git-apply PR #44924 up to commit c65573d

This commit is contained in:
serxa 2023-01-06 23:04:10 +00:00
parent c2decae073
commit a6958fff45
4 changed files with 1121 additions and 0 deletions

View File

@ -643,6 +643,7 @@
M(672, INVALID_SCHEDULER_NODE) \
M(673, RESOURCE_ACCESS_DENIED) \
M(674, RESOURCE_NOT_FOUND) \
M(675, THREAD_WAS_CANCELLED) \
\
M(999, KEEPER_EXCEPTION) \
M(1000, POCO_EXCEPTION) \

485
src/Common/Threading.cpp Normal file
View File

@ -0,0 +1,485 @@
#include <Common/Threading.h>
namespace DB
{
namespace ErrorCodes
{
extern const int THREAD_WAS_CANCELLED;
}
}
#ifdef OS_LINUX /// Because of futex
#include <base/getThreadId.h>
#include <bit>
#include <linux/futex.h>
#include <sys/types.h>
#include <sys/syscall.h>
#include <unistd.h>
namespace DB
{
namespace
{
inline Int64 futexWait(void * address, UInt32 value)
{
return syscall(SYS_futex, address, FUTEX_WAIT_PRIVATE, value, nullptr, nullptr, 0);
}
inline Int64 futexWake(void * address, int count)
{
return syscall(SYS_futex, address, FUTEX_WAKE_PRIVATE, count, nullptr, nullptr, 0);
}
// inline void waitFetch(std::atomic<UInt32> & address, UInt32 & value)
// {
// futexWait(&address, value);
// value = address.load();
// }
// inline void wakeOne(std::atomic<UInt32> & address)
// {
// futexWake(&address, 1);
// }
// inline void wakeAll(std::atomic<UInt32> & address)
// {
// futexWake(&address, INT_MAX);
// }
inline constexpr UInt32 lowerValue(UInt64 value)
{
return static_cast<UInt32>(value & 0xffffffffull);
}
inline constexpr UInt32 upperValue(UInt64 value)
{
return static_cast<UInt32>(value >> 32ull);
}
inline UInt32 * lowerAddress(void * address)
{
return reinterpret_cast<UInt32 *>(address) + (std::endian::native == std::endian::big);
}
inline UInt32 * upperAddress(void * address)
{
return reinterpret_cast<UInt32 *>(address) + (std::endian::native == std::endian::little);
}
inline void waitLowerFetch(std::atomic<UInt64> & address, UInt64 & value)
{
futexWait(lowerAddress(&address), lowerValue(value));
value = address.load();
}
inline bool cancellableWaitLowerFetch(std::atomic<UInt64> & address, UInt64 & value)
{
bool res = CancelToken::local().wait(lowerAddress(&address), lowerValue(value));
value = address.load();
return res;
}
inline void wakeLowerOne(std::atomic<UInt64> & address)
{
syscall(SYS_futex, lowerAddress(&address), FUTEX_WAKE_PRIVATE, 1, nullptr, nullptr, 0);
}
// inline void wakeLowerAll(std::atomic<UInt64> & address)
// {
// syscall(SYS_futex, lowerAddress(&address), FUTEX_WAKE_PRIVATE, INT_MAX, nullptr, nullptr, 0);
// }
inline void waitUpperFetch(std::atomic<UInt64> & address, UInt64 & value)
{
futexWait(upperAddress(&address), upperValue(value));
value = address.load();
}
inline bool cancellableWaitUpperFetch(std::atomic<UInt64> & address, UInt64 & value)
{
bool res = CancelToken::local().wait(upperAddress(&address), upperValue(value));
value = address.load();
return res;
}
// inline void wakeUpperOne(std::atomic<UInt64> & address)
// {
// syscall(SYS_futex, upperAddress(&address), FUTEX_WAKE_PRIVATE, 1, nullptr, nullptr, 0);
// }
inline void wakeUpperAll(std::atomic<UInt64> & address)
{
syscall(SYS_futex, upperAddress(&address), FUTEX_WAKE_PRIVATE, INT_MAX, nullptr, nullptr, 0);
}
}
void CancelToken::Registry::insert(CancelToken * token)
{
std::lock_guard<std::mutex> lock(mutex);
threads[token->thread_id] = token;
}
void CancelToken::Registry::remove(CancelToken * token)
{
std::lock_guard<std::mutex> lock(mutex);
threads.erase(token->thread_id);
}
void CancelToken::Registry::signal(UInt64 tid)
{
std::lock_guard<std::mutex> lock(mutex);
if (auto it = threads.find(tid); it != threads.end())
it->second->signalImpl();
}
void CancelToken::Registry::signal(UInt64 tid, int code, const String & message)
{
std::lock_guard<std::mutex> lock(mutex);
if (auto it = threads.find(tid); it != threads.end())
it->second->signalImpl(code, message);
}
CancelToken::Registry & CancelToken::Registry::instance()
{
static Registry registry;
return registry;
}
CancelToken::CancelToken()
: state(disabled)
, thread_id(getThreadId())
{
Registry::instance().insert(this);
}
CancelToken::~CancelToken()
{
Registry::instance().remove(this);
}
void CancelToken::signal(UInt64 tid)
{
Registry::instance().signal(tid);
}
void CancelToken::signal(UInt64 tid, int code, const String & message)
{
Registry::instance().signal(tid, code, message);
}
bool CancelToken::wait(UInt32 * address, UInt32 value)
{
chassert((reinterpret_cast<UInt64>(address) & canceled) == 0); // An `address` must be 2-byte aligned
if (value & signaled) // Can happen after spurious wake-up due to cancel of other thread
return true; // Spin-wait unless signal is handled
UInt64 s = state.load();
while (true)
{
if (s & disabled)
{
// Start non-cancellable wait on futex. Spurious wake-up is possible.
futexWait(address, value);
return true; // Disabled - true is forced
}
if (s & canceled)
return false; // Has already been canceled
if (state.compare_exchange_strong(s, reinterpret_cast<UInt64>(address)))
break; // This futex has been "acquired" by this token
}
// Start cancellable wait. Spurious wake-up is possible.
futexWait(address, value);
// "Release" futex and check for cancellation
s = state.load();
while (true)
{
chassert((s & disabled) != disabled); // `disable()` must not be called from another thread
if (s & canceled)
{
if (s == canceled)
break; // Signaled; futex "release" has been done by the signaling thread
else
{
s = state.load();
continue; // To avoid race (may lead to futex destruction) we have to wait for signaling thread to finish
}
}
if (state.compare_exchange_strong(s, 0))
return true; // There was no cancellation; futex "released"
}
// Reset signaled bit
reinterpret_cast<std::atomic<UInt32> *>(address)->fetch_and(~signaled);
return false;
}
void CancelToken::raise()
{
std::unique_lock<std::mutex> lock(signal_mutex);
if (exception_code != 0)
throw DB::Exception(
std::exchange(exception_code, 0),
std::exchange(exception_message, {}));
else
throw DB::Exception(ErrorCodes::THREAD_WAS_CANCELLED, "Thread was cancelled");
}
void CancelToken::notifyOne(UInt32 * address)
{
futexWake(address, 1);
}
void CancelToken::notifyAll(UInt32 * address)
{
futexWake(address, INT_MAX);
}
void CancelToken::signalImpl()
{
signalImpl(0, {});
}
std::mutex CancelToken::signal_mutex;
void CancelToken::signalImpl(int code, const String & message)
{
// Serialize all signaling threads to avoid races due to concurrent signal()/raise() calls
std::unique_lock<std::mutex> lock(signal_mutex);
UInt64 s = state.load();
while (true)
{
if (s & canceled)
return; // Already cancelled - don't signal twice
if (state.compare_exchange_strong(s, s | canceled))
break; // It is the cancelling thread - should deliver signal if necessary
}
exception_code = code;
exception_message = message;
if ((s & disabled) == disabled)
return; // Cancellation is disabled - just signal token for later, but don't wake
std::atomic<UInt32> * address = reinterpret_cast<std::atomic<UInt32> *>(s & disabled);
if (address == nullptr)
return; // Thread is currently not waiting on futex - wake-up not required
// Set signaled bit
UInt32 value = address->load();
while (true)
{
if (value & signaled) // Already signaled, just spin-wait until previous signal is handled by waiter
value = address->load();
else if (address->compare_exchange_strong(value, value | signaled))
break;
}
// Wake all threads waiting on `address`, one of them will be cancelled and others will get spurious wake-ups
// Woken canceled thread will reset signaled bit
futexWake(address, INT_MAX);
// Signaling thread must remove address from state to notify canceled thread that `futexWake()` is done, thus `wake()` can return.
// Otherwise we may have race condition: signaling thread may try to wake futex that has been already destructed.
state.store(canceled);
}
Cancellable::Cancellable()
{
CancelToken::local().reset();
}
Cancellable::~Cancellable()
{
CancelToken::local().disable();
}
NonCancellable::NonCancellable()
{
CancelToken::local().disable();
}
NonCancellable::~NonCancellable()
{
CancelToken::local().enable();
}
CancellableSharedMutex::CancellableSharedMutex()
: state(0)
, waiters(0)
{}
void CancellableSharedMutex::lock()
{
UInt64 value = state.load();
while (true)
{
if (value & writers)
{
waiters++;
if (!cancellableWaitUpperFetch(state, value))
{
waiters--;
CancelToken::local().raise();
}
else
waiters--;
}
else if (state.compare_exchange_strong(value, value | writers))
break;
}
value |= writers;
while (value & readers)
{
if (!cancellableWaitLowerFetch(state, value))
{
state.fetch_and(~writers);
wakeUpperAll(state);
CancelToken::local().raise();
}
}
}
bool CancellableSharedMutex::try_lock()
{
UInt64 value = state.load();
if ((value & (readers | writers)) == 0 && state.compare_exchange_strong(value, value | writers))
return true;
return false;
}
void CancellableSharedMutex::unlock()
{
state.fetch_and(~writers);
if (waiters)
wakeUpperAll(state);
}
void CancellableSharedMutex::lock_shared()
{
UInt64 value = state.load();
while (true)
{
if (value & writers)
{
waiters++;
if (!cancellableWaitUpperFetch(state, value))
{
waiters--;
CancelToken::local().raise();
}
else
waiters--;
}
else if (state.compare_exchange_strong(value, value + 1)) // overflow is not realistic
break;
}
}
bool CancellableSharedMutex::try_lock_shared()
{
UInt64 value = state.load();
if (!(value & writers) && state.compare_exchange_strong(value, value + 1)) // overflow is not realistic
return true;
return false;
}
void CancellableSharedMutex::unlock_shared()
{
UInt64 value = state.fetch_sub(1) - 1;
if ((value & (writers | readers)) == writers) // If writer is waiting and no more readers
wakeLowerOne(state); // Wake writer
}
FastSharedMutex::FastSharedMutex()
: state(0)
, waiters(0)
{}
void FastSharedMutex::lock()
{
UInt64 value = state.load();
while (true)
{
if (value & writers)
{
waiters++;
waitUpperFetch(state, value);
waiters--;
}
else if (state.compare_exchange_strong(value, value | writers))
break;
}
value |= writers;
while (value & readers)
waitLowerFetch(state, value);
}
bool FastSharedMutex::try_lock()
{
UInt64 value = 0;
if (state.compare_exchange_strong(value, writers))
return true;
return false;
}
void FastSharedMutex::unlock()
{
state.store(0);
if (waiters)
wakeUpperAll(state);
}
void FastSharedMutex::lock_shared()
{
UInt64 value = state.load();
while (true)
{
if (value & writers)
{
waiters++;
waitUpperFetch(state, value);
waiters--;
}
else if (state.compare_exchange_strong(value, value + 1))
break;
}
}
bool FastSharedMutex::try_lock_shared()
{
UInt64 value = state.load();
if (!(value & writers) && state.compare_exchange_strong(value, value + 1))
return true;
return false;
}
void FastSharedMutex::unlock_shared()
{
UInt64 value = state.fetch_sub(1) - 1;
if (value == writers)
wakeLowerOne(state); // Wake writer
}
}
#else
namespace DB
{
void CancelToken::raise()
{
throw DB::Exception(ErrorCodes::THREAD_WAS_CANCELLED, "Thread was cancelled");
}
}
#endif

266
src/Common/Threading.h Normal file
View File

@ -0,0 +1,266 @@
#pragma once
#include <base/types.h>
#include <base/defines.h>
#include <Common/Exception.h>
#ifdef OS_LINUX /// Because of futex
#include <atomic>
#include <mutex>
#include <unordered_map>
namespace DB
{
// Scoped object, enabling thread cancellation (cannot be nested)
struct Cancellable
{
Cancellable();
~Cancellable();
};
// Scoped object, disabling thread cancellation (cannot be nested; must be inside `Cancellable` region)
struct NonCancellable
{
NonCancellable();
~NonCancellable();
};
// Responsible for synchronization needed to deliver thread cancellation signal.
// Basic building block for cancellable synchronization primitives.
// Allows to perform cancellable wait on memory addresses (think futex)
class CancelToken
{
public:
CancelToken();
CancelToken(const CancelToken &) = delete;
CancelToken(CancelToken &&) = delete;
CancelToken & operator=(const CancelToken &) = delete;
~CancelToken();
// Returns token for the current thread
static CancelToken & local()
{
static thread_local CancelToken token;
return token;
}
// Cancellable wait on memory address (futex word).
// Thread will do atomic compare-and-sleep `*address == value`. Waiting will continue until `notify_one()`
// or `notify_all()` will be called with the same `address` or calling thread will be canceled using `signal()`.
// Note that spurious wake-ups are also possible due to cancellation of other waiters on the same `address`.
// WARNING: `address` must be 2-byte aligned and `value` highest bit must be zero.
// Return value:
// true - woken by either notify or spurious wakeup;
// false - iff cancellation signal has been received.
// Implementation details:
// It registers `address` inside token's `state` to allow other threads to wake this thread and deliver cancellation signal.
// Highest bit of `*address` is used for guaranteed delivery of the signal, but is guaranteed to be zero on return due to cancellation.
// Intended to be called only by thread associated with this token.
bool wait(UInt32 * address, UInt32 value);
// Throws `DB::Exception` received from `signal()`. Call it if `wait()` returned false.
// Intended to be called only by thread associated with this token.
[[noreturn]] void raise();
// Regular wake by address (futex word). It does not interact with token in any way. We have it here to complement `wait()`.
// Can be called from any thread.
static void notifyOne(UInt32 * address);
static void notifyAll(UInt32 * address);
// Send cancel signal to thread with specified `tid`.
// If thread was waiting using `wait()` it will be woken up (unless cancellation is disabled).
// Can be called from any thread.
static void signal(UInt64 tid);
static void signal(UInt64 tid, int code, const String & message);
// Flag used to deliver cancellation into memory address to wake a thread.
// Note that most significant bit at `addresses` to be used with `wait()` is reserved.
static constexpr UInt32 signaled = 1u << 31u;
private:
friend struct Cancellable;
friend struct NonCancellable;
// Restores initial state for token to be reused. See `Cancellable` struct.
// Intended to be called only by thread associated with this token.
void reset()
{
state.store(0);
}
// Enable thread cancellation. See `NonCancellable` struct.
// Intended to be called only by thread associated with this token.
void enable()
{
chassert((state.load() & disabled) == disabled);
state.fetch_and(~disabled);
}
// Disable thread cancellation. See `NonCancellable` struct.
// Intended to be called only by thread associated with this token.
void disable()
{
chassert((state.load() & disabled) == 0);
state.fetch_or(disabled);
}
// Singleton. Maps thread IDs to tokens.
struct Registry;
friend struct Registry;
struct Registry
{
std::mutex mutex;
std::unordered_map<UInt64, CancelToken*> threads; // By thread ID
void insert(CancelToken * token);
void remove(CancelToken * token);
void signal(UInt64 tid);
void signal(UInt64 tid, int code, const String & message);
static Registry & instance();
};
// Cancels this token and wakes thread if necessary.
// Can be called from any thread.
void signalImpl();
void signalImpl(int code, const String & message);
// Lower bit: cancel signal received flag
static constexpr UInt64 canceled = 1;
// Upper bits - possible values:
// 1) all zeros: token is enabed, i.e. wait() call can return false, thread is not waiting on any address;
// 2) all ones: token is disabled, i.e. wait() call cannot be cancelled;
// 3) specific `address`: token is enabled and thread is currently waiting on this `address`.
static constexpr UInt64 disabled = ~canceled;
static_assert(sizeof(UInt32 *) == sizeof(UInt64)); // State must be able to hold an address
// All signal handling logic should be globally serialized using this mutex
static std::mutex signal_mutex;
// Cancellation state
alignas(64) std::atomic<UInt64> state;
[[maybe_unused]] char padding[64 - sizeof(state)];
// Cancellation exception
int exception_code;
String exception_message;
// Token is permanently attached to a single thread. There is one-to-one mapping between threads and tokens.
const UInt64 thread_id;
};
class CancellableSharedMutex
{
public:
CancellableSharedMutex();
~CancellableSharedMutex() = default;
CancellableSharedMutex(const CancellableSharedMutex &) = delete;
CancellableSharedMutex & operator=(const CancellableSharedMutex &) = delete;
// Exclusive ownership
void lock();
bool try_lock();
void unlock();
// Shared ownership
void lock_shared();
bool try_lock_shared();
void unlock_shared();
private:
// State 64-bits layout:
// 1b - 31b - 1b - 31b
// signaled - writers - signaled - readers
// 63------------------------------------0
// Two 32-bit words are used for cancellable waiting, so each has its own separate signaled bit
static constexpr UInt64 readers = (1ull << 32ull) - 1ull - CancelToken::signaled;
static constexpr UInt64 readers_signaled = CancelToken::signaled;
static constexpr UInt64 writers = readers << 32ull;
static constexpr UInt64 writers_signaled = readers_signaled << 32ull;
alignas(64) std::atomic<UInt64> state;
std::atomic<UInt32> waiters;
};
class FastSharedMutex
{
public:
FastSharedMutex();
~FastSharedMutex() = default;
FastSharedMutex(const FastSharedMutex &) = delete;
FastSharedMutex & operator=(const FastSharedMutex &) = delete;
// Exclusive ownership
void lock();
bool try_lock();
void unlock();
// Shared ownership
void lock_shared();
bool try_lock_shared();
void unlock_shared();
private:
static constexpr UInt64 readers = (1ull << 32ull) - 1ull; // Lower 32 bits of state
static constexpr UInt64 writers = ~readers; // Upper 32 bits of state
alignas(64) std::atomic<UInt64> state;
std::atomic<UInt32> waiters;
};
}
#else
#include <shared_mutex>
// WARNING: We support cancellable synchronization primitives only on linux for now
namespace DB
{
struct Cancellable
{
Cancellable() = default;
~Cancellable() = default;
};
struct NonCancellable
{
NonCancellable() = default;
~NonCancellable() = default;
};
class CancelToken
{
public:
CancelToken() = default;
CancelToken(const CancelToken &) = delete;
CancelToken(CancelToken &&) = delete;
CancelToken & operator=(const CancelToken &) = delete;
~CancelToken() = default;
static CancelToken & local()
{
static CancelToken token;
return token;
}
bool wait(UInt32 *, UInt32) { return true; }
[[noreturn]] void raise();
static void notifyOne(UInt32 *) {}
static void notifyAll(UInt32 *) {}
static void signal(UInt64) {}
static void signal(UInt64, int, const String &) {}
};
using CancellableSharedMutex = std::shared_mutex;
using FastSharedMutex = std::shared_mutex;
}
#endif

View File

@ -0,0 +1,369 @@
#include <gtest/gtest.h>
#include <thread>
#include <condition_variable>
#include <shared_mutex>
#include <barrier>
#include <atomic>
#include "Common/Exception.h"
#include <Common/Threading.h>
#include <Common/Stopwatch.h>
#include <base/demangle.h>
#include <base/getThreadId.h>
namespace DB
{
namespace ErrorCodes
{
extern const int THREAD_WAS_CANCELLED;
}
}
struct NoCancel {};
// for all PerfTests
static constexpr int requests = 512 * 1024;
static constexpr int max_threads = 16;
template <class T, class Status = NoCancel>
void TestSharedMutex()
{
// Test multiple readers can acquire lock
for (int readers = 1; readers <= 128; readers *= 2)
{
T sm;
std::atomic<int> test(0);
std::barrier sync(readers + 1);
std::vector<std::thread> threads;
threads.reserve(readers);
auto reader = [&]
{
[[maybe_unused]] Status status;
std::shared_lock lock(sm);
sync.arrive_and_wait();
test++;
};
for (int i = 0; i < readers; i++)
threads.emplace_back(reader);
{ // writer
[[maybe_unused]] Status status;
sync.arrive_and_wait(); // wait for all reader to acquire lock to avoid blocking them
std::unique_lock lock(sm);
test++;
}
for (auto & thread : threads)
thread.join();
ASSERT_EQ(test, readers + 1);
}
// Test multiple writers cannot acquire lock simultaneously
for (int writers = 1; writers <= 128; writers *= 2)
{
T sm;
int test = 0;
std::barrier sync(writers);
std::vector<std::thread> threads;
threads.reserve(writers);
auto writer = [&]
{
[[maybe_unused]] Status status;
sync.arrive_and_wait();
std::unique_lock lock(sm);
test++;
};
for (int i = 0; i < writers; i++)
threads.emplace_back(writer);
for (auto & thread : threads)
thread.join();
ASSERT_EQ(test, writers);
}
}
template <class T, class Status = NoCancel>
void TestSharedMutexCancelReader()
{
static constexpr int readers = 8;
static constexpr int tasks_per_reader = 32;
T sm;
std::atomic<int> successes(0);
std::atomic<int> cancels(0);
std::barrier sync(readers + 1);
std::barrier cancel_sync(readers / 2 + 1);
std::vector<std::thread> threads;
std::mutex m;
std::vector<UInt64> tids_to_cancel;
threads.reserve(readers);
auto reader = [&] (int reader_id)
{
if (reader_id % 2 == 0)
{
std::unique_lock lock(m);
tids_to_cancel.emplace_back(getThreadId());
}
for (int task = 0; task < tasks_per_reader; task++) {
try
{
[[maybe_unused]] Status status;
sync.arrive_and_wait(); // (A) sync with writer
sync.arrive_and_wait(); // (B) wait for writer to acquire unique_lock
std::shared_lock lock(sm);
successes++;
}
catch (DB::Exception & e)
{
ASSERT_EQ(e.code(), DB::ErrorCodes::THREAD_WAS_CANCELLED);
ASSERT_EQ(e.message(), "test");
cancels++;
cancel_sync.arrive_and_wait(); // (C) sync with writer
}
}
};
for (int reader_id = 0; reader_id < readers; reader_id++)
threads.emplace_back(reader, reader_id);
{ // writer
[[maybe_unused]] Status status;
for (int task = 0; task < tasks_per_reader; task++) {
sync.arrive_and_wait(); // (A) wait for readers to finish previous task
ASSERT_EQ(cancels + successes, task * readers);
ASSERT_EQ(cancels, task * readers / 2);
ASSERT_EQ(successes, task * readers / 2);
std::unique_lock lock(sm);
sync.arrive_and_wait(); // (B) sync with readers
//std::unique_lock lock(m); // not needed, already synced using barrier
for (UInt64 tid : tids_to_cancel)
DB::CancelToken::signal(tid, DB::ErrorCodes::THREAD_WAS_CANCELLED, "test");
// This sync is crucial. It is needed to hold `lock` long enough.
// It guarantees that every cancelled thread will find `sm` blocked by writer, and thus will begin to wait.
// Wait() call is required for cancellation. Otherwise, fastpath acquire w/o wait will not generate exception.
// And this is the desired behaviour.
cancel_sync.arrive_and_wait(); // (C) wait for cancellation to finish, before unlock.
}
}
for (auto & thread : threads)
thread.join();
ASSERT_EQ(successes, tasks_per_reader * readers / 2);
ASSERT_EQ(cancels, tasks_per_reader * readers / 2);
}
template <class T, class Status = NoCancel>
void TestSharedMutexCancelWriter()
{
static constexpr int writers = 8;
static constexpr int tasks_per_writer = 32;
T sm;
std::atomic<int> successes(0);
std::atomic<int> cancels(0);
std::barrier sync(writers);
std::vector<std::thread> threads;
std::mutex m;
std::vector<UInt64> all_tids;
threads.reserve(writers);
auto writer = [&]
{
{
std::unique_lock lock(m);
all_tids.emplace_back(getThreadId());
}
for (int task = 0; task < tasks_per_writer; task++) {
try
{
[[maybe_unused]] Status status;
sync.arrive_and_wait(); // (A) sync all threads before race to acquire the lock
std::unique_lock lock(sm);
successes++;
// Thread that managed to acquire the lock cancels all other waiting writers
//std::unique_lock lock(m); // not needed, already synced using barrier
for (UInt64 tid : all_tids)
{
if (tid != getThreadId())
DB::CancelToken::signal(tid, DB::ErrorCodes::THREAD_WAS_CANCELLED, "test");
}
// This sync is crucial. It is needed to hold `lock` long enough.
// It guarantees that every cancelled thread will find `sm` blocked, and thus will begin to wait.
// Wait() call is required for cancellation. Otherwise, fastpath acquire w/o wait will not generate exception.
// And this is the desired behaviour.
sync.arrive_and_wait(); // (B) wait for cancellation to finish, before unlock.
}
catch (DB::Exception & e)
{
ASSERT_EQ(e.code(), DB::ErrorCodes::THREAD_WAS_CANCELLED);
ASSERT_EQ(e.message(), "test");
cancels++;
sync.arrive_and_wait(); // (B) sync with race winner
}
}
};
for (int writer_id = 0; writer_id < writers; writer_id++)
threads.emplace_back(writer);
for (auto & thread : threads)
thread.join();
ASSERT_EQ(successes, tasks_per_writer);
ASSERT_EQ(cancels, tasks_per_writer * (writers - 1));
}
template <class T, class Status = NoCancel>
void PerfTestSharedMutexReadersOnly()
{
std::cout << "*** " << demangle(typeid(T).name()) << "/" << demangle(typeid(Status).name()) << " ***" << std::endl;
for (int thrs = 1; thrs <= max_threads; thrs *= 2)
{
T sm;
std::vector<std::thread> threads;
threads.reserve(thrs);
auto reader = [&]
{
[[maybe_unused]] Status status;
for (int request = requests / thrs; request; request--)
{
std::shared_lock lock(sm);
}
};
Stopwatch watch;
for (int i = 0; i < thrs; i++)
threads.emplace_back(reader);
for (auto & thread : threads)
thread.join();
double ns = watch.elapsedNanoseconds();
std::cout << "thrs = " << thrs << ":\t" << ns / requests << " ns\t" << requests * 1e9 / ns << " rps" << std::endl;
}
}
template <class T, class Status = NoCancel>
void PerfTestSharedMutexWritersOnly()
{
std::cout << "*** " << demangle(typeid(T).name()) << "/" << demangle(typeid(Status).name()) << " ***" << std::endl;
for (int thrs = 1; thrs <= max_threads; thrs *= 2)
{
int counter = 0;
T sm;
std::vector<std::thread> threads;
threads.reserve(thrs);
auto writer = [&]
{
[[maybe_unused]] Status status;
for (int request = requests / thrs; request; request--)
{
std::unique_lock lock(sm);
ASSERT_TRUE(counter % 2 == 0);
counter++;
std::atomic_signal_fence(std::memory_order::seq_cst); // force compiler to generate two separate increment instructions
counter++;
}
};
Stopwatch watch;
for (int i = 0; i < thrs; i++)
threads.emplace_back(writer);
for (auto & thread : threads)
thread.join();
ASSERT_EQ(counter, requests * 2);
double ns = watch.elapsedNanoseconds();
std::cout << "thrs = " << thrs << ":\t" << ns / requests << " ns\t" << requests * 1e9 / ns << " rps" << std::endl;
}
}
template <class T, class Status = NoCancel>
void PerfTestSharedMutexRW()
{
std::cout << "*** " << demangle(typeid(T).name()) << "/" << demangle(typeid(Status).name()) << " ***" << std::endl;
for (int thrs = 1; thrs <= max_threads; thrs *= 2)
{
int counter = 0;
T sm;
std::vector<std::thread> threads;
threads.reserve(thrs);
auto reader = [&]
{
[[maybe_unused]] Status status;
for (int request = requests / thrs / 2; request; request--)
{
{
std::shared_lock lock(sm);
ASSERT_TRUE(counter % 2 == 0);
}
{
std::unique_lock lock(sm);
ASSERT_TRUE(counter % 2 == 0);
counter++;
std::atomic_signal_fence(std::memory_order::seq_cst); // force compiler to generate two separate increment instructions
counter++;
}
}
};
Stopwatch watch;
for (int i = 0; i < thrs; i++)
threads.emplace_back(reader);
for (auto & thread : threads)
thread.join();
ASSERT_EQ(counter, requests);
double ns = watch.elapsedNanoseconds();
std::cout << "thrs = " << thrs << ":\t" << ns / requests << " ns\t" << requests * 1e9 / ns << " rps" << std::endl;
}
}
TEST(Threading, SharedMutexSmokeCancellableEnabled) { TestSharedMutex<DB::CancellableSharedMutex, DB::Cancellable>(); }
TEST(Threading, SharedMutexSmokeCancellableDisabled) { TestSharedMutex<DB::CancellableSharedMutex>(); }
TEST(Threading, SharedMutexSmokeFast) { TestSharedMutex<DB::FastSharedMutex>(); }
TEST(Threading, SharedMutexSmokeStd) { TestSharedMutex<std::shared_mutex>(); }
TEST(Threading, PerfTestSharedMutexReadersOnlyCancellableEnabled) { PerfTestSharedMutexReadersOnly<DB::CancellableSharedMutex, DB::Cancellable>(); }
TEST(Threading, PerfTestSharedMutexReadersOnlyCancellableDisabled) { PerfTestSharedMutexReadersOnly<DB::CancellableSharedMutex>(); }
TEST(Threading, PerfTestSharedMutexReadersOnlyFast) { PerfTestSharedMutexReadersOnly<DB::FastSharedMutex>(); }
TEST(Threading, PerfTestSharedMutexReadersOnlyStd) { PerfTestSharedMutexReadersOnly<std::shared_mutex>(); }
TEST(Threading, PerfTestSharedMutexWritersOnlyCancellableEnabled) { PerfTestSharedMutexWritersOnly<DB::CancellableSharedMutex, DB::Cancellable>(); }
TEST(Threading, PerfTestSharedMutexWritersOnlyCancellableDisabled) { PerfTestSharedMutexWritersOnly<DB::CancellableSharedMutex>(); }
TEST(Threading, PerfTestSharedMutexWritersOnlyFast) { PerfTestSharedMutexWritersOnly<DB::FastSharedMutex>(); }
TEST(Threading, PerfTestSharedMutexWritersOnlyStd) { PerfTestSharedMutexWritersOnly<std::shared_mutex>(); }
TEST(Threading, PerfTestSharedMutexRWCancellableEnabled) { PerfTestSharedMutexRW<DB::CancellableSharedMutex, DB::Cancellable>(); }
TEST(Threading, PerfTestSharedMutexRWCancellableDisabled) { PerfTestSharedMutexRW<DB::CancellableSharedMutex>(); }
TEST(Threading, PerfTestSharedMutexRWFast) { PerfTestSharedMutexRW<DB::FastSharedMutex>(); }
TEST(Threading, PerfTestSharedMutexRWStd) { PerfTestSharedMutexRW<std::shared_mutex>(); }
#ifdef OS_LINUX /// These tests require cancellability
TEST(Threading, SharedMutexCancelReaderCancellableEnabled) { TestSharedMutexCancelReader<DB::CancellableSharedMutex, DB::Cancellable>(); }
TEST(Threading, SharedMutexCancelWriterCancellableEnabled) { TestSharedMutexCancelWriter<DB::CancellableSharedMutex, DB::Cancellable>(); }
#endif