Merge pull request #56114 from ClickHouse/remove-some-bloat-2

Remove some bloat
This commit is contained in:
Alexey Milovidov 2023-10-30 21:00:23 +01:00 committed by GitHub
commit 93934098fc
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 329 additions and 351 deletions

View File

@ -1,16 +1,341 @@
#include "AggregateFunctionMap.h"
#include <unordered_map>
#include <AggregateFunctions/AggregateFunctionFactory.h>
#include <AggregateFunctions/IAggregateFunction.h>
#include <Columns/ColumnFixedString.h>
#include <Columns/ColumnMap.h>
#include <Columns/ColumnString.h>
#include <Columns/ColumnTuple.h>
#include <Columns/ColumnVector.h>
#include <DataTypes/DataTypeArray.h>
#include <DataTypes/DataTypeMap.h>
#include <DataTypes/DataTypeTuple.h>
#include <DataTypes/DataTypesNumber.h>
#include <Functions/FunctionHelpers.h>
#include <IO/ReadHelpers.h>
#include <IO/WriteHelpers.h>
#include <Common/Arena.h>
#include "AggregateFunctionCombinatorFactory.h"
#include <Functions/FunctionHelpers.h>
namespace DB
{
namespace ErrorCodes
{
extern const int NUMBER_OF_ARGUMENTS_DOESNT_MATCH;
extern const int ILLEGAL_TYPE_OF_ARGUMENT;
}
namespace
{
template <typename KeyType>
struct AggregateFunctionMapCombinatorData
{
using SearchType = KeyType;
std::unordered_map<KeyType, AggregateDataPtr> merged_maps;
static void writeKey(KeyType key, WriteBuffer & buf) { writeBinary(key, buf); }
static void readKey(KeyType & key, ReadBuffer & buf) { readBinary(key, buf); }
};
template <>
struct AggregateFunctionMapCombinatorData<String>
{
struct StringHash
{
using hash_type = std::hash<std::string_view>;
using is_transparent = void;
size_t operator()(std::string_view str) const { return hash_type{}(str); }
};
using SearchType = std::string_view;
std::unordered_map<String, AggregateDataPtr, StringHash, std::equal_to<>> merged_maps;
static void writeKey(String key, WriteBuffer & buf)
{
writeStringBinary(key, buf);
}
static void readKey(String & key, ReadBuffer & buf)
{
readStringBinary(key, buf);
}
};
/// Specialization for IPv6 - for historical reasons it should be stored as FixedString(16)
template <>
struct AggregateFunctionMapCombinatorData<IPv6>
{
struct IPv6Hash
{
using hash_type = std::hash<IPv6>;
using is_transparent = void;
size_t operator()(const IPv6 & ip) const { return hash_type{}(ip); }
};
using SearchType = IPv6;
std::unordered_map<IPv6, AggregateDataPtr, IPv6Hash, std::equal_to<>> merged_maps;
static void writeKey(const IPv6 & key, WriteBuffer & buf)
{
writeIPv6Binary(key, buf);
}
static void readKey(IPv6 & key, ReadBuffer & buf)
{
readIPv6Binary(key, buf);
}
};
template <typename KeyType>
class AggregateFunctionMap final
: public IAggregateFunctionDataHelper<AggregateFunctionMapCombinatorData<KeyType>, AggregateFunctionMap<KeyType>>
{
private:
DataTypePtr key_type;
AggregateFunctionPtr nested_func;
using Data = AggregateFunctionMapCombinatorData<KeyType>;
using Base = IAggregateFunctionDataHelper<Data, AggregateFunctionMap<KeyType>>;
public:
bool isState() const override
{
return nested_func->isState();
}
bool isVersioned() const override
{
return nested_func->isVersioned();
}
size_t getVersionFromRevision(size_t revision) const override
{
return nested_func->getVersionFromRevision(revision);
}
size_t getDefaultVersion() const override
{
return nested_func->getDefaultVersion();
}
AggregateFunctionMap(AggregateFunctionPtr nested, const DataTypes & types)
: Base(types, nested->getParameters(), std::make_shared<DataTypeMap>(DataTypes{getKeyType(types, nested), nested->getResultType()}))
, nested_func(nested)
{
key_type = getKeyType(types, nested_func);
}
String getName() const override { return nested_func->getName() + "Map"; }
static DataTypePtr getKeyType(const DataTypes & types, const AggregateFunctionPtr & nested)
{
if (types.size() != 1)
throw Exception(ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH,
"Aggregate function {}Map requires one map argument, but {} found", nested->getName(), types.size());
const auto * map_type = checkAndGetDataType<DataTypeMap>(types[0].get());
if (!map_type)
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT,
"Aggregate function {}Map requires map as argument", nested->getName());
return map_type->getKeyType();
}
void add(AggregateDataPtr __restrict place, const IColumn ** columns, size_t row_num, Arena * arena) const override
{
const auto & map_column = assert_cast<const ColumnMap &>(*columns[0]);
const auto & map_nested_tuple = map_column.getNestedData();
const IColumn::Offsets & map_array_offsets = map_column.getNestedColumn().getOffsets();
const size_t offset = map_array_offsets[row_num - 1];
const size_t size = (map_array_offsets[row_num] - offset);
const auto & key_column = map_nested_tuple.getColumn(0);
const auto & val_column = map_nested_tuple.getColumn(1);
auto & merged_maps = this->data(place).merged_maps;
for (size_t i = 0; i < size; ++i)
{
typename Data::SearchType key;
if constexpr (std::is_same_v<KeyType, String>)
{
StringRef key_ref;
if (key_type->getTypeId() == TypeIndex::FixedString)
key_ref = assert_cast<const ColumnFixedString &>(key_column).getDataAt(offset + i);
else if (key_type->getTypeId() == TypeIndex::IPv6)
key_ref = assert_cast<const ColumnIPv6 &>(key_column).getDataAt(offset + i);
else
key_ref = assert_cast<const ColumnString &>(key_column).getDataAt(offset + i);
key = key_ref.toView();
}
else
{
key = assert_cast<const ColumnVector<KeyType> &>(key_column).getData()[offset + i];
}
AggregateDataPtr nested_place;
auto it = merged_maps.find(key);
if (it == merged_maps.end())
{
// create a new place for each key
nested_place = arena->alignedAlloc(nested_func->sizeOfData(), nested_func->alignOfData());
nested_func->create(nested_place);
merged_maps.emplace(key, nested_place);
}
else
nested_place = it->second;
const IColumn * nested_columns[1] = {&val_column};
nested_func->add(nested_place, nested_columns, offset + i, arena);
}
}
void merge(AggregateDataPtr __restrict place, ConstAggregateDataPtr rhs, Arena * arena) const override
{
auto & merged_maps = this->data(place).merged_maps;
const auto & rhs_maps = this->data(rhs).merged_maps;
for (const auto & elem : rhs_maps)
{
const auto & it = merged_maps.find(elem.first);
AggregateDataPtr nested_place;
if (it == merged_maps.end())
{
// elem.second cannot be copied since this it will be destroyed after merging,
// and lead to use-after-free.
nested_place = arena->alignedAlloc(nested_func->sizeOfData(), nested_func->alignOfData());
nested_func->create(nested_place);
merged_maps.emplace(elem.first, nested_place);
}
else
{
nested_place = it->second;
}
nested_func->merge(nested_place, elem.second, arena);
}
}
template <bool up_to_state>
void destroyImpl(AggregateDataPtr __restrict place) const noexcept
{
AggregateFunctionMapCombinatorData<KeyType> & state = Base::data(place);
for (const auto & [key, nested_place] : state.merged_maps)
{
if constexpr (up_to_state)
nested_func->destroyUpToState(nested_place);
else
nested_func->destroy(nested_place);
}
state.~Data();
}
void destroy(AggregateDataPtr __restrict place) const noexcept override
{
destroyImpl<false>(place);
}
bool hasTrivialDestructor() const override
{
return std::is_trivially_destructible_v<Data> && nested_func->hasTrivialDestructor();
}
void destroyUpToState(AggregateDataPtr __restrict place) const noexcept override
{
destroyImpl<true>(place);
}
void serialize(ConstAggregateDataPtr __restrict place, WriteBuffer & buf, std::optional<size_t> /* version */) const override
{
auto & merged_maps = this->data(place).merged_maps;
writeVarUInt(merged_maps.size(), buf);
for (const auto & elem : merged_maps)
{
this->data(place).writeKey(elem.first, buf);
nested_func->serialize(elem.second, buf);
}
}
void deserialize(AggregateDataPtr __restrict place, ReadBuffer & buf, std::optional<size_t> /* version */, Arena * arena) const override
{
auto & merged_maps = this->data(place).merged_maps;
UInt64 size;
readVarUInt(size, buf);
for (UInt64 i = 0; i < size; ++i)
{
KeyType key;
AggregateDataPtr nested_place;
this->data(place).readKey(key, buf);
nested_place = arena->alignedAlloc(nested_func->sizeOfData(), nested_func->alignOfData());
nested_func->create(nested_place);
merged_maps.emplace(key, nested_place);
nested_func->deserialize(nested_place, buf, std::nullopt, arena);
}
}
template <bool merge>
void insertResultIntoImpl(AggregateDataPtr __restrict place, IColumn & to, Arena * arena) const
{
auto & map_column = assert_cast<ColumnMap &>(to);
auto & nested_column = map_column.getNestedColumn();
auto & nested_data_column = map_column.getNestedData();
auto & key_column = nested_data_column.getColumn(0);
auto & val_column = nested_data_column.getColumn(1);
auto & merged_maps = this->data(place).merged_maps;
// sort the keys
std::vector<KeyType> keys;
keys.reserve(merged_maps.size());
for (auto & it : merged_maps)
{
keys.push_back(it.first);
}
::sort(keys.begin(), keys.end());
// insert using sorted keys to result column
for (auto & key : keys)
{
key_column.insert(key);
if constexpr (merge)
nested_func->insertMergeResultInto(merged_maps[key], val_column, arena);
else
nested_func->insertResultInto(merged_maps[key], val_column, arena);
}
IColumn::Offsets & res_offsets = nested_column.getOffsets();
res_offsets.push_back(val_column.size());
}
void insertResultInto(AggregateDataPtr __restrict place, IColumn & to, Arena * arena) const override
{
insertResultIntoImpl<false>(place, to, arena);
}
void insertMergeResultInto(AggregateDataPtr __restrict place, IColumn & to, Arena * arena) const override
{
insertResultIntoImpl<true>(place, to, arena);
}
bool allocatesMemoryInArena() const override { return true; }
AggregateFunctionPtr getNestedFunction() const override { return nested_func; }
};
class AggregateFunctionCombinatorMap final : public IAggregateFunctionCombinator
{
public:
@ -131,6 +456,8 @@ public:
}
};
}
void registerAggregateFunctionCombinatorMap(AggregateFunctionCombinatorFactory & factory)
{
factory.registerCombinator(std::make_shared<AggregateFunctionCombinatorMap>());

View File

@ -1,349 +0,0 @@
#pragma once
#include <unordered_map>
#include <AggregateFunctions/AggregateFunctionFactory.h>
#include <AggregateFunctions/IAggregateFunction.h>
#include <Columns/ColumnFixedString.h>
#include <Columns/ColumnMap.h>
#include <Columns/ColumnString.h>
#include <Columns/ColumnTuple.h>
#include <Columns/ColumnVector.h>
#include <Core/ColumnWithTypeAndName.h>
#include <DataTypes/DataTypeArray.h>
#include <DataTypes/DataTypeMap.h>
#include <DataTypes/DataTypeTuple.h>
#include <DataTypes/DataTypesNumber.h>
#include <DataTypes/Serializations/ISerialization.h>
#include <Functions/FunctionFactory.h>
#include <Functions/FunctionHelpers.h>
#include <IO/ReadHelpers.h>
#include <IO/WriteHelpers.h>
#include <base/IPv4andIPv6.h>
#include <base/sort.h>
#include <base/types.h>
#include <Common/Arena.h>
#include <Common/formatIPv6.h>
namespace DB
{
namespace ErrorCodes
{
extern const int ILLEGAL_TYPE_OF_ARGUMENT;
extern const int NUMBER_OF_ARGUMENTS_DOESNT_MATCH;
}
template <typename KeyType>
struct AggregateFunctionMapCombinatorData
{
using SearchType = KeyType;
std::unordered_map<KeyType, AggregateDataPtr> merged_maps;
static void writeKey(KeyType key, WriteBuffer & buf) { writeBinary(key, buf); }
static void readKey(KeyType & key, ReadBuffer & buf) { readBinary(key, buf); }
};
template <>
struct AggregateFunctionMapCombinatorData<String>
{
struct StringHash
{
using hash_type = std::hash<std::string_view>;
using is_transparent = void;
size_t operator()(std::string_view str) const { return hash_type{}(str); }
};
#ifdef __cpp_lib_generic_unordered_lookup
using SearchType = std::string_view;
#else
using SearchType = std::string;
#endif
std::unordered_map<String, AggregateDataPtr, StringHash, std::equal_to<>> merged_maps;
static void writeKey(String key, WriteBuffer & buf)
{
writeStringBinary(key, buf);
}
static void readKey(String & key, ReadBuffer & buf)
{
readStringBinary(key, buf);
}
};
/// Specialization for IPv6 - for historical reasons it should be stored as FixedString(16)
template <>
struct AggregateFunctionMapCombinatorData<IPv6>
{
struct IPv6Hash
{
using hash_type = std::hash<IPv6>;
using is_transparent = void;
size_t operator()(const IPv6 & ip) const { return hash_type{}(ip); }
};
using SearchType = IPv6;
std::unordered_map<IPv6, AggregateDataPtr, IPv6Hash, std::equal_to<>> merged_maps;
static void writeKey(const IPv6 & key, WriteBuffer & buf)
{
writeIPv6Binary(key, buf);
}
static void readKey(IPv6 & key, ReadBuffer & buf)
{
readIPv6Binary(key, buf);
}
};
template <typename KeyType>
class AggregateFunctionMap final
: public IAggregateFunctionDataHelper<AggregateFunctionMapCombinatorData<KeyType>, AggregateFunctionMap<KeyType>>
{
private:
DataTypePtr key_type;
AggregateFunctionPtr nested_func;
using Data = AggregateFunctionMapCombinatorData<KeyType>;
using Base = IAggregateFunctionDataHelper<Data, AggregateFunctionMap<KeyType>>;
public:
bool isState() const override
{
return nested_func->isState();
}
bool isVersioned() const override
{
return nested_func->isVersioned();
}
size_t getVersionFromRevision(size_t revision) const override
{
return nested_func->getVersionFromRevision(revision);
}
size_t getDefaultVersion() const override
{
return nested_func->getDefaultVersion();
}
AggregateFunctionMap(AggregateFunctionPtr nested, const DataTypes & types)
: Base(types, nested->getParameters(), std::make_shared<DataTypeMap>(DataTypes{getKeyType(types, nested), nested->getResultType()}))
, nested_func(nested)
{
key_type = getKeyType(types, nested_func);
}
String getName() const override { return nested_func->getName() + "Map"; }
static DataTypePtr getKeyType(const DataTypes & types, const AggregateFunctionPtr & nested)
{
if (types.size() != 1)
throw Exception(ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH,
"Aggregate function {}Map requires one map argument, but {} found", nested->getName(), types.size());
const auto * map_type = checkAndGetDataType<DataTypeMap>(types[0].get());
if (!map_type)
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT,
"Aggregate function {}Map requires map as argument", nested->getName());
return map_type->getKeyType();
}
void add(AggregateDataPtr __restrict place, const IColumn ** columns, size_t row_num, Arena * arena) const override
{
const auto & map_column = assert_cast<const ColumnMap &>(*columns[0]);
const auto & map_nested_tuple = map_column.getNestedData();
const IColumn::Offsets & map_array_offsets = map_column.getNestedColumn().getOffsets();
const size_t offset = map_array_offsets[row_num - 1];
const size_t size = (map_array_offsets[row_num] - offset);
const auto & key_column = map_nested_tuple.getColumn(0);
const auto & val_column = map_nested_tuple.getColumn(1);
auto & merged_maps = this->data(place).merged_maps;
for (size_t i = 0; i < size; ++i)
{
typename Data::SearchType key;
if constexpr (std::is_same_v<KeyType, String>)
{
StringRef key_ref;
if (key_type->getTypeId() == TypeIndex::FixedString)
key_ref = assert_cast<const ColumnFixedString &>(key_column).getDataAt(offset + i);
else if (key_type->getTypeId() == TypeIndex::IPv6)
key_ref = assert_cast<const ColumnIPv6 &>(key_column).getDataAt(offset + i);
else
key_ref = assert_cast<const ColumnString &>(key_column).getDataAt(offset + i);
#ifdef __cpp_lib_generic_unordered_lookup
key = key_ref.toView();
#else
key = key_ref.toString();
#endif
}
else
{
key = assert_cast<const ColumnVector<KeyType> &>(key_column).getData()[offset + i];
}
AggregateDataPtr nested_place;
auto it = merged_maps.find(key);
if (it == merged_maps.end())
{
// create a new place for each key
nested_place = arena->alignedAlloc(nested_func->sizeOfData(), nested_func->alignOfData());
nested_func->create(nested_place);
merged_maps.emplace(key, nested_place);
}
else
nested_place = it->second;
const IColumn * nested_columns[1] = {&val_column};
nested_func->add(nested_place, nested_columns, offset + i, arena);
}
}
void merge(AggregateDataPtr __restrict place, ConstAggregateDataPtr rhs, Arena * arena) const override
{
auto & merged_maps = this->data(place).merged_maps;
const auto & rhs_maps = this->data(rhs).merged_maps;
for (const auto & elem : rhs_maps)
{
const auto & it = merged_maps.find(elem.first);
AggregateDataPtr nested_place;
if (it == merged_maps.end())
{
// elem.second cannot be copied since this it will be destroyed after merging,
// and lead to use-after-free.
nested_place = arena->alignedAlloc(nested_func->sizeOfData(), nested_func->alignOfData());
nested_func->create(nested_place);
merged_maps.emplace(elem.first, nested_place);
}
else
{
nested_place = it->second;
}
nested_func->merge(nested_place, elem.second, arena);
}
}
template <bool up_to_state>
void destroyImpl(AggregateDataPtr __restrict place) const noexcept
{
AggregateFunctionMapCombinatorData<KeyType> & state = Base::data(place);
for (const auto & [key, nested_place] : state.merged_maps)
{
if constexpr (up_to_state)
nested_func->destroyUpToState(nested_place);
else
nested_func->destroy(nested_place);
}
state.~Data();
}
void destroy(AggregateDataPtr __restrict place) const noexcept override
{
destroyImpl<false>(place);
}
bool hasTrivialDestructor() const override
{
return std::is_trivially_destructible_v<Data> && nested_func->hasTrivialDestructor();
}
void destroyUpToState(AggregateDataPtr __restrict place) const noexcept override
{
destroyImpl<true>(place);
}
void serialize(ConstAggregateDataPtr __restrict place, WriteBuffer & buf, std::optional<size_t> /* version */) const override
{
auto & merged_maps = this->data(place).merged_maps;
writeVarUInt(merged_maps.size(), buf);
for (const auto & elem : merged_maps)
{
this->data(place).writeKey(elem.first, buf);
nested_func->serialize(elem.second, buf);
}
}
void deserialize(AggregateDataPtr __restrict place, ReadBuffer & buf, std::optional<size_t> /* version */, Arena * arena) const override
{
auto & merged_maps = this->data(place).merged_maps;
UInt64 size;
readVarUInt(size, buf);
for (UInt64 i = 0; i < size; ++i)
{
KeyType key;
AggregateDataPtr nested_place;
this->data(place).readKey(key, buf);
nested_place = arena->alignedAlloc(nested_func->sizeOfData(), nested_func->alignOfData());
nested_func->create(nested_place);
merged_maps.emplace(key, nested_place);
nested_func->deserialize(nested_place, buf, std::nullopt, arena);
}
}
template <bool merge>
void insertResultIntoImpl(AggregateDataPtr __restrict place, IColumn & to, Arena * arena) const
{
auto & map_column = assert_cast<ColumnMap &>(to);
auto & nested_column = map_column.getNestedColumn();
auto & nested_data_column = map_column.getNestedData();
auto & key_column = nested_data_column.getColumn(0);
auto & val_column = nested_data_column.getColumn(1);
auto & merged_maps = this->data(place).merged_maps;
// sort the keys
std::vector<KeyType> keys;
keys.reserve(merged_maps.size());
for (auto & it : merged_maps)
{
keys.push_back(it.first);
}
::sort(keys.begin(), keys.end());
// insert using sorted keys to result column
for (auto & key : keys)
{
key_column.insert(key);
if constexpr (merge)
nested_func->insertMergeResultInto(merged_maps[key], val_column, arena);
else
nested_func->insertResultInto(merged_maps[key], val_column, arena);
}
IColumn::Offsets & res_offsets = nested_column.getOffsets();
res_offsets.push_back(val_column.size());
}
void insertResultInto(AggregateDataPtr __restrict place, IColumn & to, Arena * arena) const override
{
insertResultIntoImpl<false>(place, to, arena);
}
void insertMergeResultInto(AggregateDataPtr __restrict place, IColumn & to, Arena * arena) const override
{
insertResultIntoImpl<true>(place, to, arena);
}
bool allocatesMemoryInArena() const override { return true; }
AggregateFunctionPtr getNestedFunction() const override { return nested_func; }
};
}