_first = std::pow(sx, 2) / (std::pow(size_x, 2) * (size_x - 1));
Float64 denominator_second = std::pow(sy, 2) / (std::pow(size_y, 2) * (size_y - 1));
return numerator / (denominator_first + denominator_second);
}
static Float64 integrateSimpson(Float64 a, Float64 b, std::function<Float64(Float64)> func)
{
size_t iterations = std::max(1e6, 1e4 * std::abs(std::round(b)));
double h = (b - a) / iterations;
Float64 sum_odds = 0.0;
for (size_t i = 1; i < iterations; i += 2)
sum_odds += func(a + i * h);
Float64 sum_evens = 0.0;
for (size_t i = 2; i < iterations; i += 2)
sum_evens += func(a + i * h);
return (func(a) + func(b) + 2 * sum_evens + 4 * sum_odds) * h / 3;
}
Float64 getPValue() const
{
const Float64 v = getDegreesOfFreedom();
const Float64 t = getTStatisticSquared();
auto f = [&v] (double x) { return std::pow(x, v / 2 - 1) / std::sqrt(1 - x); };
Float64 numenator = integrateSimpson(0, v / (t + v), f);
int unused;
Float64 denominator = std::exp(lgammal_r(v / 2, &unused) + lgammal_r(0.5, &unused) - lgammal_r(v / 2 + 0.5, &unused));
return numenator / denominator;
}
std::pair<Float64, Float64> getResult() const
{
return std::make_pair(getTStatistic(), getPValue());
}
};
/// Returns tuple of (t-statistic, p-value)
/// https://cpb-us-w2.wpmucdn.com/voices.uchicago.edu/dist/9/1193/files/2016/01/05b-TandP.pdf
template <typename X = Float64, typename Y = Float64>
class AggregateFunctionWelchTTest :
public IAggregateFunctionDataHelper<AggregateFunctionWelchTTestData<X, Y>,AggregateFunctionWelchTTest<X, Y>>
{
public:
AggregateFunctionWelchTTest(const DataTypes & arguments)
: IAggregateFunctionDataHelper<AggregateFunctionWelchTTestData<X, Y>, AggregateFunctionWelchTTest<X, Y>> ({arguments}, {})
{}
String getName() const override
{
return "welchTTest";
}
DataTypePtr getReturnType() const override
{
DataTypes types
{
std::make_shared<DataTypeNumber<Float64>>(),
std::make_shared<DataTypeNumber<Float64>>(),
};
Strings names
{
"t-statistic",
"p-value"
};
return std::make_shared<DataTypeTuple>(
std::move(types),
std::move(names)
);
}
void add(AggregateDataPtr place, const IColumn ** columns, size_t row_num, Arena *) const override
{
auto col_x = assert_cast<const ColumnVector<X> *>(columns[0]);
auto col_y = assert_cast<const ColumnVector<Y> *>(columns[1]);
X x = col_x->getData()[row_num];
Y y = col_y->getData()[row_num];
this->data(place).add(x, y);
}
void merge(AggregateDataPtr place, ConstAggregateDataPtr rhs, Arena *) const override
{
this->data(place).merge(this->data(rhs));
}
void serialize(ConstAggregateDataPtr place, WriteBuffer & buf) const override
{
this->data(place).serialize(buf);
}
void deserialize(AggregateDataPtr place, ReadBuffer & buf, Arena *) const override
{
this->data(place).deserialize(buf);
}
void insertResultInto(AggregateDataPtr place, IColumn & to, Arena * /*arena*/) const override
{
size_t size_x = this->data(place).getSizeX();
size_t size_y = this->data(place).getSizeY();
if (size_x < 2 || size_y < 2)
{
throw Exception("Aggregate function " + getName() + " requires samples to be of size > 1", ErrorCodes::BAD_ARGUMENTS);
}
Float64 t_statistic = 0.0;
Float64 p_value = 0.0;
std::tie(t_statistic, p_value) = this->data(place).getResult();
/// Because p-value is a probability.
p_value = std::min(1.0, std::max(0.0, p_value));
auto & column_tuple = assert_cast<ColumnTuple &>(to);
auto & column_stat = assert_cast<ColumnVector<Float64> &>(column_tuple.getColumn(0));
auto & column_value = assert_cast<ColumnVector<Float64> &>(column_tuple.getColumn(1));
column_stat.getData().push_back(t_statistic);
column_value.getData().push_back(p_value);
}
};
};