Merge branch 'master' into vdimir/join_select_inner_table

This commit is contained in:
vdimir 2024-10-10 12:02:49 +00:00
commit cfdfc3856e
No known key found for this signature in database
GPG Key ID: 6EE4CE2BEDC51862
253 changed files with 4506 additions and 981 deletions

View File

@ -33,9 +33,6 @@ jobs:
filter: tree:0
- name: Debug Info
uses: ./.github/actions/debug
- name: Cancel previous Sync PR workflow
run: |
python3 "$GITHUB_WORKSPACE/tests/ci/ci.py" --cancel-previous-run
- name: Set pending Sync status
run: |
python3 "$GITHUB_WORKSPACE/tests/ci/ci.py" --set-pending-status

View File

@ -0,0 +1,49 @@
---
sidebar_position: 1
sidebar_label: 2024
---
# 2024 Changelog
### ClickHouse release v24.3.12.75-lts (7cb5dff8019) FIXME as compared to v24.3.11.7-lts (28795d0a47e)
#### Improvement
* Backported in [#69607](https://github.com/ClickHouse/ClickHouse/issues/69607): Improved memory accounting for cgroups v2 to exclude the amount occupied by the page cache. [#65470](https://github.com/ClickHouse/ClickHouse/pull/65470) ([Nikita Taranov](https://github.com/nickitat)).
#### Bug Fix (user-visible misbehavior in an official stable release)
* Backported in [#69785](https://github.com/ClickHouse/ClickHouse/issues/69785): Fix attaching table when pg dbname contains "-" in MaterializedPostgreSQL. [#62730](https://github.com/ClickHouse/ClickHouse/pull/62730) ([takakawa](https://github.com/takakawa)).
* Backported in [#69461](https://github.com/ClickHouse/ClickHouse/issues/69461): Fix expiration in `RoleCache`. [#67748](https://github.com/ClickHouse/ClickHouse/pull/67748) ([Vitaly Baranov](https://github.com/vitlibar)).
* Backported in [#68217](https://github.com/ClickHouse/ClickHouse/issues/68217): Fixed a NULL pointer dereference, triggered by a specially crafted query, that crashed the server via hopEnd, hopStart, tumbleEnd, and tumbleStart. [#68098](https://github.com/ClickHouse/ClickHouse/pull/68098) ([Salvatore Mesoraca](https://github.com/aiven-sal)).
* Backported in [#69437](https://github.com/ClickHouse/ClickHouse/issues/69437): After unexpected restart, fail to start replication of ReplicatedMergeTree due to abnormal handling of covered-by-broken part. [#68584](https://github.com/ClickHouse/ClickHouse/pull/68584) ([baolin](https://github.com/baolinhuang)).
* Backported in [#69827](https://github.com/ClickHouse/ClickHouse/issues/69827): Make `ColumnsDescription::toString` format each column using the same `IAST::FormatState object`. This results in uniform columns metadata being written to disk and ZooKeeper. [#68733](https://github.com/ClickHouse/ClickHouse/pull/68733) ([Miсhael Stetsyuk](https://github.com/mstetsyuk)).
* Backported in [#69294](https://github.com/ClickHouse/ClickHouse/issues/69294): Fix merging of aggregated data for grouping sets. [#68744](https://github.com/ClickHouse/ClickHouse/pull/68744) ([Nikolai Kochetov](https://github.com/KochetovNicolai)).
* Backported in [#70470](https://github.com/ClickHouse/ClickHouse/issues/70470): Fix inf loop after `restore replica` in the replicated merge tree with zero copy. [#69293](https://github.com/ClickHouse/ClickHouse/pull/69293) ([MikhailBurdukov](https://github.com/MikhailBurdukov)).
* Backported in [#69456](https://github.com/ClickHouse/ClickHouse/issues/69456): Fix undefined behavior when all connection attempts fail getting a connection for insertions. [#69390](https://github.com/ClickHouse/ClickHouse/pull/69390) ([Pablo Marcos](https://github.com/pamarcos)).
* Backported in [#69497](https://github.com/ClickHouse/ClickHouse/issues/69497): Fixed a `LOGICAL_ERROR` with function `sqidDecode` ([#69450](https://github.com/ClickHouse/ClickHouse/issues/69450)). [#69451](https://github.com/ClickHouse/ClickHouse/pull/69451) ([Robert Schulze](https://github.com/rschu1ze)).
* Backported in [#69724](https://github.com/ClickHouse/ClickHouse/issues/69724): Keep original order of conditions during move to prewhere. Previously the order could change and it could lead to failing queries when the order is important. [#69560](https://github.com/ClickHouse/ClickHouse/pull/69560) ([Pavel Kruglov](https://github.com/Avogar)).
* Backported in [#69668](https://github.com/ClickHouse/ClickHouse/issues/69668): Fix Keeper multi-request preprocessing after ZNOAUTH error. [#69627](https://github.com/ClickHouse/ClickHouse/pull/69627) ([Antonio Andelic](https://github.com/antonio2368)).
* Backported in [#69792](https://github.com/ClickHouse/ClickHouse/issues/69792): Make getHyperrectangleForRowGroup not throw an exception when the data type in parquet file is not convertable into the requested data type. Solved the user's problem when the Parquet file had Decimal64 data type and the column data type was DateTime. [#69745](https://github.com/ClickHouse/ClickHouse/pull/69745) ([Miсhael Stetsyuk](https://github.com/mstetsyuk)).
* Backported in [#70089](https://github.com/ClickHouse/ClickHouse/issues/70089): Now SQL security will work with parameterized views correctly. [#69984](https://github.com/ClickHouse/ClickHouse/pull/69984) ([pufit](https://github.com/pufit)).
* Backported in [#70077](https://github.com/ClickHouse/ClickHouse/issues/70077): Closes [#69752](https://github.com/ClickHouse/ClickHouse/issues/69752). [#69985](https://github.com/ClickHouse/ClickHouse/pull/69985) ([pufit](https://github.com/pufit)).
* Backported in [#70162](https://github.com/ClickHouse/ClickHouse/issues/70162): Fix wrong LOGICAL_ERROR when replacing literals in ranges. [#70122](https://github.com/ClickHouse/ClickHouse/pull/70122) ([Pablo Marcos](https://github.com/pamarcos)).
* Backported in [#70232](https://github.com/ClickHouse/ClickHouse/issues/70232): Check for Nullable(Nothing) type during ALTER TABLE MODIFY COLUMN/QUERY to prevent tables with such data type. [#70123](https://github.com/ClickHouse/ClickHouse/pull/70123) ([Pavel Kruglov](https://github.com/Avogar)).
* Backported in [#70179](https://github.com/ClickHouse/ClickHouse/issues/70179): Fix data race in ColumnObject/ColumnTuple decompress method that could lead to heap use after free. [#70137](https://github.com/ClickHouse/ClickHouse/pull/70137) ([Pavel Kruglov](https://github.com/Avogar)).
* Backported in [#70241](https://github.com/ClickHouse/ClickHouse/issues/70241): Fix the password being displayed in `system.query_log` for users with bcrypt password authentication method. [#70148](https://github.com/ClickHouse/ClickHouse/pull/70148) ([Nikolay Degterinsky](https://github.com/evillique)).
* Backported in [#70397](https://github.com/ClickHouse/ClickHouse/issues/70397): Fix crash when using WITH FILL incorrectly. [#70338](https://github.com/ClickHouse/ClickHouse/pull/70338) ([Raúl Marín](https://github.com/Algunenano)).
#### NO CL CATEGORY
* Backported in [#69526](https://github.com/ClickHouse/ClickHouse/issues/69526):. [#67029](https://github.com/ClickHouse/ClickHouse/pull/67029) ([Alexander Tokmakov](https://github.com/tavplubix)).
#### NOT FOR CHANGELOG / INSIGNIFICANT
* Backported in [#69506](https://github.com/ClickHouse/ClickHouse/issues/69506): Better handling of errors from azure storage. [#62306](https://github.com/ClickHouse/ClickHouse/pull/62306) ([Anton Popov](https://github.com/CurtizJ)).
* Backported in [#69955](https://github.com/ClickHouse/ClickHouse/issues/69955): Output an operation error for ZK Multi request failed operation into log. [#68127](https://github.com/ClickHouse/ClickHouse/pull/68127) ([Aleksei Filatov](https://github.com/aalexfvk)).
* Backported in [#69485](https://github.com/ClickHouse/ClickHouse/issues/69485): Fix test_role & test_keeper_s3_snapshot integration tests. [#69013](https://github.com/ClickHouse/ClickHouse/pull/69013) ([Shankar](https://github.com/shiyer7474)).
* Backported in [#70028](https://github.com/ClickHouse/ClickHouse/issues/70028): Remove stale moving parts without zookeeper. [#69075](https://github.com/ClickHouse/ClickHouse/pull/69075) ([Kirill](https://github.com/kirillgarbar)).
* Backported in [#69421](https://github.com/ClickHouse/ClickHouse/issues/69421): Fix: Not-ready Set with parallel replicas. [#69264](https://github.com/ClickHouse/ClickHouse/pull/69264) ([Igor Nikonov](https://github.com/devcrafter)).
* Backported in [#69747](https://github.com/ClickHouse/ClickHouse/issues/69747): Add function `kill_ci_runner`. Kill runner when pre-pull failed. [#69557](https://github.com/ClickHouse/ClickHouse/pull/69557) ([Mikhail f. Shiryaev](https://github.com/Felixoid)).
* Backported in [#69636](https://github.com/ClickHouse/ClickHouse/issues/69636): Add more contexts to the debug action and use it broadly. [#69599](https://github.com/ClickHouse/ClickHouse/pull/69599) ([Mikhail f. Shiryaev](https://github.com/Felixoid)).
* The test is flaky and the feature experimental. [#70269](https://github.com/ClickHouse/ClickHouse/pull/70269) ([Raúl Marín](https://github.com/Algunenano)).
* Fix test distributed inter server secret in 24.3. [#70325](https://github.com/ClickHouse/ClickHouse/pull/70325) ([Raúl Marín](https://github.com/Algunenano)).

View File

@ -0,0 +1,73 @@
---
sidebar_position: 1
sidebar_label: 2024
---
# 2024 Changelog
### ClickHouse release v24.8.5.115-lts (8c4cb00a384) FIXME as compared to v24.8.4.13-lts (53195bc189b)
#### Improvement
* Backported in [#70046](https://github.com/ClickHouse/ClickHouse/issues/70046): Add new column readonly_duration to the system.replicas table. Needed to be able to distinguish actual readonly replicas from sentinel ones in alerts. [#69871](https://github.com/ClickHouse/ClickHouse/pull/69871) ([Miсhael Stetsyuk](https://github.com/mstetsyuk)).
#### Bug Fix (user-visible misbehavior in an official stable release)
* Backported in [#69786](https://github.com/ClickHouse/ClickHouse/issues/69786): Fix attaching table when pg dbname contains "-" in MaterializedPostgreSQL. [#62730](https://github.com/ClickHouse/ClickHouse/pull/62730) ([takakawa](https://github.com/takakawa)).
* Backported in [#70318](https://github.com/ClickHouse/ClickHouse/issues/70318): Fixed error on generated columns in MaterializedPostgreSQL when adnum ordering is broken [#63161](https://github.com/ClickHouse/ClickHouse/issues/63161). Fixed error on id column with nextval expression as default MaterializedPostgreSQL when there are generated columns in table. Fixed error on dropping publication with symbols except [a-z1-9-]. [#67664](https://github.com/ClickHouse/ClickHouse/pull/67664) ([Kruglov Kirill](https://github.com/1on)).
* Backported in [#69467](https://github.com/ClickHouse/ClickHouse/issues/69467): Fix expiration in `RoleCache`. [#67748](https://github.com/ClickHouse/ClickHouse/pull/67748) ([Vitaly Baranov](https://github.com/vitlibar)).
* Backported in [#69735](https://github.com/ClickHouse/ClickHouse/issues/69735): Fix crash in `lag`/`lead` which is introduced in [#67091](https://github.com/ClickHouse/ClickHouse/issues/67091). [#68262](https://github.com/ClickHouse/ClickHouse/pull/68262) ([lgbo](https://github.com/lgbo-ustc)).
* Backported in [#69444](https://github.com/ClickHouse/ClickHouse/issues/69444): After unexpected restart, fail to start replication of ReplicatedMergeTree due to abnormal handling of covered-by-broken part. [#68584](https://github.com/ClickHouse/ClickHouse/pull/68584) ([baolin](https://github.com/baolinhuang)).
* Backported in [#69810](https://github.com/ClickHouse/ClickHouse/issues/69810): Make `ColumnsDescription::toString` format each column using the same `IAST::FormatState object`. This results in uniform columns metadata being written to disk and ZooKeeper. [#68733](https://github.com/ClickHouse/ClickHouse/pull/68733) ([Miсhael Stetsyuk](https://github.com/mstetsyuk)).
* Backported in [#69757](https://github.com/ClickHouse/ClickHouse/issues/69757): Fix incorrect results of Fix uniq and GROUP BY for JSON/Dynamic types. [#69203](https://github.com/ClickHouse/ClickHouse/pull/69203) ([Pavel Kruglov](https://github.com/Avogar)).
* Backported in [#70195](https://github.com/ClickHouse/ClickHouse/issues/70195): Fix insertion of incomplete type into Dynamic during deserialization. It could lead to `Parameter out of bound` errors. [#69291](https://github.com/ClickHouse/ClickHouse/pull/69291) ([Pavel Kruglov](https://github.com/Avogar)).
* Backported in [#69398](https://github.com/ClickHouse/ClickHouse/issues/69398): Mark Dynamic type as not safe primary key type to avoid issues with Fields. [#69311](https://github.com/ClickHouse/ClickHouse/pull/69311) ([Pavel Kruglov](https://github.com/Avogar)).
* Backported in [#69704](https://github.com/ClickHouse/ClickHouse/issues/69704): Improve restoring of access entities' dependencies. [#69346](https://github.com/ClickHouse/ClickHouse/pull/69346) ([Vitaly Baranov](https://github.com/vitlibar)).
* Backported in [#69459](https://github.com/ClickHouse/ClickHouse/issues/69459): Fix undefined behavior when all connection attempts fail getting a connection for insertions. [#69390](https://github.com/ClickHouse/ClickHouse/pull/69390) ([Pablo Marcos](https://github.com/pamarcos)).
* Backported in [#69503](https://github.com/ClickHouse/ClickHouse/issues/69503): Fixed a `LOGICAL_ERROR` with function `sqidDecode` ([#69450](https://github.com/ClickHouse/ClickHouse/issues/69450)). [#69451](https://github.com/ClickHouse/ClickHouse/pull/69451) ([Robert Schulze](https://github.com/rschu1ze)).
* Backported in [#69480](https://github.com/ClickHouse/ClickHouse/issues/69480): Quick fix for s3queue problem on 24.6 or create query with database replicated. [#69454](https://github.com/ClickHouse/ClickHouse/pull/69454) ([Kseniia Sumarokova](https://github.com/kssenii)).
* Backported in [#69535](https://github.com/ClickHouse/ClickHouse/issues/69535): Fixed case when memory consumption was too high because of the squashing in `INSERT INTO ... SELECT` or `CREATE TABLE AS SELECT` queries. [#69469](https://github.com/ClickHouse/ClickHouse/pull/69469) ([Yarik Briukhovetskyi](https://github.com/yariks5s)).
* Backported in [#69696](https://github.com/ClickHouse/ClickHouse/issues/69696): Keep original order of conditions during move to prewhere. Previously the order could change and it could lead to failing queries when the order is important. [#69560](https://github.com/ClickHouse/ClickHouse/pull/69560) ([Pavel Kruglov](https://github.com/Avogar)).
* Backported in [#70439](https://github.com/ClickHouse/ClickHouse/issues/70439): Fix vrash during insertion into FixedString column in PostgreSQL engine. [#69584](https://github.com/ClickHouse/ClickHouse/pull/69584) ([Pavel Kruglov](https://github.com/Avogar)).
* Backported in [#69666](https://github.com/ClickHouse/ClickHouse/issues/69666): Fix Keeper multi-request preprocessing after ZNOAUTH error. [#69627](https://github.com/ClickHouse/ClickHouse/pull/69627) ([Antonio Andelic](https://github.com/antonio2368)).
* Backported in [#70191](https://github.com/ClickHouse/ClickHouse/issues/70191): Fix crash when executing `create view t as (with recursive 42 as ttt select ttt);`. [#69676](https://github.com/ClickHouse/ClickHouse/pull/69676) ([Han Fei](https://github.com/hanfei1991)).
* Backported in [#69798](https://github.com/ClickHouse/ClickHouse/issues/69798): Make getHyperrectangleForRowGroup not throw an exception when the data type in parquet file is not convertable into the requested data type. Solved the user's problem when the Parquet file had Decimal64 data type and the column data type was DateTime. [#69745](https://github.com/ClickHouse/ClickHouse/pull/69745) ([Miсhael Stetsyuk](https://github.com/mstetsyuk)).
* Backported in [#70410](https://github.com/ClickHouse/ClickHouse/issues/70410): Fixed `maxMapState` throwing 'Bad get' if value type is DateTime64. [#69787](https://github.com/ClickHouse/ClickHouse/pull/69787) ([Michael Kolupaev](https://github.com/al13n321)).
* Backported in [#70019](https://github.com/ClickHouse/ClickHouse/issues/70019): Fix analyzer default with old compatibility value. [#69895](https://github.com/ClickHouse/ClickHouse/pull/69895) ([Raúl Marín](https://github.com/Algunenano)).
* Backported in [#69941](https://github.com/ClickHouse/ClickHouse/issues/69941): Don't check dependencies during CREATE OR REPLACE VIEW during DROP of old table. Previously CREATE OR REPLACE query failed when there are dependent tables of the recreated view. [#69907](https://github.com/ClickHouse/ClickHouse/pull/69907) ([Pavel Kruglov](https://github.com/Avogar)).
* Backported in [#70001](https://github.com/ClickHouse/ClickHouse/issues/70001): Now SQL security will work with parameterized views correctly. [#69984](https://github.com/ClickHouse/ClickHouse/pull/69984) ([pufit](https://github.com/pufit)).
* Backported in [#70081](https://github.com/ClickHouse/ClickHouse/issues/70081): Closes [#69752](https://github.com/ClickHouse/ClickHouse/issues/69752). [#69985](https://github.com/ClickHouse/ClickHouse/pull/69985) ([pufit](https://github.com/pufit)).
* Backported in [#70068](https://github.com/ClickHouse/ClickHouse/issues/70068): Fixes `Block structure mismatch` for queries with nested views and `WHERE` condition. Fixes [#66209](https://github.com/ClickHouse/ClickHouse/issues/66209). [#70054](https://github.com/ClickHouse/ClickHouse/pull/70054) ([Nikolai Kochetov](https://github.com/KochetovNicolai)).
* Backported in [#70166](https://github.com/ClickHouse/ClickHouse/issues/70166): Fix wrong LOGICAL_ERROR when replacing literals in ranges. [#70122](https://github.com/ClickHouse/ClickHouse/pull/70122) ([Pablo Marcos](https://github.com/pamarcos)).
* Backported in [#70236](https://github.com/ClickHouse/ClickHouse/issues/70236): Check for Nullable(Nothing) type during ALTER TABLE MODIFY COLUMN/QUERY to prevent tables with such data type. [#70123](https://github.com/ClickHouse/ClickHouse/pull/70123) ([Pavel Kruglov](https://github.com/Avogar)).
* Backported in [#70203](https://github.com/ClickHouse/ClickHouse/issues/70203): Fix wrong result with skipping index. [#70127](https://github.com/ClickHouse/ClickHouse/pull/70127) ([Raúl Marín](https://github.com/Algunenano)).
* Backported in [#70183](https://github.com/ClickHouse/ClickHouse/issues/70183): Fix data race in ColumnObject/ColumnTuple decompress method that could lead to heap use after free. [#70137](https://github.com/ClickHouse/ClickHouse/pull/70137) ([Pavel Kruglov](https://github.com/Avogar)).
* Backported in [#70251](https://github.com/ClickHouse/ClickHouse/issues/70251): Fix possible hung in ALTER COLUMN with Dynamic type. [#70144](https://github.com/ClickHouse/ClickHouse/pull/70144) ([Pavel Kruglov](https://github.com/Avogar)).
* Backported in [#70228](https://github.com/ClickHouse/ClickHouse/issues/70228): Use correct `max_types` parameter during Dynamic type creation for JSON subcolumn. [#70147](https://github.com/ClickHouse/ClickHouse/pull/70147) ([Pavel Kruglov](https://github.com/Avogar)).
* Backported in [#70243](https://github.com/ClickHouse/ClickHouse/issues/70243): Fix the password being displayed in `system.query_log` for users with bcrypt password authentication method. [#70148](https://github.com/ClickHouse/ClickHouse/pull/70148) ([Nikolay Degterinsky](https://github.com/evillique)).
* Backported in [#70432](https://github.com/ClickHouse/ClickHouse/issues/70432): Fix possible crash in JSON column. [#70172](https://github.com/ClickHouse/ClickHouse/pull/70172) ([Pavel Kruglov](https://github.com/Avogar)).
* Backported in [#70307](https://github.com/ClickHouse/ClickHouse/issues/70307): Fix multiple issues with arrayMin and arrayMax. [#70207](https://github.com/ClickHouse/ClickHouse/pull/70207) ([Raúl Marín](https://github.com/Algunenano)).
* Backported in [#70274](https://github.com/ClickHouse/ClickHouse/issues/70274): Respect setting allow_simdjson in JSON type parser. [#70218](https://github.com/ClickHouse/ClickHouse/pull/70218) ([Pavel Kruglov](https://github.com/Avogar)).
* Backported in [#70345](https://github.com/ClickHouse/ClickHouse/issues/70345): Don't modify global settings with startup scripts. Previously, changing a setting in a startup script would change it globally. [#70310](https://github.com/ClickHouse/ClickHouse/pull/70310) ([Antonio Andelic](https://github.com/antonio2368)).
* Backported in [#70426](https://github.com/ClickHouse/ClickHouse/issues/70426): Fix ALTER of Dynamic type with reducing max_types parameter that could lead to server crash. [#70328](https://github.com/ClickHouse/ClickHouse/pull/70328) ([Pavel Kruglov](https://github.com/Avogar)).
* Backported in [#70371](https://github.com/ClickHouse/ClickHouse/issues/70371): Fix crash when using WITH FILL incorrectly. [#70338](https://github.com/ClickHouse/ClickHouse/pull/70338) ([Raúl Marín](https://github.com/Algunenano)).
#### NO CL ENTRY
* NO CL ENTRY: 'Revert "Backport [#70146](https://github.com/ClickHouse/ClickHouse/issues/70146) to 24.8: Upgrade integration-runner image"'. [#70324](https://github.com/ClickHouse/ClickHouse/pull/70324) ([Max K.](https://github.com/maxknv)).
#### NOT FOR CHANGELOG / INSIGNIFICANT
* Backported in [#69961](https://github.com/ClickHouse/ClickHouse/issues/69961): Output an operation error for ZK Multi request failed operation into log. [#68127](https://github.com/ClickHouse/ClickHouse/pull/68127) ([Aleksei Filatov](https://github.com/aalexfvk)).
* Backported in [#69491](https://github.com/ClickHouse/ClickHouse/issues/69491): Fix test_role & test_keeper_s3_snapshot integration tests. [#69013](https://github.com/ClickHouse/ClickHouse/pull/69013) ([Shankar](https://github.com/shiyer7474)).
* Backported in [#69953](https://github.com/ClickHouse/ClickHouse/issues/69953): Remove stale moving parts without zookeeper. [#69075](https://github.com/ClickHouse/ClickHouse/pull/69075) ([Kirill](https://github.com/kirillgarbar)).
* Backported in [#69353](https://github.com/ClickHouse/ClickHouse/issues/69353): Fix: Not-ready Set with parallel replicas. [#69264](https://github.com/ClickHouse/ClickHouse/pull/69264) ([Igor Nikonov](https://github.com/devcrafter)).
* Backported in [#69427](https://github.com/ClickHouse/ClickHouse/issues/69427): Fix 24.8 setting compatibility `rows_before_aggregation`. [#69394](https://github.com/ClickHouse/ClickHouse/pull/69394) ([Nikita Fomichev](https://github.com/fm4v)).
* Backported in [#69689](https://github.com/ClickHouse/ClickHouse/issues/69689): Add function `kill_ci_runner`. Kill runner when pre-pull failed. [#69557](https://github.com/ClickHouse/ClickHouse/pull/69557) ([Mikhail f. Shiryaev](https://github.com/Felixoid)).
* Backported in [#69639](https://github.com/ClickHouse/ClickHouse/issues/69639): Add more contexts to the debug action and use it broadly. [#69599](https://github.com/ClickHouse/ClickHouse/pull/69599) ([Mikhail f. Shiryaev](https://github.com/Felixoid)).
* Backported in [#69721](https://github.com/ClickHouse/ClickHouse/issues/69721): Prohibit `ALTER TABLE ... ADD INDEX ... TYPE` inverted if setting = 0. [#69684](https://github.com/ClickHouse/ClickHouse/pull/69684) ([Robert Schulze](https://github.com/rschu1ze)).
* Backported in [#69972](https://github.com/ClickHouse/ClickHouse/issues/69972): S3Queue: support having deprecated settings to not fail server startup. [#69769](https://github.com/ClickHouse/ClickHouse/pull/69769) ([Kseniia Sumarokova](https://github.com/kssenii)).
* Backported in [#70283](https://github.com/ClickHouse/ClickHouse/issues/70283): Improve pipdeptree generator for docker images. - Update requirements.txt for the integration tests runner container - Remove some small dependencies, improve `helpers/retry_decorator.py` - Upgrade docker-compose from EOL version 1 to version 2. [#70146](https://github.com/ClickHouse/ClickHouse/pull/70146) ([Mikhail f. Shiryaev](https://github.com/Felixoid)).
* Backported in [#70260](https://github.com/ClickHouse/ClickHouse/issues/70260): Update test_storage_s3_queue/test.py. [#70159](https://github.com/ClickHouse/ClickHouse/pull/70159) ([Kseniia Sumarokova](https://github.com/kssenii)).
* Backported in [#70314](https://github.com/ClickHouse/ClickHouse/issues/70314): CI: Remove await feature from release branches. [#70294](https://github.com/ClickHouse/ClickHouse/pull/70294) ([Max K.](https://github.com/maxknv)).
* Backported in [#70380](https://github.com/ClickHouse/ClickHouse/issues/70380): Fix tiny mistake, responsible for some of kafka test flaps. Example [report](https://s3.amazonaws.com/clickhouse-test-reports/0/3198aafac59c368993e7b5f49d95674cc1b1be18/integration_tests__release__[2_4].html). [#70352](https://github.com/ClickHouse/ClickHouse/pull/70352) ([filimonov](https://github.com/filimonov)).
* Backported in [#70405](https://github.com/ClickHouse/ClickHouse/issues/70405): Closes [#69634](https://github.com/ClickHouse/ClickHouse/issues/69634). [#70354](https://github.com/ClickHouse/ClickHouse/pull/70354) ([pufit](https://github.com/pufit)).

View File

@ -82,7 +82,7 @@ cd ./utils/check-style
# Check duplicate includes
./check-duplicate-includes.sh
# Check c++ formatiing
# Check c++ formatting
./check-style
# Check python formatting with black

View File

@ -374,15 +374,15 @@ Users can create [UDF](/docs/en/sql-reference/statements/create/function.md) to
```sql
CREATE FUNCTION bfEstimateFunctions [ON CLUSTER cluster]
AS
(total_nubmer_of_all_grams, size_of_bloom_filter_in_bits) -> round((size_of_bloom_filter_in_bits / total_nubmer_of_all_grams) * log(2));
(total_number_of_all_grams, size_of_bloom_filter_in_bits) -> round((size_of_bloom_filter_in_bits / total_number_of_all_grams) * log(2));
CREATE FUNCTION bfEstimateBmSize [ON CLUSTER cluster]
AS
(total_nubmer_of_all_grams, probability_of_false_positives) -> ceil((total_nubmer_of_all_grams * log(probability_of_false_positives)) / log(1 / pow(2, log(2))));
(total_number_of_all_grams, probability_of_false_positives) -> ceil((total_number_of_all_grams * log(probability_of_false_positives)) / log(1 / pow(2, log(2))));
CREATE FUNCTION bfEstimateFalsePositive [ON CLUSTER cluster]
AS
(total_nubmer_of_all_grams, number_of_hash_functions, size_of_bloom_filter_in_bytes) -> pow(1 - exp(-number_of_hash_functions/ (size_of_bloom_filter_in_bytes / total_nubmer_of_all_grams)), number_of_hash_functions);
(total_number_of_all_grams, number_of_hash_functions, size_of_bloom_filter_in_bytes) -> pow(1 - exp(-number_of_hash_functions/ (size_of_bloom_filter_in_bytes / total_number_of_all_grams)), number_of_hash_functions);
CREATE FUNCTION bfEstimateGramNumber [ON CLUSTER cluster]
AS

View File

@ -35,7 +35,7 @@ Engine parameters:
- `root_path` - ZooKeeper path where the `table_name` will be stored.
This path should not contain the prefix defined by `<keeper_map_path_prefix>` config because the prefix will be automatically appended to the `root_path`.
Additionally, format of `auxiliary_zookeper_cluster_name:/some/path` is also supported where `auxiliary_zookeper_cluster` is a ZooKeeper cluster defined inside `<auxiliary_zookeepers>` config.
Additionally, format of `auxiliary_zookeeper_cluster_name:/some/path` is also supported where `auxiliary_zookeeper_cluster` is a ZooKeeper cluster defined inside `<auxiliary_zookeepers>` config.
By default, ZooKeeper cluster defined inside `<zookeeper>` config is used.
- `keys_limit` - number of keys allowed inside the table.
This limit is a soft limit and it can be possible that more keys will end up in the table for some edge cases.

View File

@ -877,7 +877,7 @@ INSERT INTO json_as_object (json) FORMAT JSONAsObject {"any json stucture":1}
SELECT time, json FROM json_as_object FORMAT JSONEachRow
```
```resonse
```response
{"time":"2024-09-16 12:18:10","json":{}}
{"time":"2024-09-16 12:18:13","json":{"any json stucture":"1"}}
{"time":"2024-09-16 12:18:08","json":{"foo":{"bar":{"x":"y"},"baz":"1"}}}
@ -1598,10 +1598,6 @@ the columns from input data will be mapped to the columns from the table by thei
Otherwise, the first row will be skipped.
If setting [input_format_with_types_use_header](/docs/en/operations/settings/settings-formats.md/#input_format_with_types_use_header) is set to 1,
the types from input data will be compared with the types of the corresponding columns from the table. Otherwise, the second row will be skipped.
If setting [output_format_binary_encode_types_in_binary_format](/docs/en/operations/settings/settings-formats.md/#output_format_binary_encode_types_in_binary_format) is set to 1,
the types in header will be written using [binary encoding](/docs/en/sql-reference/data-types/data-types-binary-encoding.md) instead of strings with type names in RowBinaryWithNamesAndTypes output format.
If setting [input_format_binary_encode_types_in_binary_format](/docs/en/operations/settings/settings-formats.md/#input_format_binary_encode_types_in_binary_format) is set to 1,
the types in header will be read using [binary encoding](/docs/en/sql-reference/data-types/data-types-binary-encoding.md) instead of strings with type names in RowBinaryWithNamesAndTypes input format.
:::
## RowBinaryWithDefaults {#rowbinarywithdefaults}
@ -1624,6 +1620,10 @@ For column `y` data starts with byte `00` that indicates that column has actual
## RowBinary format settings {#row-binary-format-settings}
- [format_binary_max_string_size](/docs/en/operations/settings/settings-formats.md/#format_binary_max_string_size) - The maximum allowed size for String in RowBinary format. Default value - `1GiB`.
- [output_format_binary_encode_types_in_binary_format](/docs/en/operations/settings/settings-formats.md/#output_format_binary_encode_types_in_binary_format) - Allows to write types in header using [binary encoding](/docs/en/sql-reference/data-types/data-types-binary-encoding.md) instead of strings with type names in RowBinaryWithNamesAndTypes output format. Default value - `false`.
- [input_format_binary_encode_types_in_binary_format](/docs/en/operations/settings/settings-formats.md/#input_format_binary_encode_types_in_binary_format) - Allows to read types in header using [binary encoding](/docs/en/sql-reference/data-types/data-types-binary-encoding.md) instead of strings with type names in RowBinaryWithNamesAndTypes input format. Default value - `false`.
- [output_format_binary_write_json_as_string](/docs/en/operations/settings/settings-formats.md/#output_format_binary_write_json_as_string) - Allows to write values of [JSON](/docs/en/sql-reference/data-types/newjson.md) data type as JSON [String](/docs/en/sql-reference/data-types/string.md) values in RowBinary output format. Default value - `false`.
- [input_format_binary_read_json_as_string](/docs/en/operations/settings/settings-formats.md/#input_format_binary_read_json_as_string) - Allows to read values of [JSON](/docs/en/sql-reference/data-types/newjson.md) data type as JSON [String](/docs/en/sql-reference/data-types/string.md) values in RowBinary input format. Default value - `false`.
## Values {#data-format-values}

View File

@ -509,7 +509,7 @@ DESC format(JSONEachRow, $$
{"value" : "424242424242"}
$$)
```
```reponse
```response
┌─name──┬─type────────────┬─default_type─┬─default_expression─┬─comment─┬─codec_expression─┬─ttl_expression─┐
│ value │ Nullable(Int64) │ │ │ │ │ │
└───────┴─────────────────┴──────────────┴────────────────────┴─────────┴──────────────────┴────────────────┘
@ -910,9 +910,9 @@ This setting is disabled by default.
```sql
SET input_format_json_try_infer_numbers_from_strings = 1;
DESC format(CSV, '"42","42.42"');
DESC format(CSV, '42,42.42');
```
```reponse
```response
┌─name─┬─type──────────────┬─default_type─┬─default_expression─┬─comment─┬─codec_expression─┬─ttl_expression─┐
│ c1 │ Nullable(Int64) │ │ │ │ │ │
│ c2 │ Nullable(Float64) │ │ │ │ │ │

View File

@ -19,6 +19,19 @@ Features:
- Performance Optimizations: Utilizes Indexed DB for efficient caching and state management.
- Local Data Storage: All data is stored locally in the browser, ensuring no data is sent anywhere else.
### ChartDB {#chartdb}
[ChartDB](https://chartdb.io) is a free and open-source tool for visualizing and designing database schemas, including ClickHouse, with a single query. Built with React, it provides a seamless and user-friendly experience, requiring no database credentials or signup to get started.
Features:
- Schema Visualization: Instantly import and visualize your ClickHouse schema, including ER diagrams with materialized views and standard views, showing references to tables.
- AI-Powered DDL Export: Generate DDL scripts effortlessly for better schema management and documentation.
- Multi-SQL Dialect Support: Compatible with a range of SQL dialects, making it versatile for various database environments.
- No Signup or Credentials Needed: All functionality is accessible directly in the browser, keeping it frictionless and secure.
[ChartDB Source Code](https://github.com/chartdb/chartdb).
### Tabix {#tabix}
Web interface for ClickHouse in the [Tabix](https://github.com/tabixio/tabix) project.

View File

@ -49,6 +49,18 @@ Default values are defined in [Settings.h](https://github.com/ClickHouse/ClickHo
See also the description of [max_memory_usage](#settings_max_memory_usage).
For example if you want to set `max_memory_usage_for_user` to 1000 bytes for a user named `clickhouse_read`, you can use the statement
``` sql
ALTER USER clickhouse_read SETTINGS max_memory_usage_for_user = 1000;
```
You can verify it worked by logging out of your client, logging back in, then use the `getSetting` function:
```sql
SELECT getSetting('max_memory_usage_for_user');
```
## max_rows_to_read {#max-rows-to-read}
The following restrictions can be checked on each block (instead of on each row). That is, the restrictions can be broken a little.

View File

@ -493,6 +493,14 @@ Default value: 0
Read data types in binary format instead of type names in RowBinaryWithNamesAndTypes input format
### input_format_binary_read_json_as_string {#input_format_binary_read_json_as_string}
Type: Bool
Default value: 0
Read values of [JSON](../../sql-reference/data-types/newjson.md) data type as JSON [String](../../sql-reference/data-types/string.md) values in RowBinary input format.
## input_format_bson_skip_fields_with_unsupported_types_in_schema_inference {#input_format_bson_skip_fields_with_unsupported_types_in_schema_inference}
Type: Bool
@ -1567,7 +1575,15 @@ Type: Bool
Default value: 0
Write data types in binary format instead of type names in RowBinaryWithNamesAndTypes output format
Write data types in binary format instead of type names in RowBinaryWithNamesAndTypes output format
### output_format_binary_write_json_as_string {#output_format_binary_write_json_as_string}
Type: Bool
Default value: 0
Write values of [JSON](../../sql-reference/data-types/newjson.md) data type as JSON [String](../../sql-reference/data-types/string.md) values in RowBinary output format.
## output_format_bson_string_as_string {#output_format_bson_string_as_string}
@ -1859,6 +1875,14 @@ Default value: 0
Write data types in binary format instead of type names in Native output format
### output_format_native_write_json_as_string {#output_format_native_write_json_as_string}
Type: Bool
Default value: 0
Write data of [JSON](../../sql-reference/data-types/newjson.md) column as [String](../../sql-reference/data-types/string.md) column containing JSON strings instead of default native JSON serialization.
## output_format_orc_compression_method {#output_format_orc_compression_method}
Type: ORCCompression
@ -2297,5 +2321,3 @@ Type: Bool
Default value: 1
Validate usage of experimental and suspicious types inside nested types like Array/Map/Tuple

View File

@ -6,7 +6,7 @@ sidebar_label: User Settings
# Users and Roles Settings
The `users` section of the `user.xml` configuration file contains user settings.
The `users` section of the `users.xml` configuration file contains user settings.
:::note
ClickHouse also supports [SQL-driven workflow](../../guides/sre/user-management/index.md#access-control) for managing users. We recommend using it.

View File

@ -124,7 +124,7 @@ Converts an aggregate function for tables into an aggregate function for arrays
## -Distinct
Every unique combination of arguments will be aggregated only once. Repeating values are ignored.
Examples: `sum(DISTINCT x)`, `groupArray(DISTINCT x)`, `corrStableDistinct(DISTINCT x, y)` and so on.
Examples: `sum(DISTINCT x)` (or `sumDistinct(x)`), `groupArray(DISTINCT x)` (or `groupArrayDistinct(x)`), `corrStable(DISTINCT x, y)` (or `corrStableDistinct(x, y)`) and so on.
## -OrDefault

View File

@ -86,7 +86,7 @@ The table below describes how different interval kinds of `Interval` data type a
### Aggregate function parameter binary encoding
The table below describes how parameters of `AggragateFunction` and `SimpleAggregateFunction` are encoded.
The table below describes how parameters of `AggregateFunction` and `SimpleAggregateFunction` are encoded.
The encoding of a parameter consists of 1 byte indicating the type of the parameter and the value itself.
| Parameter type | Binary encoding |
@ -106,7 +106,7 @@ The encoding of a parameter consists of 1 byte indicating the type of the parame
| `String` | `0x0C<var_uint_size><data>` |
| `Array` | `0x0D<var_uint_size><value_encoding_1>...<value_encoding_N>` |
| `Tuple` | `0x0E<var_uint_size><value_encoding_1>...<value_encoding_N>` |
| `Map` | `0x0F<var_uint_size><key_encoding_1><value_encoding_1>...<key_endoding_N><value_encoding_N>` |
| `Map` | `0x0F<var_uint_size><key_encoding_1><value_encoding_1>...<key_encoding_N><value_encoding_N>` |
| `IPv4` | `0x10<uint32_little_endian_value>` |
| `IPv6` | `0x11<uint128_little_endian_value>` |
| `UUID` | `0x12<uuid_value>` |

View File

@ -297,99 +297,257 @@ $$)
└───────────────┴────────────────┴───────────────┴──────┴───────┴────────────┴─────────┘
```
## Comparing values of Dynamic type
## Using Dynamic type in functions
Values of `Dynamic` types are compared similar to values of `Variant` type:
Most of the functions support arguments with type `Dynamic`. In this case the function is executed separately on each internal data type stored inside `Dynamic` column.
When the result type of the function depends on the arguments types, the result of such function executed with `Dynamic` arguments will be `Dynamic`. When the result type of the function doesn't depend on the arguments types - the result will be `Nullable(T)` where `T` the usual result type of this function.
Examples:
```sql
CREATE TABLE test (d Dynamic) ENGINE=Memory;
INSERT INTO test VALUES (NULL), (1::Int8), (2::Int16), (3::Int32), (4::Int64);
```
```sql
SELECT d, dynamicType(d) FROM test;
```
```text
┌─d────┬─dynamicType(d)─┐
│ ᴺᵁᴸᴸ │ None │
│ 1 │ Int8 │
│ 2 │ Int16 │
│ 3 │ Int32 │
│ 4 │ Int64 │
└──────┴────────────────┘
```
```sql
SELECT d, d + 1 AS res, toTypeName(res), dynamicType(res) FROM test;
```
```text
┌─d────┬─res──┬─toTypeName(res)─┬─dynamicType(res)─┐
│ ᴺᵁᴸᴸ │ ᴺᵁᴸᴸ │ Dynamic │ None │
│ 1 │ 2 │ Dynamic │ Int16 │
│ 2 │ 3 │ Dynamic │ Int32 │
│ 3 │ 4 │ Dynamic │ Int64 │
│ 4 │ 5 │ Dynamic │ Int64 │
└──────┴──────┴─────────────────┴──────────────────┘
```
```sql
SELECT d, d + d AS res, toTypeName(res), dynamicType(res) FROM test;
```
```text
┌─d────┬─res──┬─toTypeName(res)─┬─dynamicType(res)─┐
│ ᴺᵁᴸᴸ │ ᴺᵁᴸᴸ │ Dynamic │ None │
│ 1 │ 2 │ Dynamic │ Int16 │
│ 2 │ 4 │ Dynamic │ Int32 │
│ 3 │ 6 │ Dynamic │ Int64 │
│ 4 │ 8 │ Dynamic │ Int64 │
└──────┴──────┴─────────────────┴──────────────────┘
```
```sql
SELECT d, d < 3 AS res, toTypeName(res) FROM test;
```
```text
┌─d────┬──res─┬─toTypeName(res)─┐
│ ᴺᵁᴸᴸ │ ᴺᵁᴸᴸ │ Nullable(UInt8) │
│ 1 │ 1 │ Nullable(UInt8) │
│ 2 │ 1 │ Nullable(UInt8) │
│ 3 │ 0 │ Nullable(UInt8) │
│ 4 │ 0 │ Nullable(UInt8) │
└──────┴──────┴─────────────────┘
```
```sql
SELECT d, exp2(d) AS res, toTypeName(res) FROM test;
```
```sql
┌─d────┬──res─┬─toTypeName(res)───┐
│ ᴺᵁᴸᴸ │ ᴺᵁᴸᴸ │ Nullable(Float64) │
│ 1 │ 2 │ Nullable(Float64) │
│ 2 │ 4 │ Nullable(Float64) │
│ 3 │ 8 │ Nullable(Float64) │
│ 4 │ 16 │ Nullable(Float64) │
└──────┴──────┴───────────────────┘
```
```sql
TRUNCATE TABLE test;
INSERT INTO test VALUES (NULL), ('str_1'), ('str_2');
SELECT d, dynamicType(d) FROM test;
```
```text
┌─d─────┬─dynamicType(d)─┐
│ ᴺᵁᴸᴸ │ None │
│ str_1 │ String │
│ str_2 │ String │
└───────┴────────────────┘
```
```sql
SELECT d, upper(d) AS res, toTypeName(res) FROM test;
```
```text
┌─d─────┬─res───┬─toTypeName(res)──┐
│ ᴺᵁᴸᴸ │ ᴺᵁᴸᴸ │ Nullable(String) │
│ str_1 │ STR_1 │ Nullable(String) │
│ str_2 │ STR_2 │ Nullable(String) │
└───────┴───────┴──────────────────┘
```
```sql
SELECT d, extract(d, '([0-3])') AS res, toTypeName(res) FROM test;
```
```text
┌─d─────┬─res──┬─toTypeName(res)──┐
│ ᴺᵁᴸᴸ │ ᴺᵁᴸᴸ │ Nullable(String) │
│ str_1 │ 1 │ Nullable(String) │
│ str_2 │ 2 │ Nullable(String) │
└───────┴──────┴──────────────────┘
```
```sql
TRUNCATE TABLE test;
INSERT INTO test VALUES (NULL), ([1, 2]), ([3, 4]);
SELECT d, dynamicType(d) FROM test;
```
```text
┌─d─────┬─dynamicType(d)─┐
│ ᴺᵁᴸᴸ │ None │
│ [1,2] │ Array(Int64) │
│ [3,4] │ Array(Int64) │
└───────┴────────────────┘
```
```sql
SELECT d, d[1] AS res, toTypeName(res), dynamicType(res) FROM test;
```
```text
┌─d─────┬─res──┬─toTypeName(res)─┬─dynamicType(res)─┐
│ ᴺᵁᴸᴸ │ ᴺᵁᴸᴸ │ Dynamic │ None │
│ [1,2] │ 1 │ Dynamic │ Int64 │
│ [3,4] │ 3 │ Dynamic │ Int64 │
└───────┴──────┴─────────────────┴──────────────────┘
```
If function cannot be executed on some type inside `Dynamic` column, the exception will be thrown:
```sql
INSERT INTO test VALUES (42), (43), ('str_1');
SELECT d, dynamicType(d) FROM test;
```
```text
┌─d─────┬─dynamicType(d)─┐
│ 42 │ Int64 │
│ 43 │ Int64 │
│ str_1 │ String │
└───────┴────────────────┘
┌─d─────┬─dynamicType(d)─┐
│ ᴺᵁᴸᴸ │ None │
│ [1,2] │ Array(Int64) │
│ [3,4] │ Array(Int64) │
└───────┴────────────────┘
```
```sql
SELECT d, d + 1 AS res, toTypeName(res), dynamicType(d) FROM test;
```
```text
Received exception:
Code: 43. DB::Exception: Illegal types Array(Int64) and UInt8 of arguments of function plus: while executing 'FUNCTION plus(__table1.d : 3, 1_UInt8 :: 1) -> plus(__table1.d, 1_UInt8) Dynamic : 0'. (ILLEGAL_TYPE_OF_ARGUMENT)
```
We can filter out unneeded types:
```sql
SELECT d, d + 1 AS res, toTypeName(res), dynamicType(res) FROM test WHERE dynamicType(d) NOT IN ('String', 'Array(Int64)', 'None')
```
```text
┌─d──┬─res─┬─toTypeName(res)─┬─dynamicType(res)─┐
│ 42 │ 43 │ Dynamic │ Int64 │
│ 43 │ 44 │ Dynamic │ Int64 │
└────┴─────┴─────────────────┴──────────────────┘
```
Or extract required type as subcolumn:
```sql
SELECT d, d.Int64 + 1 AS res, toTypeName(res) FROM test;
```
```text
┌─d─────┬──res─┬─toTypeName(res)─┐
│ 42 │ 43 │ Nullable(Int64) │
│ 43 │ 44 │ Nullable(Int64) │
│ str_1 │ ᴺᵁᴸᴸ │ Nullable(Int64) │
└───────┴──────┴─────────────────┘
┌─d─────┬──res─┬─toTypeName(res)─┐
│ ᴺᵁᴸᴸ │ ᴺᵁᴸᴸ │ Nullable(Int64) │
│ [1,2] │ ᴺᵁᴸᴸ │ Nullable(Int64) │
│ [3,4] │ ᴺᵁᴸᴸ │ Nullable(Int64) │
└───────┴──────┴─────────────────┘
```
## Using Dynamic type in ORDER BY and GROUP BY
During `ORDER BY` and `GROUP BY` values of `Dynamic` types are compared similar to values of `Variant` type:
The result of operator `<` for values `d1` with underlying type `T1` and `d2` with underlying type `T2` of a type `Dynamic` is defined as follows:
- If `T1 = T2 = T`, the result will be `d1.T < d2.T` (underlying values will be compared).
- If `T1 != T2`, the result will be `T1 < T2` (type names will be compared).
Examples:
```sql
CREATE TABLE test (d1 Dynamic, d2 Dynamic) ENGINE=Memory;
INSERT INTO test VALUES (42, 42), (42, 43), (42, 'abc'), (42, [1, 2, 3]), (42, []), (42, NULL);
CREATE TABLE test (d Dynamic) ENGINE=Memory;
INSERT INTO test VALUES (42), (43), ('abc'), ('abd'), ([1, 2, 3]), ([]), (NULL);
```
```sql
SELECT d2, dynamicType(d2) as d2_type from test order by d2;
SELECT d, dynamicType(d) FROM test;
```
```text
┌─d2──────┬─d2_type──────┐
│ [] │ Array(Int64) │
│ [1,2,3] │ Array(Int64) │
│ 42 │ Int64 │
│ 43 │ Int64 │
│ abc │ String │
│ ᴺᵁᴸᴸ │ None │
└─────────┴──────────────┘
┌─d───────┬─dynamicType(d)─┐
│ 42 │ Int64 │
│ 43 │ Int64 │
│ abc │ String │
│ abd │ String │
│ [1,2,3] │ Array(Int64) │
│ [] │ Array(Int64) │
│ ᴺᵁᴸᴸ │ None │
└─────────┴────────────────┘
```
```sql
SELECT d1, dynamicType(d1) as d1_type, d2, dynamicType(d2) as d2_type, d1 = d2, d1 < d2, d1 > d2 from test;
```
```text
┌─d1─┬─d1_type─┬─d2──────┬─d2_type──────┬─equals(d1, d2)─┬─less(d1, d2)─┬─greater(d1, d2)─┐
│ 42 │ Int64 │ 42 │ Int64 │ 1 │ 0 │ 0 │
│ 42 │ Int64 │ 43 │ Int64 │ 0 │ 1 │ 0 │
│ 42 │ Int64 │ abc │ String │ 0 │ 1 │ 0 │
│ 42 │ Int64 │ [1,2,3] │ Array(Int64) │ 0 │ 0 │ 1 │
│ 42 │ Int64 │ [] │ Array(Int64) │ 0 │ 0 │ 1 │
│ 42 │ Int64 │ ᴺᵁᴸᴸ │ None │ 0 │ 1 │ 0 │
└────┴─────────┴─────────┴──────────────┴────────────────┴──────────────┴─────────────────┘
```
If you need to find the row with specific `Dynamic` value, you can do one of the following:
- Cast value to the `Dynamic` type:
```sql
SELECT * FROM test WHERE d2 == [1,2,3]::Array(UInt32)::Dynamic;
```
```text
┌─d1─┬─d2──────┐
│ 42 │ [1,2,3] │
└────┴─────────┘
```
- Compare `Dynamic` subcolumn with required type:
```sql
SELECT * FROM test WHERE d2.`Array(Int65)` == [1,2,3] -- or using variantElement(d2, 'Array(UInt32)')
```
```text
┌─d1─┬─d2──────┐
│ 42 │ [1,2,3] │
└────┴─────────┘
```
Sometimes it can be useful to make additional check on dynamic type as subcolumns with complex types like `Array/Map/Tuple` cannot be inside `Nullable` and will have default values instead of `NULL` on rows with different types:
```sql
SELECT d2, d2.`Array(Int64)`, dynamicType(d2) FROM test WHERE d2.`Array(Int64)` == [];
```
```text
┌─d2───┬─d2.Array(UInt32)─┬─dynamicType(d2)─┐
│ 42 │ [] │ Int64 │
│ 43 │ [] │ Int64 │
│ abc │ [] │ String │
│ [] │ [] │ Array(Int32) │
│ ᴺᵁᴸᴸ │ [] │ None │
└──────┴──────────────────┴─────────────────┘
SELECT d, dynamicType(d) FROM test ORDER BY d;
```
```sql
SELECT d2, d2.`Array(Int64)`, dynamicType(d2) FROM test WHERE dynamicType(d2) == 'Array(Int64)' AND d2.`Array(Int64)` == [];
```
```text
┌─d2─┬─d2.Array(UInt32)─┬─dynamicType(d2)─┐
│ [] │ [] │ Array(Int64) │
└────┴──────────────────┴─────────────────┘
┌─d───────┬─dynamicType(d)─┐
│ [] │ Array(Int64) │
│ [1,2,3] │ Array(Int64) │
│ 42 │ Int64 │
│ 43 │ Int64 │
│ abc │ String │
│ abd │ String │
│ ᴺᵁᴸᴸ │ None │
└─────────┴────────────────┘
```
**Note:** values of dynamic types with different numeric types are considered as different values and not compared between each other, their type names are compared instead.
@ -411,6 +569,21 @@ SELECT d, dynamicType(d) FROM test ORDER by d;
└─────┴────────────────┘
```
```sql
SELECT d, dynamicType(d) FROM test GROUP by d;
```
```text
┌─d───┬─dynamicType(d)─┐
│ 1 │ Int64 │
│ 100 │ UInt32 │
│ 1 │ UInt32 │
│ 100 │ Int64 │
└─────┴────────────────┘
```
**Note**: the described comparison rule is not applied during execution of comparison functions like `<`/`>`/`=` and others because of [special work](#using-dynamic-type-in-functions) of functions with `Dynamic` type
## Reaching the limit in number of different data types stored inside Dynamic
`Dynamic` data type can store only limited number of different data types as separate subcolumns. By default, this limit is 32, but you can change it in type declaration using syntax `Dynamic(max_types=N)` where N is between 0 and 254 (due to implementation details, it's impossible to have more than 254 different data types that can be stored as separate subcolumns inside Dynamic).

View File

@ -1972,7 +1972,7 @@ Result:
## toISOYear
Converts a date, or date with time, to a UInt16 number containing the ISO Year number.
Converts a date, or date with time, to the ISO year as a UInt16 number.
**Syntax**
@ -1982,11 +1982,11 @@ toISOYear(value)
**Arguments**
- `value` — The value with date or date with time.
- `value` — The value with date or date with time. [Date](../data-types/date.md), [Date32](../data-types/date32.md), [DateTime](../data-types/datetime.md) or [DateTime64](../data-types/datetime64.md)
**Returned value**
- `value` converted to the current ISO year number. [UInt16](../data-types/int-uint.md).
- The input value converted to a ISO year number. [UInt16](../data-types/int-uint.md).
**Example**
@ -1995,7 +1995,7 @@ Query:
```sql
SELECT
toISOYear(toDate('2024/10/02')) as year1,
toISOYear(toDateTime('2024/10/02 01:30:00')) as year2
toISOYear(toDateTime('2024-10-02 01:30:00')) as year2
```
Result:
@ -2010,6 +2010,38 @@ Result:
Converts a date, or date with time, to a UInt8 number containing the ISO Week number.
**Syntax**
```sql
toISOWeek(value)
```
**Arguments**
- `value` — The value with date or date with time.
**Returned value**
- `value` converted to the current ISO week number. [UInt8](../data-types/int-uint.md).
**Example**
Query:
```sql
SELECT
toISOWeek(toDate('2024/10/02')) AS week1,
toISOWeek(toDateTime('2024/10/02 01:30:00')) AS week2
```
Response:
```response
┌─week1─┬─week2─┐
│ 40 │ 40 │
└───────┴───────┘
```
## toWeek
This function returns the week number for date or datetime. The two-argument form of `toWeek()` enables you to specify whether the week starts on Sunday or Monday and whether the return value should be in the range from 0 to 53 or from 1 to 53. If the mode argument is omitted, the default mode is 0.

View File

@ -288,11 +288,11 @@ toIPv4OrDefault(value)
**Arguments**
- `value`The value with IPv4 address.
- `value`A string-encoded IPv4 address. [String](../data-types/string.md)
**Returned value**
- `value` converted to the current IPv4 address. [String](../data-types/string.md).
- `value` converted to an IPv4 address. [IPv4](../data-types/ipv4.md).
**Example**
@ -324,11 +324,11 @@ toIPv4OrNull(value)
**Arguments**
- `value`The value with IPv4 address.
- `value`A string-encoded IPv4 address. [String](../data-types/string.md)
**Returned value**
- `value` converted to the current IPv4 address. [String](../data-types/string.md).
- `value` converted to an IPv4 address. [IPv4](../data-types/ipv4.md).
**Example**

View File

@ -202,7 +202,7 @@ Result:
Returns the type name of the passed argument.
If `NULL` is passed, then the function returns type `Nullable(Nothing)`, which corresponds to ClickHouse's internal `NULL` representation.
If `NULL` is passed, the function returns type `Nullable(Nothing)`, which corresponds to ClickHouse's internal `NULL` representation.
**Syntax**
@ -212,11 +212,11 @@ toTypeName(value)
**Arguments**
- `value`The value with any arbitrary.
- `value`A value of arbitrary type.
**Returned value**
- `value` converted to the current data type name. [String](../data-types/string.md).
- The data type name of the input value. [String](../data-types/string.md).
**Example**
@ -410,13 +410,37 @@ Code: 44. DB::Exception: Received from localhost:9000. DB::Exception: Illegal ty
## ignore
Accepts any arguments, including `NULL` and does nothing. Always returns 0.
The argument is internally still evaluated. Useful e.g. for benchmarks.
Accepts arbitrary arguments and unconditionally returns `0`.
The argument is still evaluated internally, making it useful for eg. benchmarking.
**Syntax**
```sql
ignore(x)
ignore([arg1[, arg2[, ...]])
```
**Arguments**
- Accepts arbitrarily many arguments of arbitrary type, including `NULL`.
**Returned value**
- Returns `0`.
**Example**
Query:
```sql
SELECT ignore(0, 'ClickHouse', NULL);
```
Result:
```response
┌─ignore(0, 'ClickHouse', NULL)─┐
│ 0 │
└───────────────────────────────┘
```
## sleep
@ -524,13 +548,9 @@ Useful in table engine parameters of `CREATE TABLE` queries where you need to sp
currentDatabase()
```
**Arguments**
None.
**Returned value**
- `value` returns the current database name. [String](../data-types/string.md).
- Returns the current database name. [String](../data-types/string.md).
**Example**
@ -579,6 +599,42 @@ Result:
└───────────────┘
```
## currentSchemas
Returns a single-element array with the name of the current database schema.
**Syntax**
```sql
currentSchemas(bool)
```
Alias: `current_schemas`.
**Arguments**
- `bool`: A boolean value. [Bool](../data-types/boolean.md).
:::note
The boolean argument is ignored. It only exists for the sake of compatibility with the [implementation](https://www.postgresql.org/docs/7.3/functions-misc.html) of this function in PostgreSQL.
:::
**Returned values**
- Returns a single-element array with the name of the current database
**Example**
```sql
SELECT currentSchemas(true);
```
Result:
```response
['default']
```
## isConstant
Returns whether the argument is a constant expression.
@ -1821,7 +1877,7 @@ toColumnTypeName(value)
**Example**
Difference between `toTypeName ' and ' toColumnTypeName`:
Difference between `toTypeName` and `toColumnTypeName`:
```sql
SELECT toTypeName(CAST('2018-01-01 01:02:03' AS DateTime))
@ -3897,13 +3953,15 @@ Retrieves the connection ID of the client that submitted the current query and r
connectionId()
```
Alias: `connection_id`.
**Parameters**
None.
**Returned value**
Returns an integer of type UInt64.
The current connection ID. [UInt64](../data-types/int-uint.md).
**Implementation details**
@ -3921,40 +3979,6 @@ SELECT connectionId();
0
```
## connection_id
An alias of `connectionId`. Retrieves the connection ID of the client that submitted the current query and returns it as a UInt64 integer.
**Syntax**
```sql
connection_id()
```
**Parameters**
None.
**Returned value**
Returns an integer of type UInt64.
**Implementation details**
This function is most useful in debugging scenarios or for internal purposes within the MySQL handler. It was created for compatibility with [MySQL's `CONNECTION_ID` function](https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_connection-id) It is not typically used in production queries.
**Example**
Query:
```sql
SELECT connection_id();
```
```response
0
```
## getClientHTTPHeader
Get the value of an HTTP header.

View File

@ -755,7 +755,7 @@ Result:
## match {#match}
Returns whether string `haystack` matches the regular expression `pattern` in [re2 regular syntax](https://github.com/google/re2/wiki/Syntax).
Returns whether string `haystack` matches the regular expression `pattern` in [re2 regular expression syntax](https://github.com/google/re2/wiki/Syntax).
Matching is based on UTF-8, e.g. `.` matches the Unicode code point `¥` which is represented in UTF-8 using two bytes. The regular
expression must not contain null bytes. If the haystack or the pattern are not valid UTF-8, then the behavior is undefined.
@ -852,9 +852,10 @@ multiFuzzyMatchAllIndices(haystack, distance, \[pattern<sub>1</sub>, pattern<sub
## extract
Extracts a fragment of a string using a regular expression. If `haystack` does not match the `pattern` regex, an empty string is returned.
Returns the first match of a regular expression in a string.
If `haystack` does not match the `pattern` regex, an empty string is returned.
For regex without subpatterns, the function uses the fragment that matches the entire regex. Otherwise, it uses the fragment that matches the first subpattern.
If the regular expression has capturing groups, the function matches the input string against the first capturing group.
**Syntax**
@ -862,13 +863,36 @@ For regex without subpatterns, the function uses the fragment that matches the e
extract(haystack, pattern)
```
*Arguments**
- `haystack` — Input string. [String](../data-types/string.md).
- `pattern` — Regular expression with [re2 regular expression syntax](https://github.com/google/re2/wiki/Syntax).
**Returned value**
- The first match of the regular expression in the haystack string. [String](../data-types/string.md).
**Example**
Query:
```sql
SELECT extract('number: 1, number: 2, number: 3', '\\d+') AS result;
```
Result:
```response
┌─result─┐
│ 1 │
└────────┘
```
## extractAll
Extracts all fragments of a string using a regular expression. If `haystack` does not match the `pattern` regex, an empty string is returned.
Returns an array of all matches of a regular expression in a string. If `haystack` does not match the `pattern` regex, an empty string is returned.
Returns an array of strings consisting of all matches of the regex.
The behavior with respect to subpatterns is the same as in function `extract`.
The behavior with respect to sub-patterns is the same as in function [`extract`](#extract).
**Syntax**
@ -876,6 +900,31 @@ The behavior with respect to subpatterns is the same as in function `extract`.
extractAll(haystack, pattern)
```
*Arguments**
- `haystack` — Input string. [String](../data-types/string.md).
- `pattern` — Regular expression with [re2 regular expression syntax](https://github.com/google/re2/wiki/Syntax).
**Returned value**
- Array of matches of the regular expression in the haystack string. [Array](../data-types/array.md)([String](../data-types/string.md)).
**Example**
Query:
```sql
SELECT extractAll('number: 1, number: 2, number: 3', '\\d+') AS result;
```
Result:
```response
┌─result────────┐
│ ['1','2','3'] │
└───────────────┘
```
## extractAllGroupsHorizontal
Matches all groups of the `haystack` string using the `pattern` regular expression. Returns an array of arrays, where the first array includes all fragments matching the first group, the second array - matching the second group, etc.
@ -891,7 +940,7 @@ extractAllGroupsHorizontal(haystack, pattern)
**Arguments**
- `haystack` — Input string. [String](../data-types/string.md).
- `pattern` — Regular expression with [re2 syntax](https://github.com/google/re2/wiki/Syntax). Must contain groups, each group enclosed in parentheses. If `pattern` contains no groups, an exception is thrown. [String](../data-types/string.md).
- `pattern` — Regular expression with [re2 regular expression syntax](https://github.com/google/re2/wiki/Syntax). Must contain groups, each group enclosed in parentheses. If `pattern` contains no groups, an exception is thrown. [String](../data-types/string.md).
**Returned value**
@ -915,6 +964,39 @@ Result:
└──────────────────────────────────────────────────────────────────────────────────────────┘
```
## extractGroups
Match all groups of given input string with a given regular expression, returns an array of arrays of matches.
**Syntax**
``` sql
extractGroups(haystack, pattern)
```
**Arguments**
- `haystack` — Input string. [String](../data-types/string.md).
- `pattern` — Regular expression with [re2 regular expression syntax](https://github.com/google/re2/wiki/Syntax). Must contain groups, each group enclosed in parentheses. If `pattern` contains no groups, an exception is thrown. [String](../data-types/string.md).
**Returned value**
- Array of arrays of matches. [Array](../data-types/array.md).
**Example**
``` sql
SELECT extractGroups('hello abc=111 world', '("[^"]+"|\\w+)=("[^"]+"|\\w+)') AS result;
```
Result:
``` text
┌─result────────┐
│ ['abc','111'] │
└───────────────┘
```
## extractAllGroupsVertical
Matches all groups of the `haystack` string using the `pattern` regular expression. Returns an array of arrays, where each array includes matching fragments from every group. Fragments are grouped in order of appearance in the `haystack`.
@ -928,7 +1010,7 @@ extractAllGroupsVertical(haystack, pattern)
**Arguments**
- `haystack` — Input string. [String](../data-types/string.md).
- `pattern` — Regular expression with [re2 syntax](https://github.com/google/re2/wiki/Syntax). Must contain groups, each group enclosed in parentheses. If `pattern` contains no groups, an exception is thrown. [String](../data-types/string.md).
- `pattern` — Regular expression with [re2 regular expression syntax](https://github.com/google/re2/wiki/Syntax). Must contain groups, each group enclosed in parentheses. If `pattern` contains no groups, an exception is thrown. [String](../data-types/string.md).
**Returned value**
@ -1484,7 +1566,7 @@ countMatches(haystack, pattern)
**Arguments**
- `haystack` — The string to search in. [String](../../sql-reference/syntax.md#syntax-string-literal).
- `pattern` — The regular expression with [re2 syntax](https://github.com/google/re2/wiki/Syntax). [String](../data-types/string.md).
- `pattern` — The regular expression with [re2 regular expression syntax](https://github.com/google/re2/wiki/Syntax). [String](../data-types/string.md).
**Returned value**
@ -1529,7 +1611,7 @@ countMatchesCaseInsensitive(haystack, pattern)
**Arguments**
- `haystack` — The string to search in. [String](../../sql-reference/syntax.md#syntax-string-literal).
- `pattern` — The regular expression with [re2 syntax](https://github.com/google/re2/wiki/Syntax). [String](../data-types/string.md).
- `pattern` — The regular expression with [re2 regular expression syntax](https://github.com/google/re2/wiki/Syntax). [String](../data-types/string.md).
**Returned value**

View File

@ -5230,15 +5230,52 @@ Result:
Also see the `toUnixTimestamp` function.
## toFixedString(s, N)
## toFixedString
Converts a [String](../data-types/string.md) type argument to a [FixedString(N)](../data-types/fixedstring.md) type (a string of fixed length N).
If the string has fewer bytes than N, it is padded with null bytes to the right. If the string has more bytes than N, an exception is thrown.
## toStringCutToZero(s)
**Syntax**
```sql
toFixedString(s, N)
```
**Arguments**
- `s` — A String to convert to a fixed string. [String](../data-types/string.md).
- `N` — Length N. [UInt8](../data-types/int-uint.md)
**Returned value**
- An N length fixed string of `s`. [FixedString](../data-types/fixedstring.md).
**Example**
Query:
``` sql
SELECT toFixedString('foo', 8) AS s;
```
Result:
```response
┌─s─────────────┬─s_cut─┐
│ foo\0\0\0\0\0 │ foo │
└───────────────┴───────┘
```
## toStringCutToZero
Accepts a String or FixedString argument. Returns the String with the content truncated at the first zero byte found.
**Syntax**
```sql
toStringCutToZero(s)
```
**Example**
Query:

View File

@ -41,7 +41,7 @@ ORDER BY ts, event_type;
│ 2020-01-02 00:00:00 │ imp │ 2 │
└─────────────────────┴────────────┴─────────────────┘
-- Let's add the new measurment `cost`
-- Let's add the new measurement `cost`
-- and the new dimension `browser`.
ALTER TABLE events

View File

@ -46,7 +46,7 @@ The `CHECK TABLE` query supports the following table engines:
- [StripeLog](../../engines/table-engines/log-family/stripelog.md)
- [MergeTree family](../../engines/table-engines/mergetree-family/mergetree.md)
Performed over the tables with another table engines causes an `NOT_IMPLEMETED` exception.
Performed over the tables with another table engines causes an `NOT_IMPLEMENTED` exception.
Engines from the `*Log` family do not provide automatic data recovery on failure. Use the `CHECK TABLE` query to track data loss in a timely manner.

View File

@ -442,7 +442,7 @@ DEFLATE_QPL is not available in ClickHouse Cloud.
### Specialized Codecs
These codecs are designed to make compression more effective by exploiting specific features of the data. Some of these codecs do not compress data themself, they instead preprocess the data such that a second compression stage using a general-purpose codec can achieve a higher data compression rate.
These codecs are designed to make compression more effective by exploiting specific features of the data. Some of these codecs do not compress data themselves, they instead preprocess the data such that a second compression stage using a general-purpose codec can achieve a higher data compression rate.
#### Delta

View File

@ -194,7 +194,7 @@ REFRESH EVERY 1 MONTH OFFSET 5 DAY 2 HOUR -- on 6th day of every month, at 2:00
REFRESH EVERY 2 WEEK OFFSET 5 DAY 15 HOUR 10 MINUTE -- every other Saturday, at 3:10 pm
REFRESH EVERY 30 MINUTE -- at 00:00, 00:30, 01:00, 01:30, etc
REFRESH AFTER 30 MINUTE -- 30 minutes after the previous refresh completes, no alignment with time of day
-- REFRESH AFTER 1 HOUR OFFSET 1 MINUTE -- syntax errror, OFFSET is not allowed with AFTER
-- REFRESH AFTER 1 HOUR OFFSET 1 MINUTE -- syntax error, OFFSET is not allowed with AFTER
REFRESH EVERY 1 WEEK 2 DAYS -- every 9 days, not on any particular day of the week or month;
-- specifically, when day number (since 1969-12-29) is divisible by 9
REFRESH EVERY 5 MONTHS -- every 5 months, different months each year (as 12 is not divisible by 5);

View File

@ -29,7 +29,7 @@ The condition could be any expression based on your requirements.
Here is a simple example that intersects the numbers 1 to 10 with the numbers 3 to 8:
```sql
SELECT number FROM numbers(1,10) INTERSECT SELECT number FROM numbers(3,6);
SELECT number FROM numbers(1,10) INTERSECT SELECT number FROM numbers(3,8);
```
Result:

View File

@ -351,11 +351,15 @@ Shows privileges for a user.
**Syntax**
``` sql
SHOW GRANTS [FOR user1 [, user2 ...]]
SHOW GRANTS [FOR user1 [, user2 ...]] [WITH IMPLICIT] [FINAL]
```
If user is not specified, the query returns privileges for the current user.
The `WITH IMPLICIT` modifier allows to show the implicit grants (e.g., `GRANT SELECT ON system.one`)
The `FINAL` modifier merges all grants from the user and its granted roles (with inheritance)
## SHOW CREATE USER
Shows parameters that were used at a [user creation](../../sql-reference/statements/create/user.md).

View File

@ -9,6 +9,19 @@ sidebar_label: "Визуальные интерфейсы от сторонни
## С открытым исходным кодом {#s-otkrytym-iskhodnym-kodom}
### ChartDB {#chartdb}
[ChartDB](https://chartdb.io) — бесплатный и открытый инструмент для визуализации и проектирования схем баз данных, включая ClickHouse, с помощью одного запроса. Разработан на базе React, обеспечивает удобный и простой интерфейс, не требует ввода учетных данных или регистрации.
Основные возможности:
- Визуализация схем: мгновенно импортируйте и визуализируйте схему ClickHouse, включая ER-диаграммы с материализованными представлениями и стандартными представлениями, показывающими ссылки на таблицы;
- Экспорт DDL с поддержкой ИИ: легко генерируйте DDL-скрипты для лучшего управления и документирования схем;
- Поддержка различных SQL-диалектов: совместим с широким спектром SQL-диалектов, что делает его универсальным для разных сред баз данных;
- Без регистрации и учетных данных: весь функционал доступен прямо в браузере, обеспечивая бесшовное и безопасное использование.
[Исходный код ChartDB](https://github.com/chartdb/chartdb).
### Tabix {#tabix}
Веб-интерфейс для ClickHouse в проекте [Tabix](https://github.com/tabixio/tabix).

View File

@ -6,7 +6,7 @@ sidebar_label: "Настройки пользователей"
# Настройки пользователей {#nastroiki-polzovatelei}
Раздел `users` конфигурационного файла `user.xml` содержит настройки для пользователей.
Раздел `users` конфигурационного файла `users.xml` содержит настройки для пользователей.
:::note Информация
Для управления пользователями рекомендуется использовать [SQL-ориентированный воркфлоу](../access-rights.md#access-control), который также поддерживается в ClickHouse.

View File

@ -93,7 +93,7 @@ WITH anySimpleState(number) AS c SELECT toTypeName(c), c FROM numbers(1);
## -Distinct {#agg-functions-combinator-distinct}
При наличии комбинатора Distinct, каждое уникальное значение аргументов, будет учитано в агрегатной функции только один раз.
Примеры: `sum(DISTINCT x)`, `groupArray(DISTINCT x)`, `corrStableDistinct(DISTINCT x, y)` и т.п.
Примеры: `sum(DISTINCT x)` (или `sumDistinct(x)`), `groupArray(DISTINCT x)` (или `groupArrayDistinct(x)`), `corrStable(DISTINCT x, y)` (или `corrStableDistinct(x, y)`) и т.п.
## -OrDefault {#agg-functions-combinator-ordefault}

View File

@ -464,7 +464,7 @@ GRANT INSERT(x,y) ON db.table TO john
- `FILE`. Уровень: `GLOBAL`
- `URL`. Уровень: `GLOBAL`
- `REMOTE`. Уровень: `GLOBAL`
- `YSQL`. Уровень: `GLOBAL`
- `MYSQL`. Уровень: `GLOBAL`
- `ODBC`. Уровень: `GLOBAL`
- `JDBC`. Уровень: `GLOBAL`
- `HDFS`. Уровень: `GLOBAL`

View File

@ -29,7 +29,7 @@ FROM table2
Запрос:
``` sql
SELECT number FROM numbers(1,10) INTERSECT SELECT number FROM numbers(3,6);
SELECT number FROM numbers(1,10) INTERSECT SELECT number FROM numbers(3,8);
```
Результат:

View File

@ -234,11 +234,14 @@ SHOW DICTIONARIES FROM db LIKE '%reg%' LIMIT 2
### Синтаксис {#show-grants-syntax}
``` sql
SHOW GRANTS [FOR user]
SHOW GRANTS [FOR user1 [, user2 ...]] [WITH IMPLICIT] [FINAL]
```
Если пользователь не задан, запрос возвращает привилегии текущего пользователя.
`WITH IMPLICIT` добавляет неявные привилегии (например `GRANT SELECT ON system.one`).
`FINAL` объединяет все текущие привилегии с привилегиями всех ролей пользователя (с наследованием).
## SHOW CREATE USER {#show-create-user-statement}

View File

@ -5,6 +5,19 @@ slug: /zh/interfaces/third-party/gui
## 开源 {#kai-yuan}
### ChartDB {#chartdb}
ClickHouse 的数据库模式可视化工具 [ChartDB](https://chartdb.io)。
主要功能:
- 一键导入并可视化 ClickHouse 模式,包括带有物化视图和标准视图的 ER 图表,并显示表之间的引用关系。
- 支持 AI 驱动的 DDL 导出功能,便于数据库模式管理和文档生成。
- 支持多种 SQL 方言,适用于各种数据库环境。
- 直接在浏览器中使用,无需数据库凭证或注册,使用简单且安全。
[ChartDB 源代码](https://github.com/chartdb/chartdb).
### Tabix {#tabix}
ClickHouse Web 界面 [Tabix](https://github.com/tabixio/tabix).

View File

@ -8,7 +8,7 @@ sidebar_label: "\u7528\u6237\u8BBE\u7F6E"
# 用户设置 {#user-settings}
`user.xml` 中的 `users` 配置段包含了用户配置
`users.xml` 中的 `users` 配置段包含了用户配置
:::note
ClickHouse还支持 [SQL驱动的工作流](/docs/en/operations/access-rights#access-control) 用于管理用户。 我们建议使用它。

View File

@ -110,7 +110,7 @@ SHOW DICTIONARIES FROM db LIKE '%reg%' LIMIT 2
### 语法 {#show-grants-syntax}
``` sql
SHOW GRANTS [FOR user]
SHOW GRANTS [FOR user1 [, user2 ...]] [WITH IMPLICIT] [FINAL]
```
如果未指定用户,输出当前用户的权限

View File

@ -155,7 +155,7 @@ function _clickhouse_quote()
function _clickhouse_get_options()
{
# By default --help will not print all settings, this is done only under --verbose
"$@" --help --verbose 2>&1 | awk -F '[ ,=<>.]' '{ for (i=1; i <= NF; ++i) { if (substr($i, 1, 1) == "-" && length($i) > 1) print $i; } }' | sort -u
"$@" --help --verbose 2>&1 | LANG=c awk -F '[ ,=<>.]' '{ for (i=1; i <= NF; ++i) { if (substr($i, 1, 1) == "-" && length($i) > 1) print $i; } }' | sort -u
}
function _complete_for_clickhouse_generic_bin_impl()

View File

@ -69,6 +69,7 @@
#include <Interpreters/registerInterpreters.h>
#include <Interpreters/JIT/CompiledExpressionCache.h>
#include <Access/AccessControl.h>
#include <Storages/MaterializedView/RefreshSet.h>
#include <Storages/MergeTree/MergeTreeSettings.h>
#include <Storages/StorageReplicatedMergeTree.h>
#include <Storages/System/attachSystemTables.h>
@ -2083,6 +2084,12 @@ try
try
{
/// Don't run background queries until we loaded tables.
/// (In particular things would break if a background drop query happens before the
/// loadMarkedAsDroppedTables() call below - it'll see dropped table metadata and try to
/// drop the table a second time and throw an exception.)
global_context->getRefreshSet().setRefreshesStopped(true);
auto & database_catalog = DatabaseCatalog::instance();
/// We load temporary database first, because projections need it.
database_catalog.initializeAndLoadTemporaryDatabase();
@ -2122,6 +2129,8 @@ try
database_catalog.assertDatabaseExists(default_database);
/// Load user-defined SQL functions.
global_context->getUserDefinedSQLObjectsStorage().loadObjects();
global_context->getRefreshSet().setRefreshesStopped(false);
}
catch (...)
{

View File

@ -1155,9 +1155,6 @@ private:
calculateMinMaxFlags();
if (!isLeaf())
return;
auto new_flags = function(flags, min_flags_with_children, max_flags_with_children, level, grant_option);
if (new_flags != flags)

View File

@ -64,196 +64,6 @@ namespace
}
AccessRights addImplicitAccessRights(const AccessRights & access, const AccessControl & access_control)
{
AccessFlags max_flags;
auto modifier = [&](const AccessFlags & flags,
const AccessFlags & min_flags_with_children,
const AccessFlags & max_flags_with_children,
const size_t level,
bool /* grant_option */) -> AccessFlags
{
AccessFlags res = flags;
/// CREATE_TABLE => CREATE_VIEW, DROP_TABLE => DROP_VIEW, ALTER_TABLE => ALTER_VIEW
static const AccessFlags create_table = AccessType::CREATE_TABLE;
static const AccessFlags create_view = AccessType::CREATE_VIEW;
static const AccessFlags drop_table = AccessType::DROP_TABLE;
static const AccessFlags drop_view = AccessType::DROP_VIEW;
static const AccessFlags alter_table = AccessType::ALTER_TABLE;
static const AccessFlags alter_view = AccessType::ALTER_VIEW;
if (res & create_table)
res |= create_view;
if (res & drop_table)
res |= drop_view;
if (res & alter_table)
res |= alter_view;
/// CREATE TABLE (on any database/table) => CREATE_TEMPORARY_TABLE (global)
static const AccessFlags create_temporary_table = AccessType::CREATE_TEMPORARY_TABLE;
if ((level == 0) && (max_flags_with_children & create_table))
res |= create_temporary_table;
/// CREATE TABLE (on any database/table) => CREATE_ARBITRARY_TEMPORARY_TABLE (global)
static const AccessFlags create_arbitrary_temporary_table = AccessType::CREATE_ARBITRARY_TEMPORARY_TABLE;
if ((level == 0) && (max_flags_with_children & create_table))
res |= create_arbitrary_temporary_table;
/// ALTER_TTL => ALTER_MATERIALIZE_TTL
static const AccessFlags alter_ttl = AccessType::ALTER_TTL;
static const AccessFlags alter_materialize_ttl = AccessType::ALTER_MATERIALIZE_TTL;
if (res & alter_ttl)
res |= alter_materialize_ttl;
/// RELOAD_DICTIONARY (global) => RELOAD_EMBEDDED_DICTIONARIES (global)
static const AccessFlags reload_dictionary = AccessType::SYSTEM_RELOAD_DICTIONARY;
static const AccessFlags reload_embedded_dictionaries = AccessType::SYSTEM_RELOAD_EMBEDDED_DICTIONARIES;
if ((level == 0) && (min_flags_with_children & reload_dictionary))
res |= reload_embedded_dictionaries;
/// any column flag => SHOW_COLUMNS => SHOW_TABLES => SHOW_DATABASES
/// any table flag => SHOW_TABLES => SHOW_DATABASES
/// any dictionary flag => SHOW_DICTIONARIES => SHOW_DATABASES
/// any database flag => SHOW_DATABASES
static const AccessFlags show_columns = AccessType::SHOW_COLUMNS;
static const AccessFlags show_tables = AccessType::SHOW_TABLES;
static const AccessFlags show_dictionaries = AccessType::SHOW_DICTIONARIES;
static const AccessFlags show_tables_or_dictionaries = show_tables | show_dictionaries;
static const AccessFlags show_databases = AccessType::SHOW_DATABASES;
if (res & AccessFlags::allColumnFlags())
res |= show_columns;
if ((res & AccessFlags::allTableFlags())
|| (level <= 2 && (res & show_columns))
|| (level == 2 && (max_flags_with_children & show_columns)))
{
res |= show_tables;
}
if (res & AccessFlags::allDictionaryFlags())
res |= show_dictionaries;
if ((res & AccessFlags::allDatabaseFlags())
|| (level <= 1 && (res & show_tables_or_dictionaries))
|| (level == 1 && (max_flags_with_children & show_tables_or_dictionaries)))
{
res |= show_databases;
}
max_flags |= res;
return res;
};
AccessRights res = access;
res.modifyFlags(modifier);
/// If "select_from_system_db_requires_grant" is enabled we provide implicit grants only for a few tables in the system database.
if (access_control.doesSelectFromSystemDatabaseRequireGrant())
{
const char * always_accessible_tables[] = {
/// Constant tables
"one",
/// "numbers", "numbers_mt", "zeros", "zeros_mt" were excluded because they can generate lots of values and
/// that can decrease performance in some cases.
"contributors",
"licenses",
"time_zones",
"collations",
"formats",
"privileges",
"data_type_families",
"database_engines",
"table_engines",
"table_functions",
"aggregate_function_combinators",
"functions", /// Can contain user-defined functions
/// The following tables hide some rows if the current user doesn't have corresponding SHOW privileges.
"databases",
"tables",
"columns",
/// Specific to the current session
"settings",
"current_roles",
"enabled_roles",
"quota_usage"
};
for (const auto * table_name : always_accessible_tables)
res.grant(AccessType::SELECT, DatabaseCatalog::SYSTEM_DATABASE, table_name);
if (max_flags.contains(AccessType::SHOW_USERS))
res.grant(AccessType::SELECT, DatabaseCatalog::SYSTEM_DATABASE, "users");
if (max_flags.contains(AccessType::SHOW_ROLES))
res.grant(AccessType::SELECT, DatabaseCatalog::SYSTEM_DATABASE, "roles");
if (max_flags.contains(AccessType::SHOW_ROW_POLICIES))
res.grant(AccessType::SELECT, DatabaseCatalog::SYSTEM_DATABASE, "row_policies");
if (max_flags.contains(AccessType::SHOW_SETTINGS_PROFILES))
res.grant(AccessType::SELECT, DatabaseCatalog::SYSTEM_DATABASE, "settings_profiles");
if (max_flags.contains(AccessType::SHOW_QUOTAS))
res.grant(AccessType::SELECT, DatabaseCatalog::SYSTEM_DATABASE, "quotas");
}
else
{
res.grant(AccessType::SELECT, DatabaseCatalog::SYSTEM_DATABASE);
}
/// If "select_from_information_schema_requires_grant" is enabled we don't provide implicit grants for the information_schema database.
if (!access_control.doesSelectFromInformationSchemaRequireGrant())
{
res.grant(AccessType::SELECT, DatabaseCatalog::INFORMATION_SCHEMA);
res.grant(AccessType::SELECT, DatabaseCatalog::INFORMATION_SCHEMA_UPPERCASE);
}
/// There is overlap between AccessType sources and table engines, so the following code avoids user granting twice.
/// Sync SOURCE and TABLE_ENGINE, so only need to check TABLE_ENGINE later.
if (access_control.doesTableEnginesRequireGrant())
{
for (const auto & source_and_table_engine : source_and_table_engines)
{
const auto & source = std::get<0>(source_and_table_engine);
if (res.isGranted(source))
{
const auto & table_engine = std::get<1>(source_and_table_engine);
res.grant(AccessType::TABLE_ENGINE, table_engine);
}
}
}
else
{
/// Add TABLE_ENGINE on * and then remove TABLE_ENGINE on particular engines.
res.grant(AccessType::TABLE_ENGINE);
for (const auto & source_and_table_engine : source_and_table_engines)
{
const auto & source = std::get<0>(source_and_table_engine);
if (!res.isGranted(source))
{
const auto & table_engine = std::get<1>(source_and_table_engine);
res.revoke(AccessType::TABLE_ENGINE, table_engine);
}
}
}
return res;
}
std::array<UUID, 1> to_array(const UUID & id)
{
std::array<UUID, 1> ids;
@ -274,6 +84,196 @@ namespace
}
AccessRights ContextAccess::addImplicitAccessRights(const AccessRights & access, const AccessControl & access_control)
{
AccessFlags max_flags;
auto modifier = [&](const AccessFlags & flags,
const AccessFlags & min_flags_with_children,
const AccessFlags & max_flags_with_children,
const size_t level,
bool /* grant_option */) -> AccessFlags
{
AccessFlags res = flags;
/// CREATE_TABLE => CREATE_VIEW, DROP_TABLE => DROP_VIEW, ALTER_TABLE => ALTER_VIEW
static const AccessFlags create_table = AccessType::CREATE_TABLE;
static const AccessFlags create_view = AccessType::CREATE_VIEW;
static const AccessFlags drop_table = AccessType::DROP_TABLE;
static const AccessFlags drop_view = AccessType::DROP_VIEW;
static const AccessFlags alter_table = AccessType::ALTER_TABLE;
static const AccessFlags alter_view = AccessType::ALTER_VIEW;
if (res & create_table)
res |= create_view;
if (res & drop_table)
res |= drop_view;
if (res & alter_table)
res |= alter_view;
/// CREATE TABLE (on any database/table) => CREATE_TEMPORARY_TABLE (global)
static const AccessFlags create_temporary_table = AccessType::CREATE_TEMPORARY_TABLE;
if ((level == 0) && (max_flags_with_children & create_table))
res |= create_temporary_table;
/// CREATE TABLE (on any database/table) => CREATE_ARBITRARY_TEMPORARY_TABLE (global)
static const AccessFlags create_arbitrary_temporary_table = AccessType::CREATE_ARBITRARY_TEMPORARY_TABLE;
if ((level == 0) && (max_flags_with_children & create_table))
res |= create_arbitrary_temporary_table;
/// ALTER_TTL => ALTER_MATERIALIZE_TTL
static const AccessFlags alter_ttl = AccessType::ALTER_TTL;
static const AccessFlags alter_materialize_ttl = AccessType::ALTER_MATERIALIZE_TTL;
if (res & alter_ttl)
res |= alter_materialize_ttl;
/// RELOAD_DICTIONARY (global) => RELOAD_EMBEDDED_DICTIONARIES (global)
static const AccessFlags reload_dictionary = AccessType::SYSTEM_RELOAD_DICTIONARY;
static const AccessFlags reload_embedded_dictionaries = AccessType::SYSTEM_RELOAD_EMBEDDED_DICTIONARIES;
if ((level == 0) && (min_flags_with_children & reload_dictionary))
res |= reload_embedded_dictionaries;
/// any column flag => SHOW_COLUMNS => SHOW_TABLES => SHOW_DATABASES
/// any table flag => SHOW_TABLES => SHOW_DATABASES
/// any dictionary flag => SHOW_DICTIONARIES => SHOW_DATABASES
/// any database flag => SHOW_DATABASES
static const AccessFlags show_columns = AccessType::SHOW_COLUMNS;
static const AccessFlags show_tables = AccessType::SHOW_TABLES;
static const AccessFlags show_dictionaries = AccessType::SHOW_DICTIONARIES;
static const AccessFlags show_tables_or_dictionaries = show_tables | show_dictionaries;
static const AccessFlags show_databases = AccessType::SHOW_DATABASES;
if (res & AccessFlags::allColumnFlags())
res |= show_columns;
if ((res & AccessFlags::allTableFlags())
|| (level <= 2 && (res & show_columns))
|| (level == 2 && (max_flags_with_children & show_columns)))
{
res |= show_tables;
}
if (res & AccessFlags::allDictionaryFlags())
res |= show_dictionaries;
if ((res & AccessFlags::allDatabaseFlags())
|| (level <= 1 && (res & show_tables_or_dictionaries))
|| (level == 1 && (max_flags_with_children & show_tables_or_dictionaries)))
{
res |= show_databases;
}
max_flags |= res;
return res;
};
AccessRights res = access;
res.modifyFlags(modifier);
/// If "select_from_system_db_requires_grant" is enabled we provide implicit grants only for a few tables in the system database.
if (access_control.doesSelectFromSystemDatabaseRequireGrant())
{
const char * always_accessible_tables[] = {
/// Constant tables
"one",
/// "numbers", "numbers_mt", "zeros", "zeros_mt" were excluded because they can generate lots of values and
/// that can decrease performance in some cases.
"contributors",
"licenses",
"time_zones",
"collations",
"formats",
"privileges",
"data_type_families",
"database_engines",
"table_engines",
"table_functions",
"aggregate_function_combinators",
"functions", /// Can contain user-defined functions
/// The following tables hide some rows if the current user doesn't have corresponding SHOW privileges.
"databases",
"tables",
"columns",
/// Specific to the current session
"settings",
"current_roles",
"enabled_roles",
"quota_usage"
};
for (const auto * table_name : always_accessible_tables)
res.grant(AccessType::SELECT, DatabaseCatalog::SYSTEM_DATABASE, table_name);
if (max_flags.contains(AccessType::SHOW_USERS))
res.grant(AccessType::SELECT, DatabaseCatalog::SYSTEM_DATABASE, "users");
if (max_flags.contains(AccessType::SHOW_ROLES))
res.grant(AccessType::SELECT, DatabaseCatalog::SYSTEM_DATABASE, "roles");
if (max_flags.contains(AccessType::SHOW_ROW_POLICIES))
res.grant(AccessType::SELECT, DatabaseCatalog::SYSTEM_DATABASE, "row_policies");
if (max_flags.contains(AccessType::SHOW_SETTINGS_PROFILES))
res.grant(AccessType::SELECT, DatabaseCatalog::SYSTEM_DATABASE, "settings_profiles");
if (max_flags.contains(AccessType::SHOW_QUOTAS))
res.grant(AccessType::SELECT, DatabaseCatalog::SYSTEM_DATABASE, "quotas");
}
else
{
res.grant(AccessType::SELECT, DatabaseCatalog::SYSTEM_DATABASE);
}
/// If "select_from_information_schema_requires_grant" is enabled we don't provide implicit grants for the information_schema database.
if (!access_control.doesSelectFromInformationSchemaRequireGrant())
{
res.grant(AccessType::SELECT, DatabaseCatalog::INFORMATION_SCHEMA);
res.grant(AccessType::SELECT, DatabaseCatalog::INFORMATION_SCHEMA_UPPERCASE);
}
/// There is overlap between AccessType sources and table engines, so the following code avoids user granting twice.
/// Sync SOURCE and TABLE_ENGINE, so only need to check TABLE_ENGINE later.
if (access_control.doesTableEnginesRequireGrant())
{
for (const auto & source_and_table_engine : source_and_table_engines)
{
const auto & source = std::get<0>(source_and_table_engine);
if (res.isGranted(source))
{
const auto & table_engine = std::get<1>(source_and_table_engine);
res.grant(AccessType::TABLE_ENGINE, table_engine);
}
}
}
else
{
/// Add TABLE_ENGINE on * and then remove TABLE_ENGINE on particular engines.
res.grant(AccessType::TABLE_ENGINE);
for (const auto & source_and_table_engine : source_and_table_engines)
{
const auto & source = std::get<0>(source_and_table_engine);
if (!res.isGranted(source))
{
const auto & table_engine = std::get<1>(source_and_table_engine);
res.revoke(AccessType::TABLE_ENGINE, table_engine);
}
}
}
return res;
}
std::shared_ptr<const ContextAccess> ContextAccess::fromContext(const ContextPtr & context)
{
return ContextAccessWrapper::fromContext(context)->getAccess();

View File

@ -132,6 +132,8 @@ public:
/// Checks if grantees are allowed for the current user, throws an exception if not.
void checkGranteesAreAllowed(const std::vector<UUID> & grantee_ids) const;
static AccessRights addImplicitAccessRights(const AccessRights & access, const AccessControl & access_control);
ContextAccess(const AccessControl & access_control_, const Params & params_);
~ContextAccess();

View File

@ -432,14 +432,6 @@ QueryTreeNodePtr IdentifierResolver::tryResolveTableIdentifierFromDatabaseCatalo
else
storage = DatabaseCatalog::instance().tryGetTable(storage_id, context);
if (!storage && storage_id.hasUUID())
{
// If `storage_id` has UUID, it is possible that the UUID is removed from `DatabaseCatalog` after `context->resolveStorageID(storage_id)`
// We try to get the table with the database name and the table name.
auto database = DatabaseCatalog::instance().tryGetDatabase(storage_id.getDatabaseName());
if (database)
storage = database->tryGetTable(table_name, context);
}
if (!storage)
return {};

View File

@ -1950,7 +1950,7 @@ QueryAnalyzer::QueryTreeNodesWithNames QueryAnalyzer::resolveUnqualifiedMatcher(
{
bool table_expression_in_resolve_process = nearest_query_scope->table_expressions_in_resolve_process.contains(table_expression.get());
if (auto * /*array_join_node*/ _ = table_expression->as<ArrayJoinNode>())
if (table_expression->as<ArrayJoinNode>())
{
if (table_expressions_column_nodes_with_names_stack.empty())
throw Exception(ErrorCodes::LOGICAL_ERROR,

View File

@ -19,6 +19,8 @@ namespace ErrorCodes
extern const int BAD_ARGUMENTS;
extern const int ILLEGAL_TYPE_OF_COLUMN_FOR_FILTER;
extern const int ILLEGAL_PREWHERE;
extern const int UNSUPPORTED_METHOD;
extern const int UNEXPECTED_EXPRESSION;
}
namespace
@ -26,11 +28,24 @@ namespace
void validateFilter(const QueryTreeNodePtr & filter_node, std::string_view exception_place_message, const QueryTreeNodePtr & query_node)
{
if (filter_node->getNodeType() == QueryTreeNodeType::LIST)
throw Exception(ErrorCodes::BAD_ARGUMENTS,
"Unsupported expression '{}' in filter", filter_node->formatASTForErrorMessage());
DataTypePtr filter_node_result_type;
try
{
filter_node_result_type = filter_node->getResultType();
}
catch (const DB::Exception &e)
{
if (e.code() != ErrorCodes::UNSUPPORTED_METHOD)
e.rethrow();
}
if (!filter_node_result_type)
throw Exception(ErrorCodes::UNEXPECTED_EXPRESSION,
"Unexpected expression '{}' in filter in {}. In query {}",
filter_node->formatASTForErrorMessage(),
exception_place_message,
query_node->formatASTForErrorMessage());
auto filter_node_result_type = filter_node->getResultType();
if (!filter_node_result_type->canBeUsedInBooleanContext())
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_COLUMN_FOR_FILTER,
"Invalid type for filter in {}: {}. In query {}",

View File

@ -9,6 +9,7 @@
#include <termios.h>
#include <unistd.h>
#include <base/defines.h>
#include <sys/ioctl.h>
namespace DB::ErrorCodes
{
@ -112,6 +113,14 @@ void TerminalKeystrokeInterceptor::run(TerminalKeystrokeInterceptor::CallbackMap
void TerminalKeystrokeInterceptor::runImpl(const DB::TerminalKeystrokeInterceptor::CallbackMap & map) const
{
char ch;
int available = 0;
if (ioctl(fd, FIONREAD, &available) < 0)
throw DB::ErrnoException(DB::ErrorCodes::SYSTEM_ERROR, "ioctl({}, FIONREAD)", fd);
if (available <= 0)
return;
if (read(fd, &ch, 1) > 0)
{
auto it = map.find(ch);

View File

@ -8,6 +8,7 @@
#include <Columns/ColumnString.h>
#include <Columns/ColumnCompressed.h>
#include <Columns/ColumnLowCardinality.h>
#include <Columns/MaskOperations.h>
#if USE_EMBEDDED_COMPILER
#include <DataTypes/Native.h>
@ -311,7 +312,8 @@ ColumnPtr ColumnNullable::filter(const Filter & filt, ssize_t result_size_hint)
void ColumnNullable::expand(const IColumn::Filter & mask, bool inverted)
{
nested_column->expand(mask, inverted);
null_map->expand(mask, inverted);
/// Use 1 as default value so column will contain NULLs on rows where filter has 0.
expandDataByMask<UInt8>(getNullMapData(), mask, inverted, 1);
}
ColumnPtr ColumnNullable::permute(const Permutation & perm, size_t limit) const

View File

@ -323,6 +323,19 @@ void ColumnObject::setDynamicPaths(const std::vector<String> & paths)
}
}
void ColumnObject::setDynamicPaths(const std::vector<std::pair<String, ColumnPtr>> & paths)
{
if (paths.size() > max_dynamic_paths)
throw Exception(ErrorCodes::LOGICAL_ERROR, "Cannot set dynamic paths to Object column, the number of paths ({}) exceeds the limit ({})", paths.size(), max_dynamic_paths);
for (const auto & [path, column] : paths)
{
auto it = dynamic_paths.emplace(path, column).first;
dynamic_paths_ptrs[path] = assert_cast<ColumnDynamic *>(it->second.get());
sorted_dynamic_paths.insert(it->first);
}
}
void ColumnObject::insert(const Field & x)
{
const auto & object = x.safeGet<Object>();

View File

@ -222,6 +222,7 @@ public:
void addNewDynamicPath(std::string_view path);
void setDynamicPaths(const std::vector<String> & paths);
void setDynamicPaths(const std::vector<std::pair<String, ColumnPtr>> & paths);
void setMaxDynamicPaths(size_t max_dynamic_paths_);
void setStatistics(const StatisticsPtr & statistics_) { statistics = statistics_; }

View File

@ -1451,6 +1451,31 @@ std::optional<ColumnVariant::Discriminator> ColumnVariant::getLocalDiscriminator
return std::nullopt;
}
std::optional<ColumnVariant::Discriminator> ColumnVariant::getGlobalDiscriminatorOfOneNoneEmptyVariantNoNulls() const
{
if (auto local_discr = getLocalDiscriminatorOfOneNoneEmptyVariantNoNulls())
return globalDiscriminatorByLocal(*local_discr);
return std::nullopt;
}
std::optional<ColumnVariant::Discriminator> ColumnVariant::getGlobalDiscriminatorOfOneNoneEmptyVariant() const
{
std::optional<ColumnVariant::Discriminator> discr;
for (size_t i = 0; i != variants.size(); ++i)
{
if (!variants[i]->empty())
{
/// Check if we already had non-empty variant.
if (discr)
return std::nullopt;
discr = globalDiscriminatorByLocal(i);
}
}
return discr;
}
void ColumnVariant::applyNullMap(const ColumnVector<UInt8>::Container & null_map)
{
applyNullMapImpl<false>(null_map);

View File

@ -314,6 +314,12 @@ public:
/// Check if we have only 1 non-empty variant and no NULL values,
/// and if so, return the discriminator of this non-empty column.
std::optional<Discriminator> getLocalDiscriminatorOfOneNoneEmptyVariantNoNulls() const;
std::optional<Discriminator> getGlobalDiscriminatorOfOneNoneEmptyVariantNoNulls() const;
/// Check if we have only 1 non-empty variant,
/// and if so, return the discriminator of this non-empty column.
std::optional<Discriminator> getGlobalDiscriminatorOfOneNoneEmptyVariant() const;
/// Apply null map to a Variant column.
/// Replace corresponding discriminators with NULL_DISCRIMINATOR

View File

@ -452,7 +452,7 @@
M(553, LZMA_STREAM_ENCODER_FAILED) \
M(554, LZMA_STREAM_DECODER_FAILED) \
M(555, ROCKSDB_ERROR) \
M(556, SYNC_MYSQL_USER_ACCESS_ERROR) \
M(556, SYNC_MYSQL_USER_ACCESS_ERROR)\
M(557, UNKNOWN_UNION) \
M(558, EXPECTED_ALL_OR_DISTINCT) \
M(559, INVALID_GRPC_QUERY_INFO) \
@ -578,7 +578,7 @@
M(697, CANNOT_RESTORE_TO_NONENCRYPTED_DISK) \
M(698, INVALID_REDIS_STORAGE_TYPE) \
M(699, INVALID_REDIS_TABLE_STRUCTURE) \
M(700, USER_SESSION_LIMIT_EXCEEDED) \
M(700, USER_SESSION_LIMIT_EXCEEDED) \
M(701, CLUSTER_DOESNT_EXIST) \
M(702, CLIENT_INFO_DOES_NOT_MATCH) \
M(703, INVALID_IDENTIFIER) \
@ -610,16 +610,15 @@
M(729, ILLEGAL_TIME_SERIES_TAGS) \
M(730, REFRESH_FAILED) \
M(731, QUERY_CACHE_USED_WITH_NON_THROW_OVERFLOW_MODE) \
M(733, TABLE_IS_BEING_RESTARTED) \
\
\
M(900, DISTRIBUTED_CACHE_ERROR) \
M(901, CANNOT_USE_DISTRIBUTED_CACHE) \
\
\
M(999, KEEPER_EXCEPTION) \
M(1000, POCO_EXCEPTION) \
M(1001, STD_EXCEPTION) \
M(1002, UNKNOWN_EXCEPTION) \
/* See END */
/* See END */
#ifdef APPLY_FOR_EXTERNAL_ERROR_CODES
#define APPLY_FOR_ERROR_CODES(M) APPLY_FOR_BUILTIN_ERROR_CODES(M) APPLY_FOR_EXTERNAL_ERROR_CODES(M)

View File

@ -11,8 +11,16 @@ template <typename T>
void addProgramOptionAsMultitoken(T &cmd_settings, boost::program_options::options_description & options, std::string_view name, const typename T::SettingFieldRef & field)
{
auto on_program_option = boost::function1<void, const Strings &>([&cmd_settings, name](const Strings & values) { cmd_settings.set(name, values.back()); });
options.add(boost::shared_ptr<boost::program_options::option_description>(new boost::program_options::option_description(
name.data(), boost::program_options::value<Strings>()->multitoken()->composing()->notifier(on_program_option), field.getDescription())));
if (field.getTypeName() == "Bool")
{
options.add(boost::shared_ptr<boost::program_options::option_description>(new boost::program_options::option_description(
name.data(), boost::program_options::value<Strings>()->multitoken()->composing()->implicit_value(std::vector<std::string>{"1"}, "1")->notifier(on_program_option), field.getDescription())));
}
else
{
options.add(boost::shared_ptr<boost::program_options::option_description>(new boost::program_options::option_description(
name.data(), boost::program_options::value<Strings>()->multitoken()->composing()->notifier(on_program_option), field.getDescription())));
}
}
template <typename T>
@ -36,8 +44,16 @@ template <typename T>
void addProgramOption(T & cmd_settings, boost::program_options::options_description & options, std::string_view name, const typename T::SettingFieldRef & field)
{
auto on_program_option = boost::function1<void, const std::string &>([&cmd_settings, name](const std::string & value) { cmd_settings.set(name, value); });
options.add(boost::shared_ptr<boost::program_options::option_description>(new boost::program_options::option_description(
name.data(), boost::program_options::value<std::string>()->composing()->notifier(on_program_option), field.getDescription()))); // NOLINT
if (field.getTypeName() == "Bool")
{
options.add(boost::shared_ptr<boost::program_options::option_description>(new boost::program_options::option_description(
name.data(), boost::program_options::value<std::string>()->composing()->implicit_value("1")->notifier(on_program_option), field.getDescription()))); // NOLINT
}
else
{
options.add(boost::shared_ptr<boost::program_options::option_description>(new boost::program_options::option_description(
name.data(), boost::program_options::value<std::string>()->composing()->notifier(on_program_option), field.getDescription()))); // NOLINT
}
}
template <typename T>

View File

@ -537,6 +537,9 @@ Read data types in binary format instead of type names in Native input format
)", 0) \
M(Bool, output_format_native_encode_types_in_binary_format, false, R"(
Write data types in binary format instead of type names in Native output format
)", 0) \
M(Bool, output_format_native_write_json_as_string, false, R"(
Write data of [JSON](../../sql-reference/data-types/newjson.md) column as [String](../../sql-reference/data-types/string.md) column containing JSON strings instead of default native JSON serialization.
)", 0) \
\
M(DateTimeInputFormat, date_time_input_format, FormatSettings::DateTimeInputFormat::Basic, R"(
@ -648,6 +651,12 @@ Write data types in binary format instead of type names in RowBinaryWithNamesAnd
)", 0) \
M(URI, format_avro_schema_registry_url, "", R"(
For AvroConfluent format: Confluent Schema Registry URL.
)", 0) \
M(Bool, input_format_binary_read_json_as_string, false, R"(
Read values of [JSON](../../sql-reference/data-types/newjson.md) data type as JSON [String](../../sql-reference/data-types/string.md) values in RowBinary input format.
)", 0) \
M(Bool, output_format_binary_write_json_as_string, false, R"(
Write values of [JSON](../../sql-reference/data-types/newjson.md) data type as JSON [String](../../sql-reference/data-types/string.md) values in RowBinary output format.
)", 0) \
\
M(Bool, output_format_json_quote_64bit_integers, true, R"(

View File

@ -76,6 +76,9 @@ static std::initializer_list<std::pair<ClickHouseVersion, SettingsChangesHistory
{"show_create_query_identifier_quoting_rule", "when_necessary", "when_necessary", "New setting."},
{"show_create_query_identifier_quoting_style", "Backticks", "Backticks", "New setting."},
{"query_plan_join_inner_table_selection", "auto", "auto", "New setting."},
{"output_format_native_write_json_as_string", false, false, "Add new setting to allow write JSON column as single String column in Native format"},
{"output_format_binary_write_json_as_string", false, false, "Add new setting to write values of JSON type as JSON string in RowBinary output format"},
{"input_format_binary_read_json_as_string", false, false, "Add new setting to read values of JSON type as JSON string in RowBinary input format"},
{"enable_secure_identifiers", false, false, "New setting."},
{"min_free_disk_bytes_to_perform_insert", 0, 0, "New setting."},
{"min_free_disk_ratio_to_perform_insert", 0.0, 0.0, "New setting."},

View File

@ -356,17 +356,13 @@ std::unique_ptr<ISerialization::SubstreamData> DataTypeObject::getDynamicSubcolu
result_typed_columns[getSubPath(path, prefix)] = column;
}
auto & result_dynamic_columns = result_object_column.getDynamicPaths();
auto & result_dynamic_columns_ptrs = result_object_column.getDynamicPathsPtrs();
std::vector<std::pair<String, ColumnPtr>> result_dynamic_paths;
for (const auto & [path, column] : object_column.getDynamicPaths())
{
if (path.starts_with(prefix) && path.size() != prefix.size())
{
auto sub_path = getSubPath(path, prefix);
result_dynamic_columns[sub_path] = column;
result_dynamic_columns_ptrs[sub_path] = assert_cast<ColumnDynamic *>(result_dynamic_columns[sub_path].get());
}
result_dynamic_paths.emplace_back(getSubPath(path, prefix), column);
}
result_object_column.setDynamicPaths(result_dynamic_paths);
const auto & shared_data_offsets = object_column.getSharedDataOffsets();
const auto [shared_data_paths, shared_data_values] = object_column.getSharedDataPathsAndValues();

View File

@ -276,6 +276,9 @@ public:
bool use_compact_variant_discriminators_serialization = false;
/// Serialize JSON column as single String column with serialized JSON values.
bool write_json_as_string = false;
enum class ObjectAndDynamicStatisticsMode
{
NONE, /// Don't write statistics.

View File

@ -291,7 +291,7 @@ void SerializationJSON<Parser>::serializeTextImpl(const IColumn & column, size_t
}
template <typename Parser>
void SerializationJSON<Parser>::deserializeTextImpl(IColumn & column, std::string_view object, const FormatSettings & settings) const
void SerializationJSON<Parser>::deserializeObject(IColumn & column, std::string_view object, const FormatSettings & settings) const
{
typename Parser::Element document;
auto parser = parsers_pool.get([] { return new Parser; });
@ -314,7 +314,7 @@ void SerializationJSON<Parser>::deserializeWholeText(IColumn & column, ReadBuffe
{
String object;
readStringUntilEOF(object, istr);
deserializeTextImpl(column, object, settings);
deserializeObject(column, object, settings);
}
template <typename Parser>
@ -330,7 +330,7 @@ void SerializationJSON<Parser>::deserializeTextEscaped(IColumn & column, ReadBuf
{
String object;
readEscapedString(object, istr);
deserializeTextImpl(column, object, settings);
deserializeObject(column, object, settings);
}
template <typename Parser>
@ -346,7 +346,7 @@ void SerializationJSON<Parser>::deserializeTextQuoted(IColumn & column, ReadBuff
{
String object;
readQuotedString(object, istr);
deserializeTextImpl(column, object, settings);
deserializeObject(column, object, settings);
}
template <typename Parser>
@ -362,7 +362,7 @@ void SerializationJSON<Parser>::deserializeTextCSV(IColumn & column, ReadBuffer
{
String object;
readCSVString(object, istr, settings.csv);
deserializeTextImpl(column, object, settings);
deserializeObject(column, object, settings);
}
template <typename Parser>
@ -390,7 +390,7 @@ void SerializationJSON<Parser>::deserializeTextJSON(IColumn & column, ReadBuffer
{
String object_buffer;
auto object_view = readJSONObjectAsViewPossiblyInvalid(istr, object_buffer);
deserializeTextImpl(column, object_view, settings);
deserializeObject(column, object_view, settings);
}
#if USE_SIMDJSON

View File

@ -36,9 +36,10 @@ public:
void serializeTextXML(const IColumn & column, size_t row_num, WriteBuffer & ostr, const FormatSettings & settings) const override;
void deserializeObject(IColumn & column, std::string_view object, const FormatSettings & settings) const override;
private:
void serializeTextImpl(const IColumn & column, size_t row_num, WriteBuffer & ostr, const FormatSettings & settings, bool pretty = false, size_t indent = 0) const;
void deserializeTextImpl(IColumn & column, std::string_view object, const FormatSettings & settings) const;
std::unique_ptr<JSONExtractTreeNode<Parser>> json_extract_tree;
JSONExtractInsertSettings insert_settings;

View File

@ -1,11 +1,13 @@
#include <DataTypes/Serializations/SerializationObject.h>
#include <DataTypes/Serializations/SerializationObjectTypedPath.h>
#include <DataTypes/Serializations/SerializationString.h>
#include <Columns/ColumnObject.h>
#include <DataTypes/DataTypeObject.h>
#include <DataTypes/DataTypeArray.h>
#include <DataTypes/DataTypeTuple.h>
#include <DataTypes/DataTypeString.h>
#include <IO/ReadBufferFromString.h>
namespace DB
{
@ -68,7 +70,7 @@ SerializationObject::ObjectSerializationVersion::ObjectSerializationVersion(UInt
void SerializationObject::ObjectSerializationVersion::checkVersion(UInt64 version)
{
if (version != BASIC)
if (version != V1 && version != STRING)
throw Exception(ErrorCodes::INCORRECT_DATA, "Invalid version for Object structure serialization.");
}
@ -193,10 +195,16 @@ void SerializationObject::serializeBinaryBulkStatePrefix(
throw Exception(ErrorCodes::LOGICAL_ERROR, "Missing stream for Object column structure during serialization of binary bulk state prefix");
/// Write serialization version.
UInt64 serialization_version = ObjectSerializationVersion::Value::BASIC;
UInt64 serialization_version = settings.write_json_as_string ? ObjectSerializationVersion::Value::STRING : ObjectSerializationVersion::Value::V1;
writeBinaryLittleEndian(serialization_version, *stream);
auto object_state = std::make_shared<SerializeBinaryBulkStateObject>(serialization_version);
if (serialization_version == ObjectSerializationVersion::Value::STRING)
{
state = std::move(object_state);
return;
}
object_state->max_dynamic_paths = column_object.getMaxDynamicPaths();
/// Write max_dynamic_paths parameter.
writeVarUInt(object_state->max_dynamic_paths, *stream);
@ -309,6 +317,13 @@ void SerializationObject::deserializeBinaryBulkStatePrefix(
auto object_state = std::make_shared<DeserializeBinaryBulkStateObject>();
object_state->structure_state = std::move(structure_state);
auto * structure_state_concrete = checkAndGetState<DeserializeBinaryBulkStateObjectStructure>(object_state->structure_state);
if (structure_state_concrete->serialization_version.value == ObjectSerializationVersion::Value::STRING)
{
state = std::move(object_state);
return;
}
settings.path.push_back(Substream::ObjectData);
for (const auto & path : sorted_typed_paths)
@ -319,8 +334,7 @@ void SerializationObject::deserializeBinaryBulkStatePrefix(
settings.path.pop_back();
}
const auto & sorted_dynamic_paths = checkAndGetState<DeserializeBinaryBulkStateObjectStructure>(object_state->structure_state)->sorted_dynamic_paths;
for (const auto & path : sorted_dynamic_paths)
for (const auto & path : structure_state_concrete->sorted_dynamic_paths)
{
settings.path.push_back(Substream::ObjectDynamicPath);
settings.path.back().object_path_name = path;
@ -353,41 +367,44 @@ ISerialization::DeserializeBinaryBulkStatePtr SerializationObject::deserializeOb
UInt64 serialization_version;
readBinaryLittleEndian(serialization_version, *structure_stream);
auto structure_state = std::make_shared<DeserializeBinaryBulkStateObjectStructure>(serialization_version);
/// Read max_dynamic_paths parameter.
readVarUInt(structure_state->max_dynamic_paths, *structure_stream);
/// Read the sorted list of dynamic paths.
size_t dynamic_paths_size;
readVarUInt(dynamic_paths_size, *structure_stream);
structure_state->sorted_dynamic_paths.reserve(dynamic_paths_size);
structure_state->dynamic_paths.reserve(dynamic_paths_size);
for (size_t i = 0; i != dynamic_paths_size; ++i)
if (structure_state->serialization_version.value == ObjectSerializationVersion::Value::V1)
{
structure_state->sorted_dynamic_paths.emplace_back();
readStringBinary(structure_state->sorted_dynamic_paths.back(), *structure_stream);
structure_state->dynamic_paths.insert(structure_state->sorted_dynamic_paths.back());
}
/// Read statistics if needed.
if (settings.object_and_dynamic_read_statistics)
{
ColumnObject::Statistics statistics(ColumnObject::Statistics::Source::READ);
statistics.dynamic_paths_statistics.reserve(structure_state->sorted_dynamic_paths.size());
/// First, read dynamic paths statistics.
for (const auto & path : structure_state->sorted_dynamic_paths)
readVarUInt(statistics.dynamic_paths_statistics[path], *structure_stream);
/// Second, read shared data paths statistics.
size_t size;
readVarUInt(size, *structure_stream);
statistics.shared_data_paths_statistics.reserve(size);
String path;
for (size_t i = 0; i != size; ++i)
/// Read max_dynamic_paths parameter.
readVarUInt(structure_state->max_dynamic_paths, *structure_stream);
/// Read the sorted list of dynamic paths.
size_t dynamic_paths_size;
readVarUInt(dynamic_paths_size, *structure_stream);
structure_state->sorted_dynamic_paths.reserve(dynamic_paths_size);
structure_state->dynamic_paths.reserve(dynamic_paths_size);
for (size_t i = 0; i != dynamic_paths_size; ++i)
{
readStringBinary(path, *structure_stream);
readVarUInt(statistics.shared_data_paths_statistics[path], *structure_stream);
structure_state->sorted_dynamic_paths.emplace_back();
readStringBinary(structure_state->sorted_dynamic_paths.back(), *structure_stream);
structure_state->dynamic_paths.insert(structure_state->sorted_dynamic_paths.back());
}
structure_state->statistics = std::make_shared<const ColumnObject::Statistics>(std::move(statistics));
/// Read statistics if needed.
if (settings.object_and_dynamic_read_statistics)
{
ColumnObject::Statistics statistics(ColumnObject::Statistics::Source::READ);
statistics.dynamic_paths_statistics.reserve(structure_state->sorted_dynamic_paths.size());
/// First, read dynamic paths statistics.
for (const auto & path : structure_state->sorted_dynamic_paths)
readVarUInt(statistics.dynamic_paths_statistics[path], *structure_stream);
/// Second, read shared data paths statistics.
size_t size;
readVarUInt(size, *structure_stream);
statistics.shared_data_paths_statistics.reserve(size);
String path;
for (size_t i = 0; i != size; ++i)
{
readStringBinary(path, *structure_stream);
readVarUInt(statistics.shared_data_paths_statistics[path], *structure_stream);
}
structure_state->statistics = std::make_shared<const ColumnObject::Statistics>(std::move(statistics));
}
}
state = std::move(structure_state);
@ -405,11 +422,36 @@ void SerializationObject::serializeBinaryBulkWithMultipleStreams(
SerializeBinaryBulkSettings & settings,
SerializeBinaryBulkStatePtr & state) const
{
auto * object_state = checkAndGetState<SerializeBinaryBulkStateObject>(state);
if (object_state->serialization_version.value == ObjectSerializationVersion::Value::STRING)
{
/// Serialize JSON column as single stream of JSON strings.
settings.path.push_back(Substream::ObjectData);
auto * data_stream = settings.getter(settings.path);
settings.path.pop_back();
if (!data_stream)
throw Exception(ErrorCodes::LOGICAL_ERROR, "Got empty stream for String data in SerializationObject::serializeBinaryBulkWithMultipleStreams");
size_t end = limit && offset + limit < column.size() ? offset + limit : column.size();
WriteBufferFromOwnString buf;
FormatSettings format_settings;
for (size_t i = offset; i != end; ++i)
{
serializeText(column, i, buf, format_settings);
const auto & data = buf.str();
writeStringBinary(data, *data_stream);
buf.restart();
}
return;
}
const auto & column_object = assert_cast<const ColumnObject &>(column);
const auto & typed_paths = column_object.getTypedPaths();
const auto & dynamic_paths = column_object.getDynamicPaths();
const auto & shared_data = column_object.getSharedDataPtr();
auto * object_state = checkAndGetState<SerializeBinaryBulkStateObject>(state);
if (column_object.getMaxDynamicPaths() != object_state->max_dynamic_paths)
throw Exception(ErrorCodes::LOGICAL_ERROR, "Mismatch of max_dynamic_paths parameter of Object. Expected: {}, Got: {}", object_state->max_dynamic_paths, column_object.getMaxDynamicPaths());
@ -474,6 +516,9 @@ void SerializationObject::serializeBinaryBulkStateSuffix(
SerializeBinaryBulkSettings & settings, SerializeBinaryBulkStatePtr & state) const
{
auto * object_state = checkAndGetState<SerializeBinaryBulkStateObject>(state);
if (object_state->serialization_version.value == ObjectSerializationVersion::Value::STRING)
return;
settings.path.push_back(Substream::ObjectStructure);
auto * stream = settings.getter(settings.path);
settings.path.pop_back();
@ -534,6 +579,27 @@ void SerializationObject::deserializeBinaryBulkWithMultipleStreams(
auto * object_state = checkAndGetState<DeserializeBinaryBulkStateObject>(state);
auto * structure_state = checkAndGetState<DeserializeBinaryBulkStateObjectStructure>(object_state->structure_state);
auto mutable_column = column->assumeMutable();
if (structure_state->serialization_version.value == ObjectSerializationVersion::Value::STRING)
{
/// Read JSON column as single stream of JSON strings.
settings.path.push_back(Substream::ObjectData);
auto * data_stream = settings.getter(settings.path);
settings.path.pop_back();
if (!data_stream)
throw Exception(ErrorCodes::LOGICAL_ERROR, "Missing stream for Object data serialization in SerializationObject::deserializeBinaryBulkWithMultipleStreams");
String data;
FormatSettings format_settings;
for (size_t i = 0; i != limit; ++i)
{
readStringBinary(data, *data_stream);
ReadBufferFromString buf(data);
deserializeObject(*mutable_column, data, format_settings);
}
return;
}
auto & column_object = assert_cast<ColumnObject &>(*mutable_column);
/// If it's a new object column, set dynamic paths and statistics.
if (column_object.empty())
@ -587,6 +653,15 @@ void SerializationObject::serializeBinary(const Field & field, WriteBuffer & ost
void SerializationObject::serializeBinary(const IColumn & col, size_t row_num, WriteBuffer & ostr, const FormatSettings & settings) const
{
if (settings.binary.write_json_as_string)
{
/// Serialize row as JSON string.
WriteBufferFromOwnString buf;
serializeText(col, row_num, buf, settings);
writeStringBinary(buf.str(), ostr);
return;
}
const auto & column_object = assert_cast<const ColumnObject &>(col);
const auto & typed_paths = column_object.getTypedPaths();
const auto & dynamic_paths = column_object.getDynamicPaths();
@ -678,6 +753,14 @@ void SerializationObject::restoreColumnObject(ColumnObject & column_object, size
void SerializationObject::deserializeBinary(IColumn & col, ReadBuffer & istr, const FormatSettings & settings) const
{
if (settings.binary.read_json_as_string)
{
String data;
readStringBinary(data, istr);
deserializeObject(col, data, settings);
return;
}
auto & column_object = assert_cast<ColumnObject &>(col);
auto & typed_paths = column_object.getTypedPaths();
auto & dynamic_paths = column_object.getDynamicPaths();

View File

@ -19,7 +19,21 @@ public:
{
enum Value
{
BASIC = 0,
/// V1 serialization:
/// - ObjectStructure stream:
/// <max_dynamic_paths parameter>
/// <actual number of dynamic paths>
/// <sorted list of dynamic paths>
/// <statistics with number of non-null values for dynamic paths> (only in MergeTree serialization)
/// <statistics with number of non-null values for some paths in shared data> (only in MergeTree serialization)
/// - ObjectData stream:
/// - ObjectTypedPath stream for each column in typed paths
/// - ObjectDynamicPath stream for each column in dynamic paths
/// - ObjectSharedData stream shared data column.
V1 = 0,
/// String serialization:
/// - ObjectData stream with single String column containing serialized JSON.
STRING = 1,
};
Value value;
@ -72,6 +86,8 @@ public:
void serializeBinary(const IColumn & column, size_t row_num, WriteBuffer & ostr, const FormatSettings &) const override;
void deserializeBinary(IColumn & column, ReadBuffer & istr, const FormatSettings &) const override;
virtual void deserializeObject(IColumn & column, std::string_view object, const FormatSettings & settings) const = 0;
static void restoreColumnObject(ColumnObject & column_object, size_t prev_size);
private:
@ -81,14 +97,14 @@ private:
/// State of an Object structure. Can be also used during deserializing of Object subcolumns.
struct DeserializeBinaryBulkStateObjectStructure : public ISerialization::DeserializeBinaryBulkState
{
ObjectSerializationVersion structure_version;
ObjectSerializationVersion serialization_version;
size_t max_dynamic_paths;
std::vector<String> sorted_dynamic_paths;
std::unordered_set<String> dynamic_paths;
/// Paths statistics. Map (dynamic path) -> (number of non-null values in this path).
ColumnObject::StatisticsPtr statistics;
explicit DeserializeBinaryBulkStateObjectStructure(UInt64 structure_version_) : structure_version(structure_version_) {}
explicit DeserializeBinaryBulkStateObjectStructure(UInt64 serialization_version_) : serialization_version(serialization_version_) {}
};
static DeserializeBinaryBulkStatePtr deserializeObjectStructureStatePrefix(

View File

@ -150,7 +150,7 @@ void DatabaseMemory::alterTable(ContextPtr local_context, const StorageID & tabl
if (it == create_queries.end() || !it->second)
throw Exception(ErrorCodes::UNKNOWN_TABLE, "Cannot alter: There is no metadata of table {}", table_id.getNameForLogs());
applyMetadataChangesToCreateQuery(it->second, metadata);
applyMetadataChangesToCreateQuery(it->second, metadata, local_context);
/// The create query of the table has been just changed, we need to update dependencies too.
auto ref_dependencies = getDependenciesFromCreateQuery(local_context->getGlobalContext(), table_id.getQualifiedName(), it->second, local_context->getCurrentDatabase());

View File

@ -123,7 +123,7 @@ std::pair<String, StoragePtr> createTableFromAST(
else
{
columns = InterpreterCreateQuery::getColumnsDescription(*ast_create_query.columns_list->columns, context, mode);
constraints = InterpreterCreateQuery::getConstraintsDescription(ast_create_query.columns_list->constraints);
constraints = InterpreterCreateQuery::getConstraintsDescription(ast_create_query.columns_list->constraints, columns, context);
}
}

View File

@ -567,7 +567,7 @@ void DatabaseOrdinary::alterTable(ContextPtr local_context, const StorageID & ta
local_context->getSettingsRef()[Setting::max_parser_depth],
local_context->getSettingsRef()[Setting::max_parser_backtracks]);
applyMetadataChangesToCreateQuery(ast, metadata);
applyMetadataChangesToCreateQuery(ast, metadata, local_context);
statement = getObjectDefinitionFromCreateQuery(ast);
{

View File

@ -87,7 +87,7 @@ public:
void shutdown() override;
std::vector<std::pair<ASTPtr, StoragePtr>> getTablesForBackup(const FilterByNameFunction & filter, const ContextPtr & local_context) const override;
std::vector<std::pair<ASTPtr, StoragePtr>> getTablesForBackup(const FilterByNameFunction & filter, const ContextPtr &) const override;
void createTableRestoredFromBackup(const ASTPtr & create_table_query, ContextMutablePtr local_context, std::shared_ptr<IRestoreCoordination> restore_coordination, UInt64 timeout_ms) override;
bool shouldReplicateQuery(const ContextPtr & query_context, const ASTPtr & query_ptr) const override;

View File

@ -2,15 +2,22 @@
#include <Backups/BackupEntriesCollector.h>
#include <Backups/RestorerFromBackup.h>
#include <Core/Settings.h>
#include <Interpreters/Context.h>
#include <Interpreters/DatabaseCatalog.h>
#include <Interpreters/InterpreterCreateQuery.h>
#include <Interpreters/TreeRewriter.h>
#include <Parsers/ASTCreateQuery.h>
#include <Parsers/ASTExpressionList.h>
#include <Parsers/ASTSelectWithUnionQuery.h>
#include <Parsers/ParserCreateQuery.h>
#include <Parsers/formatAST.h>
#include <Parsers/parseQuery.h>
#include <Storages/ColumnsDescription.h>
#include <Storages/KeyDescription.h>
#include <Storages/StorageDictionary.h>
#include <Storages/StorageFactory.h>
#include <Storages/TTLDescription.h>
#include <Storages/Utils.h>
#include <TableFunctions/TableFunctionFactory.h>
#include <Common/CurrentMetrics.h>
@ -18,10 +25,14 @@
#include <Common/logger_useful.h>
#include <Common/typeid_cast.h>
namespace DB
{
namespace Setting
{
extern const SettingsUInt64 max_parser_backtracks;
extern const SettingsUInt64 max_parser_depth;
}
namespace ErrorCodes
{
extern const int TABLE_ALREADY_EXISTS;
@ -31,8 +42,87 @@ namespace ErrorCodes
extern const int LOGICAL_ERROR;
extern const int CANNOT_GET_CREATE_TABLE_QUERY;
}
namespace
{
void validateCreateQuery(const ASTCreateQuery & query, ContextPtr context)
{
/// First validate that the query can be parsed
const auto serialized_query = serializeAST(query);
ParserCreateQuery parser;
ASTPtr new_query_raw = parseQuery(
parser,
serialized_query.data(),
serialized_query.data() + serialized_query.size(),
"after altering table ",
0,
context->getSettingsRef()[Setting::max_parser_backtracks],
context->getSettingsRef()[Setting::max_parser_depth]);
const auto & new_query = new_query_raw->as<const ASTCreateQuery &>();
/// If there are no columns, then there is nothing much we can do
if (!new_query.columns_list || !new_query.columns_list->columns)
return;
void applyMetadataChangesToCreateQuery(const ASTPtr & query, const StorageInMemoryMetadata & metadata)
const auto & columns = *new_query.columns_list;
/// Do some basic sanity checks. We cannot do the same strict checks as on create, because context might not have the same settings if it is not called directly from an alter query.
/// SECONDARY_CREATE should check most of the important things.
const auto columns_desc
= InterpreterCreateQuery::getColumnsDescription(*columns.columns, context, LoadingStrictnessLevel::SECONDARY_CREATE, false);
/// Default expressions are only validated in level CREATE, so let's check them now
DefaultExpressionsInfo default_expr_info{std::make_shared<ASTExpressionList>()};
for (const auto & ast : columns.columns->children)
{
const auto & col_decl = ast->as<ASTColumnDeclaration &>();
/// There might be some special columns for which `columns_desc.get` would throw, e.g. Nested column when flatten_nested is enabled.
/// At the time of writing I am not aware of anything else, but my knowledge is limited and new types might be added, so let's be safe.
if (!col_decl.default_expression)
continue;
/// If no column description for the name, let's skip the validation of default expressions, but let's log the fact that something went wrong
if (const auto * maybe_column_desc = columns_desc.tryGet(col_decl.name); maybe_column_desc)
getDefaultExpressionInfoInto(col_decl, maybe_column_desc->type, default_expr_info);
else
LOG_WARNING(getLogger("validateCreateQuery"), "Couldn't get column description for column {}", col_decl.name);
}
if (default_expr_info.expr_list)
validateColumnsDefaultsAndGetSampleBlock(default_expr_info.expr_list, columns_desc.getAll(), context);
if (columns.indices)
{
for (const auto & child : columns.indices->children)
IndexDescription::getIndexFromAST(child, columns_desc, context);
}
if (columns.constraints)
{
InterpreterCreateQuery::getConstraintsDescription(columns.constraints, columns_desc, context);
}
if (columns.projections)
{
for (const auto & child : columns.projections->children)
ProjectionDescription::getProjectionFromAST(child, columns_desc, context);
}
if (!new_query.storage)
return;
const auto & storage = *new_query.storage;
std::optional<KeyDescription> primary_key;
/// First get the key description from order by, so if there is no primary key we will use that
if (storage.order_by)
primary_key = KeyDescription::getKeyFromAST(storage.order_by->ptr(), columns_desc, context);
if (storage.primary_key)
primary_key = KeyDescription::getKeyFromAST(storage.primary_key->ptr(), columns_desc, context);
if (storage.partition_by)
KeyDescription::getKeyFromAST(storage.partition_by->ptr(), columns_desc, context);
if (storage.sample_by)
KeyDescription::getKeyFromAST(storage.sample_by->ptr(), columns_desc, context);
if (storage.ttl_table && primary_key.has_value())
TTLTableDescription::getTTLForTableFromAST(storage.ttl_table->ptr(), columns_desc, context, *primary_key, true);
}
}
void applyMetadataChangesToCreateQuery(const ASTPtr & query, const StorageInMemoryMetadata & metadata, ContextPtr context)
{
auto & ast_create_query = query->as<ASTCreateQuery &>();
@ -115,6 +205,8 @@ void applyMetadataChangesToCreateQuery(const ASTPtr & query, const StorageInMemo
ast_create_query.reset(ast_create_query.comment);
else
ast_create_query.set(ast_create_query.comment, std::make_shared<ASTLiteral>(metadata.comment));
validateCreateQuery(ast_create_query, context);
}

View File

@ -1,10 +1,9 @@
#pragma once
#include <base/types.h>
#include <Databases/IDatabase.h>
#include <Parsers/IAST_fwd.h>
#include <Storages/IStorage_fwd.h>
#include <Databases/IDatabase.h>
#include <mutex>
#include <base/types.h>
/// General functionality for several different database engines.
@ -12,15 +11,13 @@
namespace DB
{
void applyMetadataChangesToCreateQuery(const ASTPtr & query, const StorageInMemoryMetadata & metadata);
void applyMetadataChangesToCreateQuery(const ASTPtr & query, const StorageInMemoryMetadata & metadata, ContextPtr context);
ASTPtr getCreateQueryFromStorage(const StoragePtr & storage, const ASTPtr & ast_storage, bool only_ordinary,
uint32_t max_parser_depth, uint32_t max_parser_backtracks, bool throw_on_error);
/// Cleans a CREATE QUERY from temporary flags like "IF NOT EXISTS", "OR REPLACE", "AS SELECT" (for non-views), etc.
void cleanupObjectDefinitionFromTemporaryFlags(ASTCreateQuery & query);
class Context;
/// A base class for databases that manage their own list of tables.
class DatabaseWithOwnTablesBase : public IDatabase, protected WithContext
{

View File

@ -307,9 +307,12 @@ FormatSettings getFormatSettings(const ContextPtr & context, const Settings & se
format_settings.binary.max_binary_array_size = settings[Setting::format_binary_max_array_size];
format_settings.binary.encode_types_in_binary_format = settings[Setting::output_format_binary_encode_types_in_binary_format];
format_settings.binary.decode_types_in_binary_format = settings[Setting::input_format_binary_decode_types_in_binary_format];
format_settings.binary.write_json_as_string = settings[Setting::output_format_binary_write_json_as_string];
format_settings.binary.read_json_as_string = settings[Setting::input_format_binary_read_json_as_string];
format_settings.native.allow_types_conversion = settings[Setting::input_format_native_allow_types_conversion];
format_settings.native.encode_types_in_binary_format = settings[Setting::output_format_native_encode_types_in_binary_format];
format_settings.native.decode_types_in_binary_format = settings[Setting::input_format_native_decode_types_in_binary_format];
format_settings.native.write_json_as_string = settings[Setting::output_format_native_write_json_as_string];
format_settings.max_parser_depth = settings[Setting::max_parser_depth];
format_settings.date_time_overflow_behavior = settings[Setting::date_time_overflow_behavior];
format_settings.try_infer_variant = settings[Setting::input_format_try_infer_variants];

View File

@ -126,6 +126,8 @@ struct FormatSettings
UInt64 max_binary_array_size = 1_GiB;
bool encode_types_in_binary_format = false;
bool decode_types_in_binary_format = false;
bool read_json_as_string = false;
bool write_json_as_string = false;
} binary{};
struct
@ -473,6 +475,7 @@ struct FormatSettings
bool allow_types_conversion = true;
bool encode_types_in_binary_format = false;
bool decode_types_in_binary_format = false;
bool write_json_as_string = false;
} native{};
struct

View File

@ -69,6 +69,7 @@ static void writeData(const ISerialization & serialization, const ColumnPtr & co
settings.position_independent_encoding = false;
settings.low_cardinality_max_dictionary_size = 0;
settings.data_types_binary_encoding = format_settings && format_settings->native.encode_types_in_binary_format;
settings.write_json_as_string = format_settings && format_settings->native.write_json_as_string;
ISerialization::SerializeBinaryBulkStatePtr state;
serialization.serializeBinaryBulkStatePrefix(*full_column, settings, state);

View File

@ -7,6 +7,7 @@ add_headers_and_sources(clickhouse_functions .)
# This allows less dependency and linker work (specially important when building many example executables)
set(DBMS_FUNCTIONS
IFunction.cpp # IFunctionOverloadResolver::getLambdaArgumentTypes, IExecutableFunction::execute... (Many AST visitors, analyzer passes, some storages...)
FunctionDynamicAdaptor.cpp # IFunctionOverloadResolver::getLambdaArgumentTypes, IExecutableFunction::execute... (Many AST visitors, analyzer passes, some storages...)
FunctionFactory.cpp # FunctionFactory::instance() (Many AST visitors, analyzer passes, some storages...)
FunctionHelpers.cpp # convertConstTupleToConstantElements, checkAndGetColumnConstStringOrFixedString, checkAndGetNestedArrayOffset ...)
FunctionsLogical.cpp # createInternalFunctionAndOverloadResolve / createInternalFunctionOrOverloadResolver ... (Multiple)

View File

@ -147,6 +147,11 @@ public:
return std::make_shared<DataTypeString>();
}
DataTypePtr getReturnTypeForDefaultImplementationForDynamic() const override
{
return std::make_shared<DataTypeString>();
}
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr &, size_t input_rows_count) const override
{
const ColumnPtr column_string = arguments[0].column;

View File

@ -207,6 +207,11 @@ public:
return std::make_shared<DataTypeString>();
}
DataTypePtr getReturnTypeForDefaultImplementationForDynamic() const override
{
return std::make_shared<DataTypeString>();
}
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr &, size_t input_rows_count) const override
{
const auto & input_column = arguments[0].column;

View File

@ -57,6 +57,11 @@ public:
return std::make_shared<DataTypeUInt8>();
}
DataTypePtr getReturnTypeForDefaultImplementationForDynamic() const override
{
return std::make_shared<DataTypeUInt8>();
}
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t input_rows_count) const override
{
const auto * value_col = arguments.front().column.get();

View File

@ -52,6 +52,11 @@ public:
return std::make_shared<DataTypeString>();
}
DataTypePtr getReturnTypeForDefaultImplementationForDynamic() const override
{
return std::make_shared<DataTypeString>();
}
bool useDefaultImplementationForConstants() const override { return true; }
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr &, size_t input_rows_count) const override

View File

@ -23,6 +23,11 @@ public:
return std::make_shared<ToDataType>();
}
DataTypePtr getReturnTypeForDefaultImplementationForDynamic() const override
{
return std::make_shared<ToDataType>();
}
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t input_rows_count) const override
{
const IDataType * from_type = arguments[0].type.get();

View File

@ -56,6 +56,14 @@ public:
return std::make_shared<ToDataType>();
}
DataTypePtr getReturnTypeForDefaultImplementationForDynamic() const override
{
/// If result type is DateTime or DateTime64 we don't know the timezone and scale without argument types.
if constexpr (!std::is_same_v<ToDataType, DataTypeDateTime> && !std::is_same_v<ToDataType, DataTypeDateTime64>)
return std::make_shared<ToDataType>();
return nullptr;
}
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t input_rows_count) const override
{
const IDataType * from_type = arguments[0].type.get();

View File

@ -0,0 +1,476 @@
#include <Functions/FunctionDynamicAdaptor.h>
#include <DataTypes/DataTypeDynamic.h>
#include <DataTypes/DataTypeVariant.h>
#include <DataTypes/DataTypeNullable.h>
#include <DataTypes/DataTypesBinaryEncoding.h>
#include <Columns/ColumnDynamic.h>
#include <Columns/ColumnNullable.h>
#include <Interpreters/castColumn.h>
#include <IO/ReadBufferFromMemory.h>
namespace DB
{
namespace ErrorCodes
{
extern const int LOGICAL_ERROR;
}
ColumnPtr ExecutableFunctionDynamicAdaptor::executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t, bool dry_run) const
{
auto column = arguments[dynamic_argument_index].column->convertToFullColumnIfConst();
const auto & dynamic_column = assert_cast<const ColumnDynamic &>(*column);
if (dynamic_column.empty())
return result_type->createColumn();
const auto & variant_info = dynamic_column.getVariantInfo();
const auto & variant_types = assert_cast<const DataTypeVariant &>(*variant_info.variant_type).getVariants();
const auto & variant_column = dynamic_column.getVariantColumn();
auto shared_variant_discr = dynamic_column.getSharedVariantDiscriminator();
/// We use default implementation for Dynamic type only when default implementation for NULLs is used.
/// If current column contains only NULLs, result column will also contain only NULLs.
if (variant_column.hasOnlyNulls())
{
auto result = result_type->createColumn();
result->insertManyDefaults(variant_column.size());
return result;
}
/// Check if this Dynamic column contains only values of one type and no NULLs.
/// In this case we can replace argument with this variant and execute the function without changing all other arguments.
auto non_empty_variant_discr_no_nulls = variant_column.getGlobalDiscriminatorOfOneNoneEmptyVariantNoNulls();
if (non_empty_variant_discr_no_nulls && *non_empty_variant_discr_no_nulls != shared_variant_discr)
{
/// Crete new arguments and replace our Dynamic column with variant.
auto global_discr = *non_empty_variant_discr_no_nulls;
ColumnsWithTypeAndName new_arguments;
new_arguments.reserve(arguments.size());
for (size_t i = 0; i != arguments.size(); ++i)
{
if (i == dynamic_argument_index)
{
ColumnWithTypeAndName arg
{
variant_column.getVariantPtrByGlobalDiscriminator(global_discr),
variant_types[global_discr],
arguments[i].name,
};
new_arguments.push_back(std::move(arg));
}
else
{
new_arguments.push_back(arguments[i]);
}
}
/// Execute function on new arguments.
auto func_base = function_overload_resolver->build(new_arguments);
auto nested_result_type = func_base->getResultType();
auto nested_result = func_base->execute(new_arguments, nested_result_type, dynamic_column.size(), dry_run);
/// If result is Nullable(Nothing), just return column filled with NULLs.
if (nested_result_type->onlyNull())
{
auto res = result_type->createColumn();
res->insertManyDefaults(dynamic_column.size());
return res;
}
/// If the result of the function is not Dynamic, it means that this function returns the same
/// type for all argument types (or similar types like FixedString or String).
/// In this case we return Nullable of this type (because Dynamic can contain NULLs).
if (!isDynamic(result_type))
{
/// If return types are not the same, they must be convertible to each other (like FixedString/String).
if (!removeNullable(result_type)->equals(*removeNullable(nested_result_type)))
{
try
{
return castColumn(ColumnWithTypeAndName{makeNullableSafe(nested_result), makeNullableSafe(nested_result_type), ""}, result_type);
}
catch (const Exception & e)
{
throw Exception(ErrorCodes::LOGICAL_ERROR, "Cannot convert nested result of function {} with type {} to the expected result type {}: {}", getName(), removeNullable(result_type)->getName(), removeNullable(nested_result_type)->getName(), e.message());
}
}
return makeNullableSafe(nested_result);
}
/// Cast column to result Dynamic type.
return castColumn(ColumnWithTypeAndName{nested_result, nested_result_type, ""}, result_type);
}
/// Second, check if this Dynamic column contains only 1 variant and NULLs.
/// In this case we can create a null-mask, filter all arguments by it and execute function
/// on this variant and filtered arguments.
auto non_empty_variant_discr = variant_column.getGlobalDiscriminatorOfOneNoneEmptyVariant();
if (non_empty_variant_discr && *non_empty_variant_discr != shared_variant_discr)
{
auto global_discr = *non_empty_variant_discr;
/// Create filter for rows containing our variant.
PaddedPODArray<UInt8> filter;
filter.reserve(variant_column.size());
const auto & local_discriminators = variant_column.getLocalDiscriminators();
auto local_discr = variant_column.localDiscriminatorByGlobal(global_discr);
for (const auto & discr : local_discriminators)
filter.push_back(discr == local_discr);
/// Filter all other arguments using created filter.
ColumnsWithTypeAndName new_arguments;
new_arguments.reserve(arguments.size());
size_t result_size_hint = variant_column.getVariantPtrByGlobalDiscriminator(global_discr)->size();
for (size_t i = 0; i != arguments.size(); ++i)
{
if (i == dynamic_argument_index)
{
ColumnWithTypeAndName arg
{
variant_column.getVariantPtrByGlobalDiscriminator(global_discr),
variant_types[global_discr],
arguments[i].name,
};
new_arguments.push_back(std::move(arg));
}
else
{
ColumnWithTypeAndName arg
{
arguments[i].column->filter(filter, result_size_hint),
arguments[i].type,
arguments[i].name
};
new_arguments.push_back(std::move(arg));
}
}
/// Execute function on new arguments.
auto func_base = function_overload_resolver->build(new_arguments);
auto nested_result_type = func_base->getResultType();
auto nested_result = func_base->execute(new_arguments, nested_result_type, new_arguments[0].column->size(), dry_run)->convertToFullColumnIfConst();
/// If result is Nullable(Nothing), just return column filled with NULLs.
if (nested_result_type->onlyNull())
{
auto res = result_type->createColumn();
res->insertManyDefaults(dynamic_column.size());
return res;
}
/// If the result of the function is not Dynamic, it means that this function returns the same
/// type for all argument types (or similar types like FixedString or String).
/// In this case we return Nullable of this type (because Dynamic can contain NULLs).
if (!isDynamic(result_type))
{
/// Expand filtered result. If it's already Nullable, it will be filled with NULLs.
nested_result->assumeMutable()->expand(filter, false);
/// If result wasn't Nullable, create null-mask from filter and make it Nullable.
if (!nested_result_type->isNullable() && nested_result_type->canBeInsideNullable())
{
for (auto & byte : filter)
byte = !byte;
auto null_map_column = ColumnUInt8::create();
null_map_column->getData() = std::move(filter);
nested_result = ColumnNullable::create(nested_result, std::move(null_map_column));
nested_result_type = makeNullable(nested_result_type);
}
/// If return types are not the same, they must be convertible to each other (like FixedString/String).
if (!result_type->equals(*nested_result_type))
{
try
{
return castColumn(ColumnWithTypeAndName{nested_result, nested_result_type, ""}, result_type);
}
catch (const Exception & e)
{
throw Exception(ErrorCodes::LOGICAL_ERROR, "Cannot convert nested result of function {} with type {} to the expected result type {}: {}", getName(), result_type->getName(), nested_result_type->getName(), e.message());
}
}
return nested_result;
}
/// If the result of nested function is Variant type, we cannot use it as single variant inside Dynamic.
/// In this case we cast the result to Dynamic result type.
if (isVariant(nested_result_type))
{
nested_result = castColumn(ColumnWithTypeAndName{nested_result, nested_result_type, ""}, result_type);
nested_result_type = result_type;
}
/// If the result of nested function is Dynamic (or we casted to it from Variant), we can just expand it
/// and cast to the result Dynamic type (it can have different max_types parameter).
if (isDynamic(nested_result_type))
{
nested_result->assumeMutable()->expand(filter, false);
return castColumn(ColumnWithTypeAndName{nested_result, nested_result_type, ""}, result_type);
}
/// If the result of nested function is not Dynamic, we create Dynamic column with variant of this type.
auto variant = nested_result;
auto variant_type = nested_result_type;
const NullMap * null_map_ptr = nullptr;
/// If the result of nested function is Nullable, we create a null-mask and use it during Dynamic column creation,
/// also the nested column inside Nullable will be filtered by this mask (inside Dynamic we don't store default values in rows with NULLs).
if (const auto & column_nullable = typeid_cast<const ColumnNullable *>(variant.get()))
{
const auto & null_map = column_nullable->getNullMapData();
/// Create filter for nested column from null-map and calculate result size hint.
PaddedPODArray<UInt8> nested_filter;
nested_filter.reserve(null_map.size());
size_t size_hint = 0;
for (auto byte : null_map)
{
if (byte)
{
nested_filter.push_back(0);
}
else
{
nested_filter.push_back(1);
++size_hint;
}
}
variant = column_nullable->getNestedColumnPtr()->filter(nested_filter, size_hint);
variant_type = removeNullable(nested_result_type);
null_map_ptr = &null_map;
}
auto result = result_type->createColumn();
auto & result_dynamic = assert_cast<ColumnDynamic &>(*result);
if (!result_dynamic.addNewVariant(variant_type))
throw Exception(ErrorCodes::LOGICAL_ERROR, "Cannot add new variant {} to Dynamic column {} during execution of {}", variant_type->getName(), result_type->getName(), getName());
/// Now inside Dynamic we have empty Variant containing type of our column from function execution.
/// Use our result column as variant and fill discriminators and offsets columns.
auto & result_variant = result_dynamic.getVariantColumn();
auto result_global_discr = result_dynamic.getVariantInfo().variant_name_to_discriminator.at(variant_type->getName());
auto result_local_discr = result_variant.localDiscriminatorByGlobal(result_global_discr);
result_variant.getVariantPtrByLocalDiscriminator(result_local_discr) = std::move(variant);
auto & result_local_discriminators = result_variant.getLocalDiscriminators();
result_local_discriminators.reserve(filter.size());
auto & result_offsets = result_variant.getOffsets();
result_offsets.reserve(filter.size());
/// Calculate correct offset for our variant, we cannot use initial offsets from
/// argument column because we could filter result column by its null-map.
size_t offset = 0;
/// Use initial offsets from argument column to use correct values of null-map.
const auto & offsets = variant_column.getOffsets();
for (size_t i = 0; i != filter.size(); ++i)
{
if (filter[i] && (!null_map_ptr || !(*null_map_ptr)[offsets[i]]))
{
result_local_discriminators.push_back(result_local_discr);
result_offsets.push_back(offset++);
}
else
{
result_local_discriminators.push_back(ColumnVariant::NULL_DISCRIMINATOR);
result_offsets.emplace_back();
}
}
return result;
}
/// In general case with several variants we create a selector from discriminators
/// and use it to create a set of filtered arguments for each variant.
/// Then we will execute our function over all these arguments and construct the resulting column
/// from all results based on created selector.
IColumn::Selector selector;
selector.reserve(variant_column.size());
IColumn::Offsets variants_offsets;
variants_offsets.reserve(variant_column.size());
std::vector<ColumnWithTypeAndName> variants;
/// We need to determine the selector index for rows with NULL values, but we don't know how many
/// variants we have in Dynamic column (shared variant can contain unknown amount of new variant types).
/// So, we allocate 0 index for rows with NULL values.
variants.emplace_back();
/// Remember indexes in selector for each variant type.
std::unordered_map<String, size_t> variant_indexes;
const auto & local_discriminators = variant_column.getLocalDiscriminators();
const auto & offsets = variant_column.getOffsets();
auto shared_variant_local_discr = variant_column.localDiscriminatorByGlobal(dynamic_column.getSharedVariantDiscriminator());
const auto & shared_variant = dynamic_column.getSharedVariant();
/// Remember created serializations for variants in shared variant to avoid recreating it every time.
std::unordered_map<String, SerializationPtr> shared_variants_serializations;
FormatSettings format_settings;
for (size_t i = 0; i != local_discriminators.size(); ++i)
{
auto local_discr = local_discriminators[i];
if (local_discr == ColumnVariant::NULL_DISCRIMINATOR)
{
selector.push_back(0);
variants_offsets.emplace_back();
}
else if (local_discr == shared_variant_local_discr)
{
/// Deserialize type and value from shared variant row.
auto value = shared_variant.getDataAt(offsets[i]);
ReadBufferFromMemory buf(value.data, value.size);
auto type = decodeDataType(buf);
auto type_name = type->getName();
/// Check if we already allocated selector index for this variant type.
/// If not, append it to list of variants and remember its index.
auto indexes_it = variant_indexes.find(type_name);
if (indexes_it == variant_indexes.end())
{
indexes_it = variant_indexes.emplace(type_name, variants.size()).first;
variants.emplace_back(type->createColumn(), type, "");
}
auto serializations_it = shared_variants_serializations.find(type_name);
if (serializations_it == shared_variants_serializations.end())
serializations_it = shared_variants_serializations.emplace(type_name, type->getDefaultSerialization()).first;
/// Deserialize value into usual column.
serializations_it->second->deserializeBinary(*variants[indexes_it->second].column->assumeMutable(), buf, format_settings);
selector.push_back(indexes_it->second);
variants_offsets.push_back(variants[indexes_it->second].column->size() - 1);
}
else
{
auto global_discr = variant_column.globalDiscriminatorByLocal(local_discr);
/// Check if we already allocated selector index for this variant type.
/// If not, append it to list of variants and remember its index.
auto it = variant_indexes.find(variant_info.variant_names[global_discr]);
if (it == variant_indexes.end())
{
it = variant_indexes.emplace(variant_info.variant_names[global_discr], variants.size()).first;
variants.emplace_back(variant_column.getVariantPtrByLocalDiscriminator(local_discr), variant_types[global_discr], "");
}
selector.push_back(it->second);
variants_offsets.push_back(offsets[i]);
}
}
/// Create set of arguments for each variant using selector.
std::vector<ColumnsWithTypeAndName> variants_arguments;
variants_arguments.resize(variants.size());
for (size_t i = 0; i != arguments.size(); ++i)
{
if (i == dynamic_argument_index)
{
for (size_t j = 1; j != variants_arguments.size(); ++j)
variants_arguments[j].push_back(variants[j]);
}
else
{
auto columns = arguments[i].column->scatter(variants.size(), selector);
for (size_t j = 0; j != variants_arguments.size(); ++j)
variants_arguments[j].emplace_back(std::move(columns[j]), arguments[i].type, arguments[i].name);
}
}
/// Execute function over all created sets of arguments and remember all results.
std::vector<ColumnPtr> variants_results;
variants_results.reserve(variants.size());
/// 0 index is allocated for rows with NULL values, it doesn't have any result,
/// we will insert NULL values in these rows.
variants_results.emplace_back();
for (size_t i = 1; i != variants_arguments.size(); ++i)
{
auto func_base = function_overload_resolver->build(variants_arguments[i]);
auto nested_result_type = func_base->getResultType();
auto nested_result = func_base->execute(variants_arguments[i], nested_result_type, variants_arguments[i][0].column->size(), dry_run)->convertToFullColumnIfConst();
/// Append nullptr in case of only NULL values, we will insert NULL for rows of this selector.
if (nested_result_type->onlyNull())
{
variants_results.emplace_back();
}
/// If the result of the function is not Dynamic, it means that this function returns the same
/// type for all argument types (or similar types like FixedString or String).
/// In this case we return Nullable of this type (because Dynamic can contain NULLs).
else if (!isDynamic(result_type))
{
/// If return types are not the same, they must be convertible to each other (like FixedString/String).
if (!removeNullable(result_type)->equals(*removeNullable(nested_result_type)))
{
try
{
variants_results.push_back(castColumn(ColumnWithTypeAndName{makeNullableSafe(nested_result), makeNullableSafe(nested_result_type), ""}, result_type));
}
catch (const Exception & e)
{
throw Exception(ErrorCodes::LOGICAL_ERROR, "Cannot convert nested result of function {} with type {} to the expected result type {}: {}", getName(), result_type->getName(), nested_result_type->getName(), e.message());
}
}
else
{
variants_results.push_back(makeNullableSafe(nested_result));
}
}
/// Otherwise cast this result to the resulting Dynamic type.
else
{
variants_results.push_back(castColumn(ColumnWithTypeAndName{nested_result, nested_result_type, ""}, result_type));
}
}
/// Construct resulting Dynamic column from all results.
auto result = result_type->createColumn();
result->reserve(dynamic_column.size());
for (size_t i = 0; i != selector.size(); ++i)
{
if (selector[i] == 0 || !variants_results[selector[i]])
result->insertDefault();
else
result->insertFrom(*variants_results[selector[i]], variants_offsets[i]);
}
return result;
}
ColumnPtr ExecutableFunctionDynamicAdaptor::executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t input_rows_count) const
{
return executeImpl(arguments, result_type, input_rows_count, false);
}
ColumnPtr ExecutableFunctionDynamicAdaptor::executeDryRunImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t input_rows_count) const
{
return executeImpl(arguments, result_type, input_rows_count, true);
}
FunctionBaseDynamicAdaptor::FunctionBaseDynamicAdaptor(std::shared_ptr<const IFunctionOverloadResolver> function_overload_resolver_, DataTypes arguments_) : function_overload_resolver(function_overload_resolver_), arguments(arguments_)
{
/// For resulting Dynamic type use the maximum max_dynamic_types from all Dynamic arguments.
size_t result_max_dynamic_type;
bool first = true;
for (size_t i = 0; i != arguments.size(); ++i)
{
if (const auto * dynamic_type = typeid_cast<const DataTypeDynamic *>(arguments[i].get()))
{
if (first)
{
result_max_dynamic_type = dynamic_type->getMaxDynamicTypes();
dynamic_argument_index = i;
first = false;
}
else
{
result_max_dynamic_type = std::max(result_max_dynamic_type, dynamic_type->getMaxDynamicTypes());
}
}
}
if (auto type = function_overload_resolver->getReturnTypeForDefaultImplementationForDynamic())
return_type = makeNullableSafe(type);
else
return_type = std::make_shared<DataTypeDynamic>(result_max_dynamic_type);
}
}

View File

@ -0,0 +1,79 @@
#pragma once
#include <Functions/IFunction.h>
namespace DB
{
/// Special adapter classes that implement functions execution with Dynamic arguments.
class ExecutableFunctionDynamicAdaptor final : public IExecutableFunction
{
public:
explicit ExecutableFunctionDynamicAdaptor(
std::shared_ptr<const IFunctionOverloadResolver> function_overload_resolver_, size_t dynamic_argument_index_)
: function_overload_resolver(std::move(function_overload_resolver_)), dynamic_argument_index(dynamic_argument_index_)
{
}
String getName() const override { return function_overload_resolver->getName(); }
protected:
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t input_rows_count) const final;
ColumnPtr executeDryRunImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t input_rows_count) const final;
/// Disable all default implementations, they will be used later.
bool useDefaultImplementationForNulls() const override { return false; }
bool useDefaultImplementationForNothing() const override { return false; }
bool useDefaultImplementationForConstants() const override { return false; }
bool useDefaultImplementationForLowCardinalityColumns() const override { return false; }
bool useDefaultImplementationForSparseColumns() const override { return false; }
bool canBeExecutedOnDefaultArguments() const override { return false; }
private:
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t input_rows_count, bool dry_run) const;
/// We remember the original IFunctionOverloadResolver to be able to build function for types inside Dynamic column.
std::shared_ptr<const IFunctionOverloadResolver> function_overload_resolver;
size_t dynamic_argument_index;
};
class FunctionBaseDynamicAdaptor final : public IFunctionBase
{
public:
FunctionBaseDynamicAdaptor(std::shared_ptr<const IFunctionOverloadResolver> function_overload_resolver_, DataTypes arguments_);
String getName() const override { return function_overload_resolver->getName(); }
const DataTypes & getArgumentTypes() const override { return arguments; }
const DataTypePtr & getResultType() const override { return return_type; }
ExecutableFunctionPtr prepare(const ColumnsWithTypeAndName & /*arguments*/) const override
{
return std::make_unique<ExecutableFunctionDynamicAdaptor>(function_overload_resolver, dynamic_argument_index);
}
bool isSuitableForConstantFolding() const override { return false; }
bool isStateful() const override { return function_overload_resolver->isStateful(); }
bool isDeterministic() const override { return function_overload_resolver->isDeterministic(); }
bool isDeterministicInScopeOfQuery() const override { return function_overload_resolver->isDeterministicInScopeOfQuery(); }
bool isServerConstant() const override { return function_overload_resolver->isServerConstant(); }
bool isShortCircuit(ShortCircuitSettings & settings, size_t number_of_arguments) const override { return function_overload_resolver->isShortCircuit(settings, number_of_arguments); }
bool isSuitableForShortCircuitArgumentsExecution(const DataTypesWithConstInfo &) const override { return true; }
private:
/// We remember the original IFunctionOverloadResolver to be able to build function for types inside Dynamic column.
std::shared_ptr<const IFunctionOverloadResolver> function_overload_resolver;
DataTypes arguments;
DataTypePtr return_type;
size_t dynamic_argument_index;
};
}

View File

@ -64,6 +64,11 @@ public:
return std::make_shared<DataTypeString>();
}
DataTypePtr getReturnTypeForDefaultImplementationForDynamic() const override
{
return std::make_shared<DataTypeString>();
}
ColumnNumbers getArgumentsThatAreAlwaysConstant() const override { return {1}; }
bool useDefaultImplementationForNulls() const override { return false; }

View File

@ -53,6 +53,11 @@ private:
return std::make_shared<DataTypeFloat64>();
}
DataTypePtr getReturnTypeForDefaultImplementationForDynamic() const override
{
return std::make_shared<DataTypeFloat64>();
}
template <typename LeftType, typename RightType>
static ColumnPtr executeTyped(const ColumnConst * left_arg, const IColumn * right_arg, size_t input_rows_count)
{

View File

@ -57,6 +57,11 @@ private:
return argument;
}
DataTypePtr getReturnTypeForDefaultImplementationForDynamic() const override
{
return Impl::always_returns_float64 ? std::make_shared<DataTypeFloat64>() : nullptr;
}
template <typename T, typename ReturnType>
static void executeInIterations(const T * src_data, ReturnType * dst_data, size_t size)
{

View File

@ -51,6 +51,11 @@ public:
return std::make_shared<DataTypeUInt8>();
}
DataTypePtr getReturnTypeForDefaultImplementationForDynamic() const override
{
return std::make_shared<DataTypeUInt8>();
}
bool useDefaultImplementationForConstants() const override { return true; }
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr &, size_t input_rows_count) const override

View File

@ -70,6 +70,11 @@ public:
}
return std::make_shared<DataTypeUInt64>();
}
DataTypePtr getReturnTypeForDefaultImplementationForDynamic() const override
{
return std::make_shared<DataTypeUInt64>();
}
};
template <UInt8 max_dimensions, UInt8 min_ratio, UInt8 max_ratio>

View File

@ -91,6 +91,11 @@ public:
arguments[0]->getName(), arguments[1]->getName(), getName());
}
DataTypePtr getReturnTypeForDefaultImplementationForDynamic() const override
{
return std::make_shared<DataTypeUInt8>();
}
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr &, size_t input_rows_count) const override
{
auto data_type = arguments[0].type;

View File

@ -61,6 +61,11 @@ public:
return std::make_shared<DataTypeNumber<ResultType>>();
}
DataTypePtr getReturnTypeForDefaultImplementationForDynamic() const override
{
return std::make_shared<DataTypeNumber<ResultType>>();
}
bool useDefaultImplementationForConstants() const override { return true; }
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t input_rows_count) const override

View File

@ -45,6 +45,11 @@ public:
return std::make_shared<DataTypeString>();
}
DataTypePtr getReturnTypeForDefaultImplementationForDynamic() const override
{
return std::make_shared<DataTypeString>();
}
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr &, size_t input_rows_count) const override
{
ColumnPtr column_haystack = arguments[0].column;

View File

@ -57,6 +57,13 @@ public:
return arguments[0];
}
DataTypePtr getReturnTypeForDefaultImplementationForDynamic() const override
{
/// In case of default implementation for Dynamic always return String even for FixedString types
/// to avoid Dynamic result of this function.
return std::make_shared<DataTypeString>();
}
bool useDefaultImplementationForConstants() const override { return true; }
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr &, size_t input_rows_count) const override

View File

@ -52,6 +52,11 @@ public:
return std::make_shared<DataTypeInt64>();
}
DataTypePtr getReturnTypeForDefaultImplementationForDynamic() const override
{
return std::make_shared<DataTypeInt64>();
}
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr &, size_t input_rows_count) const override
{
const auto & src = arguments[0];

View File

@ -177,6 +177,11 @@ private:
return std::make_shared<DataTypeString>();
}
DataTypePtr getReturnTypeForDefaultImplementationForDynamic() const override
{
return std::make_shared<DataTypeString>();
}
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr &, size_t input_rows_count) const override
{
using namespace OpenSSLDetails;
@ -452,6 +457,11 @@ private:
return std::make_shared<DataTypeString>();
}
DataTypePtr getReturnTypeForDefaultImplementationForDynamic() const override
{
return std::make_shared<DataTypeString>();
}
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr &, size_t input_rows_count) const override
{
using namespace OpenSSLDetails;

View File

@ -263,6 +263,11 @@ public:
return std::make_shared<DataTypeString>();
}
DataTypePtr getReturnTypeForDefaultImplementationForDynamic() const override
{
return std::make_shared<DataTypeString>();
}
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr &, size_t /*input_rows_count*/) const override
{
const IColumn * column = arguments[0].column.get();
@ -618,6 +623,11 @@ public:
return std::make_shared<DataTypeString>();
}
DataTypePtr getReturnTypeForDefaultImplementationForDynamic() const override
{
return std::make_shared<DataTypeString>();
}
bool useDefaultImplementationForConstants() const override { return true; }
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr &, size_t input_rows_count) const override

View File

@ -58,6 +58,11 @@ public:
return std::make_shared<DataTypeString>();
}
DataTypePtr getReturnTypeForDefaultImplementationForDynamic() const override
{
return std::make_shared<DataTypeString>();
}
bool useDefaultImplementationForConstants() const override { return true; }
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr &, size_t input_rows_count) const override
@ -238,6 +243,11 @@ public:
return std::make_shared<DataTypeArray>(std::make_shared<DataTypeUInt64>());
}
DataTypePtr getReturnTypeForDefaultImplementationForDynamic() const override
{
return std::make_shared<DataTypeArray>(std::make_shared<DataTypeUInt64>());
}
bool useDefaultImplementationForConstants() const override { return true; }
template <typename T>

View File

@ -78,6 +78,11 @@ public:
return std::make_shared<DataTypeString>();
}
DataTypePtr getReturnTypeForDefaultImplementationForDynamic() const override
{
return std::make_shared<DataTypeString>();
}
bool useDefaultImplementationForConstants() const override { return true; }
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr &, size_t input_rows_count) const override
@ -162,6 +167,11 @@ public:
return std::make_shared<DataTypeString>();
}
DataTypePtr getReturnTypeForDefaultImplementationForDynamic() const override
{
return std::make_shared<DataTypeString>();
}
bool useDefaultImplementationForConstants() const override { return true; }
ColumnNumbers getArgumentsThatAreAlwaysConstant() const override { return {1, 2}; }
@ -404,6 +414,11 @@ public:
return std::make_shared<DataTypeString>();
}
DataTypePtr getReturnTypeForDefaultImplementationForDynamic() const override
{
return std::make_shared<DataTypeString>();
}
bool useDefaultImplementationForConstants() const override { return true; }
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr & ret_type, size_t input_rows_count) const override
@ -613,6 +628,11 @@ public:
return std::make_shared<DataTypeString>();
}
DataTypePtr getReturnTypeForDefaultImplementationForDynamic() const override
{
return std::make_shared<DataTypeString>();
}
static void formatMAC(UInt64 mac, UInt8 * out)
{
/// MAC address is represented in UInt64 in natural order (so, MAC addresses are compared in same order as UInt64).
@ -742,6 +762,11 @@ public:
return std::make_shared<DataTypeUInt64>();
}
DataTypePtr getReturnTypeForDefaultImplementationForDynamic() const override
{
return std::make_shared<DataTypeUInt64>();
}
bool useDefaultImplementationForConstants() const override { return true; }
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr &, size_t input_rows_count) const override
@ -1111,6 +1136,11 @@ public:
return std::make_shared<DataTypeUInt8>();
}
DataTypePtr getReturnTypeForDefaultImplementationForDynamic() const override
{
return std::make_shared<DataTypeUInt8>();
}
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr &, size_t input_rows_count) const override
{
const ColumnString * input_column = checkAndGetColumn<ColumnString>(arguments[0].column.get());

View File

@ -174,6 +174,11 @@ public:
return std::make_shared<DataTypeString>();
}
DataTypePtr getReturnTypeForDefaultImplementationForDynamic() const override
{
return std::make_shared<DataTypeString>();
}
bool useDefaultImplementationForConstants() const override { return true; }
ColumnNumbers getArgumentsThatAreAlwaysConstant() const override { return {1}; }

View File

@ -1197,6 +1197,11 @@ public:
return std::make_shared<DataTypeUInt8>();
}
DataTypePtr getReturnTypeForDefaultImplementationForDynamic() const override
{
return std::make_shared<DataTypeUInt8>();
}
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t input_rows_count) const override
{
const auto & col_with_type_and_name_left = arguments[0];

View File

@ -59,10 +59,16 @@ public:
return std::make_shared<DataTypeNumber<ResultType>>();
}
DataTypePtr getReturnTypeForDefaultImplementationForDynamic() const override
{
return std::make_shared<DataTypeNumber<ResultType>>();
}
bool useDefaultImplementationForConstants() const override
{
return true;
}
ColumnNumbers getArgumentsThatAreAlwaysConstant() const override
{
return {1};

View File

@ -600,6 +600,11 @@ public:
return std::make_shared<DataTypeString>();
}
DataTypePtr getReturnTypeForDefaultImplementationForDynamic() const override
{
return std::make_shared<DataTypeString>();
}
bool useDefaultImplementationForConstants() const override { return true; }
ColumnNumbers getArgumentsThatAreAlwaysConstant() const override { return {1}; }

View File

@ -761,6 +761,11 @@ public:
return std::make_shared<DataTypeNumber<typename Impl::ReturnType>>();
}
DataTypePtr getReturnTypeForDefaultImplementationForDynamic() const override
{
return std::make_shared<DataTypeNumber<typename Impl::ReturnType>>();
}
bool useDefaultImplementationForConstants() const override { return true; }
bool isSuitableForShortCircuitArgumentsExecution(const DataTypesWithConstInfo & /*arguments*/) const override { return false; }
@ -1305,6 +1310,16 @@ public:
return std::make_shared<DataTypeNumber<ToType>>();
}
DataTypePtr getReturnTypeForDefaultImplementationForDynamic() const override
{
if constexpr (std::is_same_v<ToType, UInt128>) /// backward-compatible
{
return std::make_shared<DataTypeFixedString>(sizeof(UInt128));
}
else
return std::make_shared<DataTypeNumber<ToType>>();
}
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr &, size_t input_rows_count) const override
{
auto col_to = ColumnVector<ToType>::create(input_rows_count);
@ -1507,6 +1522,11 @@ public:
return std::make_shared<DataTypeUInt64>();
}
DataTypePtr getReturnTypeForDefaultImplementationForDynamic() const override
{
return std::make_shared<DataTypeUInt64>();
}
bool useDefaultImplementationForConstants() const override { return true; }
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr &, size_t /*input_rows_count*/) const override

View File

@ -168,6 +168,11 @@ public:
return return_type;
}
DataTypePtr getReturnTypeForDefaultImplementationForDynamic() const override
{
return std::make_shared<DataTypeNumber<typename Impl::ResultType>>();
}
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t input_rows_count) const override
{
const ColumnPtr & column_haystack = (argument_order == ArgumentOrder::HaystackNeedle) ? arguments[0].column : arguments[1].column;

View File

@ -60,6 +60,11 @@ public:
return std::make_shared<DataTypeString>();
}
DataTypePtr getReturnTypeForDefaultImplementationForDynamic() const override
{
return std::make_shared<DataTypeString>();
}
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr &, size_t input_rows_count) const override
{
const ColumnPtr column = arguments[0].column;

View File

@ -1,4 +1,5 @@
#include <Functions/IFunctionAdaptors.h>
#include <Functions/FunctionDynamicAdaptor.h>
#include <Common/typeid_cast.h>
#include <Common/assert_cast.h>
@ -447,6 +448,21 @@ DataTypePtr IFunctionOverloadResolver::getReturnType(const ColumnsWithTypeAndNam
FunctionBasePtr IFunctionOverloadResolver::build(const ColumnsWithTypeAndName & arguments) const
{
/// Use FunctionBaseDynamicAdaptor if default implementation for Dynamic is enabled and we have Dynamic type in arguments.
if (useDefaultImplementationForDynamic())
{
for (const auto & arg : arguments)
{
if (isDynamic(arg.type))
{
DataTypes data_types(arguments.size());
for (size_t i = 0; i < arguments.size(); ++i)
data_types[i] = arguments[i].type;
return std::make_shared<FunctionBaseDynamicAdaptor>(shared_from_this(), std::move(data_types));
}
}
}
auto return_type = getReturnType(arguments);
return buildImpl(arguments, return_type);
}

View File

@ -324,7 +324,7 @@ using FunctionBasePtr = std::shared_ptr<const IFunctionBase>;
/** Creates IFunctionBase from argument types list (chooses one function overload).
*/
class IFunctionOverloadResolver
class IFunctionOverloadResolver : public std::enable_shared_from_this<IFunctionOverloadResolver>
{
public:
virtual ~IFunctionOverloadResolver() = default;
@ -346,6 +346,8 @@ public:
virtual bool isDeterministic() const { return true; }
virtual bool isDeterministicInScopeOfQuery() const { return true; }
virtual bool isInjective(const ColumnsWithTypeAndName &) const { return false; }
virtual bool isServerConstant() const { return false; }
virtual bool isShortCircuit(IFunctionBase::ShortCircuitSettings & /*settings*/, size_t /*number_of_arguments*/) const { return false; }
/// Override and return true if function needs to depend on the state of the data.
virtual bool isStateful() const { return false; }
@ -369,6 +371,10 @@ public:
/// (for functions like isNull(x))
virtual ColumnNumbers getArgumentsThatDontImplyNullableReturnType(size_t number_of_arguments [[maybe_unused]]) const { return {}; }
/// Returns type that should be used as the result type in default implementation for Dynamic.
/// Function should implement this method if its result type doesn't depend on the arguments types.
virtual DataTypePtr getReturnTypeForDefaultImplementationForDynamic() const { return nullptr; }
protected:
virtual FunctionBasePtr buildImpl(const ColumnsWithTypeAndName & /* arguments */, const DataTypePtr & /* result_type */) const
@ -423,6 +429,17 @@ protected:
/// If it isn't, will convert all ColumnLowCardinality arguments to full columns.
virtual bool canBeExecutedOnLowCardinalityDictionary() const { return true; }
/** If useDefaultImplementationForDynamic() is true, then special FunctionBaseDynamicAdaptor will be used
* if function arguments has Dynamic column. This adaptor will build and execute this function for all
* internal types inside Dynamic column separately and construct result based on results for these types.
* If getReturnTypeForDefaultImplementationForDynamic() returns T, then result of such function
* will be Nullable(T), otherwise the result will be Dynamic.
*
* We cannot use default implementation for Dynamic if function doesn't use default implementation for NULLs,
* because Dynamic column can contain NULLs and we should know how to process them.
*/
virtual bool useDefaultImplementationForDynamic() const { return useDefaultImplementationForNulls(); }
private:
DataTypePtr getReturnType(const ColumnsWithTypeAndName & arguments) const;
@ -488,6 +505,9 @@ public:
/// If it isn't, will convert all ColumnLowCardinality arguments to full columns.
virtual bool canBeExecutedOnLowCardinalityDictionary() const { return true; }
virtual bool useDefaultImplementationForDynamic() const { return useDefaultImplementationForNulls(); }
virtual DataTypePtr getReturnTypeForDefaultImplementationForDynamic() const { return nullptr; }
/** True if function can be called on default arguments (include Nullable's) and won't throw.
* Counterexample: modulo(0, 0)
*/

Some files were not shown because too many files have changed in this diff Show More