mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-11-22 15:42:02 +00:00
Merge pull request #65673 from Blargian/document_detectTonality
[Docs] add `detectTonality`, `detectProgrammingLanguage` to docs
This commit is contained in:
commit
bd4f8524bf
@ -6,26 +6,297 @@ sidebar_label: NLP (experimental)
|
||||
|
||||
# Natural Language Processing (NLP) Functions
|
||||
|
||||
:::note
|
||||
:::warning
|
||||
This is an experimental feature that is currently in development and is not ready for general use. It will change in unpredictable backwards-incompatible ways in future releases. Set `allow_experimental_nlp_functions = 1` to enable it.
|
||||
:::
|
||||
|
||||
## detectCharset
|
||||
|
||||
The `detectCharset` function detects the character set of the non-UTF8-encoded input string.
|
||||
|
||||
*Syntax*
|
||||
|
||||
``` sql
|
||||
detectCharset('text_to_be_analyzed')
|
||||
```
|
||||
|
||||
*Arguments*
|
||||
|
||||
- `text_to_be_analyzed` — A collection (or sentences) of strings to analyze. [String](../data-types/string.md#string).
|
||||
|
||||
*Returned value*
|
||||
|
||||
- A `String` containing the code of the detected character set
|
||||
|
||||
*Examples*
|
||||
|
||||
Query:
|
||||
|
||||
```sql
|
||||
SELECT detectCharset('Ich bleibe für ein paar Tage.');
|
||||
```
|
||||
|
||||
Result:
|
||||
|
||||
```response
|
||||
┌─detectCharset('Ich bleibe für ein paar Tage.')─┐
|
||||
│ WINDOWS-1252 │
|
||||
└────────────────────────────────────────────────┘
|
||||
```
|
||||
|
||||
## detectLanguage
|
||||
|
||||
Detects the language of the UTF8-encoded input string. The function uses the [CLD2 library](https://github.com/CLD2Owners/cld2) for detection, and it returns the 2-letter ISO language code.
|
||||
|
||||
The `detectLanguage` function works best when providing over 200 characters in the input string.
|
||||
|
||||
*Syntax*
|
||||
|
||||
``` sql
|
||||
detectLanguage('text_to_be_analyzed')
|
||||
```
|
||||
|
||||
*Arguments*
|
||||
|
||||
- `text_to_be_analyzed` — A collection (or sentences) of strings to analyze. [String](../data-types/string.md#string).
|
||||
|
||||
*Returned value*
|
||||
|
||||
- The 2-letter ISO code of the detected language
|
||||
|
||||
Other possible results:
|
||||
|
||||
- `un` = unknown, can not detect any language.
|
||||
- `other` = the detected language does not have 2 letter code.
|
||||
|
||||
*Examples*
|
||||
|
||||
Query:
|
||||
|
||||
```sql
|
||||
SELECT detectLanguage('Je pense que je ne parviendrai jamais à parler français comme un natif. Where there’s a will, there’s a way.');
|
||||
```
|
||||
|
||||
Result:
|
||||
|
||||
```response
|
||||
fr
|
||||
```
|
||||
|
||||
## detectLanguageMixed
|
||||
|
||||
Similar to the `detectLanguage` function, but `detectLanguageMixed` returns a `Map` of 2-letter language codes that are mapped to the percentage of the certain language in the text.
|
||||
|
||||
|
||||
*Syntax*
|
||||
|
||||
``` sql
|
||||
detectLanguageMixed('text_to_be_analyzed')
|
||||
```
|
||||
|
||||
*Arguments*
|
||||
|
||||
- `text_to_be_analyzed` — A collection (or sentences) of strings to analyze. [String](../data-types/string.md#string).
|
||||
|
||||
*Returned value*
|
||||
|
||||
- `Map(String, Float32)`: The keys are 2-letter ISO codes and the values are a percentage of text found for that language
|
||||
|
||||
|
||||
*Examples*
|
||||
|
||||
Query:
|
||||
|
||||
```sql
|
||||
SELECT detectLanguageMixed('二兎を追う者は一兎をも得ず二兎を追う者は一兎をも得ず A vaincre sans peril, on triomphe sans gloire.');
|
||||
```
|
||||
|
||||
Result:
|
||||
|
||||
```response
|
||||
┌─detectLanguageMixed()─┐
|
||||
│ {'ja':0.62,'fr':0.36 │
|
||||
└───────────────────────┘
|
||||
```
|
||||
|
||||
## detectProgrammingLanguage
|
||||
|
||||
Determines the programming language from the source code. Calculates all the unigrams and bigrams of commands in the source code.
|
||||
Then using a marked-up dictionary with weights of unigrams and bigrams of commands for various programming languages finds the biggest weight of the programming language and returns it.
|
||||
|
||||
*Syntax*
|
||||
|
||||
``` sql
|
||||
detectProgrammingLanguage('source_code')
|
||||
```
|
||||
|
||||
*Arguments*
|
||||
|
||||
- `source_code` — String representation of the source code to analyze. [String](../data-types/string.md#string).
|
||||
|
||||
*Returned value*
|
||||
|
||||
- Programming language. [String](../data-types/string.md).
|
||||
|
||||
*Examples*
|
||||
|
||||
Query:
|
||||
|
||||
```sql
|
||||
SELECT detectProgrammingLanguage('#include <iostream>');
|
||||
```
|
||||
|
||||
Result:
|
||||
|
||||
```response
|
||||
┌─detectProgrammingLanguage('#include <iostream>')─┐
|
||||
│ C++ │
|
||||
└──────────────────────────────────────────────────┘
|
||||
```
|
||||
|
||||
## detectLanguageUnknown
|
||||
|
||||
Similar to the `detectLanguage` function, except the `detectLanguageUnknown` function works with non-UTF8-encoded strings. Prefer this version when your character set is UTF-16 or UTF-32.
|
||||
|
||||
|
||||
*Syntax*
|
||||
|
||||
``` sql
|
||||
detectLanguageUnknown('text_to_be_analyzed')
|
||||
```
|
||||
|
||||
*Arguments*
|
||||
|
||||
- `text_to_be_analyzed` — A collection (or sentences) of strings to analyze. [String](../data-types/string.md#string).
|
||||
|
||||
*Returned value*
|
||||
|
||||
- The 2-letter ISO code of the detected language
|
||||
|
||||
Other possible results:
|
||||
|
||||
- `un` = unknown, can not detect any language.
|
||||
- `other` = the detected language does not have 2 letter code.
|
||||
|
||||
*Examples*
|
||||
|
||||
Query:
|
||||
|
||||
```sql
|
||||
SELECT detectLanguageUnknown('Ich bleibe für ein paar Tage.');
|
||||
```
|
||||
|
||||
Result:
|
||||
|
||||
```response
|
||||
┌─detectLanguageUnknown('Ich bleibe für ein paar Tage.')─┐
|
||||
│ de │
|
||||
└────────────────────────────────────────────────────────┘
|
||||
```
|
||||
|
||||
## detectTonality
|
||||
|
||||
Determines the sentiment of text data. Uses a marked-up sentiment dictionary, in which each word has a tonality ranging from `-12` to `6`.
|
||||
For each text, it calculates the average sentiment value of its words and returns it in the range `[-1,1]`.
|
||||
|
||||
:::note
|
||||
This function is limited in its current form. Currently it makes use of the embedded emotional dictionary at `/contrib/nlp-data/tonality_ru.zst` and only works for the Russian language.
|
||||
:::
|
||||
|
||||
*Syntax*
|
||||
|
||||
``` sql
|
||||
detectTonality(text)
|
||||
```
|
||||
|
||||
*Arguments*
|
||||
|
||||
- `text` — The text to be analyzed. [String](../data-types/string.md#string).
|
||||
|
||||
*Returned value*
|
||||
|
||||
- The average sentiment value of the words in `text`. [Float32](../data-types/float.md).
|
||||
|
||||
*Examples*
|
||||
|
||||
Query:
|
||||
|
||||
```sql
|
||||
SELECT detectTonality('Шарик - хороший пёс'), -- Sharik is a good dog
|
||||
detectTonality('Шарик - пёс'), -- Sharik is a dog
|
||||
detectTonality('Шарик - плохой пёс'); -- Sharkik is a bad dog
|
||||
```
|
||||
|
||||
Result:
|
||||
|
||||
```response
|
||||
┌─detectTonality('Шарик - хороший пёс')─┬─detectTonality('Шарик - пёс')─┬─detectTonality('Шарик - плохой пёс')─┐
|
||||
│ 0.44445 │ 0 │ -0.3 │
|
||||
└───────────────────────────────────────┴───────────────────────────────┴──────────────────────────────────────┘
|
||||
```
|
||||
## lemmatize
|
||||
|
||||
Performs lemmatization on a given word. Needs dictionaries to operate, which can be obtained [here](https://github.com/vpodpecan/lemmagen3/tree/master/src/lemmagen3/models).
|
||||
|
||||
*Syntax*
|
||||
|
||||
``` sql
|
||||
lemmatize('language', word)
|
||||
```
|
||||
|
||||
*Arguments*
|
||||
|
||||
- `language` — Language which rules will be applied. [String](../data-types/string.md#string).
|
||||
- `word` — Word that needs to be lemmatized. Must be lowercase. [String](../data-types/string.md#string).
|
||||
|
||||
*Examples*
|
||||
|
||||
Query:
|
||||
|
||||
``` sql
|
||||
SELECT lemmatize('en', 'wolves');
|
||||
```
|
||||
|
||||
Result:
|
||||
|
||||
``` text
|
||||
┌─lemmatize("wolves")─┐
|
||||
│ "wolf" │
|
||||
└─────────────────────┘
|
||||
```
|
||||
|
||||
*Configuration*
|
||||
|
||||
This configuration specifies that the dictionary `en.bin` should be used for lemmatization of English (`en`) words. The `.bin` files can be downloaded from
|
||||
[here](https://github.com/vpodpecan/lemmagen3/tree/master/src/lemmagen3/models).
|
||||
|
||||
``` xml
|
||||
<lemmatizers>
|
||||
<lemmatizer>
|
||||
<!-- highlight-start -->
|
||||
<lang>en</lang>
|
||||
<path>en.bin</path>
|
||||
<!-- highlight-end -->
|
||||
</lemmatizer>
|
||||
</lemmatizers>
|
||||
```
|
||||
|
||||
## stem
|
||||
|
||||
Performs stemming on a given word.
|
||||
|
||||
### Syntax
|
||||
*Syntax*
|
||||
|
||||
``` sql
|
||||
stem('language', word)
|
||||
```
|
||||
|
||||
### Arguments
|
||||
*Arguments*
|
||||
|
||||
- `language` — Language which rules will be applied. Use the two letter [ISO 639-1 code](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes).
|
||||
- `word` — word that needs to be stemmed. Must be in lowercase. [String](../data-types/string.md#string).
|
||||
|
||||
### Examples
|
||||
*Examples*
|
||||
|
||||
Query:
|
||||
|
||||
@ -40,7 +311,7 @@ Result:
|
||||
│ ['I','think','it','is','a','bless','in','disguis'] │
|
||||
└────────────────────────────────────────────────────┘
|
||||
```
|
||||
### Supported languages for stem()
|
||||
*Supported languages for stem()*
|
||||
|
||||
:::note
|
||||
The stem() function uses the [Snowball stemming](https://snowballstem.org/) library, see the Snowball website for updated languages etc.
|
||||
@ -76,53 +347,6 @@ The stem() function uses the [Snowball stemming](https://snowballstem.org/) libr
|
||||
- Turkish
|
||||
- Yiddish
|
||||
|
||||
## lemmatize
|
||||
|
||||
Performs lemmatization on a given word. Needs dictionaries to operate, which can be obtained [here](https://github.com/vpodpecan/lemmagen3/tree/master/src/lemmagen3/models).
|
||||
|
||||
### Syntax
|
||||
|
||||
``` sql
|
||||
lemmatize('language', word)
|
||||
```
|
||||
|
||||
### Arguments
|
||||
|
||||
- `language` — Language which rules will be applied. [String](../data-types/string.md#string).
|
||||
- `word` — Word that needs to be lemmatized. Must be lowercase. [String](../data-types/string.md#string).
|
||||
|
||||
### Examples
|
||||
|
||||
Query:
|
||||
|
||||
``` sql
|
||||
SELECT lemmatize('en', 'wolves');
|
||||
```
|
||||
|
||||
Result:
|
||||
|
||||
``` text
|
||||
┌─lemmatize("wolves")─┐
|
||||
│ "wolf" │
|
||||
└─────────────────────┘
|
||||
```
|
||||
|
||||
### Configuration
|
||||
|
||||
This configuration specifies that the dictionary `en.bin` should be used for lemmatization of English (`en`) words. The `.bin` files can be downloaded from
|
||||
[here](https://github.com/vpodpecan/lemmagen3/tree/master/src/lemmagen3/models).
|
||||
|
||||
``` xml
|
||||
<lemmatizers>
|
||||
<lemmatizer>
|
||||
<!-- highlight-start -->
|
||||
<lang>en</lang>
|
||||
<path>en.bin</path>
|
||||
<!-- highlight-end -->
|
||||
</lemmatizer>
|
||||
</lemmatizers>
|
||||
```
|
||||
|
||||
## synonyms
|
||||
|
||||
Finds synonyms to a given word. There are two types of synonym extensions: `plain` and `wordnet`.
|
||||
@ -131,18 +355,18 @@ With the `plain` extension type we need to provide a path to a simple text file,
|
||||
|
||||
With the `wordnet` extension type we need to provide a path to a directory with WordNet thesaurus in it. Thesaurus must contain a WordNet sense index.
|
||||
|
||||
### Syntax
|
||||
*Syntax*
|
||||
|
||||
``` sql
|
||||
synonyms('extension_name', word)
|
||||
```
|
||||
|
||||
### Arguments
|
||||
*Arguments*
|
||||
|
||||
- `extension_name` — Name of the extension in which search will be performed. [String](../data-types/string.md#string).
|
||||
- `word` — Word that will be searched in extension. [String](../data-types/string.md#string).
|
||||
|
||||
### Examples
|
||||
*Examples*
|
||||
|
||||
Query:
|
||||
|
||||
@ -158,7 +382,7 @@ Result:
|
||||
└──────────────────────────────────────────┘
|
||||
```
|
||||
|
||||
### Configuration
|
||||
*Configuration*
|
||||
``` xml
|
||||
<synonyms_extensions>
|
||||
<extension>
|
||||
@ -173,153 +397,3 @@ Result:
|
||||
</extension>
|
||||
</synonyms_extensions>
|
||||
```
|
||||
|
||||
## detectLanguage
|
||||
|
||||
Detects the language of the UTF8-encoded input string. The function uses the [CLD2 library](https://github.com/CLD2Owners/cld2) for detection, and it returns the 2-letter ISO language code.
|
||||
|
||||
The `detectLanguage` function works best when providing over 200 characters in the input string.
|
||||
|
||||
### Syntax
|
||||
|
||||
``` sql
|
||||
detectLanguage('text_to_be_analyzed')
|
||||
```
|
||||
|
||||
### Arguments
|
||||
|
||||
- `text_to_be_analyzed` — A collection (or sentences) of strings to analyze. [String](../data-types/string.md#string).
|
||||
|
||||
### Returned value
|
||||
|
||||
- The 2-letter ISO code of the detected language
|
||||
|
||||
Other possible results:
|
||||
|
||||
- `un` = unknown, can not detect any language.
|
||||
- `other` = the detected language does not have 2 letter code.
|
||||
|
||||
### Examples
|
||||
|
||||
Query:
|
||||
|
||||
```sql
|
||||
SELECT detectLanguage('Je pense que je ne parviendrai jamais à parler français comme un natif. Where there’s a will, there’s a way.');
|
||||
```
|
||||
|
||||
Result:
|
||||
|
||||
```response
|
||||
fr
|
||||
```
|
||||
|
||||
## detectLanguageMixed
|
||||
|
||||
Similar to the `detectLanguage` function, but `detectLanguageMixed` returns a `Map` of 2-letter language codes that are mapped to the percentage of the certain language in the text.
|
||||
|
||||
|
||||
### Syntax
|
||||
|
||||
``` sql
|
||||
detectLanguageMixed('text_to_be_analyzed')
|
||||
```
|
||||
|
||||
### Arguments
|
||||
|
||||
- `text_to_be_analyzed` — A collection (or sentences) of strings to analyze. [String](../data-types/string.md#string).
|
||||
|
||||
### Returned value
|
||||
|
||||
- `Map(String, Float32)`: The keys are 2-letter ISO codes and the values are a percentage of text found for that language
|
||||
|
||||
|
||||
### Examples
|
||||
|
||||
Query:
|
||||
|
||||
```sql
|
||||
SELECT detectLanguageMixed('二兎を追う者は一兎をも得ず二兎を追う者は一兎をも得ず A vaincre sans peril, on triomphe sans gloire.');
|
||||
```
|
||||
|
||||
Result:
|
||||
|
||||
```response
|
||||
┌─detectLanguageMixed()─┐
|
||||
│ {'ja':0.62,'fr':0.36 │
|
||||
└───────────────────────┘
|
||||
```
|
||||
|
||||
## detectLanguageUnknown
|
||||
|
||||
Similar to the `detectLanguage` function, except the `detectLanguageUnknown` function works with non-UTF8-encoded strings. Prefer this version when your character set is UTF-16 or UTF-32.
|
||||
|
||||
|
||||
### Syntax
|
||||
|
||||
``` sql
|
||||
detectLanguageUnknown('text_to_be_analyzed')
|
||||
```
|
||||
|
||||
### Arguments
|
||||
|
||||
- `text_to_be_analyzed` — A collection (or sentences) of strings to analyze. [String](../data-types/string.md#string).
|
||||
|
||||
### Returned value
|
||||
|
||||
- The 2-letter ISO code of the detected language
|
||||
|
||||
Other possible results:
|
||||
|
||||
- `un` = unknown, can not detect any language.
|
||||
- `other` = the detected language does not have 2 letter code.
|
||||
|
||||
### Examples
|
||||
|
||||
Query:
|
||||
|
||||
```sql
|
||||
SELECT detectLanguageUnknown('Ich bleibe für ein paar Tage.');
|
||||
```
|
||||
|
||||
Result:
|
||||
|
||||
```response
|
||||
┌─detectLanguageUnknown('Ich bleibe für ein paar Tage.')─┐
|
||||
│ de │
|
||||
└────────────────────────────────────────────────────────┘
|
||||
```
|
||||
|
||||
## detectCharset
|
||||
|
||||
The `detectCharset` function detects the character set of the non-UTF8-encoded input string.
|
||||
|
||||
|
||||
### Syntax
|
||||
|
||||
``` sql
|
||||
detectCharset('text_to_be_analyzed')
|
||||
```
|
||||
|
||||
### Arguments
|
||||
|
||||
- `text_to_be_analyzed` — A collection (or sentences) of strings to analyze. [String](../data-types/string.md#string).
|
||||
|
||||
### Returned value
|
||||
|
||||
- A `String` containing the code of the detected character set
|
||||
|
||||
### Examples
|
||||
|
||||
Query:
|
||||
|
||||
```sql
|
||||
SELECT detectCharset('Ich bleibe für ein paar Tage.');
|
||||
```
|
||||
|
||||
Result:
|
||||
|
||||
```response
|
||||
┌─detectCharset('Ich bleibe für ein paar Tage.')─┐
|
||||
│ WINDOWS-1252 │
|
||||
└────────────────────────────────────────────────┘
|
||||
```
|
||||
|
@ -48,6 +48,7 @@ AutoML
|
||||
Autocompletion
|
||||
AvroConfluent
|
||||
BIGINT
|
||||
bigrams
|
||||
BIGSERIAL
|
||||
BORO
|
||||
BSON
|
||||
@ -1008,6 +1009,7 @@ UncompressedCacheBytes
|
||||
UncompressedCacheCells
|
||||
UnidirectionalEdgeIsValid
|
||||
UniqThetaSketch
|
||||
unigrams
|
||||
Updatable
|
||||
Uppercased
|
||||
Uptime
|
||||
@ -1507,9 +1509,11 @@ deserializing
|
||||
destructor
|
||||
destructors
|
||||
detectCharset
|
||||
detectTonality
|
||||
detectLanguage
|
||||
detectLanguageMixed
|
||||
detectLanguageUnknown
|
||||
detectProgrammingLanguage
|
||||
determinator
|
||||
deterministically
|
||||
dictGet
|
||||
|
Loading…
Reference in New Issue
Block a user