Merge pull request #4917 from yandex/hczhcz-master

Add aggregate function leastSqr
This commit is contained in:
Nikolai Kochetov 2019-04-05 20:04:24 +03:00 committed by GitHub
commit b656786608
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 299 additions and 0 deletions

View File

@ -0,0 +1,85 @@
#include <AggregateFunctions/AggregateFunctionLeastSqr.h>
#include <AggregateFunctions/AggregateFunctionFactory.h>
#include <AggregateFunctions/FactoryHelpers.h>
namespace DB
{
namespace
{
AggregateFunctionPtr createAggregateFunctionLeastSqr(
const String & name,
const DataTypes & arguments,
const Array & params
)
{
assertNoParameters(name, params);
assertBinary(name, arguments);
const IDataType * x_arg = arguments.front().get();
WhichDataType which_x {
x_arg
};
const IDataType * y_arg = arguments.back().get();
WhichDataType which_y {
y_arg
};
#define FOR_LEASTSQR_TYPES_2(M, T) \
M(T, UInt8) \
M(T, UInt16) \
M(T, UInt32) \
M(T, UInt64) \
M(T, Int8) \
M(T, Int16) \
M(T, Int32) \
M(T, Int64) \
M(T, Float32) \
M(T, Float64)
#define FOR_LEASTSQR_TYPES(M) \
FOR_LEASTSQR_TYPES_2(M, UInt8) \
FOR_LEASTSQR_TYPES_2(M, UInt16) \
FOR_LEASTSQR_TYPES_2(M, UInt32) \
FOR_LEASTSQR_TYPES_2(M, UInt64) \
FOR_LEASTSQR_TYPES_2(M, Int8) \
FOR_LEASTSQR_TYPES_2(M, Int16) \
FOR_LEASTSQR_TYPES_2(M, Int32) \
FOR_LEASTSQR_TYPES_2(M, Int64) \
FOR_LEASTSQR_TYPES_2(M, Float32) \
FOR_LEASTSQR_TYPES_2(M, Float64)
#define DISPATCH(T1, T2) \
if (which_x.idx == TypeIndex::T1 && which_y.idx == TypeIndex::T2) \
return std::make_shared<AggregateFunctionLeastSqr<T1, T2>>( \
arguments, \
params \
);
FOR_LEASTSQR_TYPES(DISPATCH)
#undef FOR_LEASTSQR_TYPES_2
#undef FOR_LEASTSQR_TYPES
#undef DISPATCH
throw Exception(
"Illegal types ("
+ x_arg->getName() + ", " + y_arg->getName()
+ ") of arguments of aggregate function " + name
+ ", must be Native Ints, Native UInts or Floats",
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT
);
}
}
void registerAggregateFunctionLeastSqr(AggregateFunctionFactory & factory)
{
factory.registerFunction("leastSqr", createAggregateFunctionLeastSqr);
}
}

View File

@ -0,0 +1,195 @@
#pragma once
#include <AggregateFunctions/IAggregateFunction.h>
#include <Columns/ColumnVector.h>
#include <Columns/ColumnTuple.h>
#include <DataTypes/DataTypeNullable.h>
#include <DataTypes/DataTypesNumber.h>
#include <DataTypes/DataTypeTuple.h>
#include <IO/ReadHelpers.h>
#include <IO/WriteHelpers.h>
#include <limits>
namespace DB
{
namespace ErrorCodes
{
extern const int ILLEGAL_TYPE_OF_ARGUMENT;
}
template <typename X, typename Y, typename Ret>
struct AggregateFunctionLeastSqrData final
{
size_t count = 0;
Ret sum_x = 0;
Ret sum_y = 0;
Ret sum_xx = 0;
Ret sum_xy = 0;
void add(X x, Y y)
{
count += 1;
sum_x += x;
sum_y += y;
sum_xx += x * x;
sum_xy += x * y;
}
void merge(const AggregateFunctionLeastSqrData & other)
{
count += other.count;
sum_x += other.sum_x;
sum_y += other.sum_y;
sum_xx += other.sum_xx;
sum_xy += other.sum_xy;
}
void serialize(WriteBuffer & buf) const
{
writeBinary(count, buf);
writeBinary(sum_x, buf);
writeBinary(sum_y, buf);
writeBinary(sum_xx, buf);
writeBinary(sum_xy, buf);
}
void deserialize(ReadBuffer & buf)
{
readBinary(count, buf);
readBinary(sum_x, buf);
readBinary(sum_y, buf);
readBinary(sum_xx, buf);
readBinary(sum_xy, buf);
}
Ret getK() const
{
Ret divisor = sum_xx * count - sum_x * sum_x;
if (divisor == 0)
return std::numeric_limits<Ret>::quiet_NaN();
return (sum_xy * count - sum_x * sum_y) / divisor;
}
Ret getB(Ret k) const
{
if (count == 0)
return std::numeric_limits<Ret>::quiet_NaN();
return (sum_y - k * sum_x) / count;
}
};
/// Calculates simple linear regression parameters.
/// Result is a tuple (k, b) for y = k * x + b equation, solved by least squares approximation.
template <typename X, typename Y, typename Ret = Float64>
class AggregateFunctionLeastSqr final : public IAggregateFunctionDataHelper<
AggregateFunctionLeastSqrData<X, Y, Ret>,
AggregateFunctionLeastSqr<X, Y, Ret>
>
{
public:
AggregateFunctionLeastSqr(
const DataTypes & arguments,
const Array & params
):
IAggregateFunctionDataHelper<
AggregateFunctionLeastSqrData<X, Y, Ret>,
AggregateFunctionLeastSqr<X, Y, Ret>
> {arguments, params}
{
// notice: arguments has been checked before
}
String getName() const override
{
return "leastSqr";
}
const char * getHeaderFilePath() const override
{
return __FILE__;
}
void add(
AggregateDataPtr place,
const IColumn ** columns,
size_t row_num,
Arena *
) const override
{
auto col_x {
static_cast<const ColumnVector<X> *>(columns[0])
};
auto col_y {
static_cast<const ColumnVector<Y> *>(columns[1])
};
X x = col_x->getData()[row_num];
Y y = col_y->getData()[row_num];
this->data(place).add(x, y);
}
void merge(
AggregateDataPtr place,
ConstAggregateDataPtr rhs, Arena *
) const override
{
this->data(place).merge(this->data(rhs));
}
void serialize(
ConstAggregateDataPtr place,
WriteBuffer & buf
) const override
{
this->data(place).serialize(buf);
}
void deserialize(
AggregateDataPtr place,
ReadBuffer & buf, Arena *
) const override
{
this->data(place).deserialize(buf);
}
DataTypePtr getReturnType() const override
{
DataTypes types {
std::make_shared<DataTypeNumber<Ret>>(),
std::make_shared<DataTypeNumber<Ret>>(),
};
Strings names {
"k",
"b",
};
return std::make_shared<DataTypeTuple>(
std::move(types),
std::move(names)
);
}
void insertResultInto(
ConstAggregateDataPtr place,
IColumn & to
) const override
{
Ret k = this->data(place).getK();
Ret b = this->data(place).getB(k);
auto & col_tuple = static_cast<ColumnTuple &>(to);
auto & col_k = static_cast<ColumnVector<Ret> &>(col_tuple.getColumn(0));
auto & col_b = static_cast<ColumnVector<Ret> &>(col_tuple.getColumn(1));
col_k.getData().push_back(k);
col_b.getData().push_back(b);
}
};
}

View File

@ -29,6 +29,7 @@ void registerAggregateFunctionsBitwise(AggregateFunctionFactory &);
void registerAggregateFunctionsBitmap(AggregateFunctionFactory &); void registerAggregateFunctionsBitmap(AggregateFunctionFactory &);
void registerAggregateFunctionsMaxIntersections(AggregateFunctionFactory &); void registerAggregateFunctionsMaxIntersections(AggregateFunctionFactory &);
void registerAggregateFunctionEntropy(AggregateFunctionFactory &); void registerAggregateFunctionEntropy(AggregateFunctionFactory &);
void registerAggregateFunctionLeastSqr(AggregateFunctionFactory &);
void registerAggregateFunctionCombinatorIf(AggregateFunctionCombinatorFactory &); void registerAggregateFunctionCombinatorIf(AggregateFunctionCombinatorFactory &);
void registerAggregateFunctionCombinatorArray(AggregateFunctionCombinatorFactory &); void registerAggregateFunctionCombinatorArray(AggregateFunctionCombinatorFactory &);
@ -69,6 +70,7 @@ void registerAggregateFunctions()
registerAggregateFunctionHistogram(factory); registerAggregateFunctionHistogram(factory);
registerAggregateFunctionRetention(factory); registerAggregateFunctionRetention(factory);
registerAggregateFunctionEntropy(factory); registerAggregateFunctionEntropy(factory);
registerAggregateFunctionLeastSqr(factory);
} }
{ {

View File

@ -0,0 +1,8 @@
(10,90)
(10.3,89.5)
(10,-90)
(1,1)
(nan,nan)
(0,3)
(nan,nan)
(nan,nan)

View File

@ -0,0 +1,9 @@
select arrayReduce('leastSqr', [1, 2, 3, 4], [100, 110, 120, 130]);
select arrayReduce('leastSqr', [1, 2, 3, 4], [100, 110, 120, 131]);
select arrayReduce('leastSqr', [-1, -2, -3, -4], [-100, -110, -120, -130]);
select arrayReduce('leastSqr', [5, 5.1], [6, 6.1]);
select arrayReduce('leastSqr', [0], [0]);
select arrayReduce('leastSqr', [3, 4], [3, 3]);
select arrayReduce('leastSqr', [3, 3], [3, 4]);
select arrayReduce('leastSqr', emptyArrayUInt8(), emptyArrayUInt8());