Merge pull request #18218 from Jokser/s3-docs

Add S3 table function / engine documentation [EN]
This commit is contained in:
alexey-milovidov 2020-12-18 22:05:45 +03:00 committed by GitHub
commit da1fc5d25e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 303 additions and 0 deletions

View File

@ -52,6 +52,7 @@ Engines in the family:
- [ODBC](../../engines/table-engines/integrations/odbc.md#table-engine-odbc)
- [JDBC](../../engines/table-engines/integrations/jdbc.md#table-engine-jdbc)
- [HDFS](../../engines/table-engines/integrations/hdfs.md#hdfs)
- [S3](../../engines/table-engines/integrations/s3.md#table_engines-s3)
### Special Engines {#special-engines}

View File

@ -13,4 +13,5 @@ List of supported integrations:
- [JDBC](../../../engines/table-engines/integrations/jdbc.md)
- [MySQL](../../../engines/table-engines/integrations/mysql.md)
- [HDFS](../../../engines/table-engines/integrations/hdfs.md)
- [S3](../../../engines/table-engines/integrations/s3.md)
- [Kafka](../../../engines/table-engines/integrations/kafka.md)

View File

@ -0,0 +1,131 @@
---
toc_priority: 4
toc_title: S3
---
# S3 {#table_engines-s3}
This engine provides integration with [Amazon S3](https://aws.amazon.com/s3/) ecosystem. This engine is similar
to the [HDFS](../../../engines/table-engines/special/file.md#table_engines-hdfs) engine, but provides S3-specific features.
## Usage {#usage}
``` sql
ENGINE = S3(path, [aws_access_key_id, aws_secret_access_key,] format, structure, [compression])
```
**Input parameters**
- `path` — Bucket url with path to file. Supports following wildcards in readonly mode: *, ?, {abc,def} and {N..M} where N, M — numbers, `abc, def — strings.
- `format` — The [format](../../../interfaces/formats.md#formats) of the file.
- `structure` — Structure of the table. Format `'column1_name column1_type, column2_name column2_type, ...'`.
- `compression` — Parameter is optional. Supported values: none, gzip/gz, brotli/br, xz/LZMA, zstd/zst. By default, it will autodetect compression by file extension.
**Example:**
**1.** Set up the `s3_engine_table` table:
``` sql
CREATE TABLE s3_engine_table (name String, value UInt32) ENGINE=S3('https://storage.yandexcloud.net/my-test-bucket-768/test-data.csv.gz', 'CSV', 'name String, value UInt32', 'gzip')
```
**2.** Fill file:
``` sql
INSERT INTO s3_engine_table VALUES ('one', 1), ('two', 2), ('three', 3)
```
**3.** Query the data:
``` sql
SELECT * FROM s3_engine_table LIMIT 2
```
``` text
┌─name─┬─value─┐
│ one │ 1 │
│ two │ 2 │
└──────┴───────┘
```
## Implementation Details {#implementation-details}
- Reads and writes can be parallel
- Not supported:
- `ALTER` and `SELECT...SAMPLE` operations.
- Indexes.
- Replication.
**Globs in path**
Multiple path components can have globs. For being processed file should exist and match to the whole path pattern. Listing of files determines during `SELECT` (not at `CREATE` moment).
- `*` — Substitutes any number of any characters except `/` including empty string.
- `?` — Substitutes any single character.
- `{some_string,another_string,yet_another_one}` — Substitutes any of strings `'some_string', 'another_string', 'yet_another_one'`.
- `{N..M}` — Substitutes any number in range from N to M including both borders. N and M can have leading zeroes e.g. `000..078`.
Constructions with `{}` are similar to the [remote](../../../sql-reference/table-functions/remote.md) table function.
**Example**
1. Suppose we have several files in TSV format with the following URIs on HDFS:
- https://storage.yandexcloud.net/my-test-bucket-768/some_prefix/some_file_1.csv
- https://storage.yandexcloud.net/my-test-bucket-768/some_prefix/some_file_2.csv
- https://storage.yandexcloud.net/my-test-bucket-768/some_prefix/some_file_3.csv
- https://storage.yandexcloud.net/my-test-bucket-768/another_prefix/some_file_1.csv
- https://storage.yandexcloud.net/my-test-bucket-768/another_prefix/some_file_2.csv
- https://storage.yandexcloud.net/my-test-bucket-768/another_prefix/some_file_3.csv
2. There are several ways to make a table consisting of all six files:
<!-- -->
``` sql
CREATE TABLE table_with_range (name String, value UInt32) ENGINE = S3('https://storage.yandexcloud.net/my-test-bucket-768/{some,another}_prefix/some_file_{1..3}', 'CSV')
```
3. Another way:
``` sql
CREATE TABLE table_with_question_mark (name String, value UInt32) ENGINE = S3('https://storage.yandexcloud.net/my-test-bucket-768/{some,another}_prefix/some_file_?', 'CSV')
```
4. Table consists of all the files in both directories (all files should satisfy format and schema described in query):
``` sql
CREATE TABLE table_with_asterisk (name String, value UInt32) ENGINE = S3('https://storage.yandexcloud.net/my-test-bucket-768/{some,another}_prefix/*', 'CSV')
```
!!! warning "Warning"
If the listing of files contains number ranges with leading zeros, use the construction with braces for each digit separately or use `?`.
**Example**
Create table with files named `file-000.csv`, `file-001.csv`, … , `file-999.csv`:
``` sql
CREATE TABLE big_table (name String, value UInt32) ENGINE = S3('https://storage.yandexcloud.net/my-test-bucket-768/big_prefix/file-{000..999}.csv', 'CSV')
```
## Virtual Columns {#virtual-columns}
- `_path` — Path to the file.
- `_file` — Name of the file.
## S3-related settings {#settings}
The following settings can be set before query execution or placed into configuration file.
- `s3_max_single_part_upload_size` — Default value is `64Mb`. The maximum size of object to upload using singlepart upload to S3.
- `s3_min_upload_part_size` — Default value is `512Mb`. The minimum size of part to upload during multipart upload to [S3 Multipart upload](https://docs.aws.amazon.com/AmazonS3/latest/dev/uploadobjusingmpu.html).
- `s3_max_redirects` — Default value is `10`. Max number of S3 redirects hops allowed.
Security consideration: if malicious user can specify arbitrary S3 URLs, `s3_max_redirects` must be set to zero to avoid [SSRF](https://en.wikipedia.org/wiki/Server-side_request_forgery) attacks; or alternatively, `remote_host_filter` must be specified in server configuration.
**See Also**
- [Virtual columns](../../../engines/table-engines/index.md#table_engines-virtual_columns)
[Original article](https://clickhouse.tech/docs/en/operations/table_engines/s3/) <!--hide-->

View File

@ -32,5 +32,6 @@ You can use table functions in:
| [jdbc](../../sql-reference/table-functions/jdbc.md) | Creates a [JDBC](../../engines/table-engines/integrations/jdbc.md)-engine table. |
| [odbc](../../sql-reference/table-functions/odbc.md) | Creates a [ODBC](../../engines/table-engines/integrations/odbc.md)-engine table. |
| [hdfs](../../sql-reference/table-functions/hdfs.md) | Creates a [HDFS](../../engines/table-engines/integrations/hdfs.md)-engine table. |
| [s3](../../sql-reference/table-functions/s3.md) | Creates a [S3](../../engines/table-engines/integrations/s3.md)-engine table. |
[Original article](https://clickhouse.tech/docs/en/query_language/table_functions/) <!--hide-->

View File

@ -0,0 +1,169 @@
---
toc_priority: 45
toc_title: s3
---
# s3 {#s3}
Provides table-like interface to select/insert files in S3. This table function is similar to [hdfs](../../sql-reference/table-functions/hdfs.md).
``` sql
s3(path, [aws_access_key_id, aws_secret_access_key,] format, structure, [compression])
```
**Input parameters**
- `path` — Bucket url with path to file. Supports following wildcards in readonly mode: *, ?, {abc,def} and {N..M} where N, M — numbers, `abc, def — strings.
- `format` — The [format](../../interfaces/formats.md#formats) of the file.
- `structure` — Structure of the table. Format `'column1_name column1_type, column2_name column2_type, ...'`.
- `compression` — Parameter is optional. Supported values: none, gzip/gz, brotli/br, xz/LZMA, zstd/zst. By default, it will autodetect compression by file extension.
**Returned value**
A table with the specified structure for reading or writing data in the specified file.
**Example**
Table from S3 file `https://storage.yandexcloud.net/my-test-bucket-768/data.csv` and selection of the first two rows from it:
``` sql
SELECT *
FROM s3('https://storage.yandexcloud.net/my-test-bucket-768/data.csv', 'CSV', 'column1 UInt32, column2 UInt32, column3 UInt32')
LIMIT 2
```
``` text
┌─column1─┬─column2─┬─column3─┐
│ 1 │ 2 │ 3 │
│ 3 │ 2 │ 1 │
└─────────┴─────────┴─────────┘
```
The similar but from file with `gzip` compression:
``` sql
SELECT *
FROM s3('https://storage.yandexcloud.net/my-test-bucket-768/data.csv.gz', 'CSV', 'column1 UInt32, column2 UInt32, column3 UInt32', 'gzip')
LIMIT 2
```
``` text
┌─column1─┬─column2─┬─column3─┐
│ 1 │ 2 │ 3 │
│ 3 │ 2 │ 1 │
└─────────┴─────────┴─────────┘
```
**Globs in path**
Multiple path components can have globs. For being processed file should exists and matches to the whole path pattern (not only suffix or prefix).
- `*` — Substitutes any number of any characters except `/` including empty string.
- `?` — Substitutes any single character.
- `{some_string,another_string,yet_another_one}` — Substitutes any of strings `'some_string', 'another_string', 'yet_another_one'`.
- `{N..M}` — Substitutes any number in range from N to M including both borders. N and M can have leading zeroes e.g. `000..078`.
Constructions with `{}` are similar to the [remote table function](../../sql-reference/table-functions/remote.md)).
**Example**
1. Suppose that we have several files with following URIs on S3:
- https://storage.yandexcloud.net/my-test-bucket-768/some_prefix/some_file_1.csv
- https://storage.yandexcloud.net/my-test-bucket-768/some_prefix/some_file_2.csv
- https://storage.yandexcloud.net/my-test-bucket-768/some_prefix/some_file_3.csv
- https://storage.yandexcloud.net/my-test-bucket-768/some_prefix/some_file_4.csv
- https://storage.yandexcloud.net/my-test-bucket-768/another_prefix/some_file_1.csv
- https://storage.yandexcloud.net/my-test-bucket-768/another_prefix/some_file_2.csv
- https://storage.yandexcloud.net/my-test-bucket-768/another_prefix/some_file_3.csv
- https://storage.yandexcloud.net/my-test-bucket-768/another_prefix/some_file_4.csv
2. Query the amount of rows in files end with number from 1 to 3:
<!-- -->
``` sql
SELECT count(*)
FROM s3('https://storage.yandexcloud.net/my-test-bucket-768/{some,another}_prefix/some_file_{1..3}.csv', 'CSV', 'name String, value UInt32')
```
``` text
┌─count()─┐
│ 18 │
└─────────┘
```
3. Query the amount of rows in all files of these two directories:
<!-- -->
``` sql
SELECT count(*)
FROM s3('https://storage.yandexcloud.net/my-test-bucket-768/{some,another}_prefix/*', 'CSV', 'name String, value UInt32')
```
``` text
┌─count()─┐
│ 24 │
└─────────┘
```
!!! warning "Warning"
If your listing of files contains number ranges with leading zeros, use the construction with braces for each digit separately or use `?`.
**Example**
Query the data from files named `file-000.csv`, `file-001.csv`, … , `file-999.csv`:
``` sql
SELECT count(*)
FROM s3('https://storage.yandexcloud.net/my-test-bucket-768/big_prefix/file-{000..999}.csv', 'CSV', 'name String, value UInt32')
```
``` text
┌─count()─┐
│ 12 │
└─────────┘
```
**Data insert**
The S3 table function may be used for data insert as well.
**Example**
Insert a data into file `test-data.csv.gz`:
``` sql
INSERT INTO s3('https://storage.yandexcloud.net/my-test-bucket-768/test-data.csv.gz', 'CSV', 'name String, value UInt32', 'gzip')
VALUES ('test-data', 1), ('test-data-2', 2)
```
Insert a data into file `test-data.csv.gz` from existing table:
``` sql
INSERT INTO s3('https://storage.yandexcloud.net/my-test-bucket-768/test-data.csv.gz', 'CSV', 'name String, value UInt32', 'gzip')
SELECT name, value FROM existing_table
```
## Virtual Columns {#virtual-columns}
- `_path` — Path to the file.
- `_file` — Name of the file.
## S3-related settings {#settings}
The following settings can be set before query execution or placed into configuration file.
- `s3_max_single_part_upload_size` — Default value is `64Mb`. The maximum size of object to upload using singlepart upload to S3.
- `s3_min_upload_part_size` — Default value is `512Mb`. The minimum size of part to upload during multipart upload to [S3 Multipart upload](https://docs.aws.amazon.com/AmazonS3/latest/dev/uploadobjusingmpu.html).
- `s3_max_redirects` — Default value is `10`. Max number of S3 redirects hops allowed.
Security consideration: if malicious user can specify arbitrary S3 URLs, `s3_max_redirects` must be set to zero to avoid [SSRF](https://en.wikipedia.org/wiki/Server-side_request_forgery) attacks; or alternatively, `remote_host_filter` must be specified in server configuration.
**See Also**
- [Virtual columns](https://clickhouse.tech/docs/en/operations/table_engines/#table_engines-virtual_columns)
[Original article](https://clickhouse.tech/docs/en/query_language/table_functions/s3/) <!--hide-->