mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-11-21 15:12:02 +00:00
clean code
This commit is contained in:
parent
e223d7a642
commit
d58080742a
@ -55,6 +55,7 @@
|
||||
#include <Common/FieldVisitorsAccurateComparison.h>
|
||||
#include <Common/assert_cast.h>
|
||||
#include <Common/typeid_cast.h>
|
||||
#include "Core/ExternalResultDescription.h"
|
||||
|
||||
#if USE_EMBEDDED_COMPILER
|
||||
# include <llvm/IR/IRBuilder.h>
|
||||
@ -255,7 +256,7 @@ struct BinaryOperation
|
||||
static const constexpr bool allow_string_integer = false;
|
||||
|
||||
template <OpCase op_case>
|
||||
static void NO_INLINE process(const A * __restrict a, const B * __restrict b, ResultType * __restrict c, size_t size, const NullMap * right_nullmap = nullptr, NullMap * res_nullmap = nullptr)
|
||||
static void NO_INLINE process(const A * __restrict a, const B * __restrict b, ResultType * __restrict c, size_t size, const NullMap * right_nullmap = nullptr, NullMap * res_nullmap [[maybe_unused]] = nullptr)
|
||||
{
|
||||
if constexpr (op_case == OpCase::RightConstant)
|
||||
{
|
||||
@ -269,41 +270,30 @@ struct BinaryOperation
|
||||
{
|
||||
if (right_nullmap)
|
||||
{
|
||||
assert(res_nullmap);
|
||||
for (size_t i = 0; i < size; ++i)
|
||||
if ((*right_nullmap)[i])
|
||||
c[i] = ResultType();
|
||||
else
|
||||
apply<op_case, true>(a, b, c, i, &((*res_nullmap)[i]));
|
||||
apply<op_case>(a, b, c, i);
|
||||
}
|
||||
else
|
||||
for (size_t i = 0; i < size; ++i)
|
||||
apply<op_case, false>(a, b, c, i);
|
||||
apply<op_case>(a, b, c, i);
|
||||
}
|
||||
}
|
||||
|
||||
static ResultType process(A a, B b) { return Op::template apply<ResultType>(a, b); }
|
||||
|
||||
static ResultType process(A a, B b, NullMap::value_type * m) { return Op::template apply<ResultType>(a, b, m); }
|
||||
static ResultType process(A a, B b, NullMap::value_type * m [[maybe_unused]] = nullptr) { return Op::template apply<ResultType>(a, b, m); }
|
||||
|
||||
private:
|
||||
template <OpCase op_case, bool nullable>
|
||||
static void apply(const A * __restrict a, const B * __restrict b, ResultType * __restrict c, size_t i, NullMap::value_type * m = nullptr)
|
||||
template <OpCase op_case>
|
||||
static void apply(const A * __restrict a, const B * __restrict b, ResultType * __restrict c, size_t i)
|
||||
{
|
||||
if constexpr (nullable)
|
||||
{
|
||||
if constexpr (op_case == OpCase::Vector)
|
||||
c[i] = Op::template apply<ResultType>(a[i], b[i], m);
|
||||
else
|
||||
c[i] = Op::template apply<ResultType>(*a, b[i], m);
|
||||
}
|
||||
if constexpr (op_case == OpCase::Vector)
|
||||
c[i] = Op::template apply<ResultType>(a[i], b[i]);
|
||||
else
|
||||
{
|
||||
if constexpr (op_case == OpCase::Vector)
|
||||
c[i] = Op::template apply<ResultType>(a[i], b[i]);
|
||||
else
|
||||
c[i] = Op::template apply<ResultType>(*a, b[i]);
|
||||
}
|
||||
c[i] = Op::template apply<ResultType>(*a, b[i]);
|
||||
}
|
||||
};
|
||||
|
||||
@ -1761,7 +1751,7 @@ public:
|
||||
else
|
||||
type_res = std::make_shared<ResultDataType>();
|
||||
|
||||
if (is_divide_or_null || is_modulo_or_null)
|
||||
if constexpr (is_divide_or_null || is_modulo_or_null)
|
||||
type_res = std::make_shared<DataTypeNullable>(type_res);
|
||||
|
||||
return true;
|
||||
@ -2241,14 +2231,6 @@ ColumnPtr executeStringInteger(const ColumnsWithTypeAndName & arguments, const A
|
||||
return executeTupleNumberOperator(arguments, result_type, input_rows_count, function_builder);
|
||||
}
|
||||
|
||||
/// Result can be nullable enven if input arguments are not nullable
|
||||
if (is_divide_or_null || is_modulo_or_null)
|
||||
{
|
||||
NullMap res_null_map(input_rows_count, 0);
|
||||
auto res = executeImpl2(arguments, result_type, input_rows_count, nullptr, &res_null_map);
|
||||
return wrapInNullable(res, arguments, result_type, input_rows_count, &res_null_map);
|
||||
}
|
||||
|
||||
return executeImpl2(arguments, result_type, input_rows_count);
|
||||
}
|
||||
|
||||
@ -2266,11 +2248,19 @@ ColumnPtr executeStringInteger(const ColumnsWithTypeAndName & arguments, const A
|
||||
bool is_const = checkColumnConst<ColumnNullable>(right_argument.column.get());
|
||||
const ColumnNullable * nullable_column = is_const ? checkAndGetColumnConstData<ColumnNullable>(right_argument.column.get())
|
||||
: checkAndGetColumn<ColumnNullable>(right_argument.column.get());
|
||||
//NullMap res_null_map(input_rows_count, 0);
|
||||
const auto & null_bytemap = nullable_column->getNullMapData();
|
||||
auto res = executeImpl2(createBlockWithNestedColumns(arguments), removeNullable(result_type), input_rows_count, &null_bytemap, res_nullmap);
|
||||
const auto & right_null_bytemap = nullable_column->getNullMapData();
|
||||
NullMap res_null_map(right_null_bytemap.begin(), right_null_bytemap.end());
|
||||
auto res = executeImpl2(createBlockWithNestedColumns(arguments), removeNullable(result_type), input_rows_count, &right_null_bytemap, &res_null_map);
|
||||
return wrapInNullable(res, arguments, result_type, input_rows_count, res_nullmap);
|
||||
}
|
||||
/// Process special case when operation is divideOrNull and moduloOrNull
|
||||
else if ((is_divide_or_null || is_modulo_or_null) && !res_nullmap)
|
||||
{
|
||||
std::cerr << "gethere 1" << std::endl;
|
||||
NullMap res_null_map(input_rows_count, 0);
|
||||
auto res = executeImpl2(arguments, result_type, input_rows_count, nullptr, &res_null_map);
|
||||
return wrapInNullable(res, arguments, result_type, input_rows_count, &res_null_map);
|
||||
}
|
||||
|
||||
/// Special case - one or both arguments are IPv4
|
||||
if (isIPv4(arguments[0].type) || isIPv4(arguments[1].type))
|
||||
|
@ -1,36 +1,120 @@
|
||||
#include <Functions/FunctionFactory.h>
|
||||
#include <Functions/FunctionBinaryArithmetic.h>
|
||||
#include <Common/Exception.h>
|
||||
#include <libdivide.h>
|
||||
|
||||
namespace DB
|
||||
{
|
||||
|
||||
template <typename A, typename B>
|
||||
struct ModuloOrNullImpl
|
||||
: BinaryOperation<A, B, ModuloImpl<A, B>>
|
||||
{
|
||||
using ResultType = typename NumberTraits::ResultOfModulo<A, B>::Type;
|
||||
using Op = ModuloImpl<A, B>;
|
||||
using ResultType = typename Op::ResultType;
|
||||
static const constexpr bool allow_fixed_string = false;
|
||||
static const constexpr bool allow_string_integer = false;
|
||||
|
||||
template <typename Result = ResultType>
|
||||
static Result apply(A a, B b, NullMap::value_type * m = nullptr)
|
||||
template <OpCase op_case>
|
||||
static void NO_INLINE process(const A * __restrict a, const B * __restrict b, ResultType * __restrict c, size_t size, const NullMap * right_nullmap, NullMap * res_nullmap)
|
||||
{
|
||||
if constexpr (std::is_floating_point_v<ResultType>)
|
||||
chassert(res_nullmap);
|
||||
if constexpr (op_case == OpCase::RightConstant)
|
||||
{
|
||||
/// This computation is similar to `fmod` but the latter is not inlined and has 40 times worse performance.
|
||||
return ResultType(a) - trunc(ResultType(a) / ResultType(b)) * ResultType(b);
|
||||
if (right_nullmap && (*right_nullmap)[0])
|
||||
return;
|
||||
vectorConstant(a, *b, c, size, res_nullmap);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (unlikely(divisionLeadsToFPE(a, b)))
|
||||
for (size_t i = 0; i < size; ++i)
|
||||
if ((*res_nullmap)[i])
|
||||
c[i] = ResultType();
|
||||
else
|
||||
apply<op_case>(a, b, c, i, &((*res_nullmap)[i]));
|
||||
}
|
||||
}
|
||||
|
||||
static void NO_INLINE NO_SANITIZE_UNDEFINED vectorConstant(const A * __restrict src, B b, ResultType * __restrict dst, size_t size, NullMap * res_nullmap)
|
||||
{
|
||||
/// Modulo with too small divisor.
|
||||
if (unlikely((std::is_signed_v<B> && b == -1) || b == 1))
|
||||
{
|
||||
for (size_t i = 0; i < size; ++i)
|
||||
dst[i] = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
/// Modulo with too large divisor.
|
||||
if (unlikely(b > std::numeric_limits<A>::max()
|
||||
|| (std::is_signed_v<A> && std::is_signed_v<B> && b < std::numeric_limits<A>::lowest())))
|
||||
{
|
||||
for (size_t i = 0; i < size; ++i)
|
||||
dst[i] = static_cast<ResultType>(src[i]);
|
||||
return;
|
||||
}
|
||||
|
||||
/// Set result to NULL if divide by zero or too large divisor.
|
||||
if (unlikely(static_cast<A>(b) == 0 || std::is_signed_v<B> && b == std::numeric_limits<B>::lowest()))
|
||||
{
|
||||
for (size_t i = 0; i < size; ++i)
|
||||
(*res_nullmap)[i] = 1;
|
||||
return;
|
||||
}
|
||||
|
||||
/// Modulo of division by negative number is the same as the positive number.
|
||||
if (b < 0)
|
||||
b = -b;
|
||||
|
||||
/// Here we failed to make the SSE variant from libdivide give an advantage.
|
||||
|
||||
if (b & (b - 1))
|
||||
{
|
||||
libdivide::divider<A> divider(static_cast<A>(b));
|
||||
for (size_t i = 0; i < size; ++i)
|
||||
{
|
||||
if (m)
|
||||
*m = 1;
|
||||
|
||||
return Result();
|
||||
/// NOTE: perhaps, the division semantics with the remainder of negative numbers is not preserved.
|
||||
dst[i] = static_cast<ResultType>(src[i] - (src[i] / divider) * b);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// gcc libdivide doesn't work well for pow2 division
|
||||
auto mask = b - 1;
|
||||
for (size_t i = 0; i < size; ++i)
|
||||
dst[i] = static_cast<ResultType>(src[i] & mask);
|
||||
}
|
||||
}
|
||||
|
||||
return ModuloImpl<A, B>::template apply<Result>(a, b);
|
||||
static ResultType process(A a, B b, NullMap::value_type * m)
|
||||
{
|
||||
ResultType res;
|
||||
try
|
||||
{
|
||||
res = Op::template apply<ResultType>(a, b);
|
||||
}
|
||||
catch (const std::exception&)
|
||||
{
|
||||
if (m)
|
||||
*m = 1;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
private:
|
||||
template <OpCase op_case>
|
||||
static void apply(const A * __restrict a, const B * __restrict b, ResultType * __restrict c, size_t i, NullMap::value_type * m)
|
||||
{
|
||||
try
|
||||
{
|
||||
if constexpr (op_case == OpCase::Vector)
|
||||
c[i] = Op::template apply<ResultType>(a[i], b[i]);
|
||||
else
|
||||
c[i] = Op::template apply<ResultType>(*a, b[i]);
|
||||
}
|
||||
catch (const std::exception&)
|
||||
{
|
||||
*m = 1;
|
||||
}
|
||||
}
|
||||
|
||||
@ -39,6 +123,30 @@ struct ModuloOrNullImpl
|
||||
#endif
|
||||
};
|
||||
|
||||
namespace impl_
|
||||
{
|
||||
template <> struct BinaryOperationImpl<UInt64, UInt8, ModuloImpl<UInt64, UInt8>> : ModuloOrNullImpl<UInt64, UInt8> {};
|
||||
template <> struct BinaryOperationImpl<UInt64, UInt16, ModuloImpl<UInt64, UInt16>> : ModuloOrNullImpl<UInt64, UInt16> {};
|
||||
template <> struct BinaryOperationImpl<UInt64, UInt32, ModuloImpl<UInt64, UInt32>> : ModuloOrNullImpl<UInt64, UInt32> {};
|
||||
template <> struct BinaryOperationImpl<UInt64, UInt64, ModuloImpl<UInt64, UInt64>> : ModuloOrNullImpl<UInt64, UInt64> {};
|
||||
|
||||
template <> struct BinaryOperationImpl<UInt32, UInt8, ModuloImpl<UInt32, UInt8>> : ModuloOrNullImpl<UInt32, UInt8> {};
|
||||
template <> struct BinaryOperationImpl<UInt32, UInt16, ModuloImpl<UInt32, UInt16>> : ModuloOrNullImpl<UInt32, UInt16> {};
|
||||
template <> struct BinaryOperationImpl<UInt32, UInt32, ModuloImpl<UInt32, UInt32>> : ModuloOrNullImpl<UInt32, UInt32> {};
|
||||
template <> struct BinaryOperationImpl<UInt32, UInt64, ModuloImpl<UInt32, UInt64>> : ModuloOrNullImpl<UInt32, UInt64> {};
|
||||
|
||||
template <> struct BinaryOperationImpl<Int64, Int8, ModuloImpl<Int64, Int8>> : ModuloOrNullImpl<Int64, Int8> {};
|
||||
template <> struct BinaryOperationImpl<Int64, Int16, ModuloImpl<Int64, Int16>> : ModuloOrNullImpl<Int64, Int16> {};
|
||||
template <> struct BinaryOperationImpl<Int64, Int32, ModuloImpl<Int64, Int32>> : ModuloOrNullImpl<Int64, Int32> {};
|
||||
template <> struct BinaryOperationImpl<Int64, Int64, ModuloImpl<Int64, Int64>> : ModuloOrNullImpl<Int64, Int64> {};
|
||||
|
||||
template <> struct BinaryOperationImpl<Int32, Int8, ModuloImpl<Int32, Int8>> : ModuloOrNullImpl<Int32, Int8> {};
|
||||
template <> struct BinaryOperationImpl<Int32, Int16, ModuloImpl<Int32, Int16>> : ModuloOrNullImpl<Int32, Int16> {};
|
||||
template <> struct BinaryOperationImpl<Int32, Int32, ModuloImpl<Int32, Int32>> : ModuloOrNullImpl<Int32, Int32> {};
|
||||
template <> struct BinaryOperationImpl<Int32, Int64, ModuloImpl<Int32, Int64>> : ModuloOrNullImpl<Int32, Int64> {};
|
||||
template <typename A, typename B> struct BinaryOperationImpl<A, B, ModuloImpl<A, B>> : ModuloOrNullImpl<A, B> {};
|
||||
}
|
||||
|
||||
struct NameModuloOrNull { static constexpr auto name = "moduloOrNull"; };
|
||||
using FunctionModuloOrNull = BinaryArithmeticOverloadResolver<ModuloOrNullImpl, NameModuloOrNull>;
|
||||
|
||||
|
@ -1,7 +1,7 @@
|
||||
\N
|
||||
0
|
||||
\N
|
||||
\N
|
||||
0
|
||||
0
|
||||
0
|
||||
10
|
||||
49
|
||||
|
Loading…
Reference in New Issue
Block a user