arrow headers generated by flatc are moved from src to binary

This commit is contained in:
Maxim Ulanovskiy 2019-12-26 20:26:22 +03:00
parent 32995e3ad5
commit cc13466baa
7 changed files with 12 additions and 4603 deletions

View File

@ -102,10 +102,16 @@ add_subdirectory(${FLATBUFFERS_SRC_DIR} "${FLATBUFFERS_BINARY_DIR}")
set(ARROW_IPC_SRC_DIR ${ARROW_SRC_DIR}/arrow/ipc)
set(ARROW_FORMAT_SRC_DIR ${ARROW_SRC_DIR}/../../format)
set(FLATBUFFERS_COMPILED_OUT_DIR ${CMAKE_CURRENT_SOURCE_DIR}/cpp/src/arrow/ipc)
set(ARROW_GENERATED_INCLUDE_DIR ${CMAKE_CURRENT_BINARY_DIR}/arrow_gen_headers)
set(FLATBUFFERS_COMPILED_OUT_DIR ${ARROW_GENERATED_INCLUDE_DIR}/arrow/ipc)
set(FBS_OUTPUT_FILES "${FLATBUFFERS_COMPILED_OUT_DIR}/File_generated.h" "${FLATBUFFERS_COMPILED_OUT_DIR}/Message_generated.h"
"${FLATBUFFERS_COMPILED_OUT_DIR}/feather_generated.h")
set(FBS_OUTPUT_FILES
"${FLATBUFFERS_COMPILED_OUT_DIR}/File_generated.h"
"${FLATBUFFERS_COMPILED_OUT_DIR}/Message_generated.h"
"${FLATBUFFERS_COMPILED_OUT_DIR}/feather_generated.h"
"${FLATBUFFERS_COMPILED_OUT_DIR}/Schema_generated.h"
"${FLATBUFFERS_COMPILED_OUT_DIR}/SparseTensor_generated.h"
"${FLATBUFFERS_COMPILED_OUT_DIR}/Tensor_generated.h")
set(FBS_SRC
${ARROW_FORMAT_SRC_DIR}/Message.fbs
@ -137,7 +143,7 @@ add_custom_command(OUTPUT ${FBS_OUTPUT_FILES}
add_custom_target(metadata_fbs DEPENDS ${FBS_OUTPUT_FILES})
add_dependencies(metadata_fbs flatc)
# arrow-cmake cmake file calling orc cmake subroutine which detects certain compiler features.
# arrow-cmake cmake file calling orc cmake subroutine which detects certain compiler features.
# Apple Clang compiler failed to compile this code without specifying c++11 standard.
# As result these compiler features detected as absent. In result it failed to compile orc itself.
# In orc makefile there is code that sets flags, but arrow-cmake ignores these flags.
@ -231,12 +237,10 @@ set(ARROW_SRCS
${LIBRARY_DIR}/ipc/dictionary.cc
${LIBRARY_DIR}/ipc/feather.cc
# ${LIBRARY_DIR}/ipc/file_to_stream.cc
${LIBRARY_DIR}/ipc/message.cc
${LIBRARY_DIR}/ipc/metadata_internal.cc
${LIBRARY_DIR}/ipc/options.cc
${LIBRARY_DIR}/ipc/reader.cc
# ${LIBRARY_DIR}/ipc/stream_to_file.cc
${LIBRARY_DIR}/ipc/writer.cc
${LIBRARY_DIR}/io/buffered.cc
@ -249,8 +253,6 @@ set(ARROW_SRCS
${LIBRARY_DIR}/util/basic_decimal.cc
${LIBRARY_DIR}/util/bit_util.cc
# ${LIBRARY_DIR}/util/compression_brotli.cc
# ${LIBRARY_DIR}/util/compression_bz2.cc
${LIBRARY_DIR}/util/compression.cc
${LIBRARY_DIR}/util/compression_lz4.cc
${LIBRARY_DIR}/util/compression_snappy.cc
@ -268,7 +270,6 @@ set(ARROW_SRCS
${LIBRARY_DIR}/util/task_group.cc
${LIBRARY_DIR}/util/thread_pool.cc
${LIBRARY_DIR}/util/trie.cc
# ${LIBRARY_DIR}/util/uri.cc
${LIBRARY_DIR}/util/utf8.cc
${LIBRARY_DIR}/vendored/base64.cpp
@ -356,6 +357,8 @@ target_include_directories(${ARROW_LIBRARY} PRIVATE SYSTEM ${ORC_BUILD_INCLUDE_D
target_include_directories(${ARROW_LIBRARY} PRIVATE SYSTEM ${ORC_ADDITION_SOURCE_DIR})
target_include_directories(${ARROW_LIBRARY} PRIVATE SYSTEM ${ARROW_SRC_DIR})
target_include_directories(${ARROW_LIBRARY} PRIVATE SYSTEM ${FLATBUFFERS_INCLUDE_DIR})
target_include_directories(${ARROW_LIBRARY} PRIVATE SYSTEM ${ARROW_GENERATED_INCLUDE_DIR})
# === parquet
set(LIBRARY_DIR ${ClickHouse_SOURCE_DIR}/contrib/arrow/cpp/src/parquet)

View File

@ -1,181 +0,0 @@
// automatically generated by the FlatBuffers compiler, do not modify
#ifndef FLATBUFFERS_GENERATED_FILE_ORG_APACHE_ARROW_FLATBUF_H_
#define FLATBUFFERS_GENERATED_FILE_ORG_APACHE_ARROW_FLATBUF_H_
#include "flatbuffers/flatbuffers.h"
#include "Schema_generated.h"
namespace org {
namespace apache {
namespace arrow {
namespace flatbuf {
struct Footer;
struct Block;
FLATBUFFERS_MANUALLY_ALIGNED_STRUCT(8) Block FLATBUFFERS_FINAL_CLASS {
private:
int64_t offset_;
int32_t metaDataLength_;
int32_t padding0__;
int64_t bodyLength_;
public:
Block() {
memset(static_cast<void *>(this), 0, sizeof(Block));
}
Block(int64_t _offset, int32_t _metaDataLength, int64_t _bodyLength)
: offset_(flatbuffers::EndianScalar(_offset)),
metaDataLength_(flatbuffers::EndianScalar(_metaDataLength)),
padding0__(0),
bodyLength_(flatbuffers::EndianScalar(_bodyLength)) {
(void)padding0__;
}
/// Index to the start of the RecordBlock (note this is past the Message header)
int64_t offset() const {
return flatbuffers::EndianScalar(offset_);
}
/// Length of the metadata
int32_t metaDataLength() const {
return flatbuffers::EndianScalar(metaDataLength_);
}
/// Length of the data (this is aligned so there can be a gap between this and
/// the metatdata).
int64_t bodyLength() const {
return flatbuffers::EndianScalar(bodyLength_);
}
};
FLATBUFFERS_STRUCT_END(Block, 24);
/// ----------------------------------------------------------------------
/// Arrow File metadata
///
struct Footer FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table {
enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE {
VT_VERSION = 4,
VT_SCHEMA = 6,
VT_DICTIONARIES = 8,
VT_RECORDBATCHES = 10
};
MetadataVersion version() const {
return static_cast<MetadataVersion>(GetField<int16_t>(VT_VERSION, 0));
}
const Schema *schema() const {
return GetPointer<const Schema *>(VT_SCHEMA);
}
const flatbuffers::Vector<const Block *> *dictionaries() const {
return GetPointer<const flatbuffers::Vector<const Block *> *>(VT_DICTIONARIES);
}
const flatbuffers::Vector<const Block *> *recordBatches() const {
return GetPointer<const flatbuffers::Vector<const Block *> *>(VT_RECORDBATCHES);
}
bool Verify(flatbuffers::Verifier &verifier) const {
return VerifyTableStart(verifier) &&
VerifyField<int16_t>(verifier, VT_VERSION) &&
VerifyOffset(verifier, VT_SCHEMA) &&
verifier.VerifyTable(schema()) &&
VerifyOffset(verifier, VT_DICTIONARIES) &&
verifier.VerifyVector(dictionaries()) &&
VerifyOffset(verifier, VT_RECORDBATCHES) &&
verifier.VerifyVector(recordBatches()) &&
verifier.EndTable();
}
};
struct FooterBuilder {
flatbuffers::FlatBufferBuilder &fbb_;
flatbuffers::uoffset_t start_;
void add_version(MetadataVersion version) {
fbb_.AddElement<int16_t>(Footer::VT_VERSION, static_cast<int16_t>(version), 0);
}
void add_schema(flatbuffers::Offset<Schema> schema) {
fbb_.AddOffset(Footer::VT_SCHEMA, schema);
}
void add_dictionaries(flatbuffers::Offset<flatbuffers::Vector<const Block *>> dictionaries) {
fbb_.AddOffset(Footer::VT_DICTIONARIES, dictionaries);
}
void add_recordBatches(flatbuffers::Offset<flatbuffers::Vector<const Block *>> recordBatches) {
fbb_.AddOffset(Footer::VT_RECORDBATCHES, recordBatches);
}
explicit FooterBuilder(flatbuffers::FlatBufferBuilder &_fbb)
: fbb_(_fbb) {
start_ = fbb_.StartTable();
}
FooterBuilder &operator=(const FooterBuilder &);
flatbuffers::Offset<Footer> Finish() {
const auto end = fbb_.EndTable(start_);
auto o = flatbuffers::Offset<Footer>(end);
return o;
}
};
inline flatbuffers::Offset<Footer> CreateFooter(
flatbuffers::FlatBufferBuilder &_fbb,
MetadataVersion version = MetadataVersion_V1,
flatbuffers::Offset<Schema> schema = 0,
flatbuffers::Offset<flatbuffers::Vector<const Block *>> dictionaries = 0,
flatbuffers::Offset<flatbuffers::Vector<const Block *>> recordBatches = 0) {
FooterBuilder builder_(_fbb);
builder_.add_recordBatches(recordBatches);
builder_.add_dictionaries(dictionaries);
builder_.add_schema(schema);
builder_.add_version(version);
return builder_.Finish();
}
inline flatbuffers::Offset<Footer> CreateFooterDirect(
flatbuffers::FlatBufferBuilder &_fbb,
MetadataVersion version = MetadataVersion_V1,
flatbuffers::Offset<Schema> schema = 0,
const std::vector<Block> *dictionaries = nullptr,
const std::vector<Block> *recordBatches = nullptr) {
auto dictionaries__ = dictionaries ? _fbb.CreateVectorOfStructs<Block>(*dictionaries) : 0;
auto recordBatches__ = recordBatches ? _fbb.CreateVectorOfStructs<Block>(*recordBatches) : 0;
return org::apache::arrow::flatbuf::CreateFooter(
_fbb,
version,
schema,
dictionaries__,
recordBatches__);
}
inline const org::apache::arrow::flatbuf::Footer *GetFooter(const void *buf) {
return flatbuffers::GetRoot<org::apache::arrow::flatbuf::Footer>(buf);
}
inline const org::apache::arrow::flatbuf::Footer *GetSizePrefixedFooter(const void *buf) {
return flatbuffers::GetSizePrefixedRoot<org::apache::arrow::flatbuf::Footer>(buf);
}
inline bool VerifyFooterBuffer(
flatbuffers::Verifier &verifier) {
return verifier.VerifyBuffer<org::apache::arrow::flatbuf::Footer>(nullptr);
}
inline bool VerifySizePrefixedFooterBuffer(
flatbuffers::Verifier &verifier) {
return verifier.VerifySizePrefixedBuffer<org::apache::arrow::flatbuf::Footer>(nullptr);
}
inline void FinishFooterBuffer(
flatbuffers::FlatBufferBuilder &fbb,
flatbuffers::Offset<org::apache::arrow::flatbuf::Footer> root) {
fbb.Finish(root);
}
inline void FinishSizePrefixedFooterBuffer(
flatbuffers::FlatBufferBuilder &fbb,
flatbuffers::Offset<org::apache::arrow::flatbuf::Footer> root) {
fbb.FinishSizePrefixed(root);
}
} // namespace flatbuf
} // namespace arrow
} // namespace apache
} // namespace org
#endif // FLATBUFFERS_GENERATED_FILE_ORG_APACHE_ARROW_FLATBUF_H_

View File

@ -1,508 +0,0 @@
// automatically generated by the FlatBuffers compiler, do not modify
#ifndef FLATBUFFERS_GENERATED_MESSAGE_ORG_APACHE_ARROW_FLATBUF_H_
#define FLATBUFFERS_GENERATED_MESSAGE_ORG_APACHE_ARROW_FLATBUF_H_
#include "flatbuffers/flatbuffers.h"
#include "Schema_generated.h"
#include "SparseTensor_generated.h"
#include "Tensor_generated.h"
namespace org {
namespace apache {
namespace arrow {
namespace flatbuf {
struct FieldNode;
struct RecordBatch;
struct DictionaryBatch;
struct Message;
/// ----------------------------------------------------------------------
/// The root Message type
/// This union enables us to easily send different message types without
/// redundant storage, and in the future we can easily add new message types.
///
/// Arrow implementations do not need to implement all of the message types,
/// which may include experimental metadata types. For maximum compatibility,
/// it is best to send data using RecordBatch
enum MessageHeader {
MessageHeader_NONE = 0,
MessageHeader_Schema = 1,
MessageHeader_DictionaryBatch = 2,
MessageHeader_RecordBatch = 3,
MessageHeader_Tensor = 4,
MessageHeader_SparseTensor = 5,
MessageHeader_MIN = MessageHeader_NONE,
MessageHeader_MAX = MessageHeader_SparseTensor
};
inline const MessageHeader (&EnumValuesMessageHeader())[6] {
static const MessageHeader values[] = {
MessageHeader_NONE,
MessageHeader_Schema,
MessageHeader_DictionaryBatch,
MessageHeader_RecordBatch,
MessageHeader_Tensor,
MessageHeader_SparseTensor
};
return values;
}
inline const char * const *EnumNamesMessageHeader() {
static const char * const names[] = {
"NONE",
"Schema",
"DictionaryBatch",
"RecordBatch",
"Tensor",
"SparseTensor",
nullptr
};
return names;
}
inline const char *EnumNameMessageHeader(MessageHeader e) {
if (e < MessageHeader_NONE || e > MessageHeader_SparseTensor) return "";
const size_t index = static_cast<size_t>(e);
return EnumNamesMessageHeader()[index];
}
template<typename T> struct MessageHeaderTraits {
static const MessageHeader enum_value = MessageHeader_NONE;
};
template<> struct MessageHeaderTraits<Schema> {
static const MessageHeader enum_value = MessageHeader_Schema;
};
template<> struct MessageHeaderTraits<DictionaryBatch> {
static const MessageHeader enum_value = MessageHeader_DictionaryBatch;
};
template<> struct MessageHeaderTraits<RecordBatch> {
static const MessageHeader enum_value = MessageHeader_RecordBatch;
};
template<> struct MessageHeaderTraits<Tensor> {
static const MessageHeader enum_value = MessageHeader_Tensor;
};
template<> struct MessageHeaderTraits<SparseTensor> {
static const MessageHeader enum_value = MessageHeader_SparseTensor;
};
bool VerifyMessageHeader(flatbuffers::Verifier &verifier, const void *obj, MessageHeader type);
bool VerifyMessageHeaderVector(flatbuffers::Verifier &verifier, const flatbuffers::Vector<flatbuffers::Offset<void>> *values, const flatbuffers::Vector<uint8_t> *types);
/// ----------------------------------------------------------------------
/// Data structures for describing a table row batch (a collection of
/// equal-length Arrow arrays)
/// Metadata about a field at some level of a nested type tree (but not
/// its children).
///
/// For example, a List<Int16> with values [[1, 2, 3], null, [4], [5, 6], null]
/// would have {length: 5, null_count: 2} for its List node, and {length: 6,
/// null_count: 0} for its Int16 node, as separate FieldNode structs
FLATBUFFERS_MANUALLY_ALIGNED_STRUCT(8) FieldNode FLATBUFFERS_FINAL_CLASS {
private:
int64_t length_;
int64_t null_count_;
public:
FieldNode() {
memset(static_cast<void *>(this), 0, sizeof(FieldNode));
}
FieldNode(int64_t _length, int64_t _null_count)
: length_(flatbuffers::EndianScalar(_length)),
null_count_(flatbuffers::EndianScalar(_null_count)) {
}
/// The number of value slots in the Arrow array at this level of a nested
/// tree
int64_t length() const {
return flatbuffers::EndianScalar(length_);
}
/// The number of observed nulls. Fields with null_count == 0 may choose not
/// to write their physical validity bitmap out as a materialized buffer,
/// instead setting the length of the bitmap buffer to 0.
int64_t null_count() const {
return flatbuffers::EndianScalar(null_count_);
}
};
FLATBUFFERS_STRUCT_END(FieldNode, 16);
/// A data header describing the shared memory layout of a "record" or "row"
/// batch. Some systems call this a "row batch" internally and others a "record
/// batch".
struct RecordBatch FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table {
enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE {
VT_LENGTH = 4,
VT_NODES = 6,
VT_BUFFERS = 8
};
/// number of records / rows. The arrays in the batch should all have this
/// length
int64_t length() const {
return GetField<int64_t>(VT_LENGTH, 0);
}
/// Nodes correspond to the pre-ordered flattened logical schema
const flatbuffers::Vector<const FieldNode *> *nodes() const {
return GetPointer<const flatbuffers::Vector<const FieldNode *> *>(VT_NODES);
}
/// Buffers correspond to the pre-ordered flattened buffer tree
///
/// The number of buffers appended to this list depends on the schema. For
/// example, most primitive arrays will have 2 buffers, 1 for the validity
/// bitmap and 1 for the values. For struct arrays, there will only be a
/// single buffer for the validity (nulls) bitmap
const flatbuffers::Vector<const Buffer *> *buffers() const {
return GetPointer<const flatbuffers::Vector<const Buffer *> *>(VT_BUFFERS);
}
bool Verify(flatbuffers::Verifier &verifier) const {
return VerifyTableStart(verifier) &&
VerifyField<int64_t>(verifier, VT_LENGTH) &&
VerifyOffset(verifier, VT_NODES) &&
verifier.VerifyVector(nodes()) &&
VerifyOffset(verifier, VT_BUFFERS) &&
verifier.VerifyVector(buffers()) &&
verifier.EndTable();
}
};
struct RecordBatchBuilder {
flatbuffers::FlatBufferBuilder &fbb_;
flatbuffers::uoffset_t start_;
void add_length(int64_t length) {
fbb_.AddElement<int64_t>(RecordBatch::VT_LENGTH, length, 0);
}
void add_nodes(flatbuffers::Offset<flatbuffers::Vector<const FieldNode *>> nodes) {
fbb_.AddOffset(RecordBatch::VT_NODES, nodes);
}
void add_buffers(flatbuffers::Offset<flatbuffers::Vector<const Buffer *>> buffers) {
fbb_.AddOffset(RecordBatch::VT_BUFFERS, buffers);
}
explicit RecordBatchBuilder(flatbuffers::FlatBufferBuilder &_fbb)
: fbb_(_fbb) {
start_ = fbb_.StartTable();
}
RecordBatchBuilder &operator=(const RecordBatchBuilder &);
flatbuffers::Offset<RecordBatch> Finish() {
const auto end = fbb_.EndTable(start_);
auto o = flatbuffers::Offset<RecordBatch>(end);
return o;
}
};
inline flatbuffers::Offset<RecordBatch> CreateRecordBatch(
flatbuffers::FlatBufferBuilder &_fbb,
int64_t length = 0,
flatbuffers::Offset<flatbuffers::Vector<const FieldNode *>> nodes = 0,
flatbuffers::Offset<flatbuffers::Vector<const Buffer *>> buffers = 0) {
RecordBatchBuilder builder_(_fbb);
builder_.add_length(length);
builder_.add_buffers(buffers);
builder_.add_nodes(nodes);
return builder_.Finish();
}
inline flatbuffers::Offset<RecordBatch> CreateRecordBatchDirect(
flatbuffers::FlatBufferBuilder &_fbb,
int64_t length = 0,
const std::vector<FieldNode> *nodes = nullptr,
const std::vector<Buffer> *buffers = nullptr) {
auto nodes__ = nodes ? _fbb.CreateVectorOfStructs<FieldNode>(*nodes) : 0;
auto buffers__ = buffers ? _fbb.CreateVectorOfStructs<Buffer>(*buffers) : 0;
return org::apache::arrow::flatbuf::CreateRecordBatch(
_fbb,
length,
nodes__,
buffers__);
}
/// For sending dictionary encoding information. Any Field can be
/// dictionary-encoded, but in this case none of its children may be
/// dictionary-encoded.
/// There is one vector / column per dictionary, but that vector / column
/// may be spread across multiple dictionary batches by using the isDelta
/// flag
struct DictionaryBatch FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table {
enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE {
VT_ID = 4,
VT_DATA = 6,
VT_ISDELTA = 8
};
int64_t id() const {
return GetField<int64_t>(VT_ID, 0);
}
const RecordBatch *data() const {
return GetPointer<const RecordBatch *>(VT_DATA);
}
/// If isDelta is true the values in the dictionary are to be appended to a
/// dictionary with the indicated id
bool isDelta() const {
return GetField<uint8_t>(VT_ISDELTA, 0) != 0;
}
bool Verify(flatbuffers::Verifier &verifier) const {
return VerifyTableStart(verifier) &&
VerifyField<int64_t>(verifier, VT_ID) &&
VerifyOffset(verifier, VT_DATA) &&
verifier.VerifyTable(data()) &&
VerifyField<uint8_t>(verifier, VT_ISDELTA) &&
verifier.EndTable();
}
};
struct DictionaryBatchBuilder {
flatbuffers::FlatBufferBuilder &fbb_;
flatbuffers::uoffset_t start_;
void add_id(int64_t id) {
fbb_.AddElement<int64_t>(DictionaryBatch::VT_ID, id, 0);
}
void add_data(flatbuffers::Offset<RecordBatch> data) {
fbb_.AddOffset(DictionaryBatch::VT_DATA, data);
}
void add_isDelta(bool isDelta) {
fbb_.AddElement<uint8_t>(DictionaryBatch::VT_ISDELTA, static_cast<uint8_t>(isDelta), 0);
}
explicit DictionaryBatchBuilder(flatbuffers::FlatBufferBuilder &_fbb)
: fbb_(_fbb) {
start_ = fbb_.StartTable();
}
DictionaryBatchBuilder &operator=(const DictionaryBatchBuilder &);
flatbuffers::Offset<DictionaryBatch> Finish() {
const auto end = fbb_.EndTable(start_);
auto o = flatbuffers::Offset<DictionaryBatch>(end);
return o;
}
};
inline flatbuffers::Offset<DictionaryBatch> CreateDictionaryBatch(
flatbuffers::FlatBufferBuilder &_fbb,
int64_t id = 0,
flatbuffers::Offset<RecordBatch> data = 0,
bool isDelta = false) {
DictionaryBatchBuilder builder_(_fbb);
builder_.add_id(id);
builder_.add_data(data);
builder_.add_isDelta(isDelta);
return builder_.Finish();
}
struct Message FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table {
enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE {
VT_VERSION = 4,
VT_HEADER_TYPE = 6,
VT_HEADER = 8,
VT_BODYLENGTH = 10,
VT_CUSTOM_METADATA = 12
};
MetadataVersion version() const {
return static_cast<MetadataVersion>(GetField<int16_t>(VT_VERSION, 0));
}
MessageHeader header_type() const {
return static_cast<MessageHeader>(GetField<uint8_t>(VT_HEADER_TYPE, 0));
}
const void *header() const {
return GetPointer<const void *>(VT_HEADER);
}
template<typename T> const T *header_as() const;
const Schema *header_as_Schema() const {
return header_type() == MessageHeader_Schema ? static_cast<const Schema *>(header()) : nullptr;
}
const DictionaryBatch *header_as_DictionaryBatch() const {
return header_type() == MessageHeader_DictionaryBatch ? static_cast<const DictionaryBatch *>(header()) : nullptr;
}
const RecordBatch *header_as_RecordBatch() const {
return header_type() == MessageHeader_RecordBatch ? static_cast<const RecordBatch *>(header()) : nullptr;
}
const Tensor *header_as_Tensor() const {
return header_type() == MessageHeader_Tensor ? static_cast<const Tensor *>(header()) : nullptr;
}
const SparseTensor *header_as_SparseTensor() const {
return header_type() == MessageHeader_SparseTensor ? static_cast<const SparseTensor *>(header()) : nullptr;
}
int64_t bodyLength() const {
return GetField<int64_t>(VT_BODYLENGTH, 0);
}
const flatbuffers::Vector<flatbuffers::Offset<KeyValue>> *custom_metadata() const {
return GetPointer<const flatbuffers::Vector<flatbuffers::Offset<KeyValue>> *>(VT_CUSTOM_METADATA);
}
bool Verify(flatbuffers::Verifier &verifier) const {
return VerifyTableStart(verifier) &&
VerifyField<int16_t>(verifier, VT_VERSION) &&
VerifyField<uint8_t>(verifier, VT_HEADER_TYPE) &&
VerifyOffset(verifier, VT_HEADER) &&
VerifyMessageHeader(verifier, header(), header_type()) &&
VerifyField<int64_t>(verifier, VT_BODYLENGTH) &&
VerifyOffset(verifier, VT_CUSTOM_METADATA) &&
verifier.VerifyVector(custom_metadata()) &&
verifier.VerifyVectorOfTables(custom_metadata()) &&
verifier.EndTable();
}
};
template<> inline const Schema *Message::header_as<Schema>() const {
return header_as_Schema();
}
template<> inline const DictionaryBatch *Message::header_as<DictionaryBatch>() const {
return header_as_DictionaryBatch();
}
template<> inline const RecordBatch *Message::header_as<RecordBatch>() const {
return header_as_RecordBatch();
}
template<> inline const Tensor *Message::header_as<Tensor>() const {
return header_as_Tensor();
}
template<> inline const SparseTensor *Message::header_as<SparseTensor>() const {
return header_as_SparseTensor();
}
struct MessageBuilder {
flatbuffers::FlatBufferBuilder &fbb_;
flatbuffers::uoffset_t start_;
void add_version(MetadataVersion version) {
fbb_.AddElement<int16_t>(Message::VT_VERSION, static_cast<int16_t>(version), 0);
}
void add_header_type(MessageHeader header_type) {
fbb_.AddElement<uint8_t>(Message::VT_HEADER_TYPE, static_cast<uint8_t>(header_type), 0);
}
void add_header(flatbuffers::Offset<void> header) {
fbb_.AddOffset(Message::VT_HEADER, header);
}
void add_bodyLength(int64_t bodyLength) {
fbb_.AddElement<int64_t>(Message::VT_BODYLENGTH, bodyLength, 0);
}
void add_custom_metadata(flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<KeyValue>>> custom_metadata) {
fbb_.AddOffset(Message::VT_CUSTOM_METADATA, custom_metadata);
}
explicit MessageBuilder(flatbuffers::FlatBufferBuilder &_fbb)
: fbb_(_fbb) {
start_ = fbb_.StartTable();
}
MessageBuilder &operator=(const MessageBuilder &);
flatbuffers::Offset<Message> Finish() {
const auto end = fbb_.EndTable(start_);
auto o = flatbuffers::Offset<Message>(end);
return o;
}
};
inline flatbuffers::Offset<Message> CreateMessage(
flatbuffers::FlatBufferBuilder &_fbb,
MetadataVersion version = MetadataVersion_V1,
MessageHeader header_type = MessageHeader_NONE,
flatbuffers::Offset<void> header = 0,
int64_t bodyLength = 0,
flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<KeyValue>>> custom_metadata = 0) {
MessageBuilder builder_(_fbb);
builder_.add_bodyLength(bodyLength);
builder_.add_custom_metadata(custom_metadata);
builder_.add_header(header);
builder_.add_version(version);
builder_.add_header_type(header_type);
return builder_.Finish();
}
inline flatbuffers::Offset<Message> CreateMessageDirect(
flatbuffers::FlatBufferBuilder &_fbb,
MetadataVersion version = MetadataVersion_V1,
MessageHeader header_type = MessageHeader_NONE,
flatbuffers::Offset<void> header = 0,
int64_t bodyLength = 0,
const std::vector<flatbuffers::Offset<KeyValue>> *custom_metadata = nullptr) {
auto custom_metadata__ = custom_metadata ? _fbb.CreateVector<flatbuffers::Offset<KeyValue>>(*custom_metadata) : 0;
return org::apache::arrow::flatbuf::CreateMessage(
_fbb,
version,
header_type,
header,
bodyLength,
custom_metadata__);
}
inline bool VerifyMessageHeader(flatbuffers::Verifier &verifier, const void *obj, MessageHeader type) {
switch (type) {
case MessageHeader_NONE: {
return true;
}
case MessageHeader_Schema: {
auto ptr = reinterpret_cast<const Schema *>(obj);
return verifier.VerifyTable(ptr);
}
case MessageHeader_DictionaryBatch: {
auto ptr = reinterpret_cast<const DictionaryBatch *>(obj);
return verifier.VerifyTable(ptr);
}
case MessageHeader_RecordBatch: {
auto ptr = reinterpret_cast<const RecordBatch *>(obj);
return verifier.VerifyTable(ptr);
}
case MessageHeader_Tensor: {
auto ptr = reinterpret_cast<const Tensor *>(obj);
return verifier.VerifyTable(ptr);
}
case MessageHeader_SparseTensor: {
auto ptr = reinterpret_cast<const SparseTensor *>(obj);
return verifier.VerifyTable(ptr);
}
default: return false;
}
}
inline bool VerifyMessageHeaderVector(flatbuffers::Verifier &verifier, const flatbuffers::Vector<flatbuffers::Offset<void>> *values, const flatbuffers::Vector<uint8_t> *types) {
if (!values || !types) return !values && !types;
if (values->size() != types->size()) return false;
for (flatbuffers::uoffset_t i = 0; i < values->size(); ++i) {
if (!VerifyMessageHeader(
verifier, values->Get(i), types->GetEnum<MessageHeader>(i))) {
return false;
}
}
return true;
}
inline const org::apache::arrow::flatbuf::Message *GetMessage(const void *buf) {
return flatbuffers::GetRoot<org::apache::arrow::flatbuf::Message>(buf);
}
inline const org::apache::arrow::flatbuf::Message *GetSizePrefixedMessage(const void *buf) {
return flatbuffers::GetSizePrefixedRoot<org::apache::arrow::flatbuf::Message>(buf);
}
inline bool VerifyMessageBuffer(
flatbuffers::Verifier &verifier) {
return verifier.VerifyBuffer<org::apache::arrow::flatbuf::Message>(nullptr);
}
inline bool VerifySizePrefixedMessageBuffer(
flatbuffers::Verifier &verifier) {
return verifier.VerifySizePrefixedBuffer<org::apache::arrow::flatbuf::Message>(nullptr);
}
inline void FinishMessageBuffer(
flatbuffers::FlatBufferBuilder &fbb,
flatbuffers::Offset<org::apache::arrow::flatbuf::Message> root) {
fbb.Finish(root);
}
inline void FinishSizePrefixedMessageBuffer(
flatbuffers::FlatBufferBuilder &fbb,
flatbuffers::Offset<org::apache::arrow::flatbuf::Message> root) {
fbb.FinishSizePrefixed(root);
}
} // namespace flatbuf
} // namespace arrow
} // namespace apache
} // namespace org
#endif // FLATBUFFERS_GENERATED_MESSAGE_ORG_APACHE_ARROW_FLATBUF_H_

File diff suppressed because it is too large Load Diff

View File

@ -1,644 +0,0 @@
// automatically generated by the FlatBuffers compiler, do not modify
#ifndef FLATBUFFERS_GENERATED_SPARSETENSOR_ORG_APACHE_ARROW_FLATBUF_H_
#define FLATBUFFERS_GENERATED_SPARSETENSOR_ORG_APACHE_ARROW_FLATBUF_H_
#include "flatbuffers/flatbuffers.h"
#include "Schema_generated.h"
#include "Tensor_generated.h"
namespace org {
namespace apache {
namespace arrow {
namespace flatbuf {
struct SparseTensorIndexCOO;
struct SparseMatrixIndexCSR;
struct SparseTensor;
enum SparseTensorIndex {
SparseTensorIndex_NONE = 0,
SparseTensorIndex_SparseTensorIndexCOO = 1,
SparseTensorIndex_SparseMatrixIndexCSR = 2,
SparseTensorIndex_MIN = SparseTensorIndex_NONE,
SparseTensorIndex_MAX = SparseTensorIndex_SparseMatrixIndexCSR
};
inline const SparseTensorIndex (&EnumValuesSparseTensorIndex())[3] {
static const SparseTensorIndex values[] = {
SparseTensorIndex_NONE,
SparseTensorIndex_SparseTensorIndexCOO,
SparseTensorIndex_SparseMatrixIndexCSR
};
return values;
}
inline const char * const *EnumNamesSparseTensorIndex() {
static const char * const names[] = {
"NONE",
"SparseTensorIndexCOO",
"SparseMatrixIndexCSR",
nullptr
};
return names;
}
inline const char *EnumNameSparseTensorIndex(SparseTensorIndex e) {
if (e < SparseTensorIndex_NONE || e > SparseTensorIndex_SparseMatrixIndexCSR) return "";
const size_t index = static_cast<size_t>(e);
return EnumNamesSparseTensorIndex()[index];
}
template<typename T> struct SparseTensorIndexTraits {
static const SparseTensorIndex enum_value = SparseTensorIndex_NONE;
};
template<> struct SparseTensorIndexTraits<SparseTensorIndexCOO> {
static const SparseTensorIndex enum_value = SparseTensorIndex_SparseTensorIndexCOO;
};
template<> struct SparseTensorIndexTraits<SparseMatrixIndexCSR> {
static const SparseTensorIndex enum_value = SparseTensorIndex_SparseMatrixIndexCSR;
};
bool VerifySparseTensorIndex(flatbuffers::Verifier &verifier, const void *obj, SparseTensorIndex type);
bool VerifySparseTensorIndexVector(flatbuffers::Verifier &verifier, const flatbuffers::Vector<flatbuffers::Offset<void>> *values, const flatbuffers::Vector<uint8_t> *types);
/// ----------------------------------------------------------------------
/// EXPERIMENTAL: Data structures for sparse tensors
/// Coodinate (COO) format of sparse tensor index.
///
/// COO's index list are represented as a NxM matrix,
/// where N is the number of non-zero values,
/// and M is the number of dimensions of a sparse tensor.
///
/// indicesBuffer stores the location and size of the data of this indices
/// matrix. The value type and the stride of the indices matrix is
/// specified in indicesType and indicesStrides fields.
///
/// For example, let X be a 2x3x4x5 tensor, and it has the following
/// 6 non-zero values:
///
/// X[0, 1, 2, 0] := 1
/// X[1, 1, 2, 3] := 2
/// X[0, 2, 1, 0] := 3
/// X[0, 1, 3, 0] := 4
/// X[0, 1, 2, 1] := 5
/// X[1, 2, 0, 4] := 6
///
/// In COO format, the index matrix of X is the following 4x6 matrix:
///
/// [[0, 0, 0, 0, 1, 1],
/// [1, 1, 1, 2, 1, 2],
/// [2, 2, 3, 1, 2, 0],
/// [0, 1, 0, 0, 3, 4]]
///
/// Note that the indices are sorted in lexicographical order.
struct SparseTensorIndexCOO FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table {
enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE {
VT_INDICESTYPE = 4,
VT_INDICESSTRIDES = 6,
VT_INDICESBUFFER = 8
};
/// The type of values in indicesBuffer
const Int *indicesType() const {
return GetPointer<const Int *>(VT_INDICESTYPE);
}
/// Non-negative byte offsets to advance one value cell along each dimension
const flatbuffers::Vector<int64_t> *indicesStrides() const {
return GetPointer<const flatbuffers::Vector<int64_t> *>(VT_INDICESSTRIDES);
}
/// The location and size of the indices matrix's data
const Buffer *indicesBuffer() const {
return GetStruct<const Buffer *>(VT_INDICESBUFFER);
}
bool Verify(flatbuffers::Verifier &verifier) const {
return VerifyTableStart(verifier) &&
VerifyOffset(verifier, VT_INDICESTYPE) &&
verifier.VerifyTable(indicesType()) &&
VerifyOffset(verifier, VT_INDICESSTRIDES) &&
verifier.VerifyVector(indicesStrides()) &&
VerifyField<Buffer>(verifier, VT_INDICESBUFFER) &&
verifier.EndTable();
}
};
struct SparseTensorIndexCOOBuilder {
flatbuffers::FlatBufferBuilder &fbb_;
flatbuffers::uoffset_t start_;
void add_indicesType(flatbuffers::Offset<Int> indicesType) {
fbb_.AddOffset(SparseTensorIndexCOO::VT_INDICESTYPE, indicesType);
}
void add_indicesStrides(flatbuffers::Offset<flatbuffers::Vector<int64_t>> indicesStrides) {
fbb_.AddOffset(SparseTensorIndexCOO::VT_INDICESSTRIDES, indicesStrides);
}
void add_indicesBuffer(const Buffer *indicesBuffer) {
fbb_.AddStruct(SparseTensorIndexCOO::VT_INDICESBUFFER, indicesBuffer);
}
explicit SparseTensorIndexCOOBuilder(flatbuffers::FlatBufferBuilder &_fbb)
: fbb_(_fbb) {
start_ = fbb_.StartTable();
}
SparseTensorIndexCOOBuilder &operator=(const SparseTensorIndexCOOBuilder &);
flatbuffers::Offset<SparseTensorIndexCOO> Finish() {
const auto end = fbb_.EndTable(start_);
auto o = flatbuffers::Offset<SparseTensorIndexCOO>(end);
return o;
}
};
inline flatbuffers::Offset<SparseTensorIndexCOO> CreateSparseTensorIndexCOO(
flatbuffers::FlatBufferBuilder &_fbb,
flatbuffers::Offset<Int> indicesType = 0,
flatbuffers::Offset<flatbuffers::Vector<int64_t>> indicesStrides = 0,
const Buffer *indicesBuffer = 0) {
SparseTensorIndexCOOBuilder builder_(_fbb);
builder_.add_indicesBuffer(indicesBuffer);
builder_.add_indicesStrides(indicesStrides);
builder_.add_indicesType(indicesType);
return builder_.Finish();
}
inline flatbuffers::Offset<SparseTensorIndexCOO> CreateSparseTensorIndexCOODirect(
flatbuffers::FlatBufferBuilder &_fbb,
flatbuffers::Offset<Int> indicesType = 0,
const std::vector<int64_t> *indicesStrides = nullptr,
const Buffer *indicesBuffer = 0) {
auto indicesStrides__ = indicesStrides ? _fbb.CreateVector<int64_t>(*indicesStrides) : 0;
return org::apache::arrow::flatbuf::CreateSparseTensorIndexCOO(
_fbb,
indicesType,
indicesStrides__,
indicesBuffer);
}
/// Compressed Sparse Row format, that is matrix-specific.
struct SparseMatrixIndexCSR FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table {
enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE {
VT_INDPTRTYPE = 4,
VT_INDPTRBUFFER = 6,
VT_INDICESTYPE = 8,
VT_INDICESBUFFER = 10
};
/// The type of values in indptrBuffer
const Int *indptrType() const {
return GetPointer<const Int *>(VT_INDPTRTYPE);
}
/// indptrBuffer stores the location and size of indptr array that
/// represents the range of the rows.
/// The i-th row spans from indptr[i] to indptr[i+1] in the data.
/// The length of this array is 1 + (the number of rows), and the type
/// of index value is long.
///
/// For example, let X be the following 6x4 matrix:
///
/// X := [[0, 1, 2, 0],
/// [0, 0, 3, 0],
/// [0, 4, 0, 5],
/// [0, 0, 0, 0],
/// [6, 0, 7, 8],
/// [0, 9, 0, 0]].
///
/// The array of non-zero values in X is:
///
/// values(X) = [1, 2, 3, 4, 5, 6, 7, 8, 9].
///
/// And the indptr of X is:
///
/// indptr(X) = [0, 2, 3, 5, 5, 8, 10].
const Buffer *indptrBuffer() const {
return GetStruct<const Buffer *>(VT_INDPTRBUFFER);
}
/// The type of values in indicesBuffer
const Int *indicesType() const {
return GetPointer<const Int *>(VT_INDICESTYPE);
}
/// indicesBuffer stores the location and size of the array that
/// contains the column indices of the corresponding non-zero values.
/// The type of index value is long.
///
/// For example, the indices of the above X is:
///
/// indices(X) = [1, 2, 2, 1, 3, 0, 2, 3, 1].
///
/// Note that the indices are sorted in lexicographical order for each row.
const Buffer *indicesBuffer() const {
return GetStruct<const Buffer *>(VT_INDICESBUFFER);
}
bool Verify(flatbuffers::Verifier &verifier) const {
return VerifyTableStart(verifier) &&
VerifyOffset(verifier, VT_INDPTRTYPE) &&
verifier.VerifyTable(indptrType()) &&
VerifyField<Buffer>(verifier, VT_INDPTRBUFFER) &&
VerifyOffset(verifier, VT_INDICESTYPE) &&
verifier.VerifyTable(indicesType()) &&
VerifyField<Buffer>(verifier, VT_INDICESBUFFER) &&
verifier.EndTable();
}
};
struct SparseMatrixIndexCSRBuilder {
flatbuffers::FlatBufferBuilder &fbb_;
flatbuffers::uoffset_t start_;
void add_indptrType(flatbuffers::Offset<Int> indptrType) {
fbb_.AddOffset(SparseMatrixIndexCSR::VT_INDPTRTYPE, indptrType);
}
void add_indptrBuffer(const Buffer *indptrBuffer) {
fbb_.AddStruct(SparseMatrixIndexCSR::VT_INDPTRBUFFER, indptrBuffer);
}
void add_indicesType(flatbuffers::Offset<Int> indicesType) {
fbb_.AddOffset(SparseMatrixIndexCSR::VT_INDICESTYPE, indicesType);
}
void add_indicesBuffer(const Buffer *indicesBuffer) {
fbb_.AddStruct(SparseMatrixIndexCSR::VT_INDICESBUFFER, indicesBuffer);
}
explicit SparseMatrixIndexCSRBuilder(flatbuffers::FlatBufferBuilder &_fbb)
: fbb_(_fbb) {
start_ = fbb_.StartTable();
}
SparseMatrixIndexCSRBuilder &operator=(const SparseMatrixIndexCSRBuilder &);
flatbuffers::Offset<SparseMatrixIndexCSR> Finish() {
const auto end = fbb_.EndTable(start_);
auto o = flatbuffers::Offset<SparseMatrixIndexCSR>(end);
return o;
}
};
inline flatbuffers::Offset<SparseMatrixIndexCSR> CreateSparseMatrixIndexCSR(
flatbuffers::FlatBufferBuilder &_fbb,
flatbuffers::Offset<Int> indptrType = 0,
const Buffer *indptrBuffer = 0,
flatbuffers::Offset<Int> indicesType = 0,
const Buffer *indicesBuffer = 0) {
SparseMatrixIndexCSRBuilder builder_(_fbb);
builder_.add_indicesBuffer(indicesBuffer);
builder_.add_indicesType(indicesType);
builder_.add_indptrBuffer(indptrBuffer);
builder_.add_indptrType(indptrType);
return builder_.Finish();
}
struct SparseTensor FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table {
enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE {
VT_TYPE_TYPE = 4,
VT_TYPE = 6,
VT_SHAPE = 8,
VT_NON_ZERO_LENGTH = 10,
VT_SPARSEINDEX_TYPE = 12,
VT_SPARSEINDEX = 14,
VT_DATA = 16
};
Type type_type() const {
return static_cast<Type>(GetField<uint8_t>(VT_TYPE_TYPE, 0));
}
/// The type of data contained in a value cell.
/// Currently only fixed-width value types are supported,
/// no strings or nested types.
const void *type() const {
return GetPointer<const void *>(VT_TYPE);
}
template<typename T> const T *type_as() const;
const Null *type_as_Null() const {
return type_type() == Type_Null ? static_cast<const Null *>(type()) : nullptr;
}
const Int *type_as_Int() const {
return type_type() == Type_Int ? static_cast<const Int *>(type()) : nullptr;
}
const FloatingPoint *type_as_FloatingPoint() const {
return type_type() == Type_FloatingPoint ? static_cast<const FloatingPoint *>(type()) : nullptr;
}
const Binary *type_as_Binary() const {
return type_type() == Type_Binary ? static_cast<const Binary *>(type()) : nullptr;
}
const Utf8 *type_as_Utf8() const {
return type_type() == Type_Utf8 ? static_cast<const Utf8 *>(type()) : nullptr;
}
const Bool *type_as_Bool() const {
return type_type() == Type_Bool ? static_cast<const Bool *>(type()) : nullptr;
}
const Decimal *type_as_Decimal() const {
return type_type() == Type_Decimal ? static_cast<const Decimal *>(type()) : nullptr;
}
const Date *type_as_Date() const {
return type_type() == Type_Date ? static_cast<const Date *>(type()) : nullptr;
}
const Time *type_as_Time() const {
return type_type() == Type_Time ? static_cast<const Time *>(type()) : nullptr;
}
const Timestamp *type_as_Timestamp() const {
return type_type() == Type_Timestamp ? static_cast<const Timestamp *>(type()) : nullptr;
}
const Interval *type_as_Interval() const {
return type_type() == Type_Interval ? static_cast<const Interval *>(type()) : nullptr;
}
const List *type_as_List() const {
return type_type() == Type_List ? static_cast<const List *>(type()) : nullptr;
}
const Struct_ *type_as_Struct_() const {
return type_type() == Type_Struct_ ? static_cast<const Struct_ *>(type()) : nullptr;
}
const Union *type_as_Union() const {
return type_type() == Type_Union ? static_cast<const Union *>(type()) : nullptr;
}
const FixedSizeBinary *type_as_FixedSizeBinary() const {
return type_type() == Type_FixedSizeBinary ? static_cast<const FixedSizeBinary *>(type()) : nullptr;
}
const FixedSizeList *type_as_FixedSizeList() const {
return type_type() == Type_FixedSizeList ? static_cast<const FixedSizeList *>(type()) : nullptr;
}
const Map *type_as_Map() const {
return type_type() == Type_Map ? static_cast<const Map *>(type()) : nullptr;
}
const Duration *type_as_Duration() const {
return type_type() == Type_Duration ? static_cast<const Duration *>(type()) : nullptr;
}
const LargeBinary *type_as_LargeBinary() const {
return type_type() == Type_LargeBinary ? static_cast<const LargeBinary *>(type()) : nullptr;
}
const LargeUtf8 *type_as_LargeUtf8() const {
return type_type() == Type_LargeUtf8 ? static_cast<const LargeUtf8 *>(type()) : nullptr;
}
const LargeList *type_as_LargeList() const {
return type_type() == Type_LargeList ? static_cast<const LargeList *>(type()) : nullptr;
}
/// The dimensions of the tensor, optionally named.
const flatbuffers::Vector<flatbuffers::Offset<TensorDim>> *shape() const {
return GetPointer<const flatbuffers::Vector<flatbuffers::Offset<TensorDim>> *>(VT_SHAPE);
}
/// The number of non-zero values in a sparse tensor.
int64_t non_zero_length() const {
return GetField<int64_t>(VT_NON_ZERO_LENGTH, 0);
}
SparseTensorIndex sparseIndex_type() const {
return static_cast<SparseTensorIndex>(GetField<uint8_t>(VT_SPARSEINDEX_TYPE, 0));
}
/// Sparse tensor index
const void *sparseIndex() const {
return GetPointer<const void *>(VT_SPARSEINDEX);
}
template<typename T> const T *sparseIndex_as() const;
const SparseTensorIndexCOO *sparseIndex_as_SparseTensorIndexCOO() const {
return sparseIndex_type() == SparseTensorIndex_SparseTensorIndexCOO ? static_cast<const SparseTensorIndexCOO *>(sparseIndex()) : nullptr;
}
const SparseMatrixIndexCSR *sparseIndex_as_SparseMatrixIndexCSR() const {
return sparseIndex_type() == SparseTensorIndex_SparseMatrixIndexCSR ? static_cast<const SparseMatrixIndexCSR *>(sparseIndex()) : nullptr;
}
/// The location and size of the tensor's data
const Buffer *data() const {
return GetStruct<const Buffer *>(VT_DATA);
}
bool Verify(flatbuffers::Verifier &verifier) const {
return VerifyTableStart(verifier) &&
VerifyField<uint8_t>(verifier, VT_TYPE_TYPE) &&
VerifyOffset(verifier, VT_TYPE) &&
VerifyType(verifier, type(), type_type()) &&
VerifyOffset(verifier, VT_SHAPE) &&
verifier.VerifyVector(shape()) &&
verifier.VerifyVectorOfTables(shape()) &&
VerifyField<int64_t>(verifier, VT_NON_ZERO_LENGTH) &&
VerifyField<uint8_t>(verifier, VT_SPARSEINDEX_TYPE) &&
VerifyOffset(verifier, VT_SPARSEINDEX) &&
VerifySparseTensorIndex(verifier, sparseIndex(), sparseIndex_type()) &&
VerifyField<Buffer>(verifier, VT_DATA) &&
verifier.EndTable();
}
};
template<> inline const Null *SparseTensor::type_as<Null>() const {
return type_as_Null();
}
template<> inline const Int *SparseTensor::type_as<Int>() const {
return type_as_Int();
}
template<> inline const FloatingPoint *SparseTensor::type_as<FloatingPoint>() const {
return type_as_FloatingPoint();
}
template<> inline const Binary *SparseTensor::type_as<Binary>() const {
return type_as_Binary();
}
template<> inline const Utf8 *SparseTensor::type_as<Utf8>() const {
return type_as_Utf8();
}
template<> inline const Bool *SparseTensor::type_as<Bool>() const {
return type_as_Bool();
}
template<> inline const Decimal *SparseTensor::type_as<Decimal>() const {
return type_as_Decimal();
}
template<> inline const Date *SparseTensor::type_as<Date>() const {
return type_as_Date();
}
template<> inline const Time *SparseTensor::type_as<Time>() const {
return type_as_Time();
}
template<> inline const Timestamp *SparseTensor::type_as<Timestamp>() const {
return type_as_Timestamp();
}
template<> inline const Interval *SparseTensor::type_as<Interval>() const {
return type_as_Interval();
}
template<> inline const List *SparseTensor::type_as<List>() const {
return type_as_List();
}
template<> inline const Struct_ *SparseTensor::type_as<Struct_>() const {
return type_as_Struct_();
}
template<> inline const Union *SparseTensor::type_as<Union>() const {
return type_as_Union();
}
template<> inline const FixedSizeBinary *SparseTensor::type_as<FixedSizeBinary>() const {
return type_as_FixedSizeBinary();
}
template<> inline const FixedSizeList *SparseTensor::type_as<FixedSizeList>() const {
return type_as_FixedSizeList();
}
template<> inline const Map *SparseTensor::type_as<Map>() const {
return type_as_Map();
}
template<> inline const Duration *SparseTensor::type_as<Duration>() const {
return type_as_Duration();
}
template<> inline const LargeBinary *SparseTensor::type_as<LargeBinary>() const {
return type_as_LargeBinary();
}
template<> inline const LargeUtf8 *SparseTensor::type_as<LargeUtf8>() const {
return type_as_LargeUtf8();
}
template<> inline const LargeList *SparseTensor::type_as<LargeList>() const {
return type_as_LargeList();
}
template<> inline const SparseTensorIndexCOO *SparseTensor::sparseIndex_as<SparseTensorIndexCOO>() const {
return sparseIndex_as_SparseTensorIndexCOO();
}
template<> inline const SparseMatrixIndexCSR *SparseTensor::sparseIndex_as<SparseMatrixIndexCSR>() const {
return sparseIndex_as_SparseMatrixIndexCSR();
}
struct SparseTensorBuilder {
flatbuffers::FlatBufferBuilder &fbb_;
flatbuffers::uoffset_t start_;
void add_type_type(Type type_type) {
fbb_.AddElement<uint8_t>(SparseTensor::VT_TYPE_TYPE, static_cast<uint8_t>(type_type), 0);
}
void add_type(flatbuffers::Offset<void> type) {
fbb_.AddOffset(SparseTensor::VT_TYPE, type);
}
void add_shape(flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<TensorDim>>> shape) {
fbb_.AddOffset(SparseTensor::VT_SHAPE, shape);
}
void add_non_zero_length(int64_t non_zero_length) {
fbb_.AddElement<int64_t>(SparseTensor::VT_NON_ZERO_LENGTH, non_zero_length, 0);
}
void add_sparseIndex_type(SparseTensorIndex sparseIndex_type) {
fbb_.AddElement<uint8_t>(SparseTensor::VT_SPARSEINDEX_TYPE, static_cast<uint8_t>(sparseIndex_type), 0);
}
void add_sparseIndex(flatbuffers::Offset<void> sparseIndex) {
fbb_.AddOffset(SparseTensor::VT_SPARSEINDEX, sparseIndex);
}
void add_data(const Buffer *data) {
fbb_.AddStruct(SparseTensor::VT_DATA, data);
}
explicit SparseTensorBuilder(flatbuffers::FlatBufferBuilder &_fbb)
: fbb_(_fbb) {
start_ = fbb_.StartTable();
}
SparseTensorBuilder &operator=(const SparseTensorBuilder &);
flatbuffers::Offset<SparseTensor> Finish() {
const auto end = fbb_.EndTable(start_);
auto o = flatbuffers::Offset<SparseTensor>(end);
return o;
}
};
inline flatbuffers::Offset<SparseTensor> CreateSparseTensor(
flatbuffers::FlatBufferBuilder &_fbb,
Type type_type = Type_NONE,
flatbuffers::Offset<void> type = 0,
flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<TensorDim>>> shape = 0,
int64_t non_zero_length = 0,
SparseTensorIndex sparseIndex_type = SparseTensorIndex_NONE,
flatbuffers::Offset<void> sparseIndex = 0,
const Buffer *data = 0) {
SparseTensorBuilder builder_(_fbb);
builder_.add_non_zero_length(non_zero_length);
builder_.add_data(data);
builder_.add_sparseIndex(sparseIndex);
builder_.add_shape(shape);
builder_.add_type(type);
builder_.add_sparseIndex_type(sparseIndex_type);
builder_.add_type_type(type_type);
return builder_.Finish();
}
inline flatbuffers::Offset<SparseTensor> CreateSparseTensorDirect(
flatbuffers::FlatBufferBuilder &_fbb,
Type type_type = Type_NONE,
flatbuffers::Offset<void> type = 0,
const std::vector<flatbuffers::Offset<TensorDim>> *shape = nullptr,
int64_t non_zero_length = 0,
SparseTensorIndex sparseIndex_type = SparseTensorIndex_NONE,
flatbuffers::Offset<void> sparseIndex = 0,
const Buffer *data = 0) {
auto shape__ = shape ? _fbb.CreateVector<flatbuffers::Offset<TensorDim>>(*shape) : 0;
return org::apache::arrow::flatbuf::CreateSparseTensor(
_fbb,
type_type,
type,
shape__,
non_zero_length,
sparseIndex_type,
sparseIndex,
data);
}
inline bool VerifySparseTensorIndex(flatbuffers::Verifier &verifier, const void *obj, SparseTensorIndex type) {
switch (type) {
case SparseTensorIndex_NONE: {
return true;
}
case SparseTensorIndex_SparseTensorIndexCOO: {
auto ptr = reinterpret_cast<const SparseTensorIndexCOO *>(obj);
return verifier.VerifyTable(ptr);
}
case SparseTensorIndex_SparseMatrixIndexCSR: {
auto ptr = reinterpret_cast<const SparseMatrixIndexCSR *>(obj);
return verifier.VerifyTable(ptr);
}
default: return false;
}
}
inline bool VerifySparseTensorIndexVector(flatbuffers::Verifier &verifier, const flatbuffers::Vector<flatbuffers::Offset<void>> *values, const flatbuffers::Vector<uint8_t> *types) {
if (!values || !types) return !values && !types;
if (values->size() != types->size()) return false;
for (flatbuffers::uoffset_t i = 0; i < values->size(); ++i) {
if (!VerifySparseTensorIndex(
verifier, values->Get(i), types->GetEnum<SparseTensorIndex>(i))) {
return false;
}
}
return true;
}
inline const org::apache::arrow::flatbuf::SparseTensor *GetSparseTensor(const void *buf) {
return flatbuffers::GetRoot<org::apache::arrow::flatbuf::SparseTensor>(buf);
}
inline const org::apache::arrow::flatbuf::SparseTensor *GetSizePrefixedSparseTensor(const void *buf) {
return flatbuffers::GetSizePrefixedRoot<org::apache::arrow::flatbuf::SparseTensor>(buf);
}
inline bool VerifySparseTensorBuffer(
flatbuffers::Verifier &verifier) {
return verifier.VerifyBuffer<org::apache::arrow::flatbuf::SparseTensor>(nullptr);
}
inline bool VerifySizePrefixedSparseTensorBuffer(
flatbuffers::Verifier &verifier) {
return verifier.VerifySizePrefixedBuffer<org::apache::arrow::flatbuf::SparseTensor>(nullptr);
}
inline void FinishSparseTensorBuffer(
flatbuffers::FlatBufferBuilder &fbb,
flatbuffers::Offset<org::apache::arrow::flatbuf::SparseTensor> root) {
fbb.Finish(root);
}
inline void FinishSizePrefixedSparseTensorBuffer(
flatbuffers::FlatBufferBuilder &fbb,
flatbuffers::Offset<org::apache::arrow::flatbuf::SparseTensor> root) {
fbb.FinishSizePrefixed(root);
}
} // namespace flatbuf
} // namespace arrow
} // namespace apache
} // namespace org
#endif // FLATBUFFERS_GENERATED_SPARSETENSOR_ORG_APACHE_ARROW_FLATBUF_H_

View File

@ -1,377 +0,0 @@
// automatically generated by the FlatBuffers compiler, do not modify
#ifndef FLATBUFFERS_GENERATED_TENSOR_ORG_APACHE_ARROW_FLATBUF_H_
#define FLATBUFFERS_GENERATED_TENSOR_ORG_APACHE_ARROW_FLATBUF_H_
#include "flatbuffers/flatbuffers.h"
#include "Schema_generated.h"
namespace org {
namespace apache {
namespace arrow {
namespace flatbuf {
struct TensorDim;
struct Tensor;
/// ----------------------------------------------------------------------
/// Data structures for dense tensors
/// Shape data for a single axis in a tensor
struct TensorDim FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table {
enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE {
VT_SIZE = 4,
VT_NAME = 6
};
/// Length of dimension
int64_t size() const {
return GetField<int64_t>(VT_SIZE, 0);
}
/// Name of the dimension, optional
const flatbuffers::String *name() const {
return GetPointer<const flatbuffers::String *>(VT_NAME);
}
bool Verify(flatbuffers::Verifier &verifier) const {
return VerifyTableStart(verifier) &&
VerifyField<int64_t>(verifier, VT_SIZE) &&
VerifyOffset(verifier, VT_NAME) &&
verifier.VerifyString(name()) &&
verifier.EndTable();
}
};
struct TensorDimBuilder {
flatbuffers::FlatBufferBuilder &fbb_;
flatbuffers::uoffset_t start_;
void add_size(int64_t size) {
fbb_.AddElement<int64_t>(TensorDim::VT_SIZE, size, 0);
}
void add_name(flatbuffers::Offset<flatbuffers::String> name) {
fbb_.AddOffset(TensorDim::VT_NAME, name);
}
explicit TensorDimBuilder(flatbuffers::FlatBufferBuilder &_fbb)
: fbb_(_fbb) {
start_ = fbb_.StartTable();
}
TensorDimBuilder &operator=(const TensorDimBuilder &);
flatbuffers::Offset<TensorDim> Finish() {
const auto end = fbb_.EndTable(start_);
auto o = flatbuffers::Offset<TensorDim>(end);
return o;
}
};
inline flatbuffers::Offset<TensorDim> CreateTensorDim(
flatbuffers::FlatBufferBuilder &_fbb,
int64_t size = 0,
flatbuffers::Offset<flatbuffers::String> name = 0) {
TensorDimBuilder builder_(_fbb);
builder_.add_size(size);
builder_.add_name(name);
return builder_.Finish();
}
inline flatbuffers::Offset<TensorDim> CreateTensorDimDirect(
flatbuffers::FlatBufferBuilder &_fbb,
int64_t size = 0,
const char *name = nullptr) {
auto name__ = name ? _fbb.CreateString(name) : 0;
return org::apache::arrow::flatbuf::CreateTensorDim(
_fbb,
size,
name__);
}
struct Tensor FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table {
enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE {
VT_TYPE_TYPE = 4,
VT_TYPE = 6,
VT_SHAPE = 8,
VT_STRIDES = 10,
VT_DATA = 12
};
Type type_type() const {
return static_cast<Type>(GetField<uint8_t>(VT_TYPE_TYPE, 0));
}
/// The type of data contained in a value cell. Currently only fixed-width
/// value types are supported, no strings or nested types
const void *type() const {
return GetPointer<const void *>(VT_TYPE);
}
template<typename T> const T *type_as() const;
const Null *type_as_Null() const {
return type_type() == Type_Null ? static_cast<const Null *>(type()) : nullptr;
}
const Int *type_as_Int() const {
return type_type() == Type_Int ? static_cast<const Int *>(type()) : nullptr;
}
const FloatingPoint *type_as_FloatingPoint() const {
return type_type() == Type_FloatingPoint ? static_cast<const FloatingPoint *>(type()) : nullptr;
}
const Binary *type_as_Binary() const {
return type_type() == Type_Binary ? static_cast<const Binary *>(type()) : nullptr;
}
const Utf8 *type_as_Utf8() const {
return type_type() == Type_Utf8 ? static_cast<const Utf8 *>(type()) : nullptr;
}
const Bool *type_as_Bool() const {
return type_type() == Type_Bool ? static_cast<const Bool *>(type()) : nullptr;
}
const Decimal *type_as_Decimal() const {
return type_type() == Type_Decimal ? static_cast<const Decimal *>(type()) : nullptr;
}
const Date *type_as_Date() const {
return type_type() == Type_Date ? static_cast<const Date *>(type()) : nullptr;
}
const Time *type_as_Time() const {
return type_type() == Type_Time ? static_cast<const Time *>(type()) : nullptr;
}
const Timestamp *type_as_Timestamp() const {
return type_type() == Type_Timestamp ? static_cast<const Timestamp *>(type()) : nullptr;
}
const Interval *type_as_Interval() const {
return type_type() == Type_Interval ? static_cast<const Interval *>(type()) : nullptr;
}
const List *type_as_List() const {
return type_type() == Type_List ? static_cast<const List *>(type()) : nullptr;
}
const Struct_ *type_as_Struct_() const {
return type_type() == Type_Struct_ ? static_cast<const Struct_ *>(type()) : nullptr;
}
const Union *type_as_Union() const {
return type_type() == Type_Union ? static_cast<const Union *>(type()) : nullptr;
}
const FixedSizeBinary *type_as_FixedSizeBinary() const {
return type_type() == Type_FixedSizeBinary ? static_cast<const FixedSizeBinary *>(type()) : nullptr;
}
const FixedSizeList *type_as_FixedSizeList() const {
return type_type() == Type_FixedSizeList ? static_cast<const FixedSizeList *>(type()) : nullptr;
}
const Map *type_as_Map() const {
return type_type() == Type_Map ? static_cast<const Map *>(type()) : nullptr;
}
const Duration *type_as_Duration() const {
return type_type() == Type_Duration ? static_cast<const Duration *>(type()) : nullptr;
}
const LargeBinary *type_as_LargeBinary() const {
return type_type() == Type_LargeBinary ? static_cast<const LargeBinary *>(type()) : nullptr;
}
const LargeUtf8 *type_as_LargeUtf8() const {
return type_type() == Type_LargeUtf8 ? static_cast<const LargeUtf8 *>(type()) : nullptr;
}
const LargeList *type_as_LargeList() const {
return type_type() == Type_LargeList ? static_cast<const LargeList *>(type()) : nullptr;
}
/// The dimensions of the tensor, optionally named
const flatbuffers::Vector<flatbuffers::Offset<TensorDim>> *shape() const {
return GetPointer<const flatbuffers::Vector<flatbuffers::Offset<TensorDim>> *>(VT_SHAPE);
}
/// Non-negative byte offsets to advance one value cell along each dimension
const flatbuffers::Vector<int64_t> *strides() const {
return GetPointer<const flatbuffers::Vector<int64_t> *>(VT_STRIDES);
}
/// The location and size of the tensor's data
const Buffer *data() const {
return GetStruct<const Buffer *>(VT_DATA);
}
bool Verify(flatbuffers::Verifier &verifier) const {
return VerifyTableStart(verifier) &&
VerifyField<uint8_t>(verifier, VT_TYPE_TYPE) &&
VerifyOffset(verifier, VT_TYPE) &&
VerifyType(verifier, type(), type_type()) &&
VerifyOffset(verifier, VT_SHAPE) &&
verifier.VerifyVector(shape()) &&
verifier.VerifyVectorOfTables(shape()) &&
VerifyOffset(verifier, VT_STRIDES) &&
verifier.VerifyVector(strides()) &&
VerifyField<Buffer>(verifier, VT_DATA) &&
verifier.EndTable();
}
};
template<> inline const Null *Tensor::type_as<Null>() const {
return type_as_Null();
}
template<> inline const Int *Tensor::type_as<Int>() const {
return type_as_Int();
}
template<> inline const FloatingPoint *Tensor::type_as<FloatingPoint>() const {
return type_as_FloatingPoint();
}
template<> inline const Binary *Tensor::type_as<Binary>() const {
return type_as_Binary();
}
template<> inline const Utf8 *Tensor::type_as<Utf8>() const {
return type_as_Utf8();
}
template<> inline const Bool *Tensor::type_as<Bool>() const {
return type_as_Bool();
}
template<> inline const Decimal *Tensor::type_as<Decimal>() const {
return type_as_Decimal();
}
template<> inline const Date *Tensor::type_as<Date>() const {
return type_as_Date();
}
template<> inline const Time *Tensor::type_as<Time>() const {
return type_as_Time();
}
template<> inline const Timestamp *Tensor::type_as<Timestamp>() const {
return type_as_Timestamp();
}
template<> inline const Interval *Tensor::type_as<Interval>() const {
return type_as_Interval();
}
template<> inline const List *Tensor::type_as<List>() const {
return type_as_List();
}
template<> inline const Struct_ *Tensor::type_as<Struct_>() const {
return type_as_Struct_();
}
template<> inline const Union *Tensor::type_as<Union>() const {
return type_as_Union();
}
template<> inline const FixedSizeBinary *Tensor::type_as<FixedSizeBinary>() const {
return type_as_FixedSizeBinary();
}
template<> inline const FixedSizeList *Tensor::type_as<FixedSizeList>() const {
return type_as_FixedSizeList();
}
template<> inline const Map *Tensor::type_as<Map>() const {
return type_as_Map();
}
template<> inline const Duration *Tensor::type_as<Duration>() const {
return type_as_Duration();
}
template<> inline const LargeBinary *Tensor::type_as<LargeBinary>() const {
return type_as_LargeBinary();
}
template<> inline const LargeUtf8 *Tensor::type_as<LargeUtf8>() const {
return type_as_LargeUtf8();
}
template<> inline const LargeList *Tensor::type_as<LargeList>() const {
return type_as_LargeList();
}
struct TensorBuilder {
flatbuffers::FlatBufferBuilder &fbb_;
flatbuffers::uoffset_t start_;
void add_type_type(Type type_type) {
fbb_.AddElement<uint8_t>(Tensor::VT_TYPE_TYPE, static_cast<uint8_t>(type_type), 0);
}
void add_type(flatbuffers::Offset<void> type) {
fbb_.AddOffset(Tensor::VT_TYPE, type);
}
void add_shape(flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<TensorDim>>> shape) {
fbb_.AddOffset(Tensor::VT_SHAPE, shape);
}
void add_strides(flatbuffers::Offset<flatbuffers::Vector<int64_t>> strides) {
fbb_.AddOffset(Tensor::VT_STRIDES, strides);
}
void add_data(const Buffer *data) {
fbb_.AddStruct(Tensor::VT_DATA, data);
}
explicit TensorBuilder(flatbuffers::FlatBufferBuilder &_fbb)
: fbb_(_fbb) {
start_ = fbb_.StartTable();
}
TensorBuilder &operator=(const TensorBuilder &);
flatbuffers::Offset<Tensor> Finish() {
const auto end = fbb_.EndTable(start_);
auto o = flatbuffers::Offset<Tensor>(end);
return o;
}
};
inline flatbuffers::Offset<Tensor> CreateTensor(
flatbuffers::FlatBufferBuilder &_fbb,
Type type_type = Type_NONE,
flatbuffers::Offset<void> type = 0,
flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<TensorDim>>> shape = 0,
flatbuffers::Offset<flatbuffers::Vector<int64_t>> strides = 0,
const Buffer *data = 0) {
TensorBuilder builder_(_fbb);
builder_.add_data(data);
builder_.add_strides(strides);
builder_.add_shape(shape);
builder_.add_type(type);
builder_.add_type_type(type_type);
return builder_.Finish();
}
inline flatbuffers::Offset<Tensor> CreateTensorDirect(
flatbuffers::FlatBufferBuilder &_fbb,
Type type_type = Type_NONE,
flatbuffers::Offset<void> type = 0,
const std::vector<flatbuffers::Offset<TensorDim>> *shape = nullptr,
const std::vector<int64_t> *strides = nullptr,
const Buffer *data = 0) {
auto shape__ = shape ? _fbb.CreateVector<flatbuffers::Offset<TensorDim>>(*shape) : 0;
auto strides__ = strides ? _fbb.CreateVector<int64_t>(*strides) : 0;
return org::apache::arrow::flatbuf::CreateTensor(
_fbb,
type_type,
type,
shape__,
strides__,
data);
}
inline const org::apache::arrow::flatbuf::Tensor *GetTensor(const void *buf) {
return flatbuffers::GetRoot<org::apache::arrow::flatbuf::Tensor>(buf);
}
inline const org::apache::arrow::flatbuf::Tensor *GetSizePrefixedTensor(const void *buf) {
return flatbuffers::GetSizePrefixedRoot<org::apache::arrow::flatbuf::Tensor>(buf);
}
inline bool VerifyTensorBuffer(
flatbuffers::Verifier &verifier) {
return verifier.VerifyBuffer<org::apache::arrow::flatbuf::Tensor>(nullptr);
}
inline bool VerifySizePrefixedTensorBuffer(
flatbuffers::Verifier &verifier) {
return verifier.VerifySizePrefixedBuffer<org::apache::arrow::flatbuf::Tensor>(nullptr);
}
inline void FinishTensorBuffer(
flatbuffers::FlatBufferBuilder &fbb,
flatbuffers::Offset<org::apache::arrow::flatbuf::Tensor> root) {
fbb.Finish(root);
}
inline void FinishSizePrefixedTensorBuffer(
flatbuffers::FlatBufferBuilder &fbb,
flatbuffers::Offset<org::apache::arrow::flatbuf::Tensor> root) {
fbb.FinishSizePrefixed(root);
}
} // namespace flatbuf
} // namespace arrow
} // namespace apache
} // namespace org
#endif // FLATBUFFERS_GENERATED_TENSOR_ORG_APACHE_ARROW_FLATBUF_H_

View File

@ -1,839 +0,0 @@
// automatically generated by the FlatBuffers compiler, do not modify
#ifndef FLATBUFFERS_GENERATED_FEATHER_ARROW_IPC_FEATHER_FBS_H_
#define FLATBUFFERS_GENERATED_FEATHER_ARROW_IPC_FEATHER_FBS_H_
#include "flatbuffers/flatbuffers.h"
namespace arrow {
namespace ipc {
namespace feather {
namespace fbs {
struct PrimitiveArray;
struct CategoryMetadata;
struct TimestampMetadata;
struct DateMetadata;
struct TimeMetadata;
struct Column;
struct CTable;
/// Feather is an experimental serialization format implemented using
/// techniques from Apache Arrow. It was created as a proof-of-concept of an
/// interoperable file format for storing data frames originating in Python or
/// R. It enabled the developers to sidestep some of the open design questions
/// in Arrow from early 2016 and instead create something simple and useful for
/// the intended use cases.
enum Type {
Type_BOOL = 0,
Type_INT8 = 1,
Type_INT16 = 2,
Type_INT32 = 3,
Type_INT64 = 4,
Type_UINT8 = 5,
Type_UINT16 = 6,
Type_UINT32 = 7,
Type_UINT64 = 8,
Type_FLOAT = 9,
Type_DOUBLE = 10,
Type_UTF8 = 11,
Type_BINARY = 12,
Type_CATEGORY = 13,
Type_TIMESTAMP = 14,
Type_DATE = 15,
Type_TIME = 16,
Type_LARGE_UTF8 = 17,
Type_LARGE_BINARY = 18,
Type_MIN = Type_BOOL,
Type_MAX = Type_LARGE_BINARY
};
inline const Type (&EnumValuesType())[19] {
static const Type values[] = {
Type_BOOL,
Type_INT8,
Type_INT16,
Type_INT32,
Type_INT64,
Type_UINT8,
Type_UINT16,
Type_UINT32,
Type_UINT64,
Type_FLOAT,
Type_DOUBLE,
Type_UTF8,
Type_BINARY,
Type_CATEGORY,
Type_TIMESTAMP,
Type_DATE,
Type_TIME,
Type_LARGE_UTF8,
Type_LARGE_BINARY
};
return values;
}
inline const char * const *EnumNamesType() {
static const char * const names[] = {
"BOOL",
"INT8",
"INT16",
"INT32",
"INT64",
"UINT8",
"UINT16",
"UINT32",
"UINT64",
"FLOAT",
"DOUBLE",
"UTF8",
"BINARY",
"CATEGORY",
"TIMESTAMP",
"DATE",
"TIME",
"LARGE_UTF8",
"LARGE_BINARY",
nullptr
};
return names;
}
inline const char *EnumNameType(Type e) {
if (e < Type_BOOL || e > Type_LARGE_BINARY) return "";
const size_t index = static_cast<size_t>(e);
return EnumNamesType()[index];
}
enum Encoding {
Encoding_PLAIN = 0 /// Data is stored dictionary-encoded
/// dictionary size: <INT32 Dictionary size>
/// dictionary data: <TYPE primitive array>
/// dictionary index: <INT32 primitive array>
///
/// TODO: do we care about storing the index values in a smaller typeclass
,
Encoding_DICTIONARY = 1,
Encoding_MIN = Encoding_PLAIN,
Encoding_MAX = Encoding_DICTIONARY
};
inline const Encoding (&EnumValuesEncoding())[2] {
static const Encoding values[] = {
Encoding_PLAIN,
Encoding_DICTIONARY
};
return values;
}
inline const char * const *EnumNamesEncoding() {
static const char * const names[] = {
"PLAIN",
"DICTIONARY",
nullptr
};
return names;
}
inline const char *EnumNameEncoding(Encoding e) {
if (e < Encoding_PLAIN || e > Encoding_DICTIONARY) return "";
const size_t index = static_cast<size_t>(e);
return EnumNamesEncoding()[index];
}
enum TimeUnit {
TimeUnit_SECOND = 0,
TimeUnit_MILLISECOND = 1,
TimeUnit_MICROSECOND = 2,
TimeUnit_NANOSECOND = 3,
TimeUnit_MIN = TimeUnit_SECOND,
TimeUnit_MAX = TimeUnit_NANOSECOND
};
inline const TimeUnit (&EnumValuesTimeUnit())[4] {
static const TimeUnit values[] = {
TimeUnit_SECOND,
TimeUnit_MILLISECOND,
TimeUnit_MICROSECOND,
TimeUnit_NANOSECOND
};
return values;
}
inline const char * const *EnumNamesTimeUnit() {
static const char * const names[] = {
"SECOND",
"MILLISECOND",
"MICROSECOND",
"NANOSECOND",
nullptr
};
return names;
}
inline const char *EnumNameTimeUnit(TimeUnit e) {
if (e < TimeUnit_SECOND || e > TimeUnit_NANOSECOND) return "";
const size_t index = static_cast<size_t>(e);
return EnumNamesTimeUnit()[index];
}
enum TypeMetadata {
TypeMetadata_NONE = 0,
TypeMetadata_CategoryMetadata = 1,
TypeMetadata_TimestampMetadata = 2,
TypeMetadata_DateMetadata = 3,
TypeMetadata_TimeMetadata = 4,
TypeMetadata_MIN = TypeMetadata_NONE,
TypeMetadata_MAX = TypeMetadata_TimeMetadata
};
inline const TypeMetadata (&EnumValuesTypeMetadata())[5] {
static const TypeMetadata values[] = {
TypeMetadata_NONE,
TypeMetadata_CategoryMetadata,
TypeMetadata_TimestampMetadata,
TypeMetadata_DateMetadata,
TypeMetadata_TimeMetadata
};
return values;
}
inline const char * const *EnumNamesTypeMetadata() {
static const char * const names[] = {
"NONE",
"CategoryMetadata",
"TimestampMetadata",
"DateMetadata",
"TimeMetadata",
nullptr
};
return names;
}
inline const char *EnumNameTypeMetadata(TypeMetadata e) {
if (e < TypeMetadata_NONE || e > TypeMetadata_TimeMetadata) return "";
const size_t index = static_cast<size_t>(e);
return EnumNamesTypeMetadata()[index];
}
template<typename T> struct TypeMetadataTraits {
static const TypeMetadata enum_value = TypeMetadata_NONE;
};
template<> struct TypeMetadataTraits<CategoryMetadata> {
static const TypeMetadata enum_value = TypeMetadata_CategoryMetadata;
};
template<> struct TypeMetadataTraits<TimestampMetadata> {
static const TypeMetadata enum_value = TypeMetadata_TimestampMetadata;
};
template<> struct TypeMetadataTraits<DateMetadata> {
static const TypeMetadata enum_value = TypeMetadata_DateMetadata;
};
template<> struct TypeMetadataTraits<TimeMetadata> {
static const TypeMetadata enum_value = TypeMetadata_TimeMetadata;
};
bool VerifyTypeMetadata(flatbuffers::Verifier &verifier, const void *obj, TypeMetadata type);
bool VerifyTypeMetadataVector(flatbuffers::Verifier &verifier, const flatbuffers::Vector<flatbuffers::Offset<void>> *values, const flatbuffers::Vector<uint8_t> *types);
struct PrimitiveArray FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table {
enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE {
VT_TYPE = 4,
VT_ENCODING = 6,
VT_OFFSET = 8,
VT_LENGTH = 10,
VT_NULL_COUNT = 12,
VT_TOTAL_BYTES = 14
};
Type type() const {
return static_cast<Type>(GetField<int8_t>(VT_TYPE, 0));
}
Encoding encoding() const {
return static_cast<Encoding>(GetField<int8_t>(VT_ENCODING, 0));
}
/// Relative memory offset of the start of the array data excluding the size
/// of the metadata
int64_t offset() const {
return GetField<int64_t>(VT_OFFSET, 0);
}
/// The number of logical values in the array
int64_t length() const {
return GetField<int64_t>(VT_LENGTH, 0);
}
/// The number of observed nulls
int64_t null_count() const {
return GetField<int64_t>(VT_NULL_COUNT, 0);
}
/// The total size of the actual data in the file
int64_t total_bytes() const {
return GetField<int64_t>(VT_TOTAL_BYTES, 0);
}
bool Verify(flatbuffers::Verifier &verifier) const {
return VerifyTableStart(verifier) &&
VerifyField<int8_t>(verifier, VT_TYPE) &&
VerifyField<int8_t>(verifier, VT_ENCODING) &&
VerifyField<int64_t>(verifier, VT_OFFSET) &&
VerifyField<int64_t>(verifier, VT_LENGTH) &&
VerifyField<int64_t>(verifier, VT_NULL_COUNT) &&
VerifyField<int64_t>(verifier, VT_TOTAL_BYTES) &&
verifier.EndTable();
}
};
struct PrimitiveArrayBuilder {
flatbuffers::FlatBufferBuilder &fbb_;
flatbuffers::uoffset_t start_;
void add_type(Type type) {
fbb_.AddElement<int8_t>(PrimitiveArray::VT_TYPE, static_cast<int8_t>(type), 0);
}
void add_encoding(Encoding encoding) {
fbb_.AddElement<int8_t>(PrimitiveArray::VT_ENCODING, static_cast<int8_t>(encoding), 0);
}
void add_offset(int64_t offset) {
fbb_.AddElement<int64_t>(PrimitiveArray::VT_OFFSET, offset, 0);
}
void add_length(int64_t length) {
fbb_.AddElement<int64_t>(PrimitiveArray::VT_LENGTH, length, 0);
}
void add_null_count(int64_t null_count) {
fbb_.AddElement<int64_t>(PrimitiveArray::VT_NULL_COUNT, null_count, 0);
}
void add_total_bytes(int64_t total_bytes) {
fbb_.AddElement<int64_t>(PrimitiveArray::VT_TOTAL_BYTES, total_bytes, 0);
}
explicit PrimitiveArrayBuilder(flatbuffers::FlatBufferBuilder &_fbb)
: fbb_(_fbb) {
start_ = fbb_.StartTable();
}
PrimitiveArrayBuilder &operator=(const PrimitiveArrayBuilder &);
flatbuffers::Offset<PrimitiveArray> Finish() {
const auto end = fbb_.EndTable(start_);
auto o = flatbuffers::Offset<PrimitiveArray>(end);
return o;
}
};
inline flatbuffers::Offset<PrimitiveArray> CreatePrimitiveArray(
flatbuffers::FlatBufferBuilder &_fbb,
Type type = Type_BOOL,
Encoding encoding = Encoding_PLAIN,
int64_t offset = 0,
int64_t length = 0,
int64_t null_count = 0,
int64_t total_bytes = 0) {
PrimitiveArrayBuilder builder_(_fbb);
builder_.add_total_bytes(total_bytes);
builder_.add_null_count(null_count);
builder_.add_length(length);
builder_.add_offset(offset);
builder_.add_encoding(encoding);
builder_.add_type(type);
return builder_.Finish();
}
struct CategoryMetadata FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table {
enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE {
VT_LEVELS = 4,
VT_ORDERED = 6
};
/// The category codes are presumed to be integers that are valid indexes into
/// the levels array
const PrimitiveArray *levels() const {
return GetPointer<const PrimitiveArray *>(VT_LEVELS);
}
bool ordered() const {
return GetField<uint8_t>(VT_ORDERED, 0) != 0;
}
bool Verify(flatbuffers::Verifier &verifier) const {
return VerifyTableStart(verifier) &&
VerifyOffset(verifier, VT_LEVELS) &&
verifier.VerifyTable(levels()) &&
VerifyField<uint8_t>(verifier, VT_ORDERED) &&
verifier.EndTable();
}
};
struct CategoryMetadataBuilder {
flatbuffers::FlatBufferBuilder &fbb_;
flatbuffers::uoffset_t start_;
void add_levels(flatbuffers::Offset<PrimitiveArray> levels) {
fbb_.AddOffset(CategoryMetadata::VT_LEVELS, levels);
}
void add_ordered(bool ordered) {
fbb_.AddElement<uint8_t>(CategoryMetadata::VT_ORDERED, static_cast<uint8_t>(ordered), 0);
}
explicit CategoryMetadataBuilder(flatbuffers::FlatBufferBuilder &_fbb)
: fbb_(_fbb) {
start_ = fbb_.StartTable();
}
CategoryMetadataBuilder &operator=(const CategoryMetadataBuilder &);
flatbuffers::Offset<CategoryMetadata> Finish() {
const auto end = fbb_.EndTable(start_);
auto o = flatbuffers::Offset<CategoryMetadata>(end);
return o;
}
};
inline flatbuffers::Offset<CategoryMetadata> CreateCategoryMetadata(
flatbuffers::FlatBufferBuilder &_fbb,
flatbuffers::Offset<PrimitiveArray> levels = 0,
bool ordered = false) {
CategoryMetadataBuilder builder_(_fbb);
builder_.add_levels(levels);
builder_.add_ordered(ordered);
return builder_.Finish();
}
struct TimestampMetadata FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table {
enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE {
VT_UNIT = 4,
VT_TIMEZONE = 6
};
TimeUnit unit() const {
return static_cast<TimeUnit>(GetField<int8_t>(VT_UNIT, 0));
}
/// Timestamp data is assumed to be UTC, but the time zone is stored here for
/// presentation as localized
const flatbuffers::String *timezone() const {
return GetPointer<const flatbuffers::String *>(VT_TIMEZONE);
}
bool Verify(flatbuffers::Verifier &verifier) const {
return VerifyTableStart(verifier) &&
VerifyField<int8_t>(verifier, VT_UNIT) &&
VerifyOffset(verifier, VT_TIMEZONE) &&
verifier.VerifyString(timezone()) &&
verifier.EndTable();
}
};
struct TimestampMetadataBuilder {
flatbuffers::FlatBufferBuilder &fbb_;
flatbuffers::uoffset_t start_;
void add_unit(TimeUnit unit) {
fbb_.AddElement<int8_t>(TimestampMetadata::VT_UNIT, static_cast<int8_t>(unit), 0);
}
void add_timezone(flatbuffers::Offset<flatbuffers::String> timezone) {
fbb_.AddOffset(TimestampMetadata::VT_TIMEZONE, timezone);
}
explicit TimestampMetadataBuilder(flatbuffers::FlatBufferBuilder &_fbb)
: fbb_(_fbb) {
start_ = fbb_.StartTable();
}
TimestampMetadataBuilder &operator=(const TimestampMetadataBuilder &);
flatbuffers::Offset<TimestampMetadata> Finish() {
const auto end = fbb_.EndTable(start_);
auto o = flatbuffers::Offset<TimestampMetadata>(end);
return o;
}
};
inline flatbuffers::Offset<TimestampMetadata> CreateTimestampMetadata(
flatbuffers::FlatBufferBuilder &_fbb,
TimeUnit unit = TimeUnit_SECOND,
flatbuffers::Offset<flatbuffers::String> timezone = 0) {
TimestampMetadataBuilder builder_(_fbb);
builder_.add_timezone(timezone);
builder_.add_unit(unit);
return builder_.Finish();
}
inline flatbuffers::Offset<TimestampMetadata> CreateTimestampMetadataDirect(
flatbuffers::FlatBufferBuilder &_fbb,
TimeUnit unit = TimeUnit_SECOND,
const char *timezone = nullptr) {
auto timezone__ = timezone ? _fbb.CreateString(timezone) : 0;
return arrow::ipc::feather::fbs::CreateTimestampMetadata(
_fbb,
unit,
timezone__);
}
struct DateMetadata FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table {
bool Verify(flatbuffers::Verifier &verifier) const {
return VerifyTableStart(verifier) &&
verifier.EndTable();
}
};
struct DateMetadataBuilder {
flatbuffers::FlatBufferBuilder &fbb_;
flatbuffers::uoffset_t start_;
explicit DateMetadataBuilder(flatbuffers::FlatBufferBuilder &_fbb)
: fbb_(_fbb) {
start_ = fbb_.StartTable();
}
DateMetadataBuilder &operator=(const DateMetadataBuilder &);
flatbuffers::Offset<DateMetadata> Finish() {
const auto end = fbb_.EndTable(start_);
auto o = flatbuffers::Offset<DateMetadata>(end);
return o;
}
};
inline flatbuffers::Offset<DateMetadata> CreateDateMetadata(
flatbuffers::FlatBufferBuilder &_fbb) {
DateMetadataBuilder builder_(_fbb);
return builder_.Finish();
}
struct TimeMetadata FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table {
enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE {
VT_UNIT = 4
};
TimeUnit unit() const {
return static_cast<TimeUnit>(GetField<int8_t>(VT_UNIT, 0));
}
bool Verify(flatbuffers::Verifier &verifier) const {
return VerifyTableStart(verifier) &&
VerifyField<int8_t>(verifier, VT_UNIT) &&
verifier.EndTable();
}
};
struct TimeMetadataBuilder {
flatbuffers::FlatBufferBuilder &fbb_;
flatbuffers::uoffset_t start_;
void add_unit(TimeUnit unit) {
fbb_.AddElement<int8_t>(TimeMetadata::VT_UNIT, static_cast<int8_t>(unit), 0);
}
explicit TimeMetadataBuilder(flatbuffers::FlatBufferBuilder &_fbb)
: fbb_(_fbb) {
start_ = fbb_.StartTable();
}
TimeMetadataBuilder &operator=(const TimeMetadataBuilder &);
flatbuffers::Offset<TimeMetadata> Finish() {
const auto end = fbb_.EndTable(start_);
auto o = flatbuffers::Offset<TimeMetadata>(end);
return o;
}
};
inline flatbuffers::Offset<TimeMetadata> CreateTimeMetadata(
flatbuffers::FlatBufferBuilder &_fbb,
TimeUnit unit = TimeUnit_SECOND) {
TimeMetadataBuilder builder_(_fbb);
builder_.add_unit(unit);
return builder_.Finish();
}
struct Column FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table {
enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE {
VT_NAME = 4,
VT_VALUES = 6,
VT_METADATA_TYPE = 8,
VT_METADATA = 10,
VT_USER_METADATA = 12
};
const flatbuffers::String *name() const {
return GetPointer<const flatbuffers::String *>(VT_NAME);
}
const PrimitiveArray *values() const {
return GetPointer<const PrimitiveArray *>(VT_VALUES);
}
TypeMetadata metadata_type() const {
return static_cast<TypeMetadata>(GetField<uint8_t>(VT_METADATA_TYPE, 0));
}
const void *metadata() const {
return GetPointer<const void *>(VT_METADATA);
}
template<typename T> const T *metadata_as() const;
const CategoryMetadata *metadata_as_CategoryMetadata() const {
return metadata_type() == TypeMetadata_CategoryMetadata ? static_cast<const CategoryMetadata *>(metadata()) : nullptr;
}
const TimestampMetadata *metadata_as_TimestampMetadata() const {
return metadata_type() == TypeMetadata_TimestampMetadata ? static_cast<const TimestampMetadata *>(metadata()) : nullptr;
}
const DateMetadata *metadata_as_DateMetadata() const {
return metadata_type() == TypeMetadata_DateMetadata ? static_cast<const DateMetadata *>(metadata()) : nullptr;
}
const TimeMetadata *metadata_as_TimeMetadata() const {
return metadata_type() == TypeMetadata_TimeMetadata ? static_cast<const TimeMetadata *>(metadata()) : nullptr;
}
/// This should (probably) be JSON
const flatbuffers::String *user_metadata() const {
return GetPointer<const flatbuffers::String *>(VT_USER_METADATA);
}
bool Verify(flatbuffers::Verifier &verifier) const {
return VerifyTableStart(verifier) &&
VerifyOffset(verifier, VT_NAME) &&
verifier.VerifyString(name()) &&
VerifyOffset(verifier, VT_VALUES) &&
verifier.VerifyTable(values()) &&
VerifyField<uint8_t>(verifier, VT_METADATA_TYPE) &&
VerifyOffset(verifier, VT_METADATA) &&
VerifyTypeMetadata(verifier, metadata(), metadata_type()) &&
VerifyOffset(verifier, VT_USER_METADATA) &&
verifier.VerifyString(user_metadata()) &&
verifier.EndTable();
}
};
template<> inline const CategoryMetadata *Column::metadata_as<CategoryMetadata>() const {
return metadata_as_CategoryMetadata();
}
template<> inline const TimestampMetadata *Column::metadata_as<TimestampMetadata>() const {
return metadata_as_TimestampMetadata();
}
template<> inline const DateMetadata *Column::metadata_as<DateMetadata>() const {
return metadata_as_DateMetadata();
}
template<> inline const TimeMetadata *Column::metadata_as<TimeMetadata>() const {
return metadata_as_TimeMetadata();
}
struct ColumnBuilder {
flatbuffers::FlatBufferBuilder &fbb_;
flatbuffers::uoffset_t start_;
void add_name(flatbuffers::Offset<flatbuffers::String> name) {
fbb_.AddOffset(Column::VT_NAME, name);
}
void add_values(flatbuffers::Offset<PrimitiveArray> values) {
fbb_.AddOffset(Column::VT_VALUES, values);
}
void add_metadata_type(TypeMetadata metadata_type) {
fbb_.AddElement<uint8_t>(Column::VT_METADATA_TYPE, static_cast<uint8_t>(metadata_type), 0);
}
void add_metadata(flatbuffers::Offset<void> metadata) {
fbb_.AddOffset(Column::VT_METADATA, metadata);
}
void add_user_metadata(flatbuffers::Offset<flatbuffers::String> user_metadata) {
fbb_.AddOffset(Column::VT_USER_METADATA, user_metadata);
}
explicit ColumnBuilder(flatbuffers::FlatBufferBuilder &_fbb)
: fbb_(_fbb) {
start_ = fbb_.StartTable();
}
ColumnBuilder &operator=(const ColumnBuilder &);
flatbuffers::Offset<Column> Finish() {
const auto end = fbb_.EndTable(start_);
auto o = flatbuffers::Offset<Column>(end);
return o;
}
};
inline flatbuffers::Offset<Column> CreateColumn(
flatbuffers::FlatBufferBuilder &_fbb,
flatbuffers::Offset<flatbuffers::String> name = 0,
flatbuffers::Offset<PrimitiveArray> values = 0,
TypeMetadata metadata_type = TypeMetadata_NONE,
flatbuffers::Offset<void> metadata = 0,
flatbuffers::Offset<flatbuffers::String> user_metadata = 0) {
ColumnBuilder builder_(_fbb);
builder_.add_user_metadata(user_metadata);
builder_.add_metadata(metadata);
builder_.add_values(values);
builder_.add_name(name);
builder_.add_metadata_type(metadata_type);
return builder_.Finish();
}
inline flatbuffers::Offset<Column> CreateColumnDirect(
flatbuffers::FlatBufferBuilder &_fbb,
const char *name = nullptr,
flatbuffers::Offset<PrimitiveArray> values = 0,
TypeMetadata metadata_type = TypeMetadata_NONE,
flatbuffers::Offset<void> metadata = 0,
const char *user_metadata = nullptr) {
auto name__ = name ? _fbb.CreateString(name) : 0;
auto user_metadata__ = user_metadata ? _fbb.CreateString(user_metadata) : 0;
return arrow::ipc::feather::fbs::CreateColumn(
_fbb,
name__,
values,
metadata_type,
metadata,
user_metadata__);
}
struct CTable FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table {
enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE {
VT_DESCRIPTION = 4,
VT_NUM_ROWS = 6,
VT_COLUMNS = 8,
VT_VERSION = 10,
VT_METADATA = 12
};
/// Some text (or a name) metadata about what the file is, optional
const flatbuffers::String *description() const {
return GetPointer<const flatbuffers::String *>(VT_DESCRIPTION);
}
int64_t num_rows() const {
return GetField<int64_t>(VT_NUM_ROWS, 0);
}
const flatbuffers::Vector<flatbuffers::Offset<Column>> *columns() const {
return GetPointer<const flatbuffers::Vector<flatbuffers::Offset<Column>> *>(VT_COLUMNS);
}
/// Version number of the Feather format
int32_t version() const {
return GetField<int32_t>(VT_VERSION, 0);
}
/// Table metadata (likely JSON), not yet used
const flatbuffers::String *metadata() const {
return GetPointer<const flatbuffers::String *>(VT_METADATA);
}
bool Verify(flatbuffers::Verifier &verifier) const {
return VerifyTableStart(verifier) &&
VerifyOffset(verifier, VT_DESCRIPTION) &&
verifier.VerifyString(description()) &&
VerifyField<int64_t>(verifier, VT_NUM_ROWS) &&
VerifyOffset(verifier, VT_COLUMNS) &&
verifier.VerifyVector(columns()) &&
verifier.VerifyVectorOfTables(columns()) &&
VerifyField<int32_t>(verifier, VT_VERSION) &&
VerifyOffset(verifier, VT_METADATA) &&
verifier.VerifyString(metadata()) &&
verifier.EndTable();
}
};
struct CTableBuilder {
flatbuffers::FlatBufferBuilder &fbb_;
flatbuffers::uoffset_t start_;
void add_description(flatbuffers::Offset<flatbuffers::String> description) {
fbb_.AddOffset(CTable::VT_DESCRIPTION, description);
}
void add_num_rows(int64_t num_rows) {
fbb_.AddElement<int64_t>(CTable::VT_NUM_ROWS, num_rows, 0);
}
void add_columns(flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<Column>>> columns) {
fbb_.AddOffset(CTable::VT_COLUMNS, columns);
}
void add_version(int32_t version) {
fbb_.AddElement<int32_t>(CTable::VT_VERSION, version, 0);
}
void add_metadata(flatbuffers::Offset<flatbuffers::String> metadata) {
fbb_.AddOffset(CTable::VT_METADATA, metadata);
}
explicit CTableBuilder(flatbuffers::FlatBufferBuilder &_fbb)
: fbb_(_fbb) {
start_ = fbb_.StartTable();
}
CTableBuilder &operator=(const CTableBuilder &);
flatbuffers::Offset<CTable> Finish() {
const auto end = fbb_.EndTable(start_);
auto o = flatbuffers::Offset<CTable>(end);
return o;
}
};
inline flatbuffers::Offset<CTable> CreateCTable(
flatbuffers::FlatBufferBuilder &_fbb,
flatbuffers::Offset<flatbuffers::String> description = 0,
int64_t num_rows = 0,
flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<Column>>> columns = 0,
int32_t version = 0,
flatbuffers::Offset<flatbuffers::String> metadata = 0) {
CTableBuilder builder_(_fbb);
builder_.add_num_rows(num_rows);
builder_.add_metadata(metadata);
builder_.add_version(version);
builder_.add_columns(columns);
builder_.add_description(description);
return builder_.Finish();
}
inline flatbuffers::Offset<CTable> CreateCTableDirect(
flatbuffers::FlatBufferBuilder &_fbb,
const char *description = nullptr,
int64_t num_rows = 0,
const std::vector<flatbuffers::Offset<Column>> *columns = nullptr,
int32_t version = 0,
const char *metadata = nullptr) {
auto description__ = description ? _fbb.CreateString(description) : 0;
auto columns__ = columns ? _fbb.CreateVector<flatbuffers::Offset<Column>>(*columns) : 0;
auto metadata__ = metadata ? _fbb.CreateString(metadata) : 0;
return arrow::ipc::feather::fbs::CreateCTable(
_fbb,
description__,
num_rows,
columns__,
version,
metadata__);
}
inline bool VerifyTypeMetadata(flatbuffers::Verifier &verifier, const void *obj, TypeMetadata type) {
switch (type) {
case TypeMetadata_NONE: {
return true;
}
case TypeMetadata_CategoryMetadata: {
auto ptr = reinterpret_cast<const CategoryMetadata *>(obj);
return verifier.VerifyTable(ptr);
}
case TypeMetadata_TimestampMetadata: {
auto ptr = reinterpret_cast<const TimestampMetadata *>(obj);
return verifier.VerifyTable(ptr);
}
case TypeMetadata_DateMetadata: {
auto ptr = reinterpret_cast<const DateMetadata *>(obj);
return verifier.VerifyTable(ptr);
}
case TypeMetadata_TimeMetadata: {
auto ptr = reinterpret_cast<const TimeMetadata *>(obj);
return verifier.VerifyTable(ptr);
}
default: return false;
}
}
inline bool VerifyTypeMetadataVector(flatbuffers::Verifier &verifier, const flatbuffers::Vector<flatbuffers::Offset<void>> *values, const flatbuffers::Vector<uint8_t> *types) {
if (!values || !types) return !values && !types;
if (values->size() != types->size()) return false;
for (flatbuffers::uoffset_t i = 0; i < values->size(); ++i) {
if (!VerifyTypeMetadata(
verifier, values->Get(i), types->GetEnum<TypeMetadata>(i))) {
return false;
}
}
return true;
}
inline const arrow::ipc::feather::fbs::CTable *GetCTable(const void *buf) {
return flatbuffers::GetRoot<arrow::ipc::feather::fbs::CTable>(buf);
}
inline const arrow::ipc::feather::fbs::CTable *GetSizePrefixedCTable(const void *buf) {
return flatbuffers::GetSizePrefixedRoot<arrow::ipc::feather::fbs::CTable>(buf);
}
inline bool VerifyCTableBuffer(
flatbuffers::Verifier &verifier) {
return verifier.VerifyBuffer<arrow::ipc::feather::fbs::CTable>(nullptr);
}
inline bool VerifySizePrefixedCTableBuffer(
flatbuffers::Verifier &verifier) {
return verifier.VerifySizePrefixedBuffer<arrow::ipc::feather::fbs::CTable>(nullptr);
}
inline void FinishCTableBuffer(
flatbuffers::FlatBufferBuilder &fbb,
flatbuffers::Offset<arrow::ipc::feather::fbs::CTable> root) {
fbb.Finish(root);
}
inline void FinishSizePrefixedCTableBuffer(
flatbuffers::FlatBufferBuilder &fbb,
flatbuffers::Offset<arrow::ipc::feather::fbs::CTable> root) {
fbb.FinishSizePrefixed(root);
}
} // namespace fbs
} // namespace feather
} // namespace ipc
} // namespace arrow
#endif // FLATBUFFERS_GENERATED_FEATHER_ARROW_IPC_FEATHER_FBS_H_