Merge pull request #61661 from Algunenano/jeaiii

Test Jeaiii's itoa
This commit is contained in:
Raúl Marín 2024-07-03 16:56:56 +00:00 committed by GitHub
commit af4844b284
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -1,32 +1,3 @@
// Based on https://github.com/amdn/itoa and combined with our optimizations
//
//=== itoa.cpp - Fast integer to ascii conversion --*- C++ -*-//
//
// The MIT License (MIT)
// Copyright (c) 2016 Arturo Martin-de-Nicolas
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//===----------------------------------------------------------------------===//
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <type_traits>
#include <base/defines.h>
#include <base/extended_types.h>
@ -34,99 +5,15 @@
namespace
{
template <typename T>
ALWAYS_INLINE inline constexpr T pow10(size_t x)
{
return x ? 10 * pow10<T>(x - 1) : 1;
}
// Division by a power of 10 is implemented using a multiplicative inverse.
// This strength reduction is also done by optimizing compilers, but
// presently the fastest results are produced by using the values
// for the multiplication and the shift as given by the algorithm
// described by Agner Fog in "Optimizing Subroutines in Assembly Language"
//
// http://www.agner.org/optimize/optimizing_assembly.pdf
//
// "Integer division by a constant (all processors)
// A floating point number can be divided by a constant by multiplying
// with the reciprocal. If we want to do the same with integers, we have
// to scale the reciprocal by 2n and then shift the product to the right
// by n. There are various algorithms for finding a suitable value of n
// and compensating for rounding errors. The algorithm described below
// was invented by Terje Mathisen, Norway, and not published elsewhere."
/// Division by constant is performed by:
/// 1. Adding 1 if needed;
/// 2. Multiplying by another constant;
/// 3. Shifting right by another constant.
template <typename UInt, bool add_, UInt multiplier_, unsigned shift_>
struct Division
{
static constexpr bool add{add_};
static constexpr UInt multiplier{multiplier_};
static constexpr unsigned shift{shift_};
};
/// Select a type with appropriate number of bytes from the list of types.
/// First parameter is the number of bytes requested. Then goes a list of types with 1, 2, 4, ... number of bytes.
/// Example: SelectType<4, uint8_t, uint16_t, uint32_t, uint64_t> will select uint32_t.
template <size_t N, typename T, typename... Ts>
struct SelectType
{
using Result = typename SelectType<N / 2, Ts...>::Result;
};
template <typename T, typename... Ts>
struct SelectType<1, T, Ts...>
{
using Result = T;
};
/// Division by 10^N where N is the size of the type.
template <size_t N>
using DivisionBy10PowN = typename SelectType<
N,
Division<uint8_t, false, 205U, 11>, /// divide by 10
Division<uint16_t, true, 41943U, 22>, /// divide by 100
Division<uint32_t, false, 3518437209U, 45>, /// divide by 10000
Division<uint64_t, false, 12379400392853802749ULL, 90> /// divide by 100000000
>::Result;
template <size_t N>
using UnsignedOfSize = typename SelectType<N, uint8_t, uint16_t, uint32_t, uint64_t, __uint128_t>::Result;
/// Holds the result of dividing an unsigned N-byte variable by 10^N resulting in
template <size_t N>
struct QuotientAndRemainder
{
UnsignedOfSize<N> quotient; // quotient with fewer than 2*N decimal digits
UnsignedOfSize<N / 2> remainder; // remainder with at most N decimal digits
};
template <size_t N>
QuotientAndRemainder<N> inline split(UnsignedOfSize<N> value)
{
constexpr DivisionBy10PowN<N> division;
UnsignedOfSize<N> quotient = (division.multiplier * (UnsignedOfSize<2 * N>(value) + division.add)) >> division.shift;
UnsignedOfSize<N / 2> remainder = static_cast<UnsignedOfSize<N / 2>>(value - quotient * pow10<UnsignedOfSize<N / 2>>(N));
return {quotient, remainder};
}
ALWAYS_INLINE inline char * outDigit(char * p, uint8_t value)
ALWAYS_INLINE inline char * outOneDigit(char * p, uint8_t value)
{
*p = '0' + value;
++p;
return p;
return p + 1;
}
// Using a lookup table to convert binary numbers from 0 to 99
// into ascii characters as described by Andrei Alexandrescu in
// https://www.facebook.com/notes/facebook-engineering/three-optimization-tips-for-c/10151361643253920/
const char digits[201] = "00010203040506070809"
"10111213141516171819"
"20212223242526272829"
@ -137,7 +24,6 @@ const char digits[201] = "00010203040506070809"
"70717273747576777879"
"80818283848586878889"
"90919293949596979899";
ALWAYS_INLINE inline char * outTwoDigits(char * p, uint8_t value)
{
memcpy(p, &digits[value * 2], 2);
@ -145,153 +31,260 @@ ALWAYS_INLINE inline char * outTwoDigits(char * p, uint8_t value)
return p;
}
namespace convert
namespace jeaiii
{
template <typename UInt, size_t N = sizeof(UInt)>
char * head(char * p, UInt u);
template <typename UInt, size_t N = sizeof(UInt)>
char * tail(char * p, UInt u);
/*
MIT License
//===----------------------------------------------------------===//
// head: find most significant digit, skip leading zeros
//===----------------------------------------------------------===//
Copyright (c) 2022 James Edward Anhalt III - https://github.com/jeaiii/itoa
// "x" contains quotient and remainder after division by 10^N
// quotient is less than 10^N
template <size_t N>
ALWAYS_INLINE inline char * head(char * p, QuotientAndRemainder<N> x)
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
struct pair
{
p = head(p, UnsignedOfSize<N / 2>(x.quotient));
p = tail(p, x.remainder);
return p;
}
char dd[2];
constexpr pair(char c) : dd{c, '\0'} { } /// NOLINT(google-explicit-constructor)
constexpr pair(int n) : dd{"0123456789"[n / 10], "0123456789"[n % 10]} { } /// NOLINT(google-explicit-constructor)
};
// "u" is less than 10^2*N
template <typename UInt, size_t N>
ALWAYS_INLINE inline char * head(char * p, UInt u)
constexpr struct
{
return u < pow10<UnsignedOfSize<N>>(N) ? head(p, UnsignedOfSize<N / 2>(u)) : head<N>(p, split<N>(u));
}
pair dd[100]{
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, //
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, //
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, //
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, //
40, 41, 42, 43, 44, 45, 46, 47, 48, 49, //
50, 51, 52, 53, 54, 55, 56, 57, 58, 59, //
60, 61, 62, 63, 64, 65, 66, 67, 68, 69, //
70, 71, 72, 73, 74, 75, 76, 77, 78, 79, //
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, //
90, 91, 92, 93, 94, 95, 96, 97, 98, 99, //
};
pair fd[100]{
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', //
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, //
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, //
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, //
40, 41, 42, 43, 44, 45, 46, 47, 48, 49, //
50, 51, 52, 53, 54, 55, 56, 57, 58, 59, //
60, 61, 62, 63, 64, 65, 66, 67, 68, 69, //
70, 71, 72, 73, 74, 75, 76, 77, 78, 79, //
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, //
90, 91, 92, 93, 94, 95, 96, 97, 98, 99, //
};
} digits;
// recursion base case, selected when "u" is one byte
template <>
ALWAYS_INLINE inline char * head<UnsignedOfSize<1>, 1>(char * p, UnsignedOfSize<1> u)
constexpr UInt64 mask24 = (UInt64(1) << 24) - 1;
constexpr UInt64 mask32 = (UInt64(1) << 32) - 1;
constexpr UInt64 mask57 = (UInt64(1) << 57) - 1;
template <bool, class, class F>
struct _cond
{
return u < 10 ? outDigit(p, u) : outTwoDigits(p, u);
}
//===----------------------------------------------------------===//
// tail: produce all digits including leading zeros
//===----------------------------------------------------------===//
// recursive step, "u" is less than 10^2*N
template <typename UInt, size_t N>
ALWAYS_INLINE inline char * tail(char * p, UInt u)
using type = F;
};
template <class T, class F>
struct _cond<true, T, F>
{
QuotientAndRemainder<N> x = split<N>(u);
p = tail(p, UnsignedOfSize<N / 2>(x.quotient));
p = tail(p, x.remainder);
return p;
}
using type = T;
};
template <bool B, class T, class F>
using cond = typename _cond<B, T, F>::type;
// recursion base case, selected when "u" is one byte
template <>
ALWAYS_INLINE inline char * tail<UnsignedOfSize<1>, 1>(char * p, UnsignedOfSize<1> u)
template <class T>
inline ALWAYS_INLINE char * to_text_from_integer(char * b, T i)
{
return outTwoDigits(p, u);
}
constexpr auto q = sizeof(T);
using U = cond<q == 1, char8_t, cond<q <= sizeof(UInt16), UInt16, cond<q <= sizeof(UInt32), UInt32, UInt64>>>;
//===----------------------------------------------------------===//
// large values are >= 10^2*N
// where x contains quotient and remainder after division by 10^N
//===----------------------------------------------------------===//
template <size_t N>
ALWAYS_INLINE inline char * large(char * p, QuotientAndRemainder<N> x)
{
QuotientAndRemainder<N> y = split<N>(x.quotient);
p = head(p, UnsignedOfSize<N / 2>(y.quotient));
p = tail(p, y.remainder);
p = tail(p, x.remainder);
return p;
}
// convert bool to int before test with unary + to silence warning if T happens to be bool
U const n = +i < 0 ? *b++ = '-', U(0) - U(i) : U(i);
//===----------------------------------------------------------===//
// handle values of "u" that might be >= 10^2*N
// where N is the size of "u" in bytes
//===----------------------------------------------------------===//
template <typename UInt, size_t N = sizeof(UInt)>
ALWAYS_INLINE inline char * uitoa(char * p, UInt u)
{
if (u < pow10<UnsignedOfSize<N>>(N))
return head(p, UnsignedOfSize<N / 2>(u));
QuotientAndRemainder<N> x = split<N>(u);
if (n < U(1e2))
{
/// This is changed from the original jeaiii implementation
/// For small numbers the extra branch to call outOneDigit() is worth it as it saves some instructions
/// and a memory access (no need to read digits.fd[n])
/// This is not true for pure random numbers, but that's not the common use case of a database
/// Original jeaii code
// *reinterpret_cast<pair *>(b) = digits.fd[n];
// return n < 10 ? b + 1 : b + 2;
return n < 10 ? outOneDigit(b, n) : outTwoDigits(b, n);
}
if (n < UInt32(1e6))
{
if (sizeof(U) == 1 || n < U(1e4))
{
auto f0 = UInt32(10 * (1 << 24) / 1e3 + 1) * n;
*reinterpret_cast<pair *>(b) = digits.fd[f0 >> 24];
if constexpr (sizeof(U) == 1)
b -= 1;
else
b -= n < U(1e3);
auto f2 = (f0 & mask24) * 100;
*reinterpret_cast<pair *>(b + 2) = digits.dd[f2 >> 24];
return b + 4;
}
auto f0 = UInt64(10 * (1ull << 32ull) / 1e5 + 1) * n;
*reinterpret_cast<pair *>(b) = digits.fd[f0 >> 32];
if constexpr (sizeof(U) == 2)
b -= 1;
else
b -= n < U(1e5);
auto f2 = (f0 & mask32) * 100;
*reinterpret_cast<pair *>(b + 2) = digits.dd[f2 >> 32];
auto f4 = (f2 & mask32) * 100;
*reinterpret_cast<pair *>(b + 4) = digits.dd[f4 >> 32];
return b + 6;
}
if (sizeof(U) == 4 || n < UInt64(1ull << 32ull))
{
if (n < U(1e8))
{
auto f0 = UInt64(10 * (1ull << 48ull) / 1e7 + 1) * n >> 16;
*reinterpret_cast<pair *>(b) = digits.fd[f0 >> 32];
b -= n < U(1e7);
auto f2 = (f0 & mask32) * 100;
*reinterpret_cast<pair *>(b + 2) = digits.dd[f2 >> 32];
auto f4 = (f2 & mask32) * 100;
*reinterpret_cast<pair *>(b + 4) = digits.dd[f4 >> 32];
auto f6 = (f4 & mask32) * 100;
*reinterpret_cast<pair *>(b + 6) = digits.dd[f6 >> 32];
return b + 8;
}
auto f0 = UInt64(10 * (1ull << 57ull) / 1e9 + 1) * n;
*reinterpret_cast<pair *>(b) = digits.fd[f0 >> 57];
b -= n < UInt32(1e9);
auto f2 = (f0 & mask57) * 100;
*reinterpret_cast<pair *>(b + 2) = digits.dd[f2 >> 57];
auto f4 = (f2 & mask57) * 100;
*reinterpret_cast<pair *>(b + 4) = digits.dd[f4 >> 57];
auto f6 = (f4 & mask57) * 100;
*reinterpret_cast<pair *>(b + 6) = digits.dd[f6 >> 57];
auto f8 = (f6 & mask57) * 100;
*reinterpret_cast<pair *>(b + 8) = digits.dd[f8 >> 57];
return b + 10;
}
return u < pow10<UnsignedOfSize<N>>(2 * N) ? head<N>(p, x) : large<N>(p, x);
}
// if we get here U must be UInt64 but some compilers don't know that, so reassign n to a UInt64 to avoid warnings
UInt32 z = n % UInt32(1e8);
UInt64 u = n / UInt32(1e8);
// selected when "u" is one byte
template <>
ALWAYS_INLINE inline char * uitoa<UnsignedOfSize<1>, 1>(char * p, UnsignedOfSize<1> u)
{
if (u < 10)
return outDigit(p, u);
else if (u < 100)
return outTwoDigits(p, u);
if (u < UInt32(1e2))
{
// u can't be 1 digit (if u < 10 it would have been handled above as a 9 digit 32bit number)
*reinterpret_cast<pair *>(b) = digits.dd[u];
b += 2;
}
else if (u < UInt32(1e6))
{
if (u < UInt32(1e4))
{
auto f0 = UInt32(10 * (1 << 24) / 1e3 + 1) * u;
*reinterpret_cast<pair *>(b) = digits.fd[f0 >> 24];
b -= u < UInt32(1e3);
auto f2 = (f0 & mask24) * 100;
*reinterpret_cast<pair *>(b + 2) = digits.dd[f2 >> 24];
b += 4;
}
else
{
auto f0 = UInt64(10 * (1ull << 32ull) / 1e5 + 1) * u;
*reinterpret_cast<pair *>(b) = digits.fd[f0 >> 32];
b -= u < UInt32(1e5);
auto f2 = (f0 & mask32) * 100;
*reinterpret_cast<pair *>(b + 2) = digits.dd[f2 >> 32];
auto f4 = (f2 & mask32) * 100;
*reinterpret_cast<pair *>(b + 4) = digits.dd[f4 >> 32];
b += 6;
}
}
else if (u < UInt32(1e8))
{
auto f0 = UInt64(10 * (1ull << 48ull) / 1e7 + 1) * u >> 16;
*reinterpret_cast<pair *>(b) = digits.fd[f0 >> 32];
b -= u < UInt32(1e7);
auto f2 = (f0 & mask32) * 100;
*reinterpret_cast<pair *>(b + 2) = digits.dd[f2 >> 32];
auto f4 = (f2 & mask32) * 100;
*reinterpret_cast<pair *>(b + 4) = digits.dd[f4 >> 32];
auto f6 = (f4 & mask32) * 100;
*reinterpret_cast<pair *>(b + 6) = digits.dd[f6 >> 32];
b += 8;
}
else if (u < UInt64(1ull << 32ull))
{
auto f0 = UInt64(10 * (1ull << 57ull) / 1e9 + 1) * u;
*reinterpret_cast<pair *>(b) = digits.fd[f0 >> 57];
b -= u < UInt32(1e9);
auto f2 = (f0 & mask57) * 100;
*reinterpret_cast<pair *>(b + 2) = digits.dd[f2 >> 57];
auto f4 = (f2 & mask57) * 100;
*reinterpret_cast<pair *>(b + 4) = digits.dd[f4 >> 57];
auto f6 = (f4 & mask57) * 100;
*reinterpret_cast<pair *>(b + 6) = digits.dd[f6 >> 57];
auto f8 = (f6 & mask57) * 100;
*reinterpret_cast<pair *>(b + 8) = digits.dd[f8 >> 57];
b += 10;
}
else
{
p = outDigit(p, u / 100);
p = outTwoDigits(p, u % 100);
return p;
UInt32 y = u % UInt32(1e8);
u /= UInt32(1e8);
// u is 2, 3, or 4 digits (if u < 10 it would have been handled above)
if (u < UInt32(1e2))
{
*reinterpret_cast<pair *>(b) = digits.dd[u];
b += 2;
}
else
{
auto f0 = UInt32(10 * (1 << 24) / 1e3 + 1) * u;
*reinterpret_cast<pair *>(b) = digits.fd[f0 >> 24];
b -= u < UInt32(1e3);
auto f2 = (f0 & mask24) * 100;
*reinterpret_cast<pair *>(b + 2) = digits.dd[f2 >> 24];
b += 4;
}
// do 8 digits
auto f0 = (UInt64((1ull << 48ull) / 1e6 + 1) * y >> 16) + 1;
*reinterpret_cast<pair *>(b) = digits.dd[f0 >> 32];
auto f2 = (f0 & mask32) * 100;
*reinterpret_cast<pair *>(b + 2) = digits.dd[f2 >> 32];
auto f4 = (f2 & mask32) * 100;
*reinterpret_cast<pair *>(b + 4) = digits.dd[f4 >> 32];
auto f6 = (f4 & mask32) * 100;
*reinterpret_cast<pair *>(b + 6) = digits.dd[f6 >> 32];
b += 8;
}
}
//===----------------------------------------------------------===//
// handle unsigned and signed integral operands
//===----------------------------------------------------------===//
// itoa: handle unsigned integral operands (selected by SFINAE)
template <typename U>
requires(!std::is_signed_v<U> && std::is_integral_v<U>)
ALWAYS_INLINE inline char * itoa(U u, char * p)
{
return convert::uitoa(p, u);
}
// itoa: handle signed integral operands (selected by SFINAE)
template <typename I, size_t N = sizeof(I)>
requires(std::is_signed_v<I> && std::is_integral_v<I>)
ALWAYS_INLINE inline char * itoa(I i, char * p)
{
// Need "mask" to be filled with a copy of the sign bit.
// If "i" is a negative value, then the result of "operator >>"
// is implementation-defined, though usually it is an arithmetic
// right shift that replicates the sign bit.
// Use a conditional expression to be portable,
// a good optimizing compiler generates an arithmetic right shift
// and avoids the conditional branch.
UnsignedOfSize<N> mask = i < 0 ? ~UnsignedOfSize<N>(0) : 0;
// Now get the absolute value of "i" and cast to unsigned type UnsignedOfSize<N>.
// Cannot use std::abs() because the result is undefined
// in 2's complement systems for the most-negative value.
// Want to avoid conditional branch for performance reasons since
// CPU branch prediction will be ineffective when negative values
// occur randomly.
// Let "u" be "i" cast to unsigned type UnsignedOfSize<N>.
// Subtract "u" from 2*u if "i" is positive or 0 if "i" is negative.
// This yields the absolute value with the desired type without
// using a conditional branch and without invoking undefined or
// implementation defined behavior:
UnsignedOfSize<N> u = ((2 * UnsignedOfSize<N>(i)) & ~mask) - UnsignedOfSize<N>(i);
// Unconditionally store a minus sign when producing digits
// in a forward direction and increment the pointer only if
// the value is in fact negative.
// This avoids a conditional branch and is safe because we will
// always produce at least one digit and it will overwrite the
// minus sign when the value is not negative.
*p = '-';
p += (mask & 1);
p = convert::uitoa(p, u);
return p;
// do 8 digits
auto f0 = (UInt64((1ull << 48ull) / 1e6 + 1) * z >> 16) + 1;
*reinterpret_cast<pair *>(b) = digits.dd[f0 >> 32];
auto f2 = (f0 & mask32) * 100;
*reinterpret_cast<pair *>(b + 2) = digits.dd[f2 >> 32];
auto f4 = (f2 & mask32) * 100;
*reinterpret_cast<pair *>(b + 4) = digits.dd[f4 >> 32];
auto f6 = (f4 & mask32) * 100;
*reinterpret_cast<pair *>(b + 6) = digits.dd[f6 >> 32];
return b + 8;
}
}
@ -303,7 +296,7 @@ ALWAYS_INLINE inline char * writeUIntText(UInt128 _x, char * p)
{
/// If we the highest 64bit item is empty, we can print just the lowest item as u64
if (_x.items[UInt128::_impl::little(1)] == 0)
return convert::itoa(_x.items[UInt128::_impl::little(0)], p);
return jeaiii::to_text_from_integer(p, _x.items[UInt128::_impl::little(0)]);
/// Doing operations using __int128 is faster and we already rely on this feature
using T = unsigned __int128;
@ -334,7 +327,7 @@ ALWAYS_INLINE inline char * writeUIntText(UInt128 _x, char * p)
current_block += max_multiple_of_hundred_blocks;
}
char * highest_part_print = convert::itoa(uint64_t(x), p);
char * highest_part_print = jeaiii::to_text_from_integer(p, uint64_t(x));
for (int i = 0; i < current_block; i++)
{
outTwoDigits(highest_part_print, two_values[current_block - 1 - i]);
@ -450,12 +443,12 @@ ALWAYS_INLINE inline char * writeSIntText(T x, char * pos)
char * itoa(UInt8 i, char * p)
{
return convert::itoa(uint8_t(i), p);
return jeaiii::to_text_from_integer(p, uint8_t(i));
}
char * itoa(Int8 i, char * p)
{
return convert::itoa(int8_t(i), p);
return jeaiii::to_text_from_integer(p, int8_t(i));
}
char * itoa(UInt128 i, char * p)
@ -481,7 +474,7 @@ char * itoa(Int256 i, char * p)
#define DEFAULT_ITOA(T) \
char * itoa(T i, char * p) \
{ \
return convert::itoa(i, p); \
return jeaiii::to_text_from_integer(p, i); \
}
#define FOR_MISSING_INTEGER_TYPES(M) \