From f407504a7a7504e0823ec8833d12c71d4c4c0d92 Mon Sep 17 00:00:00 2001 From: sundy-li <543950155@qq.com> Date: Fri, 23 Oct 2020 19:42:21 +0800 Subject: [PATCH] try use cmake version for croaring instead of amalgamation.sh --- .gitmodules | 4 + contrib/CMakeLists.txt | 2 +- contrib/croaring | 1 + contrib/croaring-cmake/CMakeLists.txt | 25 + contrib/croaring/CMakeLists.txt | 6 - contrib/croaring/LICENSE | 202 - contrib/croaring/README.txt | 2 - contrib/croaring/roaring.c | 11093 ---------------- contrib/croaring/roaring/roaring.h | 7187 ---------- contrib/croaring/roaring/roaring.hh | 1732 --- docker/test/fasttest/run.sh | 2 +- .../AggregateFunctionGroupBitmapData.h | 3 +- 12 files changed, 34 insertions(+), 20225 deletions(-) create mode 160000 contrib/croaring create mode 100644 contrib/croaring-cmake/CMakeLists.txt delete mode 100644 contrib/croaring/CMakeLists.txt delete mode 100644 contrib/croaring/LICENSE delete mode 100644 contrib/croaring/README.txt delete mode 100644 contrib/croaring/roaring.c delete mode 100644 contrib/croaring/roaring/roaring.h delete mode 100644 contrib/croaring/roaring/roaring.hh diff --git a/.gitmodules b/.gitmodules index ace36122e6e..fdd48fcce01 100644 --- a/.gitmodules +++ b/.gitmodules @@ -186,3 +186,7 @@ path = contrib/cyrus-sasl url = https://github.com/cyrusimap/cyrus-sasl branch = cyrus-sasl-2.1 +[submodule "contrib/croaring"] + path = contrib/croaring + url = https://github.com/RoaringBitmap/CRoaring + branch = v0.2.66 diff --git a/contrib/CMakeLists.txt b/contrib/CMakeLists.txt index 130e4b13c91..7d6b9c0e374 100644 --- a/contrib/CMakeLists.txt +++ b/contrib/CMakeLists.txt @@ -20,7 +20,6 @@ add_subdirectory (boost-cmake) add_subdirectory (cctz-cmake) add_subdirectory (consistent-hashing-sumbur) add_subdirectory (consistent-hashing) -add_subdirectory (croaring) add_subdirectory (FastMemcpy) add_subdirectory (hyperscan-cmake) add_subdirectory (jemalloc-cmake) @@ -34,6 +33,7 @@ add_subdirectory (ryu-cmake) add_subdirectory (unixodbc-cmake) add_subdirectory (poco-cmake) +add_subdirectory (croaring-cmake) # TODO: refactor the contrib libraries below this comment. diff --git a/contrib/croaring b/contrib/croaring new file mode 160000 index 00000000000..5f20740ec0d --- /dev/null +++ b/contrib/croaring @@ -0,0 +1 @@ +Subproject commit 5f20740ec0de5e153e8f4cb2ab91814e8b291a14 diff --git a/contrib/croaring-cmake/CMakeLists.txt b/contrib/croaring-cmake/CMakeLists.txt new file mode 100644 index 00000000000..3189795347b --- /dev/null +++ b/contrib/croaring-cmake/CMakeLists.txt @@ -0,0 +1,25 @@ +set(LIBRARY_DIR ${ClickHouse_SOURCE_DIR}/contrib/croaring) + +set(SRCS + ${LIBRARY_DIR}/src/array_util.c + ${LIBRARY_DIR}/src/bitset_util.c + ${LIBRARY_DIR}/src/containers/array.c + ${LIBRARY_DIR}/src/containers/bitset.c + ${LIBRARY_DIR}/src/containers/containers.c + ${LIBRARY_DIR}/src/containers/convert.c + ${LIBRARY_DIR}/src/containers/mixed_intersection.c + ${LIBRARY_DIR}/src/containers/mixed_union.c + ${LIBRARY_DIR}/src/containers/mixed_equal.c + ${LIBRARY_DIR}/src/containers/mixed_subset.c + ${LIBRARY_DIR}/src/containers/mixed_negation.c + ${LIBRARY_DIR}/src/containers/mixed_xor.c + ${LIBRARY_DIR}/src/containers/mixed_andnot.c + ${LIBRARY_DIR}/src/containers/run.c + ${LIBRARY_DIR}/src/roaring.c + ${LIBRARY_DIR}/src/roaring_priority_queue.c + ${LIBRARY_DIR}/src/roaring_array.c) + +add_library(roaring ${SRCS}) + +target_include_directories(roaring PRIVATE ${LIBRARY_DIR}/include/roaring) +target_include_directories(roaring SYSTEM BEFORE PUBLIC ${LIBRARY_DIR}/include) diff --git a/contrib/croaring/CMakeLists.txt b/contrib/croaring/CMakeLists.txt deleted file mode 100644 index da19911487f..00000000000 --- a/contrib/croaring/CMakeLists.txt +++ /dev/null @@ -1,6 +0,0 @@ -add_library(roaring - roaring.c - roaring/roaring.h - roaring/roaring.hh) - -target_include_directories (roaring SYSTEM PUBLIC ${CMAKE_CURRENT_SOURCE_DIR}) diff --git a/contrib/croaring/LICENSE b/contrib/croaring/LICENSE deleted file mode 100644 index 3265476ea81..00000000000 --- a/contrib/croaring/LICENSE +++ /dev/null @@ -1,202 +0,0 @@ - Apache License - Version 2.0, January 2004 - http://www.apache.org/licenses/ - - TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION - - 1. Definitions. - - "License" shall mean the terms and conditions for use, reproduction, - and distribution as defined by Sections 1 through 9 of this document. - - "Licensor" shall mean the copyright owner or entity authorized by - the copyright owner that is granting the License. - - "Legal Entity" shall mean the union of the acting entity and all - other entities that control, are controlled by, or are under common - control with that entity. For the purposes of this definition, - "control" means (i) the power, direct or indirect, to cause the - direction or management of such entity, whether by contract or - otherwise, or (ii) ownership of fifty percent (50%) or more of the - outstanding shares, or (iii) beneficial ownership of such entity. - - "You" (or "Your") shall mean an individual or Legal Entity - exercising permissions granted by this License. - - "Source" form shall mean the preferred form for making modifications, - including but not limited to software source code, documentation - source, and configuration files. - - "Object" form shall mean any form resulting from mechanical - transformation or translation of a Source form, including but - not limited to compiled object code, generated documentation, - and conversions to other media types. - - "Work" shall mean the work of authorship, whether in Source or - Object form, made available under the License, as indicated by a - copyright notice that is included in or attached to the work - (an example is provided in the Appendix below). - - "Derivative Works" shall mean any work, whether in Source or Object - form, that is based on (or derived from) the Work and for which the - editorial revisions, annotations, elaborations, or other modifications - represent, as a whole, an original work of authorship. For the purposes - of this License, Derivative Works shall not include works that remain - separable from, or merely link (or bind by name) to the interfaces of, - the Work and Derivative Works thereof. - - "Contribution" shall mean any work of authorship, including - the original version of the Work and any modifications or additions - to that Work or Derivative Works thereof, that is intentionally - submitted to Licensor for inclusion in the Work by the copyright owner - or by an individual or Legal Entity authorized to submit on behalf of - the copyright owner. For the purposes of this definition, "submitted" - means any form of electronic, verbal, or written communication sent - to the Licensor or its representatives, including but not limited to - communication on electronic mailing lists, source code control systems, - and issue tracking systems that are managed by, or on behalf of, the - Licensor for the purpose of discussing and improving the Work, but - excluding communication that is conspicuously marked or otherwise - designated in writing by the copyright owner as "Not a Contribution." - - "Contributor" shall mean Licensor and any individual or Legal Entity - on behalf of whom a Contribution has been received by Licensor and - subsequently incorporated within the Work. - - 2. Grant of Copyright License. Subject to the terms and conditions of - this License, each Contributor hereby grants to You a perpetual, - worldwide, non-exclusive, no-charge, royalty-free, irrevocable - copyright license to reproduce, prepare Derivative Works of, - publicly display, publicly perform, sublicense, and distribute the - Work and such Derivative Works in Source or Object form. - - 3. Grant of Patent License. Subject to the terms and conditions of - this License, each Contributor hereby grants to You a perpetual, - worldwide, non-exclusive, no-charge, royalty-free, irrevocable - (except as stated in this section) patent license to make, have made, - use, offer to sell, sell, import, and otherwise transfer the Work, - where such license applies only to those patent claims licensable - by such Contributor that are necessarily infringed by their - Contribution(s) alone or by combination of their Contribution(s) - with the Work to which such Contribution(s) was submitted. If You - institute patent litigation against any entity (including a - cross-claim or counterclaim in a lawsuit) alleging that the Work - or a Contribution incorporated within the Work constitutes direct - or contributory patent infringement, then any patent licenses - granted to You under this License for that Work shall terminate - as of the date such litigation is filed. - - 4. Redistribution. You may reproduce and distribute copies of the - Work or Derivative Works thereof in any medium, with or without - modifications, and in Source or Object form, provided that You - meet the following conditions: - - (a) You must give any other recipients of the Work or - Derivative Works a copy of this License; and - - (b) You must cause any modified files to carry prominent notices - stating that You changed the files; and - - (c) You must retain, in the Source form of any Derivative Works - that You distribute, all copyright, patent, trademark, and - attribution notices from the Source form of the Work, - excluding those notices that do not pertain to any part of - the Derivative Works; and - - (d) If the Work includes a "NOTICE" text file as part of its - distribution, then any Derivative Works that You distribute must - include a readable copy of the attribution notices contained - within such NOTICE file, excluding those notices that do not - pertain to any part of the Derivative Works, in at least one - of the following places: within a NOTICE text file distributed - as part of the Derivative Works; within the Source form or - documentation, if provided along with the Derivative Works; or, - within a display generated by the Derivative Works, if and - wherever such third-party notices normally appear. The contents - of the NOTICE file are for informational purposes only and - do not modify the License. You may add Your own attribution - notices within Derivative Works that You distribute, alongside - or as an addendum to the NOTICE text from the Work, provided - that such additional attribution notices cannot be construed - as modifying the License. - - You may add Your own copyright statement to Your modifications and - may provide additional or different license terms and conditions - for use, reproduction, or distribution of Your modifications, or - for any such Derivative Works as a whole, provided Your use, - reproduction, and distribution of the Work otherwise complies with - the conditions stated in this License. - - 5. Submission of Contributions. Unless You explicitly state otherwise, - any Contribution intentionally submitted for inclusion in the Work - by You to the Licensor shall be under the terms and conditions of - this License, without any additional terms or conditions. - Notwithstanding the above, nothing herein shall supersede or modify - the terms of any separate license agreement you may have executed - with Licensor regarding such Contributions. - - 6. Trademarks. This License does not grant permission to use the trade - names, trademarks, service marks, or product names of the Licensor, - except as required for reasonable and customary use in describing the - origin of the Work and reproducing the content of the NOTICE file. - - 7. Disclaimer of Warranty. Unless required by applicable law or - agreed to in writing, Licensor provides the Work (and each - Contributor provides its Contributions) on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or - implied, including, without limitation, any warranties or conditions - of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A - PARTICULAR PURPOSE. You are solely responsible for determining the - appropriateness of using or redistributing the Work and assume any - risks associated with Your exercise of permissions under this License. - - 8. Limitation of Liability. In no event and under no legal theory, - whether in tort (including negligence), contract, or otherwise, - unless required by applicable law (such as deliberate and grossly - negligent acts) or agreed to in writing, shall any Contributor be - liable to You for damages, including any direct, indirect, special, - incidental, or consequential damages of any character arising as a - result of this License or out of the use or inability to use the - Work (including but not limited to damages for loss of goodwill, - work stoppage, computer failure or malfunction, or any and all - other commercial damages or losses), even if such Contributor - has been advised of the possibility of such damages. - - 9. Accepting Warranty or Additional Liability. While redistributing - the Work or Derivative Works thereof, You may choose to offer, - and charge a fee for, acceptance of support, warranty, indemnity, - or other liability obligations and/or rights consistent with this - License. However, in accepting such obligations, You may act only - on Your own behalf and on Your sole responsibility, not on behalf - of any other Contributor, and only if You agree to indemnify, - defend, and hold each Contributor harmless for any liability - incurred by, or claims asserted against, such Contributor by reason - of your accepting any such warranty or additional liability. - - END OF TERMS AND CONDITIONS - - APPENDIX: How to apply the Apache License to your work. - - To apply the Apache License to your work, attach the following - boilerplate notice, with the fields enclosed by brackets "{}" - replaced with your own identifying information. (Don't include - the brackets!) The text should be enclosed in the appropriate - comment syntax for the file format. We also recommend that a - file or class name and description of purpose be included on the - same "printed page" as the copyright notice for easier - identification within third-party archives. - - Copyright 2016 The CRoaring authors - - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. - diff --git a/contrib/croaring/README.txt b/contrib/croaring/README.txt deleted file mode 100644 index 3daa1c43ed8..00000000000 --- a/contrib/croaring/README.txt +++ /dev/null @@ -1,2 +0,0 @@ -download from https://github.com/RoaringBitmap/CRoaring/archive/v0.2.57.tar.gz -and use ./amalgamation.sh generate diff --git a/contrib/croaring/roaring.c b/contrib/croaring/roaring.c deleted file mode 100644 index 6327db7ade3..00000000000 --- a/contrib/croaring/roaring.c +++ /dev/null @@ -1,11093 +0,0 @@ -/* auto-generated on Tue Dec 18 09:42:59 CST 2018. Do not edit! */ -#include "roaring/roaring.h" - -/* used for http://dmalloc.com/ Dmalloc - Debug Malloc Library */ -#ifdef DMALLOC -#include "dmalloc.h" -#endif - -/* begin file /opt/bitmap/CRoaring-0.2.57/src/array_util.c */ -#include -#include -#include -#include -#include -#include - -extern inline int32_t binarySearch(const uint16_t *array, int32_t lenarray, - uint16_t ikey); - -#ifdef USESSE4 -// used by intersect_vector16 -ALIGNED(0x1000) -static const uint8_t shuffle_mask16[] = { - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 4, 5, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 6, 7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 6, 7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 4, 5, 6, 7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 6, 7, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, - 6, 7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 4, 5, 6, 7, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 8, 9, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 8, 9, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 8, 9, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 4, 5, 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 8, 9, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 4, 5, 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 6, 7, 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7, 8, 9, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7, - 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 6, 7, 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7, 8, 9, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, - 6, 7, 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 4, 5, 6, 7, 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 6, 7, - 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 10, 11, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 4, 5, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 10, 11, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, - 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 4, 5, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7, - 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 6, 7, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 6, 7, 10, 11, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7, - 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 4, 5, 6, 7, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 6, 7, 10, 11, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 4, 5, 6, 7, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 8, 9, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 8, 9, 10, 11, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 8, 9, - 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 8, 9, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 8, 9, 10, 11, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, - 8, 9, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 4, 5, 8, 9, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 8, 9, - 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 8, 9, - 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 6, 7, 8, 9, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7, 8, 9, 10, 11, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 6, 7, 8, 9, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 4, 5, 6, 7, 8, 9, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 6, 7, 8, 9, - 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, - 6, 7, 8, 9, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, - 0xFF, 0xFF, 0xFF, 0xFF, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 12, 13, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 12, 13, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 12, 13, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 4, 5, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 12, 13, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 4, 5, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 6, 7, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7, 12, 13, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7, - 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 6, 7, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7, 12, 13, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, - 6, 7, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 4, 5, 6, 7, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 6, 7, - 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 8, 9, 12, 13, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 8, 9, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 8, 9, 12, 13, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 8, 9, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 4, 5, 8, 9, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 8, 9, 12, 13, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, - 8, 9, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 4, 5, 8, 9, 12, 13, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 8, 9, 12, 13, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7, - 8, 9, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 6, 7, 8, 9, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 6, 7, 8, 9, - 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7, - 8, 9, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 4, 5, 6, 7, 8, 9, 12, 13, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 6, 7, 8, 9, - 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 4, 5, 6, 7, 8, 9, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, - 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 10, 11, 12, 13, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 10, 11, - 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 10, 11, 12, 13, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, - 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 4, 5, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 10, 11, - 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 10, 11, - 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 6, 7, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7, 10, 11, 12, 13, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 6, 7, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 4, 5, 6, 7, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 6, 7, 10, 11, - 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, - 6, 7, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, - 0xFF, 0xFF, 0xFF, 0xFF, 8, 9, 10, 11, 12, 13, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 8, 9, - 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 8, 9, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 8, 9, 10, 11, - 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 8, 9, - 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 4, 5, 8, 9, 10, 11, 12, 13, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 8, 9, 10, 11, - 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 4, 5, 8, 9, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, - 6, 7, 8, 9, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7, 8, 9, 10, 11, - 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7, - 8, 9, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, - 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7, 8, 9, 10, 11, - 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, - 6, 7, 8, 9, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 6, 7, - 8, 9, 10, 11, 12, 13, 0xFF, 0xFF, 14, 15, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 4, 5, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 14, 15, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 4, 5, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 6, 7, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 6, 7, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 4, 5, 6, 7, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 6, 7, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 4, 5, 6, 7, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 8, 9, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 8, 9, 14, 15, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 8, 9, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 8, 9, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 8, 9, 14, 15, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, - 8, 9, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 4, 5, 8, 9, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 8, 9, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 8, 9, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 6, 7, 8, 9, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7, 8, 9, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 6, 7, 8, 9, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 4, 5, 6, 7, 8, 9, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 6, 7, 8, 9, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, - 6, 7, 8, 9, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 10, 11, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 10, 11, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 10, 11, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 4, 5, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 10, 11, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 4, 5, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 6, 7, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7, 10, 11, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7, - 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 6, 7, 10, 11, 14, 15, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7, 10, 11, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, - 6, 7, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 4, 5, 6, 7, 10, 11, 14, 15, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 6, 7, - 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 8, 9, 10, 11, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 8, 9, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 8, 9, 10, 11, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 8, 9, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 4, 5, 8, 9, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 8, 9, 10, 11, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, - 8, 9, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 4, 5, 8, 9, 10, 11, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 8, 9, 10, 11, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7, - 8, 9, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 6, 7, 8, 9, 10, 11, 14, 15, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 6, 7, 8, 9, - 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7, - 8, 9, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 6, 7, 8, 9, - 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 0xFF, 0xFF, - 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 12, 13, 14, 15, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 12, 13, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 12, 13, 14, 15, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, - 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 4, 5, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 12, 13, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 12, 13, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 6, 7, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7, 12, 13, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 6, 7, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 4, 5, 6, 7, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 6, 7, 12, 13, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, - 6, 7, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 8, 9, 12, 13, 14, 15, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 8, 9, - 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 8, 9, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 8, 9, 12, 13, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 8, 9, - 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 4, 5, 8, 9, 12, 13, 14, 15, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 8, 9, 12, 13, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 4, 5, 8, 9, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 6, 7, 8, 9, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7, 8, 9, 12, 13, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7, - 8, 9, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 6, 7, 8, 9, 12, 13, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7, 8, 9, 12, 13, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, - 6, 7, 8, 9, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 6, 7, - 8, 9, 12, 13, 14, 15, 0xFF, 0xFF, 10, 11, 12, 13, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 10, 11, 12, 13, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 4, 5, 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 10, 11, 12, 13, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, - 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 4, 5, 10, 11, 12, 13, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 10, 11, 12, 13, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7, - 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 6, 7, 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 6, 7, 10, 11, - 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7, - 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 6, 7, 10, 11, - 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, - 8, 9, 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 8, 9, 10, 11, 12, 13, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 8, 9, - 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 2, 3, 8, 9, 10, 11, 12, 13, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 8, 9, 10, 11, 12, 13, - 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, - 8, 9, 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, - 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 8, 9, - 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 6, 7, 8, 9, - 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0, 1, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7, 8, 9, 10, 11, - 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, - 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, - 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, - 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 6, 7, 8, 9, - 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 2, 3, 4, 5, - 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, - 12, 13, 14, 15}; - -/** - * From Schlegel et al., Fast Sorted-Set Intersection using SIMD Instructions - * Optimized by D. Lemire on May 3rd 2013 - */ -int32_t intersect_vector16(const uint16_t *__restrict__ A, size_t s_a, - const uint16_t *__restrict__ B, size_t s_b, - uint16_t *C) { - size_t count = 0; - size_t i_a = 0, i_b = 0; - const int vectorlength = sizeof(__m128i) / sizeof(uint16_t); - const size_t st_a = (s_a / vectorlength) * vectorlength; - const size_t st_b = (s_b / vectorlength) * vectorlength; - __m128i v_a, v_b; - if ((i_a < st_a) && (i_b < st_b)) { - v_a = _mm_lddqu_si128((__m128i *)&A[i_a]); - v_b = _mm_lddqu_si128((__m128i *)&B[i_b]); - while ((A[i_a] == 0) || (B[i_b] == 0)) { - const __m128i res_v = _mm_cmpestrm( - v_b, vectorlength, v_a, vectorlength, - _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK); - const int r = _mm_extract_epi32(res_v, 0); - __m128i sm16 = _mm_load_si128((const __m128i *)shuffle_mask16 + r); - __m128i p = _mm_shuffle_epi8(v_a, sm16); - _mm_storeu_si128((__m128i *)&C[count], p); // can overflow - count += _mm_popcnt_u32(r); - const uint16_t a_max = A[i_a + vectorlength - 1]; - const uint16_t b_max = B[i_b + vectorlength - 1]; - if (a_max <= b_max) { - i_a += vectorlength; - if (i_a == st_a) break; - v_a = _mm_lddqu_si128((__m128i *)&A[i_a]); - } - if (b_max <= a_max) { - i_b += vectorlength; - if (i_b == st_b) break; - v_b = _mm_lddqu_si128((__m128i *)&B[i_b]); - } - } - if ((i_a < st_a) && (i_b < st_b)) - while (true) { - const __m128i res_v = _mm_cmpistrm( - v_b, v_a, - _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK); - const int r = _mm_extract_epi32(res_v, 0); - __m128i sm16 = - _mm_load_si128((const __m128i *)shuffle_mask16 + r); - __m128i p = _mm_shuffle_epi8(v_a, sm16); - _mm_storeu_si128((__m128i *)&C[count], p); // can overflow - count += _mm_popcnt_u32(r); - const uint16_t a_max = A[i_a + vectorlength - 1]; - const uint16_t b_max = B[i_b + vectorlength - 1]; - if (a_max <= b_max) { - i_a += vectorlength; - if (i_a == st_a) break; - v_a = _mm_lddqu_si128((__m128i *)&A[i_a]); - } - if (b_max <= a_max) { - i_b += vectorlength; - if (i_b == st_b) break; - v_b = _mm_lddqu_si128((__m128i *)&B[i_b]); - } - } - } - // intersect the tail using scalar intersection - while (i_a < s_a && i_b < s_b) { - uint16_t a = A[i_a]; - uint16_t b = B[i_b]; - if (a < b) { - i_a++; - } else if (b < a) { - i_b++; - } else { - C[count] = a; //==b; - count++; - i_a++; - i_b++; - } - } - return (int32_t)count; -} - -int32_t intersect_vector16_cardinality(const uint16_t *__restrict__ A, - size_t s_a, - const uint16_t *__restrict__ B, - size_t s_b) { - size_t count = 0; - size_t i_a = 0, i_b = 0; - const int vectorlength = sizeof(__m128i) / sizeof(uint16_t); - const size_t st_a = (s_a / vectorlength) * vectorlength; - const size_t st_b = (s_b / vectorlength) * vectorlength; - __m128i v_a, v_b; - if ((i_a < st_a) && (i_b < st_b)) { - v_a = _mm_lddqu_si128((__m128i *)&A[i_a]); - v_b = _mm_lddqu_si128((__m128i *)&B[i_b]); - while ((A[i_a] == 0) || (B[i_b] == 0)) { - const __m128i res_v = _mm_cmpestrm( - v_b, vectorlength, v_a, vectorlength, - _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK); - const int r = _mm_extract_epi32(res_v, 0); - count += _mm_popcnt_u32(r); - const uint16_t a_max = A[i_a + vectorlength - 1]; - const uint16_t b_max = B[i_b + vectorlength - 1]; - if (a_max <= b_max) { - i_a += vectorlength; - if (i_a == st_a) break; - v_a = _mm_lddqu_si128((__m128i *)&A[i_a]); - } - if (b_max <= a_max) { - i_b += vectorlength; - if (i_b == st_b) break; - v_b = _mm_lddqu_si128((__m128i *)&B[i_b]); - } - } - if ((i_a < st_a) && (i_b < st_b)) - while (true) { - const __m128i res_v = _mm_cmpistrm( - v_b, v_a, - _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK); - const int r = _mm_extract_epi32(res_v, 0); - count += _mm_popcnt_u32(r); - const uint16_t a_max = A[i_a + vectorlength - 1]; - const uint16_t b_max = B[i_b + vectorlength - 1]; - if (a_max <= b_max) { - i_a += vectorlength; - if (i_a == st_a) break; - v_a = _mm_lddqu_si128((__m128i *)&A[i_a]); - } - if (b_max <= a_max) { - i_b += vectorlength; - if (i_b == st_b) break; - v_b = _mm_lddqu_si128((__m128i *)&B[i_b]); - } - } - } - // intersect the tail using scalar intersection - while (i_a < s_a && i_b < s_b) { - uint16_t a = A[i_a]; - uint16_t b = B[i_b]; - if (a < b) { - i_a++; - } else if (b < a) { - i_b++; - } else { - count++; - i_a++; - i_b++; - } - } - return (int32_t)count; -} - -int32_t difference_vector16(const uint16_t *__restrict__ A, size_t s_a, - const uint16_t *__restrict__ B, size_t s_b, - uint16_t *C) { - // we handle the degenerate case - if (s_a == 0) return 0; - if (s_b == 0) { - if (A != C) memcpy(C, A, sizeof(uint16_t) * s_a); - return (int32_t)s_a; - } - // handle the leading zeroes, it is messy but it allows us to use the fast - // _mm_cmpistrm instrinsic safely - int32_t count = 0; - if ((A[0] == 0) || (B[0] == 0)) { - if ((A[0] == 0) && (B[0] == 0)) { - A++; - s_a--; - B++; - s_b--; - } else if (A[0] == 0) { - C[count++] = 0; - A++; - s_a--; - } else { - B++; - s_b--; - } - } - // at this point, we have two non-empty arrays, made of non-zero - // increasing values. - size_t i_a = 0, i_b = 0; - const size_t vectorlength = sizeof(__m128i) / sizeof(uint16_t); - const size_t st_a = (s_a / vectorlength) * vectorlength; - const size_t st_b = (s_b / vectorlength) * vectorlength; - if ((i_a < st_a) && (i_b < st_b)) { // this is the vectorized code path - __m128i v_a, v_b; //, v_bmax; - // we load a vector from A and a vector from B - v_a = _mm_lddqu_si128((__m128i *)&A[i_a]); - v_b = _mm_lddqu_si128((__m128i *)&B[i_b]); - // we have a runningmask which indicates which values from A have been - // spotted in B, these don't get written out. - __m128i runningmask_a_found_in_b = _mm_setzero_si128(); - /**** - * start of the main vectorized loop - *****/ - while (true) { - // afoundinb will contain a mask indicate for each entry in A - // whether it is seen - // in B - const __m128i a_found_in_b = - _mm_cmpistrm(v_b, v_a, _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | - _SIDD_BIT_MASK); - runningmask_a_found_in_b = - _mm_or_si128(runningmask_a_found_in_b, a_found_in_b); - // we always compare the last values of A and B - const uint16_t a_max = A[i_a + vectorlength - 1]; - const uint16_t b_max = B[i_b + vectorlength - 1]; - if (a_max <= b_max) { - // Ok. In this code path, we are ready to write our v_a - // because there is no need to read more from B, they will - // all be large values. - const int bitmask_belongs_to_difference = - _mm_extract_epi32(runningmask_a_found_in_b, 0) ^ 0xFF; - /*** next few lines are probably expensive *****/ - __m128i sm16 = _mm_load_si128((const __m128i *)shuffle_mask16 + - bitmask_belongs_to_difference); - __m128i p = _mm_shuffle_epi8(v_a, sm16); - _mm_storeu_si128((__m128i *)&C[count], p); // can overflow - count += _mm_popcnt_u32(bitmask_belongs_to_difference); - // we advance a - i_a += vectorlength; - if (i_a == st_a) // no more - break; - runningmask_a_found_in_b = _mm_setzero_si128(); - v_a = _mm_lddqu_si128((__m128i *)&A[i_a]); - } - if (b_max <= a_max) { - // in this code path, the current v_b has become useless - i_b += vectorlength; - if (i_b == st_b) break; - v_b = _mm_lddqu_si128((__m128i *)&B[i_b]); - } - } - // at this point, either we have i_a == st_a, which is the end of the - // vectorized processing, - // or we have i_b == st_b, and we are not done processing the vector... - // so we need to finish it off. - if (i_a < st_a) { // we have unfinished business... - uint16_t buffer[8]; // buffer to do a masked load - memset(buffer, 0, 8 * sizeof(uint16_t)); - memcpy(buffer, B + i_b, (s_b - i_b) * sizeof(uint16_t)); - v_b = _mm_lddqu_si128((__m128i *)buffer); - const __m128i a_found_in_b = - _mm_cmpistrm(v_b, v_a, _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | - _SIDD_BIT_MASK); - runningmask_a_found_in_b = - _mm_or_si128(runningmask_a_found_in_b, a_found_in_b); - const int bitmask_belongs_to_difference = - _mm_extract_epi32(runningmask_a_found_in_b, 0) ^ 0xFF; - __m128i sm16 = _mm_load_si128((const __m128i *)shuffle_mask16 + - bitmask_belongs_to_difference); - __m128i p = _mm_shuffle_epi8(v_a, sm16); - _mm_storeu_si128((__m128i *)&C[count], p); // can overflow - count += _mm_popcnt_u32(bitmask_belongs_to_difference); - i_a += vectorlength; - } - // at this point we should have i_a == st_a and i_b == st_b - } - // do the tail using scalar code - while (i_a < s_a && i_b < s_b) { - uint16_t a = A[i_a]; - uint16_t b = B[i_b]; - if (b < a) { - i_b++; - } else if (a < b) { - C[count] = a; - count++; - i_a++; - } else { //== - i_a++; - i_b++; - } - } - if (i_a < s_a) { - memmove(C + count, A + i_a, sizeof(uint16_t) * (s_a - i_a)); - count += (int32_t)(s_a - i_a); - } - return count; -} - -#endif // USESSE4 - - - -#ifdef USE_OLD_SKEW_INTERSECT -// TODO: given enough experience with the new skew intersect, drop the old one from the code base. - - -/* Computes the intersection between one small and one large set of uint16_t. - * Stores the result into buffer and return the number of elements. */ -int32_t intersect_skewed_uint16(const uint16_t *small, size_t size_s, - const uint16_t *large, size_t size_l, - uint16_t *buffer) { - size_t pos = 0, idx_l = 0, idx_s = 0; - - if (0 == size_s) { - return 0; - } - - uint16_t val_l = large[idx_l], val_s = small[idx_s]; - - while (true) { - if (val_l < val_s) { - idx_l = advanceUntil(large, (int32_t)idx_l, (int32_t)size_l, val_s); - if (idx_l == size_l) break; - val_l = large[idx_l]; - } else if (val_s < val_l) { - idx_s++; - if (idx_s == size_s) break; - val_s = small[idx_s]; - } else { - buffer[pos++] = val_s; - idx_s++; - if (idx_s == size_s) break; - val_s = small[idx_s]; - idx_l = advanceUntil(large, (int32_t)idx_l, (int32_t)size_l, val_s); - if (idx_l == size_l) break; - val_l = large[idx_l]; - } - } - - return (int32_t)pos; -} -#else // USE_OLD_SKEW_INTERSECT - - -/** -* Branchless binary search going after 4 values at once. -* Assumes that array is sorted. -* You have that array[*index1] >= target1, array[*index12] >= target2, ... -* except when *index1 = n, in which case you know that all values in array are -* smaller than target1, and so forth. -* It has logarithmic complexity. -*/ -static void binarySearch4(const uint16_t *array, int32_t n, uint16_t target1, - uint16_t target2, uint16_t target3, uint16_t target4, - int32_t *index1, int32_t *index2, int32_t *index3, - int32_t *index4) { - const uint16_t *base1 = array; - const uint16_t *base2 = array; - const uint16_t *base3 = array; - const uint16_t *base4 = array; - if (n == 0) - return; - while (n > 1) { - int32_t half = n >> 1; - base1 = (base1[half] < target1) ? &base1[half] : base1; - base2 = (base2[half] < target2) ? &base2[half] : base2; - base3 = (base3[half] < target3) ? &base3[half] : base3; - base4 = (base4[half] < target4) ? &base4[half] : base4; - n -= half; - } - *index1 = (int32_t)((*base1 < target1) + base1 - array); - *index2 = (int32_t)((*base2 < target2) + base2 - array); - *index3 = (int32_t)((*base3 < target3) + base3 - array); - *index4 = (int32_t)((*base4 < target4) + base4 - array); -} - -/** -* Branchless binary search going after 2 values at once. -* Assumes that array is sorted. -* You have that array[*index1] >= target1, array[*index12] >= target2. -* except when *index1 = n, in which case you know that all values in array are -* smaller than target1, and so forth. -* It has logarithmic complexity. -*/ -static void binarySearch2(const uint16_t *array, int32_t n, uint16_t target1, - uint16_t target2, int32_t *index1, int32_t *index2) { - const uint16_t *base1 = array; - const uint16_t *base2 = array; - if (n == 0) - return; - while (n > 1) { - int32_t half = n >> 1; - base1 = (base1[half] < target1) ? &base1[half] : base1; - base2 = (base2[half] < target2) ? &base2[half] : base2; - n -= half; - } - *index1 = (int32_t)((*base1 < target1) + base1 - array); - *index2 = (int32_t)((*base2 < target2) + base2 - array); -} - -/* Computes the intersection between one small and one large set of uint16_t. - * Stores the result into buffer and return the number of elements. - * Processes the small set in blocks of 4 values calling binarySearch4 - * and binarySearch2. This approach can be slightly superior to a conventional - * galloping search in some instances. - */ -int32_t intersect_skewed_uint16(const uint16_t *small, size_t size_s, - const uint16_t *large, size_t size_l, - uint16_t *buffer) { - size_t pos = 0, idx_l = 0, idx_s = 0; - - if (0 == size_s) { - return 0; - } - int32_t index1 = 0, index2 = 0, index3 = 0, index4 = 0; - while ((idx_s + 4 <= size_s) && (idx_l < size_l)) { - uint16_t target1 = small[idx_s]; - uint16_t target2 = small[idx_s + 1]; - uint16_t target3 = small[idx_s + 2]; - uint16_t target4 = small[idx_s + 3]; - binarySearch4(large + idx_l, (int32_t)(size_l - idx_l), target1, target2, target3, - target4, &index1, &index2, &index3, &index4); - if ((index1 + idx_l < size_l) && (large[idx_l + index1] == target1)) { - buffer[pos++] = target1; - } - if ((index2 + idx_l < size_l) && (large[idx_l + index2] == target2)) { - buffer[pos++] = target2; - } - if ((index3 + idx_l < size_l) && (large[idx_l + index3] == target3)) { - buffer[pos++] = target3; - } - if ((index4 + idx_l < size_l) && (large[idx_l + index4] == target4)) { - buffer[pos++] = target4; - } - idx_s += 4; - idx_l += index1; - } - if ((idx_s + 2 <= size_s) && (idx_l < size_l)) { - uint16_t target1 = small[idx_s]; - uint16_t target2 = small[idx_s + 1]; - binarySearch2(large + idx_l, (int32_t)(size_l - idx_l), target1, target2, &index1, - &index2); - if ((index1 + idx_l < size_l) && (large[idx_l + index1] == target1)) { - buffer[pos++] = target1; - } - if ((index2 + idx_l < size_l) && (large[idx_l + index2] == target2)) { - buffer[pos++] = target2; - } - idx_s += 2; - idx_l += index1; - } - if ((idx_s < size_s) && (idx_l < size_l)) { - uint16_t val_s = small[idx_s]; - int32_t index = binarySearch(large + idx_l, (int32_t)(size_l - idx_l), val_s); - if (index >= 0) - buffer[pos++] = val_s; - } - return (int32_t)pos; -} - - -#endif //USE_OLD_SKEW_INTERSECT - - -// TODO: this could be accelerated, possibly, by using binarySearch4 as above. -int32_t intersect_skewed_uint16_cardinality(const uint16_t *small, - size_t size_s, - const uint16_t *large, - size_t size_l) { - size_t pos = 0, idx_l = 0, idx_s = 0; - - if (0 == size_s) { - return 0; - } - - uint16_t val_l = large[idx_l], val_s = small[idx_s]; - - while (true) { - if (val_l < val_s) { - idx_l = advanceUntil(large, (int32_t)idx_l, (int32_t)size_l, val_s); - if (idx_l == size_l) break; - val_l = large[idx_l]; - } else if (val_s < val_l) { - idx_s++; - if (idx_s == size_s) break; - val_s = small[idx_s]; - } else { - pos++; - idx_s++; - if (idx_s == size_s) break; - val_s = small[idx_s]; - idx_l = advanceUntil(large, (int32_t)idx_l, (int32_t)size_l, val_s); - if (idx_l == size_l) break; - val_l = large[idx_l]; - } - } - - return (int32_t)pos; -} - -bool intersect_skewed_uint16_nonempty(const uint16_t *small, size_t size_s, - const uint16_t *large, size_t size_l) { - size_t idx_l = 0, idx_s = 0; - - if (0 == size_s) { - return false; - } - - uint16_t val_l = large[idx_l], val_s = small[idx_s]; - - while (true) { - if (val_l < val_s) { - idx_l = advanceUntil(large, (int32_t)idx_l, (int32_t)size_l, val_s); - if (idx_l == size_l) break; - val_l = large[idx_l]; - } else if (val_s < val_l) { - idx_s++; - if (idx_s == size_s) break; - val_s = small[idx_s]; - } else { - return true; - } - } - - return false; -} - -/** - * Generic intersection function. - */ -int32_t intersect_uint16(const uint16_t *A, const size_t lenA, - const uint16_t *B, const size_t lenB, uint16_t *out) { - const uint16_t *initout = out; - if (lenA == 0 || lenB == 0) return 0; - const uint16_t *endA = A + lenA; - const uint16_t *endB = B + lenB; - - while (1) { - while (*A < *B) { - SKIP_FIRST_COMPARE: - if (++A == endA) return (int32_t)(out - initout); - } - while (*A > *B) { - if (++B == endB) return (int32_t)(out - initout); - } - if (*A == *B) { - *out++ = *A; - if (++A == endA || ++B == endB) return (int32_t)(out - initout); - } else { - goto SKIP_FIRST_COMPARE; - } - } - return (int32_t)(out - initout); // NOTREACHED -} - -int32_t intersect_uint16_cardinality(const uint16_t *A, const size_t lenA, - const uint16_t *B, const size_t lenB) { - int32_t answer = 0; - if (lenA == 0 || lenB == 0) return 0; - const uint16_t *endA = A + lenA; - const uint16_t *endB = B + lenB; - - while (1) { - while (*A < *B) { - SKIP_FIRST_COMPARE: - if (++A == endA) return answer; - } - while (*A > *B) { - if (++B == endB) return answer; - } - if (*A == *B) { - ++answer; - if (++A == endA || ++B == endB) return answer; - } else { - goto SKIP_FIRST_COMPARE; - } - } - return answer; // NOTREACHED -} - - -bool intersect_uint16_nonempty(const uint16_t *A, const size_t lenA, - const uint16_t *B, const size_t lenB) { - if (lenA == 0 || lenB == 0) return 0; - const uint16_t *endA = A + lenA; - const uint16_t *endB = B + lenB; - - while (1) { - while (*A < *B) { - SKIP_FIRST_COMPARE: - if (++A == endA) return false; - } - while (*A > *B) { - if (++B == endB) return false; - } - if (*A == *B) { - return true; - } else { - goto SKIP_FIRST_COMPARE; - } - } - return false; // NOTREACHED -} - - - -/** - * Generic intersection function. - */ -size_t intersection_uint32(const uint32_t *A, const size_t lenA, - const uint32_t *B, const size_t lenB, - uint32_t *out) { - const uint32_t *initout = out; - if (lenA == 0 || lenB == 0) return 0; - const uint32_t *endA = A + lenA; - const uint32_t *endB = B + lenB; - - while (1) { - while (*A < *B) { - SKIP_FIRST_COMPARE: - if (++A == endA) return (out - initout); - } - while (*A > *B) { - if (++B == endB) return (out - initout); - } - if (*A == *B) { - *out++ = *A; - if (++A == endA || ++B == endB) return (out - initout); - } else { - goto SKIP_FIRST_COMPARE; - } - } - return (out - initout); // NOTREACHED -} - -size_t intersection_uint32_card(const uint32_t *A, const size_t lenA, - const uint32_t *B, const size_t lenB) { - if (lenA == 0 || lenB == 0) return 0; - size_t card = 0; - const uint32_t *endA = A + lenA; - const uint32_t *endB = B + lenB; - - while (1) { - while (*A < *B) { - SKIP_FIRST_COMPARE: - if (++A == endA) return card; - } - while (*A > *B) { - if (++B == endB) return card; - } - if (*A == *B) { - card++; - if (++A == endA || ++B == endB) return card; - } else { - goto SKIP_FIRST_COMPARE; - } - } - return card; // NOTREACHED -} - -// can one vectorize the computation of the union? (Update: Yes! See -// union_vector16). - -size_t union_uint16(const uint16_t *set_1, size_t size_1, const uint16_t *set_2, - size_t size_2, uint16_t *buffer) { - size_t pos = 0, idx_1 = 0, idx_2 = 0; - - if (0 == size_2) { - memmove(buffer, set_1, size_1 * sizeof(uint16_t)); - return size_1; - } - if (0 == size_1) { - memmove(buffer, set_2, size_2 * sizeof(uint16_t)); - return size_2; - } - - uint16_t val_1 = set_1[idx_1], val_2 = set_2[idx_2]; - - while (true) { - if (val_1 < val_2) { - buffer[pos++] = val_1; - ++idx_1; - if (idx_1 >= size_1) break; - val_1 = set_1[idx_1]; - } else if (val_2 < val_1) { - buffer[pos++] = val_2; - ++idx_2; - if (idx_2 >= size_2) break; - val_2 = set_2[idx_2]; - } else { - buffer[pos++] = val_1; - ++idx_1; - ++idx_2; - if (idx_1 >= size_1 || idx_2 >= size_2) break; - val_1 = set_1[idx_1]; - val_2 = set_2[idx_2]; - } - } - - if (idx_1 < size_1) { - const size_t n_elems = size_1 - idx_1; - memmove(buffer + pos, set_1 + idx_1, n_elems * sizeof(uint16_t)); - pos += n_elems; - } else if (idx_2 < size_2) { - const size_t n_elems = size_2 - idx_2; - memmove(buffer + pos, set_2 + idx_2, n_elems * sizeof(uint16_t)); - pos += n_elems; - } - - return pos; -} - -int difference_uint16(const uint16_t *a1, int length1, const uint16_t *a2, - int length2, uint16_t *a_out) { - int out_card = 0; - int k1 = 0, k2 = 0; - if (length1 == 0) return 0; - if (length2 == 0) { - if (a1 != a_out) memcpy(a_out, a1, sizeof(uint16_t) * length1); - return length1; - } - uint16_t s1 = a1[k1]; - uint16_t s2 = a2[k2]; - while (true) { - if (s1 < s2) { - a_out[out_card++] = s1; - ++k1; - if (k1 >= length1) { - break; - } - s1 = a1[k1]; - } else if (s1 == s2) { - ++k1; - ++k2; - if (k1 >= length1) { - break; - } - if (k2 >= length2) { - memmove(a_out + out_card, a1 + k1, - sizeof(uint16_t) * (length1 - k1)); - return out_card + length1 - k1; - } - s1 = a1[k1]; - s2 = a2[k2]; - } else { // if (val1>val2) - ++k2; - if (k2 >= length2) { - memmove(a_out + out_card, a1 + k1, - sizeof(uint16_t) * (length1 - k1)); - return out_card + length1 - k1; - } - s2 = a2[k2]; - } - } - return out_card; -} - -int32_t xor_uint16(const uint16_t *array_1, int32_t card_1, - const uint16_t *array_2, int32_t card_2, uint16_t *out) { - int32_t pos1 = 0, pos2 = 0, pos_out = 0; - while (pos1 < card_1 && pos2 < card_2) { - const uint16_t v1 = array_1[pos1]; - const uint16_t v2 = array_2[pos2]; - if (v1 == v2) { - ++pos1; - ++pos2; - continue; - } - if (v1 < v2) { - out[pos_out++] = v1; - ++pos1; - } else { - out[pos_out++] = v2; - ++pos2; - } - } - if (pos1 < card_1) { - const size_t n_elems = card_1 - pos1; - memcpy(out + pos_out, array_1 + pos1, n_elems * sizeof(uint16_t)); - pos_out += (int32_t)n_elems; - } else if (pos2 < card_2) { - const size_t n_elems = card_2 - pos2; - memcpy(out + pos_out, array_2 + pos2, n_elems * sizeof(uint16_t)); - pos_out += (int32_t)n_elems; - } - return pos_out; -} - -#ifdef USESSE4 - -/*** - * start of the SIMD 16-bit union code - * - */ - -// Assuming that vInput1 and vInput2 are sorted, produces a sorted output going -// from vecMin all the way to vecMax -// developed originally for merge sort using SIMD instructions. -// Standard merge. See, e.g., Inoue and Taura, SIMD- and Cache-Friendly -// Algorithm for Sorting an Array of Structures -static inline void sse_merge(const __m128i *vInput1, - const __m128i *vInput2, // input 1 & 2 - __m128i *vecMin, __m128i *vecMax) { // output - __m128i vecTmp; - vecTmp = _mm_min_epu16(*vInput1, *vInput2); - *vecMax = _mm_max_epu16(*vInput1, *vInput2); - vecTmp = _mm_alignr_epi8(vecTmp, vecTmp, 2); - *vecMin = _mm_min_epu16(vecTmp, *vecMax); - *vecMax = _mm_max_epu16(vecTmp, *vecMax); - vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2); - *vecMin = _mm_min_epu16(vecTmp, *vecMax); - *vecMax = _mm_max_epu16(vecTmp, *vecMax); - vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2); - *vecMin = _mm_min_epu16(vecTmp, *vecMax); - *vecMax = _mm_max_epu16(vecTmp, *vecMax); - vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2); - *vecMin = _mm_min_epu16(vecTmp, *vecMax); - *vecMax = _mm_max_epu16(vecTmp, *vecMax); - vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2); - *vecMin = _mm_min_epu16(vecTmp, *vecMax); - *vecMax = _mm_max_epu16(vecTmp, *vecMax); - vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2); - *vecMin = _mm_min_epu16(vecTmp, *vecMax); - *vecMax = _mm_max_epu16(vecTmp, *vecMax); - vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2); - *vecMin = _mm_min_epu16(vecTmp, *vecMax); - *vecMax = _mm_max_epu16(vecTmp, *vecMax); - *vecMin = _mm_alignr_epi8(*vecMin, *vecMin, 2); -} - -// used by store_unique, generated by simdunion.py -static uint8_t uniqshuf[] = { - 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, - 0xc, 0xd, 0xe, 0xf, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, - 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, - 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, - 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, - 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7, - 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, - 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, - 0x2, 0x3, 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, - 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x8, 0x9, - 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x8, 0x9, - 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, - 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, - 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, - 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0x2, 0x3, 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0xa, 0xb, - 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0xa, 0xb, 0xc, 0xd, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, - 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x4, 0x5, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0xa, 0xb, 0xc, 0xd, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0xa, 0xb, - 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, - 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, - 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7, - 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7, - 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x8, 0x9, - 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, - 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x4, 0x5, 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x2, 0x3, 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x8, 0x9, 0xc, 0xd, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xc, 0xd, 0xe, 0xf, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xc, 0xd, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, - 0x6, 0x7, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x4, 0x5, 0x6, 0x7, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0xc, 0xd, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7, - 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x6, 0x7, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0x4, 0x5, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x2, 0x3, 0x4, 0x5, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0xc, 0xd, 0xe, 0xf, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0xc, 0xd, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0xc, 0xd, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, - 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, - 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, - 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0x8, 0x9, - 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, - 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x8, 0x9, 0xa, 0xb, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x8, 0x9, - 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7, - 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7, 0xa, 0xb, 0xe, 0xf, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7, - 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x6, 0x7, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0xa, 0xb, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, - 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x4, 0x5, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x2, 0x3, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xa, 0xb, 0xe, 0xf, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xe, 0xf, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, - 0x6, 0x7, 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7, - 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x6, 0x7, 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0x4, 0x5, 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x2, 0x3, 0x4, 0x5, 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0x8, 0x9, 0xe, 0xf, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x8, 0x9, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x8, 0x9, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, - 0x6, 0x7, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7, 0xe, 0xf, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0x6, 0x7, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x2, 0x3, 0x6, 0x7, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7, 0xe, 0xf, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0xe, 0xf, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0xe, 0xf, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, - 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x4, 0x5, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0xe, 0xf, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0xe, 0xf, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, - 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, - 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7, - 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, - 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7, - 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x8, 0x9, - 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, - 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x2, 0x3, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x8, 0x9, 0xa, 0xb, - 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, - 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, - 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0xa, 0xb, - 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7, - 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0x4, 0x5, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x2, 0x3, 0x4, 0x5, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0xa, 0xb, 0xc, 0xd, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0xa, 0xb, - 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0xa, 0xb, - 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, - 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, - 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0x8, 0x9, - 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0x8, 0x9, 0xc, 0xd, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, - 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x4, 0x5, 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x8, 0x9, 0xc, 0xd, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x8, 0x9, - 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0x4, 0x5, 0x6, 0x7, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0xc, 0xd, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7, - 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7, 0xc, 0xd, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7, - 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x6, 0x7, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0xc, 0xd, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, - 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x4, 0x5, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x2, 0x3, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xc, 0xd, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, - 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, - 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, - 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7, - 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x2, 0x3, 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x8, 0x9, - 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x8, 0x9, - 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, - 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, - 0x6, 0x7, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0x6, 0x7, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x2, 0x3, 0x6, 0x7, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7, 0xa, 0xb, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0xa, 0xb, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0xa, 0xb, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, - 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x4, 0x5, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0xa, 0xb, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0xa, 0xb, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7, - 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7, - 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x6, 0x7, 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x8, 0x9, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, - 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x4, 0x5, 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x2, 0x3, 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x8, 0x9, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, - 0x6, 0x7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x4, 0x5, 0x6, 0x7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x6, 0x7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, - 0x4, 0x5, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x2, 0x3, 0x4, 0x5, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0x0, 0x1, 0x2, 0x3, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF}; - -// write vector new, while omitting repeated values assuming that previously -// written vector was "old" -static inline int store_unique(__m128i old, __m128i newval, uint16_t *output) { - __m128i vecTmp = _mm_alignr_epi8(newval, old, 16 - 2); - // lots of high latency instructions follow (optimize?) - int M = _mm_movemask_epi8( - _mm_packs_epi16(_mm_cmpeq_epi16(vecTmp, newval), _mm_setzero_si128())); - int numberofnewvalues = 8 - _mm_popcnt_u32(M); - __m128i key = _mm_lddqu_si128((const __m128i *)uniqshuf + M); - __m128i val = _mm_shuffle_epi8(newval, key); - _mm_storeu_si128((__m128i *)output, val); - return numberofnewvalues; -} - -// working in-place, this function overwrites the repeated values -// could be avoided? -static inline uint32_t unique(uint16_t *out, uint32_t len) { - uint32_t pos = 1; - for (uint32_t i = 1; i < len; ++i) { - if (out[i] != out[i - 1]) { - out[pos++] = out[i]; - } - } - return pos; -} - -// use with qsort, could be avoided -static int uint16_compare(const void *a, const void *b) { - return (*(uint16_t *)a - *(uint16_t *)b); -} - -// a one-pass SSE union algorithm -uint32_t union_vector16(const uint16_t *__restrict__ array1, uint32_t length1, - const uint16_t *__restrict__ array2, uint32_t length2, - uint16_t *__restrict__ output) { - if ((length1 < 8) || (length2 < 8)) { - return (uint32_t)union_uint16(array1, length1, array2, length2, output); - } - __m128i vA, vB, V, vecMin, vecMax; - __m128i laststore; - uint16_t *initoutput = output; - uint32_t len1 = length1 / 8; - uint32_t len2 = length2 / 8; - uint32_t pos1 = 0; - uint32_t pos2 = 0; - // we start the machine - vA = _mm_lddqu_si128((const __m128i *)array1 + pos1); - pos1++; - vB = _mm_lddqu_si128((const __m128i *)array2 + pos2); - pos2++; - sse_merge(&vA, &vB, &vecMin, &vecMax); - laststore = _mm_set1_epi16(-1); - output += store_unique(laststore, vecMin, output); - laststore = vecMin; - if ((pos1 < len1) && (pos2 < len2)) { - uint16_t curA, curB; - curA = array1[8 * pos1]; - curB = array2[8 * pos2]; - while (true) { - if (curA <= curB) { - V = _mm_lddqu_si128((const __m128i *)array1 + pos1); - pos1++; - if (pos1 < len1) { - curA = array1[8 * pos1]; - } else { - break; - } - } else { - V = _mm_lddqu_si128((const __m128i *)array2 + pos2); - pos2++; - if (pos2 < len2) { - curB = array2[8 * pos2]; - } else { - break; - } - } - sse_merge(&V, &vecMax, &vecMin, &vecMax); - output += store_unique(laststore, vecMin, output); - laststore = vecMin; - } - sse_merge(&V, &vecMax, &vecMin, &vecMax); - output += store_unique(laststore, vecMin, output); - laststore = vecMin; - } - // we finish the rest off using a scalar algorithm - // could be improved? - // - // copy the small end on a tmp buffer - uint32_t len = (uint32_t)(output - initoutput); - uint16_t buffer[16]; - uint32_t leftoversize = store_unique(laststore, vecMax, buffer); - if (pos1 == len1) { - memcpy(buffer + leftoversize, array1 + 8 * pos1, - (length1 - 8 * len1) * sizeof(uint16_t)); - leftoversize += length1 - 8 * len1; - qsort(buffer, leftoversize, sizeof(uint16_t), uint16_compare); - - leftoversize = unique(buffer, leftoversize); - len += (uint32_t)union_uint16(buffer, leftoversize, array2 + 8 * pos2, - length2 - 8 * pos2, output); - } else { - memcpy(buffer + leftoversize, array2 + 8 * pos2, - (length2 - 8 * len2) * sizeof(uint16_t)); - leftoversize += length2 - 8 * len2; - qsort(buffer, leftoversize, sizeof(uint16_t), uint16_compare); - leftoversize = unique(buffer, leftoversize); - len += (uint32_t)union_uint16(buffer, leftoversize, array1 + 8 * pos1, - length1 - 8 * pos1, output); - } - return len; -} - -/** - * End of the SIMD 16-bit union code - * - */ - -/** - * Start of SIMD 16-bit XOR code - */ - -// write vector new, while omitting repeated values assuming that previously -// written vector was "old" -static inline int store_unique_xor(__m128i old, __m128i newval, - uint16_t *output) { - __m128i vecTmp1 = _mm_alignr_epi8(newval, old, 16 - 4); - __m128i vecTmp2 = _mm_alignr_epi8(newval, old, 16 - 2); - __m128i equalleft = _mm_cmpeq_epi16(vecTmp2, vecTmp1); - __m128i equalright = _mm_cmpeq_epi16(vecTmp2, newval); - __m128i equalleftoright = _mm_or_si128(equalleft, equalright); - int M = _mm_movemask_epi8( - _mm_packs_epi16(equalleftoright, _mm_setzero_si128())); - int numberofnewvalues = 8 - _mm_popcnt_u32(M); - __m128i key = _mm_lddqu_si128((const __m128i *)uniqshuf + M); - __m128i val = _mm_shuffle_epi8(vecTmp2, key); - _mm_storeu_si128((__m128i *)output, val); - return numberofnewvalues; -} - -// working in-place, this function overwrites the repeated values -// could be avoided? Warning: assumes len > 0 -static inline uint32_t unique_xor(uint16_t *out, uint32_t len) { - uint32_t pos = 1; - for (uint32_t i = 1; i < len; ++i) { - if (out[i] != out[i - 1]) { - out[pos++] = out[i]; - } else - pos--; // if it is identical to previous, delete it - } - return pos; -} - -// a one-pass SSE xor algorithm -uint32_t xor_vector16(const uint16_t *__restrict__ array1, uint32_t length1, - const uint16_t *__restrict__ array2, uint32_t length2, - uint16_t *__restrict__ output) { - if ((length1 < 8) || (length2 < 8)) { - return xor_uint16(array1, length1, array2, length2, output); - } - __m128i vA, vB, V, vecMin, vecMax; - __m128i laststore; - uint16_t *initoutput = output; - uint32_t len1 = length1 / 8; - uint32_t len2 = length2 / 8; - uint32_t pos1 = 0; - uint32_t pos2 = 0; - // we start the machine - vA = _mm_lddqu_si128((const __m128i *)array1 + pos1); - pos1++; - vB = _mm_lddqu_si128((const __m128i *)array2 + pos2); - pos2++; - sse_merge(&vA, &vB, &vecMin, &vecMax); - laststore = _mm_set1_epi16(-1); - uint16_t buffer[17]; - output += store_unique_xor(laststore, vecMin, output); - - laststore = vecMin; - if ((pos1 < len1) && (pos2 < len2)) { - uint16_t curA, curB; - curA = array1[8 * pos1]; - curB = array2[8 * pos2]; - while (true) { - if (curA <= curB) { - V = _mm_lddqu_si128((const __m128i *)array1 + pos1); - pos1++; - if (pos1 < len1) { - curA = array1[8 * pos1]; - } else { - break; - } - } else { - V = _mm_lddqu_si128((const __m128i *)array2 + pos2); - pos2++; - if (pos2 < len2) { - curB = array2[8 * pos2]; - } else { - break; - } - } - sse_merge(&V, &vecMax, &vecMin, &vecMax); - // conditionally stores the last value of laststore as well as all - // but the - // last value of vecMin - output += store_unique_xor(laststore, vecMin, output); - laststore = vecMin; - } - sse_merge(&V, &vecMax, &vecMin, &vecMax); - // conditionally stores the last value of laststore as well as all but - // the - // last value of vecMin - output += store_unique_xor(laststore, vecMin, output); - laststore = vecMin; - } - uint32_t len = (uint32_t)(output - initoutput); - - // we finish the rest off using a scalar algorithm - // could be improved? - // conditionally stores the last value of laststore as well as all but the - // last value of vecMax, - // we store to "buffer" - int leftoversize = store_unique_xor(laststore, vecMax, buffer); - uint16_t vec7 = _mm_extract_epi16(vecMax, 7); - uint16_t vec6 = _mm_extract_epi16(vecMax, 6); - if (vec7 != vec6) buffer[leftoversize++] = vec7; - if (pos1 == len1) { - memcpy(buffer + leftoversize, array1 + 8 * pos1, - (length1 - 8 * len1) * sizeof(uint16_t)); - leftoversize += length1 - 8 * len1; - if (leftoversize == 0) { // trivial case - memcpy(output, array2 + 8 * pos2, - (length2 - 8 * pos2) * sizeof(uint16_t)); - len += (length2 - 8 * pos2); - } else { - qsort(buffer, leftoversize, sizeof(uint16_t), uint16_compare); - leftoversize = unique_xor(buffer, leftoversize); - len += xor_uint16(buffer, leftoversize, array2 + 8 * pos2, - length2 - 8 * pos2, output); - } - } else { - memcpy(buffer + leftoversize, array2 + 8 * pos2, - (length2 - 8 * len2) * sizeof(uint16_t)); - leftoversize += length2 - 8 * len2; - if (leftoversize == 0) { // trivial case - memcpy(output, array1 + 8 * pos1, - (length1 - 8 * pos1) * sizeof(uint16_t)); - len += (length1 - 8 * pos1); - } else { - qsort(buffer, leftoversize, sizeof(uint16_t), uint16_compare); - leftoversize = unique_xor(buffer, leftoversize); - len += xor_uint16(buffer, leftoversize, array1 + 8 * pos1, - length1 - 8 * pos1, output); - } - } - return len; -} - -/** - * End of SIMD 16-bit XOR code - */ - -#endif // USESSE4 - -size_t union_uint32(const uint32_t *set_1, size_t size_1, const uint32_t *set_2, - size_t size_2, uint32_t *buffer) { - size_t pos = 0, idx_1 = 0, idx_2 = 0; - - if (0 == size_2) { - memmove(buffer, set_1, size_1 * sizeof(uint32_t)); - return size_1; - } - if (0 == size_1) { - memmove(buffer, set_2, size_2 * sizeof(uint32_t)); - return size_2; - } - - uint32_t val_1 = set_1[idx_1], val_2 = set_2[idx_2]; - - while (true) { - if (val_1 < val_2) { - buffer[pos++] = val_1; - ++idx_1; - if (idx_1 >= size_1) break; - val_1 = set_1[idx_1]; - } else if (val_2 < val_1) { - buffer[pos++] = val_2; - ++idx_2; - if (idx_2 >= size_2) break; - val_2 = set_2[idx_2]; - } else { - buffer[pos++] = val_1; - ++idx_1; - ++idx_2; - if (idx_1 >= size_1 || idx_2 >= size_2) break; - val_1 = set_1[idx_1]; - val_2 = set_2[idx_2]; - } - } - - if (idx_1 < size_1) { - const size_t n_elems = size_1 - idx_1; - memmove(buffer + pos, set_1 + idx_1, n_elems * sizeof(uint32_t)); - pos += n_elems; - } else if (idx_2 < size_2) { - const size_t n_elems = size_2 - idx_2; - memmove(buffer + pos, set_2 + idx_2, n_elems * sizeof(uint32_t)); - pos += n_elems; - } - - return pos; -} - -size_t union_uint32_card(const uint32_t *set_1, size_t size_1, - const uint32_t *set_2, size_t size_2) { - size_t pos = 0, idx_1 = 0, idx_2 = 0; - - if (0 == size_2) { - return size_1; - } - if (0 == size_1) { - return size_2; - } - - uint32_t val_1 = set_1[idx_1], val_2 = set_2[idx_2]; - - while (true) { - if (val_1 < val_2) { - ++idx_1; - ++pos; - if (idx_1 >= size_1) break; - val_1 = set_1[idx_1]; - } else if (val_2 < val_1) { - ++idx_2; - ++pos; - if (idx_2 >= size_2) break; - val_2 = set_2[idx_2]; - } else { - ++idx_1; - ++idx_2; - ++pos; - if (idx_1 >= size_1 || idx_2 >= size_2) break; - val_1 = set_1[idx_1]; - val_2 = set_2[idx_2]; - } - } - - if (idx_1 < size_1) { - const size_t n_elems = size_1 - idx_1; - pos += n_elems; - } else if (idx_2 < size_2) { - const size_t n_elems = size_2 - idx_2; - pos += n_elems; - } - return pos; -} - - - -size_t fast_union_uint16(const uint16_t *set_1, size_t size_1, const uint16_t *set_2, - size_t size_2, uint16_t *buffer) { -#ifdef ROARING_VECTOR_OPERATIONS_ENABLED - // compute union with smallest array first - if (size_1 < size_2) { - return union_vector16(set_1, (uint32_t)size_1, - set_2, (uint32_t)size_2, buffer); - } else { - return union_vector16(set_2, (uint32_t)size_2, - set_1, (uint32_t)size_1, buffer); - } -#else - // compute union with smallest array first - if (size_1 < size_2) { - return union_uint16( - set_1, size_1, set_2, size_2, buffer); - } else { - return union_uint16( - set_2, size_2, set_1, size_1, buffer); - } -#endif -} -/* end file /opt/bitmap/CRoaring-0.2.57/src/array_util.c */ -/* begin file /opt/bitmap/CRoaring-0.2.57/src/bitset_util.c */ -#include -#include -#include -#include -#include - - -#ifdef IS_X64 -static uint8_t lengthTable[256] = { - 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, - 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, - 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, - 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, - 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, - 4, 5, 5, 6, 5, 6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, - 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, - 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, - 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, - 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, - 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8}; -#endif - -#ifdef USEAVX -ALIGNED(32) -static uint32_t vecDecodeTable[256][8] = { - {0, 0, 0, 0, 0, 0, 0, 0}, /* 0x00 (00000000) */ - {1, 0, 0, 0, 0, 0, 0, 0}, /* 0x01 (00000001) */ - {2, 0, 0, 0, 0, 0, 0, 0}, /* 0x02 (00000010) */ - {1, 2, 0, 0, 0, 0, 0, 0}, /* 0x03 (00000011) */ - {3, 0, 0, 0, 0, 0, 0, 0}, /* 0x04 (00000100) */ - {1, 3, 0, 0, 0, 0, 0, 0}, /* 0x05 (00000101) */ - {2, 3, 0, 0, 0, 0, 0, 0}, /* 0x06 (00000110) */ - {1, 2, 3, 0, 0, 0, 0, 0}, /* 0x07 (00000111) */ - {4, 0, 0, 0, 0, 0, 0, 0}, /* 0x08 (00001000) */ - {1, 4, 0, 0, 0, 0, 0, 0}, /* 0x09 (00001001) */ - {2, 4, 0, 0, 0, 0, 0, 0}, /* 0x0A (00001010) */ - {1, 2, 4, 0, 0, 0, 0, 0}, /* 0x0B (00001011) */ - {3, 4, 0, 0, 0, 0, 0, 0}, /* 0x0C (00001100) */ - {1, 3, 4, 0, 0, 0, 0, 0}, /* 0x0D (00001101) */ - {2, 3, 4, 0, 0, 0, 0, 0}, /* 0x0E (00001110) */ - {1, 2, 3, 4, 0, 0, 0, 0}, /* 0x0F (00001111) */ - {5, 0, 0, 0, 0, 0, 0, 0}, /* 0x10 (00010000) */ - {1, 5, 0, 0, 0, 0, 0, 0}, /* 0x11 (00010001) */ - {2, 5, 0, 0, 0, 0, 0, 0}, /* 0x12 (00010010) */ - {1, 2, 5, 0, 0, 0, 0, 0}, /* 0x13 (00010011) */ - {3, 5, 0, 0, 0, 0, 0, 0}, /* 0x14 (00010100) */ - {1, 3, 5, 0, 0, 0, 0, 0}, /* 0x15 (00010101) */ - {2, 3, 5, 0, 0, 0, 0, 0}, /* 0x16 (00010110) */ - {1, 2, 3, 5, 0, 0, 0, 0}, /* 0x17 (00010111) */ - {4, 5, 0, 0, 0, 0, 0, 0}, /* 0x18 (00011000) */ - {1, 4, 5, 0, 0, 0, 0, 0}, /* 0x19 (00011001) */ - {2, 4, 5, 0, 0, 0, 0, 0}, /* 0x1A (00011010) */ - {1, 2, 4, 5, 0, 0, 0, 0}, /* 0x1B (00011011) */ - {3, 4, 5, 0, 0, 0, 0, 0}, /* 0x1C (00011100) */ - {1, 3, 4, 5, 0, 0, 0, 0}, /* 0x1D (00011101) */ - {2, 3, 4, 5, 0, 0, 0, 0}, /* 0x1E (00011110) */ - {1, 2, 3, 4, 5, 0, 0, 0}, /* 0x1F (00011111) */ - {6, 0, 0, 0, 0, 0, 0, 0}, /* 0x20 (00100000) */ - {1, 6, 0, 0, 0, 0, 0, 0}, /* 0x21 (00100001) */ - {2, 6, 0, 0, 0, 0, 0, 0}, /* 0x22 (00100010) */ - {1, 2, 6, 0, 0, 0, 0, 0}, /* 0x23 (00100011) */ - {3, 6, 0, 0, 0, 0, 0, 0}, /* 0x24 (00100100) */ - {1, 3, 6, 0, 0, 0, 0, 0}, /* 0x25 (00100101) */ - {2, 3, 6, 0, 0, 0, 0, 0}, /* 0x26 (00100110) */ - {1, 2, 3, 6, 0, 0, 0, 0}, /* 0x27 (00100111) */ - {4, 6, 0, 0, 0, 0, 0, 0}, /* 0x28 (00101000) */ - {1, 4, 6, 0, 0, 0, 0, 0}, /* 0x29 (00101001) */ - {2, 4, 6, 0, 0, 0, 0, 0}, /* 0x2A (00101010) */ - {1, 2, 4, 6, 0, 0, 0, 0}, /* 0x2B (00101011) */ - {3, 4, 6, 0, 0, 0, 0, 0}, /* 0x2C (00101100) */ - {1, 3, 4, 6, 0, 0, 0, 0}, /* 0x2D (00101101) */ - {2, 3, 4, 6, 0, 0, 0, 0}, /* 0x2E (00101110) */ - {1, 2, 3, 4, 6, 0, 0, 0}, /* 0x2F (00101111) */ - {5, 6, 0, 0, 0, 0, 0, 0}, /* 0x30 (00110000) */ - {1, 5, 6, 0, 0, 0, 0, 0}, /* 0x31 (00110001) */ - {2, 5, 6, 0, 0, 0, 0, 0}, /* 0x32 (00110010) */ - {1, 2, 5, 6, 0, 0, 0, 0}, /* 0x33 (00110011) */ - {3, 5, 6, 0, 0, 0, 0, 0}, /* 0x34 (00110100) */ - {1, 3, 5, 6, 0, 0, 0, 0}, /* 0x35 (00110101) */ - {2, 3, 5, 6, 0, 0, 0, 0}, /* 0x36 (00110110) */ - {1, 2, 3, 5, 6, 0, 0, 0}, /* 0x37 (00110111) */ - {4, 5, 6, 0, 0, 0, 0, 0}, /* 0x38 (00111000) */ - {1, 4, 5, 6, 0, 0, 0, 0}, /* 0x39 (00111001) */ - {2, 4, 5, 6, 0, 0, 0, 0}, /* 0x3A (00111010) */ - {1, 2, 4, 5, 6, 0, 0, 0}, /* 0x3B (00111011) */ - {3, 4, 5, 6, 0, 0, 0, 0}, /* 0x3C (00111100) */ - {1, 3, 4, 5, 6, 0, 0, 0}, /* 0x3D (00111101) */ - {2, 3, 4, 5, 6, 0, 0, 0}, /* 0x3E (00111110) */ - {1, 2, 3, 4, 5, 6, 0, 0}, /* 0x3F (00111111) */ - {7, 0, 0, 0, 0, 0, 0, 0}, /* 0x40 (01000000) */ - {1, 7, 0, 0, 0, 0, 0, 0}, /* 0x41 (01000001) */ - {2, 7, 0, 0, 0, 0, 0, 0}, /* 0x42 (01000010) */ - {1, 2, 7, 0, 0, 0, 0, 0}, /* 0x43 (01000011) */ - {3, 7, 0, 0, 0, 0, 0, 0}, /* 0x44 (01000100) */ - {1, 3, 7, 0, 0, 0, 0, 0}, /* 0x45 (01000101) */ - {2, 3, 7, 0, 0, 0, 0, 0}, /* 0x46 (01000110) */ - {1, 2, 3, 7, 0, 0, 0, 0}, /* 0x47 (01000111) */ - {4, 7, 0, 0, 0, 0, 0, 0}, /* 0x48 (01001000) */ - {1, 4, 7, 0, 0, 0, 0, 0}, /* 0x49 (01001001) */ - {2, 4, 7, 0, 0, 0, 0, 0}, /* 0x4A (01001010) */ - {1, 2, 4, 7, 0, 0, 0, 0}, /* 0x4B (01001011) */ - {3, 4, 7, 0, 0, 0, 0, 0}, /* 0x4C (01001100) */ - {1, 3, 4, 7, 0, 0, 0, 0}, /* 0x4D (01001101) */ - {2, 3, 4, 7, 0, 0, 0, 0}, /* 0x4E (01001110) */ - {1, 2, 3, 4, 7, 0, 0, 0}, /* 0x4F (01001111) */ - {5, 7, 0, 0, 0, 0, 0, 0}, /* 0x50 (01010000) */ - {1, 5, 7, 0, 0, 0, 0, 0}, /* 0x51 (01010001) */ - {2, 5, 7, 0, 0, 0, 0, 0}, /* 0x52 (01010010) */ - {1, 2, 5, 7, 0, 0, 0, 0}, /* 0x53 (01010011) */ - {3, 5, 7, 0, 0, 0, 0, 0}, /* 0x54 (01010100) */ - {1, 3, 5, 7, 0, 0, 0, 0}, /* 0x55 (01010101) */ - {2, 3, 5, 7, 0, 0, 0, 0}, /* 0x56 (01010110) */ - {1, 2, 3, 5, 7, 0, 0, 0}, /* 0x57 (01010111) */ - {4, 5, 7, 0, 0, 0, 0, 0}, /* 0x58 (01011000) */ - {1, 4, 5, 7, 0, 0, 0, 0}, /* 0x59 (01011001) */ - {2, 4, 5, 7, 0, 0, 0, 0}, /* 0x5A (01011010) */ - {1, 2, 4, 5, 7, 0, 0, 0}, /* 0x5B (01011011) */ - {3, 4, 5, 7, 0, 0, 0, 0}, /* 0x5C (01011100) */ - {1, 3, 4, 5, 7, 0, 0, 0}, /* 0x5D (01011101) */ - {2, 3, 4, 5, 7, 0, 0, 0}, /* 0x5E (01011110) */ - {1, 2, 3, 4, 5, 7, 0, 0}, /* 0x5F (01011111) */ - {6, 7, 0, 0, 0, 0, 0, 0}, /* 0x60 (01100000) */ - {1, 6, 7, 0, 0, 0, 0, 0}, /* 0x61 (01100001) */ - {2, 6, 7, 0, 0, 0, 0, 0}, /* 0x62 (01100010) */ - {1, 2, 6, 7, 0, 0, 0, 0}, /* 0x63 (01100011) */ - {3, 6, 7, 0, 0, 0, 0, 0}, /* 0x64 (01100100) */ - {1, 3, 6, 7, 0, 0, 0, 0}, /* 0x65 (01100101) */ - {2, 3, 6, 7, 0, 0, 0, 0}, /* 0x66 (01100110) */ - {1, 2, 3, 6, 7, 0, 0, 0}, /* 0x67 (01100111) */ - {4, 6, 7, 0, 0, 0, 0, 0}, /* 0x68 (01101000) */ - {1, 4, 6, 7, 0, 0, 0, 0}, /* 0x69 (01101001) */ - {2, 4, 6, 7, 0, 0, 0, 0}, /* 0x6A (01101010) */ - {1, 2, 4, 6, 7, 0, 0, 0}, /* 0x6B (01101011) */ - {3, 4, 6, 7, 0, 0, 0, 0}, /* 0x6C (01101100) */ - {1, 3, 4, 6, 7, 0, 0, 0}, /* 0x6D (01101101) */ - {2, 3, 4, 6, 7, 0, 0, 0}, /* 0x6E (01101110) */ - {1, 2, 3, 4, 6, 7, 0, 0}, /* 0x6F (01101111) */ - {5, 6, 7, 0, 0, 0, 0, 0}, /* 0x70 (01110000) */ - {1, 5, 6, 7, 0, 0, 0, 0}, /* 0x71 (01110001) */ - {2, 5, 6, 7, 0, 0, 0, 0}, /* 0x72 (01110010) */ - {1, 2, 5, 6, 7, 0, 0, 0}, /* 0x73 (01110011) */ - {3, 5, 6, 7, 0, 0, 0, 0}, /* 0x74 (01110100) */ - {1, 3, 5, 6, 7, 0, 0, 0}, /* 0x75 (01110101) */ - {2, 3, 5, 6, 7, 0, 0, 0}, /* 0x76 (01110110) */ - {1, 2, 3, 5, 6, 7, 0, 0}, /* 0x77 (01110111) */ - {4, 5, 6, 7, 0, 0, 0, 0}, /* 0x78 (01111000) */ - {1, 4, 5, 6, 7, 0, 0, 0}, /* 0x79 (01111001) */ - {2, 4, 5, 6, 7, 0, 0, 0}, /* 0x7A (01111010) */ - {1, 2, 4, 5, 6, 7, 0, 0}, /* 0x7B (01111011) */ - {3, 4, 5, 6, 7, 0, 0, 0}, /* 0x7C (01111100) */ - {1, 3, 4, 5, 6, 7, 0, 0}, /* 0x7D (01111101) */ - {2, 3, 4, 5, 6, 7, 0, 0}, /* 0x7E (01111110) */ - {1, 2, 3, 4, 5, 6, 7, 0}, /* 0x7F (01111111) */ - {8, 0, 0, 0, 0, 0, 0, 0}, /* 0x80 (10000000) */ - {1, 8, 0, 0, 0, 0, 0, 0}, /* 0x81 (10000001) */ - {2, 8, 0, 0, 0, 0, 0, 0}, /* 0x82 (10000010) */ - {1, 2, 8, 0, 0, 0, 0, 0}, /* 0x83 (10000011) */ - {3, 8, 0, 0, 0, 0, 0, 0}, /* 0x84 (10000100) */ - {1, 3, 8, 0, 0, 0, 0, 0}, /* 0x85 (10000101) */ - {2, 3, 8, 0, 0, 0, 0, 0}, /* 0x86 (10000110) */ - {1, 2, 3, 8, 0, 0, 0, 0}, /* 0x87 (10000111) */ - {4, 8, 0, 0, 0, 0, 0, 0}, /* 0x88 (10001000) */ - {1, 4, 8, 0, 0, 0, 0, 0}, /* 0x89 (10001001) */ - {2, 4, 8, 0, 0, 0, 0, 0}, /* 0x8A (10001010) */ - {1, 2, 4, 8, 0, 0, 0, 0}, /* 0x8B (10001011) */ - {3, 4, 8, 0, 0, 0, 0, 0}, /* 0x8C (10001100) */ - {1, 3, 4, 8, 0, 0, 0, 0}, /* 0x8D (10001101) */ - {2, 3, 4, 8, 0, 0, 0, 0}, /* 0x8E (10001110) */ - {1, 2, 3, 4, 8, 0, 0, 0}, /* 0x8F (10001111) */ - {5, 8, 0, 0, 0, 0, 0, 0}, /* 0x90 (10010000) */ - {1, 5, 8, 0, 0, 0, 0, 0}, /* 0x91 (10010001) */ - {2, 5, 8, 0, 0, 0, 0, 0}, /* 0x92 (10010010) */ - {1, 2, 5, 8, 0, 0, 0, 0}, /* 0x93 (10010011) */ - {3, 5, 8, 0, 0, 0, 0, 0}, /* 0x94 (10010100) */ - {1, 3, 5, 8, 0, 0, 0, 0}, /* 0x95 (10010101) */ - {2, 3, 5, 8, 0, 0, 0, 0}, /* 0x96 (10010110) */ - {1, 2, 3, 5, 8, 0, 0, 0}, /* 0x97 (10010111) */ - {4, 5, 8, 0, 0, 0, 0, 0}, /* 0x98 (10011000) */ - {1, 4, 5, 8, 0, 0, 0, 0}, /* 0x99 (10011001) */ - {2, 4, 5, 8, 0, 0, 0, 0}, /* 0x9A (10011010) */ - {1, 2, 4, 5, 8, 0, 0, 0}, /* 0x9B (10011011) */ - {3, 4, 5, 8, 0, 0, 0, 0}, /* 0x9C (10011100) */ - {1, 3, 4, 5, 8, 0, 0, 0}, /* 0x9D (10011101) */ - {2, 3, 4, 5, 8, 0, 0, 0}, /* 0x9E (10011110) */ - {1, 2, 3, 4, 5, 8, 0, 0}, /* 0x9F (10011111) */ - {6, 8, 0, 0, 0, 0, 0, 0}, /* 0xA0 (10100000) */ - {1, 6, 8, 0, 0, 0, 0, 0}, /* 0xA1 (10100001) */ - {2, 6, 8, 0, 0, 0, 0, 0}, /* 0xA2 (10100010) */ - {1, 2, 6, 8, 0, 0, 0, 0}, /* 0xA3 (10100011) */ - {3, 6, 8, 0, 0, 0, 0, 0}, /* 0xA4 (10100100) */ - {1, 3, 6, 8, 0, 0, 0, 0}, /* 0xA5 (10100101) */ - {2, 3, 6, 8, 0, 0, 0, 0}, /* 0xA6 (10100110) */ - {1, 2, 3, 6, 8, 0, 0, 0}, /* 0xA7 (10100111) */ - {4, 6, 8, 0, 0, 0, 0, 0}, /* 0xA8 (10101000) */ - {1, 4, 6, 8, 0, 0, 0, 0}, /* 0xA9 (10101001) */ - {2, 4, 6, 8, 0, 0, 0, 0}, /* 0xAA (10101010) */ - {1, 2, 4, 6, 8, 0, 0, 0}, /* 0xAB (10101011) */ - {3, 4, 6, 8, 0, 0, 0, 0}, /* 0xAC (10101100) */ - {1, 3, 4, 6, 8, 0, 0, 0}, /* 0xAD (10101101) */ - {2, 3, 4, 6, 8, 0, 0, 0}, /* 0xAE (10101110) */ - {1, 2, 3, 4, 6, 8, 0, 0}, /* 0xAF (10101111) */ - {5, 6, 8, 0, 0, 0, 0, 0}, /* 0xB0 (10110000) */ - {1, 5, 6, 8, 0, 0, 0, 0}, /* 0xB1 (10110001) */ - {2, 5, 6, 8, 0, 0, 0, 0}, /* 0xB2 (10110010) */ - {1, 2, 5, 6, 8, 0, 0, 0}, /* 0xB3 (10110011) */ - {3, 5, 6, 8, 0, 0, 0, 0}, /* 0xB4 (10110100) */ - {1, 3, 5, 6, 8, 0, 0, 0}, /* 0xB5 (10110101) */ - {2, 3, 5, 6, 8, 0, 0, 0}, /* 0xB6 (10110110) */ - {1, 2, 3, 5, 6, 8, 0, 0}, /* 0xB7 (10110111) */ - {4, 5, 6, 8, 0, 0, 0, 0}, /* 0xB8 (10111000) */ - {1, 4, 5, 6, 8, 0, 0, 0}, /* 0xB9 (10111001) */ - {2, 4, 5, 6, 8, 0, 0, 0}, /* 0xBA (10111010) */ - {1, 2, 4, 5, 6, 8, 0, 0}, /* 0xBB (10111011) */ - {3, 4, 5, 6, 8, 0, 0, 0}, /* 0xBC (10111100) */ - {1, 3, 4, 5, 6, 8, 0, 0}, /* 0xBD (10111101) */ - {2, 3, 4, 5, 6, 8, 0, 0}, /* 0xBE (10111110) */ - {1, 2, 3, 4, 5, 6, 8, 0}, /* 0xBF (10111111) */ - {7, 8, 0, 0, 0, 0, 0, 0}, /* 0xC0 (11000000) */ - {1, 7, 8, 0, 0, 0, 0, 0}, /* 0xC1 (11000001) */ - {2, 7, 8, 0, 0, 0, 0, 0}, /* 0xC2 (11000010) */ - {1, 2, 7, 8, 0, 0, 0, 0}, /* 0xC3 (11000011) */ - {3, 7, 8, 0, 0, 0, 0, 0}, /* 0xC4 (11000100) */ - {1, 3, 7, 8, 0, 0, 0, 0}, /* 0xC5 (11000101) */ - {2, 3, 7, 8, 0, 0, 0, 0}, /* 0xC6 (11000110) */ - {1, 2, 3, 7, 8, 0, 0, 0}, /* 0xC7 (11000111) */ - {4, 7, 8, 0, 0, 0, 0, 0}, /* 0xC8 (11001000) */ - {1, 4, 7, 8, 0, 0, 0, 0}, /* 0xC9 (11001001) */ - {2, 4, 7, 8, 0, 0, 0, 0}, /* 0xCA (11001010) */ - {1, 2, 4, 7, 8, 0, 0, 0}, /* 0xCB (11001011) */ - {3, 4, 7, 8, 0, 0, 0, 0}, /* 0xCC (11001100) */ - {1, 3, 4, 7, 8, 0, 0, 0}, /* 0xCD (11001101) */ - {2, 3, 4, 7, 8, 0, 0, 0}, /* 0xCE (11001110) */ - {1, 2, 3, 4, 7, 8, 0, 0}, /* 0xCF (11001111) */ - {5, 7, 8, 0, 0, 0, 0, 0}, /* 0xD0 (11010000) */ - {1, 5, 7, 8, 0, 0, 0, 0}, /* 0xD1 (11010001) */ - {2, 5, 7, 8, 0, 0, 0, 0}, /* 0xD2 (11010010) */ - {1, 2, 5, 7, 8, 0, 0, 0}, /* 0xD3 (11010011) */ - {3, 5, 7, 8, 0, 0, 0, 0}, /* 0xD4 (11010100) */ - {1, 3, 5, 7, 8, 0, 0, 0}, /* 0xD5 (11010101) */ - {2, 3, 5, 7, 8, 0, 0, 0}, /* 0xD6 (11010110) */ - {1, 2, 3, 5, 7, 8, 0, 0}, /* 0xD7 (11010111) */ - {4, 5, 7, 8, 0, 0, 0, 0}, /* 0xD8 (11011000) */ - {1, 4, 5, 7, 8, 0, 0, 0}, /* 0xD9 (11011001) */ - {2, 4, 5, 7, 8, 0, 0, 0}, /* 0xDA (11011010) */ - {1, 2, 4, 5, 7, 8, 0, 0}, /* 0xDB (11011011) */ - {3, 4, 5, 7, 8, 0, 0, 0}, /* 0xDC (11011100) */ - {1, 3, 4, 5, 7, 8, 0, 0}, /* 0xDD (11011101) */ - {2, 3, 4, 5, 7, 8, 0, 0}, /* 0xDE (11011110) */ - {1, 2, 3, 4, 5, 7, 8, 0}, /* 0xDF (11011111) */ - {6, 7, 8, 0, 0, 0, 0, 0}, /* 0xE0 (11100000) */ - {1, 6, 7, 8, 0, 0, 0, 0}, /* 0xE1 (11100001) */ - {2, 6, 7, 8, 0, 0, 0, 0}, /* 0xE2 (11100010) */ - {1, 2, 6, 7, 8, 0, 0, 0}, /* 0xE3 (11100011) */ - {3, 6, 7, 8, 0, 0, 0, 0}, /* 0xE4 (11100100) */ - {1, 3, 6, 7, 8, 0, 0, 0}, /* 0xE5 (11100101) */ - {2, 3, 6, 7, 8, 0, 0, 0}, /* 0xE6 (11100110) */ - {1, 2, 3, 6, 7, 8, 0, 0}, /* 0xE7 (11100111) */ - {4, 6, 7, 8, 0, 0, 0, 0}, /* 0xE8 (11101000) */ - {1, 4, 6, 7, 8, 0, 0, 0}, /* 0xE9 (11101001) */ - {2, 4, 6, 7, 8, 0, 0, 0}, /* 0xEA (11101010) */ - {1, 2, 4, 6, 7, 8, 0, 0}, /* 0xEB (11101011) */ - {3, 4, 6, 7, 8, 0, 0, 0}, /* 0xEC (11101100) */ - {1, 3, 4, 6, 7, 8, 0, 0}, /* 0xED (11101101) */ - {2, 3, 4, 6, 7, 8, 0, 0}, /* 0xEE (11101110) */ - {1, 2, 3, 4, 6, 7, 8, 0}, /* 0xEF (11101111) */ - {5, 6, 7, 8, 0, 0, 0, 0}, /* 0xF0 (11110000) */ - {1, 5, 6, 7, 8, 0, 0, 0}, /* 0xF1 (11110001) */ - {2, 5, 6, 7, 8, 0, 0, 0}, /* 0xF2 (11110010) */ - {1, 2, 5, 6, 7, 8, 0, 0}, /* 0xF3 (11110011) */ - {3, 5, 6, 7, 8, 0, 0, 0}, /* 0xF4 (11110100) */ - {1, 3, 5, 6, 7, 8, 0, 0}, /* 0xF5 (11110101) */ - {2, 3, 5, 6, 7, 8, 0, 0}, /* 0xF6 (11110110) */ - {1, 2, 3, 5, 6, 7, 8, 0}, /* 0xF7 (11110111) */ - {4, 5, 6, 7, 8, 0, 0, 0}, /* 0xF8 (11111000) */ - {1, 4, 5, 6, 7, 8, 0, 0}, /* 0xF9 (11111001) */ - {2, 4, 5, 6, 7, 8, 0, 0}, /* 0xFA (11111010) */ - {1, 2, 4, 5, 6, 7, 8, 0}, /* 0xFB (11111011) */ - {3, 4, 5, 6, 7, 8, 0, 0}, /* 0xFC (11111100) */ - {1, 3, 4, 5, 6, 7, 8, 0}, /* 0xFD (11111101) */ - {2, 3, 4, 5, 6, 7, 8, 0}, /* 0xFE (11111110) */ - {1, 2, 3, 4, 5, 6, 7, 8} /* 0xFF (11111111) */ -}; - -#endif // #ifdef USEAVX - -#ifdef IS_X64 -// same as vecDecodeTable but in 16 bits -ALIGNED(32) -static uint16_t vecDecodeTable_uint16[256][8] = { - {0, 0, 0, 0, 0, 0, 0, 0}, /* 0x00 (00000000) */ - {1, 0, 0, 0, 0, 0, 0, 0}, /* 0x01 (00000001) */ - {2, 0, 0, 0, 0, 0, 0, 0}, /* 0x02 (00000010) */ - {1, 2, 0, 0, 0, 0, 0, 0}, /* 0x03 (00000011) */ - {3, 0, 0, 0, 0, 0, 0, 0}, /* 0x04 (00000100) */ - {1, 3, 0, 0, 0, 0, 0, 0}, /* 0x05 (00000101) */ - {2, 3, 0, 0, 0, 0, 0, 0}, /* 0x06 (00000110) */ - {1, 2, 3, 0, 0, 0, 0, 0}, /* 0x07 (00000111) */ - {4, 0, 0, 0, 0, 0, 0, 0}, /* 0x08 (00001000) */ - {1, 4, 0, 0, 0, 0, 0, 0}, /* 0x09 (00001001) */ - {2, 4, 0, 0, 0, 0, 0, 0}, /* 0x0A (00001010) */ - {1, 2, 4, 0, 0, 0, 0, 0}, /* 0x0B (00001011) */ - {3, 4, 0, 0, 0, 0, 0, 0}, /* 0x0C (00001100) */ - {1, 3, 4, 0, 0, 0, 0, 0}, /* 0x0D (00001101) */ - {2, 3, 4, 0, 0, 0, 0, 0}, /* 0x0E (00001110) */ - {1, 2, 3, 4, 0, 0, 0, 0}, /* 0x0F (00001111) */ - {5, 0, 0, 0, 0, 0, 0, 0}, /* 0x10 (00010000) */ - {1, 5, 0, 0, 0, 0, 0, 0}, /* 0x11 (00010001) */ - {2, 5, 0, 0, 0, 0, 0, 0}, /* 0x12 (00010010) */ - {1, 2, 5, 0, 0, 0, 0, 0}, /* 0x13 (00010011) */ - {3, 5, 0, 0, 0, 0, 0, 0}, /* 0x14 (00010100) */ - {1, 3, 5, 0, 0, 0, 0, 0}, /* 0x15 (00010101) */ - {2, 3, 5, 0, 0, 0, 0, 0}, /* 0x16 (00010110) */ - {1, 2, 3, 5, 0, 0, 0, 0}, /* 0x17 (00010111) */ - {4, 5, 0, 0, 0, 0, 0, 0}, /* 0x18 (00011000) */ - {1, 4, 5, 0, 0, 0, 0, 0}, /* 0x19 (00011001) */ - {2, 4, 5, 0, 0, 0, 0, 0}, /* 0x1A (00011010) */ - {1, 2, 4, 5, 0, 0, 0, 0}, /* 0x1B (00011011) */ - {3, 4, 5, 0, 0, 0, 0, 0}, /* 0x1C (00011100) */ - {1, 3, 4, 5, 0, 0, 0, 0}, /* 0x1D (00011101) */ - {2, 3, 4, 5, 0, 0, 0, 0}, /* 0x1E (00011110) */ - {1, 2, 3, 4, 5, 0, 0, 0}, /* 0x1F (00011111) */ - {6, 0, 0, 0, 0, 0, 0, 0}, /* 0x20 (00100000) */ - {1, 6, 0, 0, 0, 0, 0, 0}, /* 0x21 (00100001) */ - {2, 6, 0, 0, 0, 0, 0, 0}, /* 0x22 (00100010) */ - {1, 2, 6, 0, 0, 0, 0, 0}, /* 0x23 (00100011) */ - {3, 6, 0, 0, 0, 0, 0, 0}, /* 0x24 (00100100) */ - {1, 3, 6, 0, 0, 0, 0, 0}, /* 0x25 (00100101) */ - {2, 3, 6, 0, 0, 0, 0, 0}, /* 0x26 (00100110) */ - {1, 2, 3, 6, 0, 0, 0, 0}, /* 0x27 (00100111) */ - {4, 6, 0, 0, 0, 0, 0, 0}, /* 0x28 (00101000) */ - {1, 4, 6, 0, 0, 0, 0, 0}, /* 0x29 (00101001) */ - {2, 4, 6, 0, 0, 0, 0, 0}, /* 0x2A (00101010) */ - {1, 2, 4, 6, 0, 0, 0, 0}, /* 0x2B (00101011) */ - {3, 4, 6, 0, 0, 0, 0, 0}, /* 0x2C (00101100) */ - {1, 3, 4, 6, 0, 0, 0, 0}, /* 0x2D (00101101) */ - {2, 3, 4, 6, 0, 0, 0, 0}, /* 0x2E (00101110) */ - {1, 2, 3, 4, 6, 0, 0, 0}, /* 0x2F (00101111) */ - {5, 6, 0, 0, 0, 0, 0, 0}, /* 0x30 (00110000) */ - {1, 5, 6, 0, 0, 0, 0, 0}, /* 0x31 (00110001) */ - {2, 5, 6, 0, 0, 0, 0, 0}, /* 0x32 (00110010) */ - {1, 2, 5, 6, 0, 0, 0, 0}, /* 0x33 (00110011) */ - {3, 5, 6, 0, 0, 0, 0, 0}, /* 0x34 (00110100) */ - {1, 3, 5, 6, 0, 0, 0, 0}, /* 0x35 (00110101) */ - {2, 3, 5, 6, 0, 0, 0, 0}, /* 0x36 (00110110) */ - {1, 2, 3, 5, 6, 0, 0, 0}, /* 0x37 (00110111) */ - {4, 5, 6, 0, 0, 0, 0, 0}, /* 0x38 (00111000) */ - {1, 4, 5, 6, 0, 0, 0, 0}, /* 0x39 (00111001) */ - {2, 4, 5, 6, 0, 0, 0, 0}, /* 0x3A (00111010) */ - {1, 2, 4, 5, 6, 0, 0, 0}, /* 0x3B (00111011) */ - {3, 4, 5, 6, 0, 0, 0, 0}, /* 0x3C (00111100) */ - {1, 3, 4, 5, 6, 0, 0, 0}, /* 0x3D (00111101) */ - {2, 3, 4, 5, 6, 0, 0, 0}, /* 0x3E (00111110) */ - {1, 2, 3, 4, 5, 6, 0, 0}, /* 0x3F (00111111) */ - {7, 0, 0, 0, 0, 0, 0, 0}, /* 0x40 (01000000) */ - {1, 7, 0, 0, 0, 0, 0, 0}, /* 0x41 (01000001) */ - {2, 7, 0, 0, 0, 0, 0, 0}, /* 0x42 (01000010) */ - {1, 2, 7, 0, 0, 0, 0, 0}, /* 0x43 (01000011) */ - {3, 7, 0, 0, 0, 0, 0, 0}, /* 0x44 (01000100) */ - {1, 3, 7, 0, 0, 0, 0, 0}, /* 0x45 (01000101) */ - {2, 3, 7, 0, 0, 0, 0, 0}, /* 0x46 (01000110) */ - {1, 2, 3, 7, 0, 0, 0, 0}, /* 0x47 (01000111) */ - {4, 7, 0, 0, 0, 0, 0, 0}, /* 0x48 (01001000) */ - {1, 4, 7, 0, 0, 0, 0, 0}, /* 0x49 (01001001) */ - {2, 4, 7, 0, 0, 0, 0, 0}, /* 0x4A (01001010) */ - {1, 2, 4, 7, 0, 0, 0, 0}, /* 0x4B (01001011) */ - {3, 4, 7, 0, 0, 0, 0, 0}, /* 0x4C (01001100) */ - {1, 3, 4, 7, 0, 0, 0, 0}, /* 0x4D (01001101) */ - {2, 3, 4, 7, 0, 0, 0, 0}, /* 0x4E (01001110) */ - {1, 2, 3, 4, 7, 0, 0, 0}, /* 0x4F (01001111) */ - {5, 7, 0, 0, 0, 0, 0, 0}, /* 0x50 (01010000) */ - {1, 5, 7, 0, 0, 0, 0, 0}, /* 0x51 (01010001) */ - {2, 5, 7, 0, 0, 0, 0, 0}, /* 0x52 (01010010) */ - {1, 2, 5, 7, 0, 0, 0, 0}, /* 0x53 (01010011) */ - {3, 5, 7, 0, 0, 0, 0, 0}, /* 0x54 (01010100) */ - {1, 3, 5, 7, 0, 0, 0, 0}, /* 0x55 (01010101) */ - {2, 3, 5, 7, 0, 0, 0, 0}, /* 0x56 (01010110) */ - {1, 2, 3, 5, 7, 0, 0, 0}, /* 0x57 (01010111) */ - {4, 5, 7, 0, 0, 0, 0, 0}, /* 0x58 (01011000) */ - {1, 4, 5, 7, 0, 0, 0, 0}, /* 0x59 (01011001) */ - {2, 4, 5, 7, 0, 0, 0, 0}, /* 0x5A (01011010) */ - {1, 2, 4, 5, 7, 0, 0, 0}, /* 0x5B (01011011) */ - {3, 4, 5, 7, 0, 0, 0, 0}, /* 0x5C (01011100) */ - {1, 3, 4, 5, 7, 0, 0, 0}, /* 0x5D (01011101) */ - {2, 3, 4, 5, 7, 0, 0, 0}, /* 0x5E (01011110) */ - {1, 2, 3, 4, 5, 7, 0, 0}, /* 0x5F (01011111) */ - {6, 7, 0, 0, 0, 0, 0, 0}, /* 0x60 (01100000) */ - {1, 6, 7, 0, 0, 0, 0, 0}, /* 0x61 (01100001) */ - {2, 6, 7, 0, 0, 0, 0, 0}, /* 0x62 (01100010) */ - {1, 2, 6, 7, 0, 0, 0, 0}, /* 0x63 (01100011) */ - {3, 6, 7, 0, 0, 0, 0, 0}, /* 0x64 (01100100) */ - {1, 3, 6, 7, 0, 0, 0, 0}, /* 0x65 (01100101) */ - {2, 3, 6, 7, 0, 0, 0, 0}, /* 0x66 (01100110) */ - {1, 2, 3, 6, 7, 0, 0, 0}, /* 0x67 (01100111) */ - {4, 6, 7, 0, 0, 0, 0, 0}, /* 0x68 (01101000) */ - {1, 4, 6, 7, 0, 0, 0, 0}, /* 0x69 (01101001) */ - {2, 4, 6, 7, 0, 0, 0, 0}, /* 0x6A (01101010) */ - {1, 2, 4, 6, 7, 0, 0, 0}, /* 0x6B (01101011) */ - {3, 4, 6, 7, 0, 0, 0, 0}, /* 0x6C (01101100) */ - {1, 3, 4, 6, 7, 0, 0, 0}, /* 0x6D (01101101) */ - {2, 3, 4, 6, 7, 0, 0, 0}, /* 0x6E (01101110) */ - {1, 2, 3, 4, 6, 7, 0, 0}, /* 0x6F (01101111) */ - {5, 6, 7, 0, 0, 0, 0, 0}, /* 0x70 (01110000) */ - {1, 5, 6, 7, 0, 0, 0, 0}, /* 0x71 (01110001) */ - {2, 5, 6, 7, 0, 0, 0, 0}, /* 0x72 (01110010) */ - {1, 2, 5, 6, 7, 0, 0, 0}, /* 0x73 (01110011) */ - {3, 5, 6, 7, 0, 0, 0, 0}, /* 0x74 (01110100) */ - {1, 3, 5, 6, 7, 0, 0, 0}, /* 0x75 (01110101) */ - {2, 3, 5, 6, 7, 0, 0, 0}, /* 0x76 (01110110) */ - {1, 2, 3, 5, 6, 7, 0, 0}, /* 0x77 (01110111) */ - {4, 5, 6, 7, 0, 0, 0, 0}, /* 0x78 (01111000) */ - {1, 4, 5, 6, 7, 0, 0, 0}, /* 0x79 (01111001) */ - {2, 4, 5, 6, 7, 0, 0, 0}, /* 0x7A (01111010) */ - {1, 2, 4, 5, 6, 7, 0, 0}, /* 0x7B (01111011) */ - {3, 4, 5, 6, 7, 0, 0, 0}, /* 0x7C (01111100) */ - {1, 3, 4, 5, 6, 7, 0, 0}, /* 0x7D (01111101) */ - {2, 3, 4, 5, 6, 7, 0, 0}, /* 0x7E (01111110) */ - {1, 2, 3, 4, 5, 6, 7, 0}, /* 0x7F (01111111) */ - {8, 0, 0, 0, 0, 0, 0, 0}, /* 0x80 (10000000) */ - {1, 8, 0, 0, 0, 0, 0, 0}, /* 0x81 (10000001) */ - {2, 8, 0, 0, 0, 0, 0, 0}, /* 0x82 (10000010) */ - {1, 2, 8, 0, 0, 0, 0, 0}, /* 0x83 (10000011) */ - {3, 8, 0, 0, 0, 0, 0, 0}, /* 0x84 (10000100) */ - {1, 3, 8, 0, 0, 0, 0, 0}, /* 0x85 (10000101) */ - {2, 3, 8, 0, 0, 0, 0, 0}, /* 0x86 (10000110) */ - {1, 2, 3, 8, 0, 0, 0, 0}, /* 0x87 (10000111) */ - {4, 8, 0, 0, 0, 0, 0, 0}, /* 0x88 (10001000) */ - {1, 4, 8, 0, 0, 0, 0, 0}, /* 0x89 (10001001) */ - {2, 4, 8, 0, 0, 0, 0, 0}, /* 0x8A (10001010) */ - {1, 2, 4, 8, 0, 0, 0, 0}, /* 0x8B (10001011) */ - {3, 4, 8, 0, 0, 0, 0, 0}, /* 0x8C (10001100) */ - {1, 3, 4, 8, 0, 0, 0, 0}, /* 0x8D (10001101) */ - {2, 3, 4, 8, 0, 0, 0, 0}, /* 0x8E (10001110) */ - {1, 2, 3, 4, 8, 0, 0, 0}, /* 0x8F (10001111) */ - {5, 8, 0, 0, 0, 0, 0, 0}, /* 0x90 (10010000) */ - {1, 5, 8, 0, 0, 0, 0, 0}, /* 0x91 (10010001) */ - {2, 5, 8, 0, 0, 0, 0, 0}, /* 0x92 (10010010) */ - {1, 2, 5, 8, 0, 0, 0, 0}, /* 0x93 (10010011) */ - {3, 5, 8, 0, 0, 0, 0, 0}, /* 0x94 (10010100) */ - {1, 3, 5, 8, 0, 0, 0, 0}, /* 0x95 (10010101) */ - {2, 3, 5, 8, 0, 0, 0, 0}, /* 0x96 (10010110) */ - {1, 2, 3, 5, 8, 0, 0, 0}, /* 0x97 (10010111) */ - {4, 5, 8, 0, 0, 0, 0, 0}, /* 0x98 (10011000) */ - {1, 4, 5, 8, 0, 0, 0, 0}, /* 0x99 (10011001) */ - {2, 4, 5, 8, 0, 0, 0, 0}, /* 0x9A (10011010) */ - {1, 2, 4, 5, 8, 0, 0, 0}, /* 0x9B (10011011) */ - {3, 4, 5, 8, 0, 0, 0, 0}, /* 0x9C (10011100) */ - {1, 3, 4, 5, 8, 0, 0, 0}, /* 0x9D (10011101) */ - {2, 3, 4, 5, 8, 0, 0, 0}, /* 0x9E (10011110) */ - {1, 2, 3, 4, 5, 8, 0, 0}, /* 0x9F (10011111) */ - {6, 8, 0, 0, 0, 0, 0, 0}, /* 0xA0 (10100000) */ - {1, 6, 8, 0, 0, 0, 0, 0}, /* 0xA1 (10100001) */ - {2, 6, 8, 0, 0, 0, 0, 0}, /* 0xA2 (10100010) */ - {1, 2, 6, 8, 0, 0, 0, 0}, /* 0xA3 (10100011) */ - {3, 6, 8, 0, 0, 0, 0, 0}, /* 0xA4 (10100100) */ - {1, 3, 6, 8, 0, 0, 0, 0}, /* 0xA5 (10100101) */ - {2, 3, 6, 8, 0, 0, 0, 0}, /* 0xA6 (10100110) */ - {1, 2, 3, 6, 8, 0, 0, 0}, /* 0xA7 (10100111) */ - {4, 6, 8, 0, 0, 0, 0, 0}, /* 0xA8 (10101000) */ - {1, 4, 6, 8, 0, 0, 0, 0}, /* 0xA9 (10101001) */ - {2, 4, 6, 8, 0, 0, 0, 0}, /* 0xAA (10101010) */ - {1, 2, 4, 6, 8, 0, 0, 0}, /* 0xAB (10101011) */ - {3, 4, 6, 8, 0, 0, 0, 0}, /* 0xAC (10101100) */ - {1, 3, 4, 6, 8, 0, 0, 0}, /* 0xAD (10101101) */ - {2, 3, 4, 6, 8, 0, 0, 0}, /* 0xAE (10101110) */ - {1, 2, 3, 4, 6, 8, 0, 0}, /* 0xAF (10101111) */ - {5, 6, 8, 0, 0, 0, 0, 0}, /* 0xB0 (10110000) */ - {1, 5, 6, 8, 0, 0, 0, 0}, /* 0xB1 (10110001) */ - {2, 5, 6, 8, 0, 0, 0, 0}, /* 0xB2 (10110010) */ - {1, 2, 5, 6, 8, 0, 0, 0}, /* 0xB3 (10110011) */ - {3, 5, 6, 8, 0, 0, 0, 0}, /* 0xB4 (10110100) */ - {1, 3, 5, 6, 8, 0, 0, 0}, /* 0xB5 (10110101) */ - {2, 3, 5, 6, 8, 0, 0, 0}, /* 0xB6 (10110110) */ - {1, 2, 3, 5, 6, 8, 0, 0}, /* 0xB7 (10110111) */ - {4, 5, 6, 8, 0, 0, 0, 0}, /* 0xB8 (10111000) */ - {1, 4, 5, 6, 8, 0, 0, 0}, /* 0xB9 (10111001) */ - {2, 4, 5, 6, 8, 0, 0, 0}, /* 0xBA (10111010) */ - {1, 2, 4, 5, 6, 8, 0, 0}, /* 0xBB (10111011) */ - {3, 4, 5, 6, 8, 0, 0, 0}, /* 0xBC (10111100) */ - {1, 3, 4, 5, 6, 8, 0, 0}, /* 0xBD (10111101) */ - {2, 3, 4, 5, 6, 8, 0, 0}, /* 0xBE (10111110) */ - {1, 2, 3, 4, 5, 6, 8, 0}, /* 0xBF (10111111) */ - {7, 8, 0, 0, 0, 0, 0, 0}, /* 0xC0 (11000000) */ - {1, 7, 8, 0, 0, 0, 0, 0}, /* 0xC1 (11000001) */ - {2, 7, 8, 0, 0, 0, 0, 0}, /* 0xC2 (11000010) */ - {1, 2, 7, 8, 0, 0, 0, 0}, /* 0xC3 (11000011) */ - {3, 7, 8, 0, 0, 0, 0, 0}, /* 0xC4 (11000100) */ - {1, 3, 7, 8, 0, 0, 0, 0}, /* 0xC5 (11000101) */ - {2, 3, 7, 8, 0, 0, 0, 0}, /* 0xC6 (11000110) */ - {1, 2, 3, 7, 8, 0, 0, 0}, /* 0xC7 (11000111) */ - {4, 7, 8, 0, 0, 0, 0, 0}, /* 0xC8 (11001000) */ - {1, 4, 7, 8, 0, 0, 0, 0}, /* 0xC9 (11001001) */ - {2, 4, 7, 8, 0, 0, 0, 0}, /* 0xCA (11001010) */ - {1, 2, 4, 7, 8, 0, 0, 0}, /* 0xCB (11001011) */ - {3, 4, 7, 8, 0, 0, 0, 0}, /* 0xCC (11001100) */ - {1, 3, 4, 7, 8, 0, 0, 0}, /* 0xCD (11001101) */ - {2, 3, 4, 7, 8, 0, 0, 0}, /* 0xCE (11001110) */ - {1, 2, 3, 4, 7, 8, 0, 0}, /* 0xCF (11001111) */ - {5, 7, 8, 0, 0, 0, 0, 0}, /* 0xD0 (11010000) */ - {1, 5, 7, 8, 0, 0, 0, 0}, /* 0xD1 (11010001) */ - {2, 5, 7, 8, 0, 0, 0, 0}, /* 0xD2 (11010010) */ - {1, 2, 5, 7, 8, 0, 0, 0}, /* 0xD3 (11010011) */ - {3, 5, 7, 8, 0, 0, 0, 0}, /* 0xD4 (11010100) */ - {1, 3, 5, 7, 8, 0, 0, 0}, /* 0xD5 (11010101) */ - {2, 3, 5, 7, 8, 0, 0, 0}, /* 0xD6 (11010110) */ - {1, 2, 3, 5, 7, 8, 0, 0}, /* 0xD7 (11010111) */ - {4, 5, 7, 8, 0, 0, 0, 0}, /* 0xD8 (11011000) */ - {1, 4, 5, 7, 8, 0, 0, 0}, /* 0xD9 (11011001) */ - {2, 4, 5, 7, 8, 0, 0, 0}, /* 0xDA (11011010) */ - {1, 2, 4, 5, 7, 8, 0, 0}, /* 0xDB (11011011) */ - {3, 4, 5, 7, 8, 0, 0, 0}, /* 0xDC (11011100) */ - {1, 3, 4, 5, 7, 8, 0, 0}, /* 0xDD (11011101) */ - {2, 3, 4, 5, 7, 8, 0, 0}, /* 0xDE (11011110) */ - {1, 2, 3, 4, 5, 7, 8, 0}, /* 0xDF (11011111) */ - {6, 7, 8, 0, 0, 0, 0, 0}, /* 0xE0 (11100000) */ - {1, 6, 7, 8, 0, 0, 0, 0}, /* 0xE1 (11100001) */ - {2, 6, 7, 8, 0, 0, 0, 0}, /* 0xE2 (11100010) */ - {1, 2, 6, 7, 8, 0, 0, 0}, /* 0xE3 (11100011) */ - {3, 6, 7, 8, 0, 0, 0, 0}, /* 0xE4 (11100100) */ - {1, 3, 6, 7, 8, 0, 0, 0}, /* 0xE5 (11100101) */ - {2, 3, 6, 7, 8, 0, 0, 0}, /* 0xE6 (11100110) */ - {1, 2, 3, 6, 7, 8, 0, 0}, /* 0xE7 (11100111) */ - {4, 6, 7, 8, 0, 0, 0, 0}, /* 0xE8 (11101000) */ - {1, 4, 6, 7, 8, 0, 0, 0}, /* 0xE9 (11101001) */ - {2, 4, 6, 7, 8, 0, 0, 0}, /* 0xEA (11101010) */ - {1, 2, 4, 6, 7, 8, 0, 0}, /* 0xEB (11101011) */ - {3, 4, 6, 7, 8, 0, 0, 0}, /* 0xEC (11101100) */ - {1, 3, 4, 6, 7, 8, 0, 0}, /* 0xED (11101101) */ - {2, 3, 4, 6, 7, 8, 0, 0}, /* 0xEE (11101110) */ - {1, 2, 3, 4, 6, 7, 8, 0}, /* 0xEF (11101111) */ - {5, 6, 7, 8, 0, 0, 0, 0}, /* 0xF0 (11110000) */ - {1, 5, 6, 7, 8, 0, 0, 0}, /* 0xF1 (11110001) */ - {2, 5, 6, 7, 8, 0, 0, 0}, /* 0xF2 (11110010) */ - {1, 2, 5, 6, 7, 8, 0, 0}, /* 0xF3 (11110011) */ - {3, 5, 6, 7, 8, 0, 0, 0}, /* 0xF4 (11110100) */ - {1, 3, 5, 6, 7, 8, 0, 0}, /* 0xF5 (11110101) */ - {2, 3, 5, 6, 7, 8, 0, 0}, /* 0xF6 (11110110) */ - {1, 2, 3, 5, 6, 7, 8, 0}, /* 0xF7 (11110111) */ - {4, 5, 6, 7, 8, 0, 0, 0}, /* 0xF8 (11111000) */ - {1, 4, 5, 6, 7, 8, 0, 0}, /* 0xF9 (11111001) */ - {2, 4, 5, 6, 7, 8, 0, 0}, /* 0xFA (11111010) */ - {1, 2, 4, 5, 6, 7, 8, 0}, /* 0xFB (11111011) */ - {3, 4, 5, 6, 7, 8, 0, 0}, /* 0xFC (11111100) */ - {1, 3, 4, 5, 6, 7, 8, 0}, /* 0xFD (11111101) */ - {2, 3, 4, 5, 6, 7, 8, 0}, /* 0xFE (11111110) */ - {1, 2, 3, 4, 5, 6, 7, 8} /* 0xFF (11111111) */ -}; - -#endif - -#ifdef USEAVX - -size_t bitset_extract_setbits_avx2(uint64_t *array, size_t length, void *vout, - size_t outcapacity, uint32_t base) { - uint32_t *out = (uint32_t *)vout; - uint32_t *initout = out; - __m256i baseVec = _mm256_set1_epi32(base - 1); - __m256i incVec = _mm256_set1_epi32(64); - __m256i add8 = _mm256_set1_epi32(8); - uint32_t *safeout = out + outcapacity; - size_t i = 0; - for (; (i < length) && (out + 64 <= safeout); ++i) { - uint64_t w = array[i]; - if (w == 0) { - baseVec = _mm256_add_epi32(baseVec, incVec); - } else { - for (int k = 0; k < 4; ++k) { - uint8_t byteA = (uint8_t)w; - uint8_t byteB = (uint8_t)(w >> 8); - w >>= 16; - __m256i vecA = - _mm256_load_si256((const __m256i *)vecDecodeTable[byteA]); - __m256i vecB = - _mm256_load_si256((const __m256i *)vecDecodeTable[byteB]); - uint8_t advanceA = lengthTable[byteA]; - uint8_t advanceB = lengthTable[byteB]; - vecA = _mm256_add_epi32(baseVec, vecA); - baseVec = _mm256_add_epi32(baseVec, add8); - vecB = _mm256_add_epi32(baseVec, vecB); - baseVec = _mm256_add_epi32(baseVec, add8); - _mm256_storeu_si256((__m256i *)out, vecA); - out += advanceA; - _mm256_storeu_si256((__m256i *)out, vecB); - out += advanceB; - } - } - } - base += i * 64; - for (; (i < length) && (out < safeout); ++i) { - uint64_t w = array[i]; - while ((w != 0) && (out < safeout)) { - uint64_t t = w & (~w + 1); // on x64, should compile to BLSI (careful: the Intel compiler seems to fail) - int r = __builtin_ctzll(w); // on x64, should compile to TZCNT - uint32_t val = r + base; - memcpy(out, &val, - sizeof(uint32_t)); // should be compiled as a MOV on x64 - out++; - w ^= t; - } - base += 64; - } - return out - initout; -} -#endif // USEAVX - -size_t bitset_extract_setbits(uint64_t *bitset, size_t length, void *vout, - uint32_t base) { - int outpos = 0; - uint32_t *out = (uint32_t *)vout; - for (size_t i = 0; i < length; ++i) { - uint64_t w = bitset[i]; - while (w != 0) { - uint64_t t = w & (~w + 1); // on x64, should compile to BLSI (careful: the Intel compiler seems to fail) - int r = __builtin_ctzll(w); // on x64, should compile to TZCNT - uint32_t val = r + base; - memcpy(out + outpos, &val, - sizeof(uint32_t)); // should be compiled as a MOV on x64 - outpos++; - w ^= t; - } - base += 64; - } - return outpos; -} - -size_t bitset_extract_intersection_setbits_uint16(const uint64_t * __restrict__ bitset1, - const uint64_t * __restrict__ bitset2, - size_t length, uint16_t *out, - uint16_t base) { - int outpos = 0; - for (size_t i = 0; i < length; ++i) { - uint64_t w = bitset1[i] & bitset2[i]; - while (w != 0) { - uint64_t t = w & (~w + 1); - int r = __builtin_ctzll(w); - out[outpos++] = r + base; - w ^= t; - } - base += 64; - } - return outpos; -} - -#ifdef IS_X64 -/* - * Given a bitset containing "length" 64-bit words, write out the position - * of all the set bits to "out" as 16-bit integers, values start at "base" (can - *be set to zero). - * - * The "out" pointer should be sufficient to store the actual number of bits - *set. - * - * Returns how many values were actually decoded. - * - * This function uses SSE decoding. - */ -size_t bitset_extract_setbits_sse_uint16(const uint64_t *bitset, size_t length, - uint16_t *out, size_t outcapacity, - uint16_t base) { - uint16_t *initout = out; - __m128i baseVec = _mm_set1_epi16(base - 1); - __m128i incVec = _mm_set1_epi16(64); - __m128i add8 = _mm_set1_epi16(8); - uint16_t *safeout = out + outcapacity; - const int numberofbytes = 2; // process two bytes at a time - size_t i = 0; - for (; (i < length) && (out + numberofbytes * 8 <= safeout); ++i) { - uint64_t w = bitset[i]; - if (w == 0) { - baseVec = _mm_add_epi16(baseVec, incVec); - } else { - for (int k = 0; k < 4; ++k) { - uint8_t byteA = (uint8_t)w; - uint8_t byteB = (uint8_t)(w >> 8); - w >>= 16; - __m128i vecA = _mm_load_si128( - (const __m128i *)vecDecodeTable_uint16[byteA]); - __m128i vecB = _mm_load_si128( - (const __m128i *)vecDecodeTable_uint16[byteB]); - uint8_t advanceA = lengthTable[byteA]; - uint8_t advanceB = lengthTable[byteB]; - vecA = _mm_add_epi16(baseVec, vecA); - baseVec = _mm_add_epi16(baseVec, add8); - vecB = _mm_add_epi16(baseVec, vecB); - baseVec = _mm_add_epi16(baseVec, add8); - _mm_storeu_si128((__m128i *)out, vecA); - out += advanceA; - _mm_storeu_si128((__m128i *)out, vecB); - out += advanceB; - } - } - } - base += (uint16_t)(i * 64); - for (; (i < length) && (out < safeout); ++i) { - uint64_t w = bitset[i]; - while ((w != 0) && (out < safeout)) { - uint64_t t = w & (~w + 1); - int r = __builtin_ctzll(w); - *out = r + base; - out++; - w ^= t; - } - base += 64; - } - return out - initout; -} -#endif - -/* - * Given a bitset containing "length" 64-bit words, write out the position - * of all the set bits to "out", values start at "base" (can be set to zero). - * - * The "out" pointer should be sufficient to store the actual number of bits - *set. - * - * Returns how many values were actually decoded. - */ -size_t bitset_extract_setbits_uint16(const uint64_t *bitset, size_t length, - uint16_t *out, uint16_t base) { - int outpos = 0; - for (size_t i = 0; i < length; ++i) { - uint64_t w = bitset[i]; - while (w != 0) { - uint64_t t = w & (~w + 1); - int r = __builtin_ctzll(w); - out[outpos++] = r + base; - w ^= t; - } - base += 64; - } - return outpos; -} - -#if defined(ASMBITMANIPOPTIMIZATION) - -uint64_t bitset_set_list_withcard(void *bitset, uint64_t card, - const uint16_t *list, uint64_t length) { - uint64_t offset, load, pos; - uint64_t shift = 6; - const uint16_t *end = list + length; - if (!length) return card; - // TODO: could unroll for performance, see bitset_set_list - // bts is not available as an intrinsic in GCC - __asm volatile( - "1:\n" - "movzwq (%[list]), %[pos]\n" - "shrx %[shift], %[pos], %[offset]\n" - "mov (%[bitset],%[offset],8), %[load]\n" - "bts %[pos], %[load]\n" - "mov %[load], (%[bitset],%[offset],8)\n" - "sbb $-1, %[card]\n" - "add $2, %[list]\n" - "cmp %[list], %[end]\n" - "jnz 1b" - : [card] "+&r"(card), [list] "+&r"(list), [load] "=&r"(load), - [pos] "=&r"(pos), [offset] "=&r"(offset) - : [end] "r"(end), [bitset] "r"(bitset), [shift] "r"(shift)); - return card; -} - -void bitset_set_list(void *bitset, const uint16_t *list, uint64_t length) { - uint64_t pos; - const uint16_t *end = list + length; - - uint64_t shift = 6; - uint64_t offset; - uint64_t load; - for (; list + 3 < end; list += 4) { - pos = list[0]; - __asm volatile( - "shrx %[shift], %[pos], %[offset]\n" - "mov (%[bitset],%[offset],8), %[load]\n" - "bts %[pos], %[load]\n" - "mov %[load], (%[bitset],%[offset],8)" - : [load] "=&r"(load), [offset] "=&r"(offset) - : [bitset] "r"(bitset), [shift] "r"(shift), [pos] "r"(pos)); - pos = list[1]; - __asm volatile( - "shrx %[shift], %[pos], %[offset]\n" - "mov (%[bitset],%[offset],8), %[load]\n" - "bts %[pos], %[load]\n" - "mov %[load], (%[bitset],%[offset],8)" - : [load] "=&r"(load), [offset] "=&r"(offset) - : [bitset] "r"(bitset), [shift] "r"(shift), [pos] "r"(pos)); - pos = list[2]; - __asm volatile( - "shrx %[shift], %[pos], %[offset]\n" - "mov (%[bitset],%[offset],8), %[load]\n" - "bts %[pos], %[load]\n" - "mov %[load], (%[bitset],%[offset],8)" - : [load] "=&r"(load), [offset] "=&r"(offset) - : [bitset] "r"(bitset), [shift] "r"(shift), [pos] "r"(pos)); - pos = list[3]; - __asm volatile( - "shrx %[shift], %[pos], %[offset]\n" - "mov (%[bitset],%[offset],8), %[load]\n" - "bts %[pos], %[load]\n" - "mov %[load], (%[bitset],%[offset],8)" - : [load] "=&r"(load), [offset] "=&r"(offset) - : [bitset] "r"(bitset), [shift] "r"(shift), [pos] "r"(pos)); - } - - while (list != end) { - pos = list[0]; - __asm volatile( - "shrx %[shift], %[pos], %[offset]\n" - "mov (%[bitset],%[offset],8), %[load]\n" - "bts %[pos], %[load]\n" - "mov %[load], (%[bitset],%[offset],8)" - : [load] "=&r"(load), [offset] "=&r"(offset) - : [bitset] "r"(bitset), [shift] "r"(shift), [pos] "r"(pos)); - list++; - } -} - -uint64_t bitset_clear_list(void *bitset, uint64_t card, const uint16_t *list, - uint64_t length) { - uint64_t offset, load, pos; - uint64_t shift = 6; - const uint16_t *end = list + length; - if (!length) return card; - // btr is not available as an intrinsic in GCC - __asm volatile( - "1:\n" - "movzwq (%[list]), %[pos]\n" - "shrx %[shift], %[pos], %[offset]\n" - "mov (%[bitset],%[offset],8), %[load]\n" - "btr %[pos], %[load]\n" - "mov %[load], (%[bitset],%[offset],8)\n" - "sbb $0, %[card]\n" - "add $2, %[list]\n" - "cmp %[list], %[end]\n" - "jnz 1b" - : [card] "+&r"(card), [list] "+&r"(list), [load] "=&r"(load), - [pos] "=&r"(pos), [offset] "=&r"(offset) - : [end] "r"(end), [bitset] "r"(bitset), [shift] "r"(shift) - : - /* clobbers */ "memory"); - return card; -} - -#else -uint64_t bitset_clear_list(void *bitset, uint64_t card, const uint16_t *list, - uint64_t length) { - uint64_t offset, load, newload, pos, index; - const uint16_t *end = list + length; - while (list != end) { - pos = *(const uint16_t *)list; - offset = pos >> 6; - index = pos % 64; - load = ((uint64_t *)bitset)[offset]; - newload = load & ~(UINT64_C(1) << index); - card -= (load ^ newload) >> index; - ((uint64_t *)bitset)[offset] = newload; - list++; - } - return card; -} - -uint64_t bitset_set_list_withcard(void *bitset, uint64_t card, - const uint16_t *list, uint64_t length) { - uint64_t offset, load, newload, pos, index; - const uint16_t *end = list + length; - while (list != end) { - pos = *(const uint16_t *)list; - offset = pos >> 6; - index = pos % 64; - load = ((uint64_t *)bitset)[offset]; - newload = load | (UINT64_C(1) << index); - card += (load ^ newload) >> index; - ((uint64_t *)bitset)[offset] = newload; - list++; - } - return card; -} - -void bitset_set_list(void *bitset, const uint16_t *list, uint64_t length) { - uint64_t offset, load, newload, pos, index; - const uint16_t *end = list + length; - while (list != end) { - pos = *(const uint16_t *)list; - offset = pos >> 6; - index = pos % 64; - load = ((uint64_t *)bitset)[offset]; - newload = load | (UINT64_C(1) << index); - ((uint64_t *)bitset)[offset] = newload; - list++; - } -} - -#endif - -/* flip specified bits */ -/* TODO: consider whether worthwhile to make an asm version */ - -uint64_t bitset_flip_list_withcard(void *bitset, uint64_t card, - const uint16_t *list, uint64_t length) { - uint64_t offset, load, newload, pos, index; - const uint16_t *end = list + length; - while (list != end) { - pos = *(const uint16_t *)list; - offset = pos >> 6; - index = pos % 64; - load = ((uint64_t *)bitset)[offset]; - newload = load ^ (UINT64_C(1) << index); - // todo: is a branch here all that bad? - card += - (1 - 2 * (((UINT64_C(1) << index) & load) >> index)); // +1 or -1 - ((uint64_t *)bitset)[offset] = newload; - list++; - } - return card; -} - -void bitset_flip_list(void *bitset, const uint16_t *list, uint64_t length) { - uint64_t offset, load, newload, pos, index; - const uint16_t *end = list + length; - while (list != end) { - pos = *(const uint16_t *)list; - offset = pos >> 6; - index = pos % 64; - load = ((uint64_t *)bitset)[offset]; - newload = load ^ (UINT64_C(1) << index); - ((uint64_t *)bitset)[offset] = newload; - list++; - } -} -/* end file /opt/bitmap/CRoaring-0.2.57/src/bitset_util.c */ -/* begin file /opt/bitmap/CRoaring-0.2.57/src/containers/array.c */ -/* - * array.c - * - */ - -#include -#include -#include - -extern inline uint16_t array_container_minimum(const array_container_t *arr); -extern inline uint16_t array_container_maximum(const array_container_t *arr); -extern inline int array_container_index_equalorlarger(const array_container_t *arr, uint16_t x); - -extern inline int array_container_rank(const array_container_t *arr, - uint16_t x); -extern inline bool array_container_contains(const array_container_t *arr, - uint16_t pos); -extern int array_container_cardinality(const array_container_t *array); -extern bool array_container_nonzero_cardinality(const array_container_t *array); -extern void array_container_clear(array_container_t *array); -extern int32_t array_container_serialized_size_in_bytes(int32_t card); -extern bool array_container_empty(const array_container_t *array); -extern bool array_container_full(const array_container_t *array); - -/* Create a new array with capacity size. Return NULL in case of failure. */ -array_container_t *array_container_create_given_capacity(int32_t size) { - array_container_t *container; - - if ((container = (array_container_t *)malloc(sizeof(array_container_t))) == - NULL) { - return NULL; - } - - if( size <= 0 ) { // we don't want to rely on malloc(0) - container->array = NULL; - } else if ((container->array = (uint16_t *)malloc(sizeof(uint16_t) * size)) == - NULL) { - free(container); - return NULL; - } - - container->capacity = size; - container->cardinality = 0; - - return container; -} - -/* Create a new array. Return NULL in case of failure. */ -array_container_t *array_container_create() { - return array_container_create_given_capacity(ARRAY_DEFAULT_INIT_SIZE); -} - -/* Create a new array containing all values in [min,max). */ -array_container_t * array_container_create_range(uint32_t min, uint32_t max) { - array_container_t * answer = array_container_create_given_capacity(max - min + 1); - if(answer == NULL) return answer; - answer->cardinality = 0; - for(uint32_t k = min; k < max; k++) { - answer->array[answer->cardinality++] = k; - } - return answer; -} - -/* Duplicate container */ -array_container_t *array_container_clone(const array_container_t *src) { - array_container_t *newcontainer = - array_container_create_given_capacity(src->capacity); - if (newcontainer == NULL) return NULL; - - newcontainer->cardinality = src->cardinality; - - memcpy(newcontainer->array, src->array, - src->cardinality * sizeof(uint16_t)); - - return newcontainer; -} - -int array_container_shrink_to_fit(array_container_t *src) { - if (src->cardinality == src->capacity) return 0; // nothing to do - int savings = src->capacity - src->cardinality; - src->capacity = src->cardinality; - if( src->capacity == 0) { // we do not want to rely on realloc for zero allocs - free(src->array); - src->array = NULL; - } else { - uint16_t *oldarray = src->array; - src->array = - (uint16_t *)realloc(oldarray, src->capacity * sizeof(uint16_t)); - if (src->array == NULL) free(oldarray); // should never happen? - } - return savings; -} - -/* Free memory. */ -void array_container_free(array_container_t *arr) { - if(arr->array != NULL) {// Jon Strabala reports that some tools complain otherwise - free(arr->array); - arr->array = NULL; // pedantic - } - free(arr); -} - -static inline int32_t grow_capacity(int32_t capacity) { - return (capacity <= 0) ? ARRAY_DEFAULT_INIT_SIZE - : capacity < 64 ? capacity * 2 - : capacity < 1024 ? capacity * 3 / 2 - : capacity * 5 / 4; -} - -static inline int32_t clamp(int32_t val, int32_t min, int32_t max) { - return ((val < min) ? min : (val > max) ? max : val); -} - -void array_container_grow(array_container_t *container, int32_t min, - bool preserve) { - - int32_t max = (min <= DEFAULT_MAX_SIZE ? DEFAULT_MAX_SIZE : 65536); - int32_t new_capacity = clamp(grow_capacity(container->capacity), min, max); - - container->capacity = new_capacity; - uint16_t *array = container->array; - - if (preserve) { - container->array = - (uint16_t *)realloc(array, new_capacity * sizeof(uint16_t)); - if (container->array == NULL) free(array); - } else { - // Jon Strabala reports that some tools complain otherwise - if (array != NULL) { - free(array); - } - container->array = (uint16_t *)malloc(new_capacity * sizeof(uint16_t)); - } - - // handle the case where realloc fails - if (container->array == NULL) { - fprintf(stderr, "could not allocate memory\n"); - } - assert(container->array != NULL); -} - -/* Copy one container into another. We assume that they are distinct. */ -void array_container_copy(const array_container_t *src, - array_container_t *dst) { - const int32_t cardinality = src->cardinality; - if (cardinality > dst->capacity) { - array_container_grow(dst, cardinality, false); - } - - dst->cardinality = cardinality; - memcpy(dst->array, src->array, cardinality * sizeof(uint16_t)); -} - -void array_container_add_from_range(array_container_t *arr, uint32_t min, - uint32_t max, uint16_t step) { - for (uint32_t value = min; value < max; value += step) { - array_container_append(arr, value); - } -} - -/* Computes the union of array1 and array2 and write the result to arrayout. - * It is assumed that arrayout is distinct from both array1 and array2. - */ -void array_container_union(const array_container_t *array_1, - const array_container_t *array_2, - array_container_t *out) { - const int32_t card_1 = array_1->cardinality, card_2 = array_2->cardinality; - const int32_t max_cardinality = card_1 + card_2; - - if (out->capacity < max_cardinality) { - array_container_grow(out, max_cardinality, false); - } - out->cardinality = (int32_t)fast_union_uint16(array_1->array, card_1, - array_2->array, card_2, out->array); - -} - -/* Computes the difference of array1 and array2 and write the result - * to array out. - * Array out does not need to be distinct from array_1 - */ -void array_container_andnot(const array_container_t *array_1, - const array_container_t *array_2, - array_container_t *out) { - if (out->capacity < array_1->cardinality) - array_container_grow(out, array_1->cardinality, false); -#ifdef ROARING_VECTOR_OPERATIONS_ENABLED - out->cardinality = - difference_vector16(array_1->array, array_1->cardinality, - array_2->array, array_2->cardinality, out->array); -#else - out->cardinality = - difference_uint16(array_1->array, array_1->cardinality, array_2->array, - array_2->cardinality, out->array); -#endif -} - -/* Computes the symmetric difference of array1 and array2 and write the - * result - * to arrayout. - * It is assumed that arrayout is distinct from both array1 and array2. - */ -void array_container_xor(const array_container_t *array_1, - const array_container_t *array_2, - array_container_t *out) { - const int32_t card_1 = array_1->cardinality, card_2 = array_2->cardinality; - const int32_t max_cardinality = card_1 + card_2; - if (out->capacity < max_cardinality) { - array_container_grow(out, max_cardinality, false); - } - -#ifdef ROARING_VECTOR_OPERATIONS_ENABLED - out->cardinality = - xor_vector16(array_1->array, array_1->cardinality, array_2->array, - array_2->cardinality, out->array); -#else - out->cardinality = - xor_uint16(array_1->array, array_1->cardinality, array_2->array, - array_2->cardinality, out->array); -#endif -} - -static inline int32_t minimum_int32(int32_t a, int32_t b) { - return (a < b) ? a : b; -} - -/* computes the intersection of array1 and array2 and write the result to - * arrayout. - * It is assumed that arrayout is distinct from both array1 and array2. - * */ -void array_container_intersection(const array_container_t *array1, - const array_container_t *array2, - array_container_t *out) { - int32_t card_1 = array1->cardinality, card_2 = array2->cardinality, - min_card = minimum_int32(card_1, card_2); - const int threshold = 64; // subject to tuning -#ifdef USEAVX - if (out->capacity < min_card) { - array_container_grow(out, min_card + sizeof(__m128i) / sizeof(uint16_t), - false); - } -#else - if (out->capacity < min_card) { - array_container_grow(out, min_card, false); - } -#endif - - if (card_1 * threshold < card_2) { - out->cardinality = intersect_skewed_uint16( - array1->array, card_1, array2->array, card_2, out->array); - } else if (card_2 * threshold < card_1) { - out->cardinality = intersect_skewed_uint16( - array2->array, card_2, array1->array, card_1, out->array); - } else { -#ifdef USEAVX - out->cardinality = intersect_vector16( - array1->array, card_1, array2->array, card_2, out->array); -#else - out->cardinality = intersect_uint16(array1->array, card_1, - array2->array, card_2, out->array); -#endif - } -} - -/* computes the size of the intersection of array1 and array2 - * */ -int array_container_intersection_cardinality(const array_container_t *array1, - const array_container_t *array2) { - int32_t card_1 = array1->cardinality, card_2 = array2->cardinality; - const int threshold = 64; // subject to tuning - if (card_1 * threshold < card_2) { - return intersect_skewed_uint16_cardinality(array1->array, card_1, - array2->array, card_2); - } else if (card_2 * threshold < card_1) { - return intersect_skewed_uint16_cardinality(array2->array, card_2, - array1->array, card_1); - } else { -#ifdef USEAVX - return intersect_vector16_cardinality(array1->array, card_1, - array2->array, card_2); -#else - return intersect_uint16_cardinality(array1->array, card_1, - array2->array, card_2); -#endif - } -} - -bool array_container_intersect(const array_container_t *array1, - const array_container_t *array2) { - int32_t card_1 = array1->cardinality, card_2 = array2->cardinality; - const int threshold = 64; // subject to tuning - if (card_1 * threshold < card_2) { - return intersect_skewed_uint16_nonempty( - array1->array, card_1, array2->array, card_2); - } else if (card_2 * threshold < card_1) { - return intersect_skewed_uint16_nonempty( - array2->array, card_2, array1->array, card_1); - } else { - // we do not bother vectorizing - return intersect_uint16_nonempty(array1->array, card_1, - array2->array, card_2); - } -} - -/* computes the intersection of array1 and array2 and write the result to - * array1. - * */ -void array_container_intersection_inplace(array_container_t *src_1, - const array_container_t *src_2) { - // todo: can any of this be vectorized? - int32_t card_1 = src_1->cardinality, card_2 = src_2->cardinality; - const int threshold = 64; // subject to tuning - if (card_1 * threshold < card_2) { - src_1->cardinality = intersect_skewed_uint16( - src_1->array, card_1, src_2->array, card_2, src_1->array); - } else if (card_2 * threshold < card_1) { - src_1->cardinality = intersect_skewed_uint16( - src_2->array, card_2, src_1->array, card_1, src_1->array); - } else { - src_1->cardinality = intersect_uint16( - src_1->array, card_1, src_2->array, card_2, src_1->array); - } -} - -int array_container_to_uint32_array(void *vout, const array_container_t *cont, - uint32_t base) { - int outpos = 0; - uint32_t *out = (uint32_t *)vout; - for (int i = 0; i < cont->cardinality; ++i) { - const uint32_t val = base + cont->array[i]; - memcpy(out + outpos, &val, - sizeof(uint32_t)); // should be compiled as a MOV on x64 - outpos++; - } - return outpos; -} - -void array_container_printf(const array_container_t *v) { - if (v->cardinality == 0) { - printf("{}"); - return; - } - printf("{"); - printf("%d", v->array[0]); - for (int i = 1; i < v->cardinality; ++i) { - printf(",%d", v->array[i]); - } - printf("}"); -} - -void array_container_printf_as_uint32_array(const array_container_t *v, - uint32_t base) { - if (v->cardinality == 0) { - return; - } - printf("%u", v->array[0] + base); - for (int i = 1; i < v->cardinality; ++i) { - printf(",%u", v->array[i] + base); - } -} - -/* Compute the number of runs */ -int32_t array_container_number_of_runs(const array_container_t *a) { - // Can SIMD work here? - int32_t nr_runs = 0; - int32_t prev = -2; - for (const uint16_t *p = a->array; p != a->array + a->cardinality; ++p) { - if (*p != prev + 1) nr_runs++; - prev = *p; - } - return nr_runs; -} - -int32_t array_container_serialize(const array_container_t *container, char *buf) { - int32_t l, off; - uint16_t cardinality = (uint16_t)container->cardinality; - - memcpy(buf, &cardinality, off = sizeof(cardinality)); - l = sizeof(uint16_t) * container->cardinality; - if (l) memcpy(&buf[off], container->array, l); - - return (off + l); -} - -/** - * Writes the underlying array to buf, outputs how many bytes were written. - * The number of bytes written should be - * array_container_size_in_bytes(container). - * - */ -int32_t array_container_write(const array_container_t *container, char *buf) { - memcpy(buf, container->array, container->cardinality * sizeof(uint16_t)); - return array_container_size_in_bytes(container); -} - -bool array_container_equals(const array_container_t *container1, - const array_container_t *container2) { - if (container1->cardinality != container2->cardinality) { - return false; - } - // could be vectorized: - for (int32_t i = 0; i < container1->cardinality; ++i) { - if (container1->array[i] != container2->array[i]) return false; - } - return true; -} - -bool array_container_is_subset(const array_container_t *container1, - const array_container_t *container2) { - if (container1->cardinality > container2->cardinality) { - return false; - } - int i1 = 0, i2 = 0; - while (i1 < container1->cardinality && i2 < container2->cardinality) { - if (container1->array[i1] == container2->array[i2]) { - i1++; - i2++; - } else if (container1->array[i1] > container2->array[i2]) { - i2++; - } else { // container1->array[i1] < container2->array[i2] - return false; - } - } - if (i1 == container1->cardinality) { - return true; - } else { - return false; - } -} - -int32_t array_container_read(int32_t cardinality, array_container_t *container, - const char *buf) { - if (container->capacity < cardinality) { - array_container_grow(container, cardinality, false); - } - container->cardinality = cardinality; - memcpy(container->array, buf, container->cardinality * sizeof(uint16_t)); - - return array_container_size_in_bytes(container); -} - -uint32_t array_container_serialization_len(const array_container_t *container) { - return (sizeof(uint16_t) /* container->cardinality converted to 16 bit */ + - (sizeof(uint16_t) * container->cardinality)); -} - -void *array_container_deserialize(const char *buf, size_t buf_len) { - array_container_t *ptr; - - if (buf_len < 2) /* capacity converted to 16 bit */ - return (NULL); - else - buf_len -= 2; - - if ((ptr = (array_container_t *)malloc(sizeof(array_container_t))) != - NULL) { - size_t len; - int32_t off; - uint16_t cardinality; - - memcpy(&cardinality, buf, off = sizeof(cardinality)); - - ptr->capacity = ptr->cardinality = (uint32_t)cardinality; - len = sizeof(uint16_t) * ptr->cardinality; - - if (len != buf_len) { - free(ptr); - return (NULL); - } - - if ((ptr->array = (uint16_t *)malloc(sizeof(uint16_t) * - ptr->capacity)) == NULL) { - free(ptr); - return (NULL); - } - - if (len) memcpy(ptr->array, &buf[off], len); - - /* Check if returned values are monotonically increasing */ - for (int32_t i = 0, j = 0; i < ptr->cardinality; i++) { - if (ptr->array[i] < j) { - free(ptr->array); - free(ptr); - return (NULL); - } else - j = ptr->array[i]; - } - } - - return (ptr); -} - -bool array_container_iterate(const array_container_t *cont, uint32_t base, - roaring_iterator iterator, void *ptr) { - for (int i = 0; i < cont->cardinality; i++) - if (!iterator(cont->array[i] + base, ptr)) return false; - return true; -} - -bool array_container_iterate64(const array_container_t *cont, uint32_t base, - roaring_iterator64 iterator, uint64_t high_bits, - void *ptr) { - for (int i = 0; i < cont->cardinality; i++) - if (!iterator(high_bits | (uint64_t)(cont->array[i] + base), ptr)) - return false; - return true; -} -/* end file /opt/bitmap/CRoaring-0.2.57/src/containers/array.c */ -/* begin file /opt/bitmap/CRoaring-0.2.57/src/containers/bitset.c */ -/* - * bitset.c - * - */ -#ifndef _POSIX_C_SOURCE -#define _POSIX_C_SOURCE 200809L -#endif -#include -#include -#include -#include - - -extern int bitset_container_cardinality(const bitset_container_t *bitset); -extern bool bitset_container_nonzero_cardinality(bitset_container_t *bitset); -extern void bitset_container_set(bitset_container_t *bitset, uint16_t pos); -extern void bitset_container_unset(bitset_container_t *bitset, uint16_t pos); -extern inline bool bitset_container_get(const bitset_container_t *bitset, - uint16_t pos); -extern int32_t bitset_container_serialized_size_in_bytes(); -extern bool bitset_container_add(bitset_container_t *bitset, uint16_t pos); -extern bool bitset_container_remove(bitset_container_t *bitset, uint16_t pos); -extern inline bool bitset_container_contains(const bitset_container_t *bitset, - uint16_t pos); - -void bitset_container_clear(bitset_container_t *bitset) { - memset(bitset->array, 0, sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS); - bitset->cardinality = 0; -} - -void bitset_container_set_all(bitset_container_t *bitset) { - memset(bitset->array, INT64_C(-1), - sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS); - bitset->cardinality = (1 << 16); -} - - - -/* Create a new bitset. Return NULL in case of failure. */ -bitset_container_t *bitset_container_create(void) { - bitset_container_t *bitset = - (bitset_container_t *)malloc(sizeof(bitset_container_t)); - - if (!bitset) { - return NULL; - } - // sizeof(__m256i) == 32 - bitset->array = (uint64_t *)aligned_malloc( - 32, sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS); - if (!bitset->array) { - free(bitset); - return NULL; - } - bitset_container_clear(bitset); - return bitset; -} - -/* Copy one container into another. We assume that they are distinct. */ -void bitset_container_copy(const bitset_container_t *source, - bitset_container_t *dest) { - dest->cardinality = source->cardinality; - memcpy(dest->array, source->array, - sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS); -} - -void bitset_container_add_from_range(bitset_container_t *bitset, uint32_t min, - uint32_t max, uint16_t step) { - if (step == 0) return; // refuse to crash - if ((64 % step) == 0) { // step divides 64 - uint64_t mask = 0; // construct the repeated mask - for (uint32_t value = (min % step); value < 64; value += step) { - mask |= ((uint64_t)1 << value); - } - uint32_t firstword = min / 64; - uint32_t endword = (max - 1) / 64; - bitset->cardinality = (max - min + step - 1) / step; - if (firstword == endword) { - bitset->array[firstword] |= - mask & (((~UINT64_C(0)) << (min % 64)) & - ((~UINT64_C(0)) >> ((~max + 1) % 64))); - return; - } - bitset->array[firstword] = mask & ((~UINT64_C(0)) << (min % 64)); - for (uint32_t i = firstword + 1; i < endword; i++) - bitset->array[i] = mask; - bitset->array[endword] = mask & ((~UINT64_C(0)) >> ((~max + 1) % 64)); - } else { - for (uint32_t value = min; value < max; value += step) { - bitset_container_add(bitset, value); - } - } -} - -/* Free memory. */ -void bitset_container_free(bitset_container_t *bitset) { - if(bitset->array != NULL) {// Jon Strabala reports that some tools complain otherwise - aligned_free(bitset->array); - bitset->array = NULL; // pedantic - } - free(bitset); -} - -/* duplicate container. */ -bitset_container_t *bitset_container_clone(const bitset_container_t *src) { - bitset_container_t *bitset = - (bitset_container_t *)malloc(sizeof(bitset_container_t)); - - if (!bitset) { - return NULL; - } - // sizeof(__m256i) == 32 - bitset->array = (uint64_t *)aligned_malloc( - 32, sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS); - if (!bitset->array) { - free(bitset); - return NULL; - } - bitset->cardinality = src->cardinality; - memcpy(bitset->array, src->array, - sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS); - return bitset; -} - -void bitset_container_set_range(bitset_container_t *bitset, uint32_t begin, - uint32_t end) { - bitset_set_range(bitset->array, begin, end); - bitset->cardinality = - bitset_container_compute_cardinality(bitset); // could be smarter -} - - -bool bitset_container_intersect(const bitset_container_t *src_1, - const bitset_container_t *src_2) { - // could vectorize, but this is probably already quite fast in practice - const uint64_t * __restrict__ array_1 = src_1->array; - const uint64_t * __restrict__ array_2 = src_2->array; - for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i ++) { - if((array_1[i] & array_2[i]) != 0) return true; - } - return false; -} - - -#ifdef USEAVX -#ifndef WORDS_IN_AVX2_REG -#define WORDS_IN_AVX2_REG sizeof(__m256i) / sizeof(uint64_t) -#endif -/* Get the number of bits set (force computation) */ -int bitset_container_compute_cardinality(const bitset_container_t *bitset) { - return (int) avx2_harley_seal_popcount256( - (const __m256i *)bitset->array, - BITSET_CONTAINER_SIZE_IN_WORDS / (WORDS_IN_AVX2_REG)); -} -#else - -/* Get the number of bits set (force computation) */ -int bitset_container_compute_cardinality(const bitset_container_t *bitset) { - const uint64_t *array = bitset->array; - int32_t sum = 0; - for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 4) { - sum += hamming(array[i]); - sum += hamming(array[i + 1]); - sum += hamming(array[i + 2]); - sum += hamming(array[i + 3]); - } - return sum; -} - -#endif - -#ifdef USEAVX - -#define BITSET_CONTAINER_FN_REPEAT 8 -#ifndef WORDS_IN_AVX2_REG -#define WORDS_IN_AVX2_REG sizeof(__m256i) / sizeof(uint64_t) -#endif -#define LOOP_SIZE \ - BITSET_CONTAINER_SIZE_IN_WORDS / \ - ((WORDS_IN_AVX2_REG)*BITSET_CONTAINER_FN_REPEAT) - -/* Computes a binary operation (eg union) on bitset1 and bitset2 and write the - result to bitsetout */ -// clang-format off -#define BITSET_CONTAINER_FN(opname, opsymbol, avx_intrinsic) \ -int bitset_container_##opname##_nocard(const bitset_container_t *src_1, \ - const bitset_container_t *src_2, \ - bitset_container_t *dst) { \ - const uint8_t * __restrict__ array_1 = (const uint8_t *)src_1->array; \ - const uint8_t * __restrict__ array_2 = (const uint8_t *)src_2->array; \ - /* not using the blocking optimization for some reason*/ \ - uint8_t *out = (uint8_t*)dst->array; \ - const int innerloop = 8; \ - for (size_t i = 0; \ - i < BITSET_CONTAINER_SIZE_IN_WORDS / (WORDS_IN_AVX2_REG); \ - i+=innerloop) {\ - __m256i A1, A2, AO; \ - A1 = _mm256_lddqu_si256((const __m256i *)(array_1)); \ - A2 = _mm256_lddqu_si256((const __m256i *)(array_2)); \ - AO = avx_intrinsic(A2, A1); \ - _mm256_storeu_si256((__m256i *)out, AO); \ - A1 = _mm256_lddqu_si256((const __m256i *)(array_1 + 32)); \ - A2 = _mm256_lddqu_si256((const __m256i *)(array_2 + 32)); \ - AO = avx_intrinsic(A2, A1); \ - _mm256_storeu_si256((__m256i *)(out+32), AO); \ - A1 = _mm256_lddqu_si256((const __m256i *)(array_1 + 64)); \ - A2 = _mm256_lddqu_si256((const __m256i *)(array_2 + 64)); \ - AO = avx_intrinsic(A2, A1); \ - _mm256_storeu_si256((__m256i *)(out+64), AO); \ - A1 = _mm256_lddqu_si256((const __m256i *)(array_1 + 96)); \ - A2 = _mm256_lddqu_si256((const __m256i *)(array_2 + 96)); \ - AO = avx_intrinsic(A2, A1); \ - _mm256_storeu_si256((__m256i *)(out+96), AO); \ - A1 = _mm256_lddqu_si256((const __m256i *)(array_1 + 128)); \ - A2 = _mm256_lddqu_si256((const __m256i *)(array_2 + 128)); \ - AO = avx_intrinsic(A2, A1); \ - _mm256_storeu_si256((__m256i *)(out+128), AO); \ - A1 = _mm256_lddqu_si256((const __m256i *)(array_1 + 160)); \ - A2 = _mm256_lddqu_si256((const __m256i *)(array_2 + 160)); \ - AO = avx_intrinsic(A2, A1); \ - _mm256_storeu_si256((__m256i *)(out+160), AO); \ - A1 = _mm256_lddqu_si256((const __m256i *)(array_1 + 192)); \ - A2 = _mm256_lddqu_si256((const __m256i *)(array_2 + 192)); \ - AO = avx_intrinsic(A2, A1); \ - _mm256_storeu_si256((__m256i *)(out+192), AO); \ - A1 = _mm256_lddqu_si256((const __m256i *)(array_1 + 224)); \ - A2 = _mm256_lddqu_si256((const __m256i *)(array_2 + 224)); \ - AO = avx_intrinsic(A2, A1); \ - _mm256_storeu_si256((__m256i *)(out+224), AO); \ - out+=256; \ - array_1 += 256; \ - array_2 += 256; \ - } \ - dst->cardinality = BITSET_UNKNOWN_CARDINALITY; \ - return dst->cardinality; \ -} \ -/* next, a version that updates cardinality*/ \ -int bitset_container_##opname(const bitset_container_t *src_1, \ - const bitset_container_t *src_2, \ - bitset_container_t *dst) { \ - const __m256i * __restrict__ array_1 = (const __m256i *) src_1->array; \ - const __m256i * __restrict__ array_2 = (const __m256i *) src_2->array; \ - __m256i *out = (__m256i *) dst->array; \ - dst->cardinality = (int32_t)avx2_harley_seal_popcount256andstore_##opname(array_2,\ - array_1, out,BITSET_CONTAINER_SIZE_IN_WORDS / (WORDS_IN_AVX2_REG));\ - return dst->cardinality; \ -} \ -/* next, a version that just computes the cardinality*/ \ -int bitset_container_##opname##_justcard(const bitset_container_t *src_1, \ - const bitset_container_t *src_2) { \ - const __m256i * __restrict__ data1 = (const __m256i *) src_1->array; \ - const __m256i * __restrict__ data2 = (const __m256i *) src_2->array; \ - return (int)avx2_harley_seal_popcount256_##opname(data2, \ - data1, BITSET_CONTAINER_SIZE_IN_WORDS / (WORDS_IN_AVX2_REG));\ -} - - - -#else /* not USEAVX */ - -#define BITSET_CONTAINER_FN(opname, opsymbol, avxintrinsic) \ -int bitset_container_##opname(const bitset_container_t *src_1, \ - const bitset_container_t *src_2, \ - bitset_container_t *dst) { \ - const uint64_t * __restrict__ array_1 = src_1->array; \ - const uint64_t * __restrict__ array_2 = src_2->array; \ - uint64_t *out = dst->array; \ - int32_t sum = 0; \ - for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 2) { \ - const uint64_t word_1 = (array_1[i])opsymbol(array_2[i]), \ - word_2 = (array_1[i + 1])opsymbol(array_2[i + 1]); \ - out[i] = word_1; \ - out[i + 1] = word_2; \ - sum += hamming(word_1); \ - sum += hamming(word_2); \ - } \ - dst->cardinality = sum; \ - return dst->cardinality; \ -} \ -int bitset_container_##opname##_nocard(const bitset_container_t *src_1, \ - const bitset_container_t *src_2, \ - bitset_container_t *dst) { \ - const uint64_t * __restrict__ array_1 = src_1->array; \ - const uint64_t * __restrict__ array_2 = src_2->array; \ - uint64_t *out = dst->array; \ - for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i++) { \ - out[i] = (array_1[i])opsymbol(array_2[i]); \ - } \ - dst->cardinality = BITSET_UNKNOWN_CARDINALITY; \ - return dst->cardinality; \ -} \ -int bitset_container_##opname##_justcard(const bitset_container_t *src_1, \ - const bitset_container_t *src_2) { \ - const uint64_t * __restrict__ array_1 = src_1->array; \ - const uint64_t * __restrict__ array_2 = src_2->array; \ - int32_t sum = 0; \ - for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 2) { \ - const uint64_t word_1 = (array_1[i])opsymbol(array_2[i]), \ - word_2 = (array_1[i + 1])opsymbol(array_2[i + 1]); \ - sum += hamming(word_1); \ - sum += hamming(word_2); \ - } \ - return sum; \ -} - -#endif - -// we duplicate the function because other containers use the "or" term, makes API more consistent -BITSET_CONTAINER_FN(or, |, _mm256_or_si256) -BITSET_CONTAINER_FN(union, |, _mm256_or_si256) - -// we duplicate the function because other containers use the "intersection" term, makes API more consistent -BITSET_CONTAINER_FN(and, &, _mm256_and_si256) -BITSET_CONTAINER_FN(intersection, &, _mm256_and_si256) - -BITSET_CONTAINER_FN(xor, ^, _mm256_xor_si256) -BITSET_CONTAINER_FN(andnot, &~, _mm256_andnot_si256) -// clang-format On - - - -int bitset_container_to_uint32_array( void *vout, const bitset_container_t *cont, uint32_t base) { -#ifdef USEAVX2FORDECODING - if(cont->cardinality >= 8192)// heuristic - return (int) bitset_extract_setbits_avx2(cont->array, BITSET_CONTAINER_SIZE_IN_WORDS, vout,cont->cardinality,base); - else - return (int) bitset_extract_setbits(cont->array, BITSET_CONTAINER_SIZE_IN_WORDS, vout,base); -#else - return (int) bitset_extract_setbits(cont->array, BITSET_CONTAINER_SIZE_IN_WORDS, vout,base); -#endif -} - -/* - * Print this container using printf (useful for debugging). - */ -void bitset_container_printf(const bitset_container_t * v) { - printf("{"); - uint32_t base = 0; - bool iamfirst = true;// TODO: rework so that this is not necessary yet still readable - for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i) { - uint64_t w = v->array[i]; - while (w != 0) { - uint64_t t = w & (~w + 1); - int r = __builtin_ctzll(w); - if(iamfirst) {// predicted to be false - printf("%u",base + r); - iamfirst = false; - } else { - printf(",%u",base + r); - } - w ^= t; - } - base += 64; - } - printf("}"); -} - - -/* - * Print this container using printf as a comma-separated list of 32-bit integers starting at base. - */ -void bitset_container_printf_as_uint32_array(const bitset_container_t * v, uint32_t base) { - bool iamfirst = true;// TODO: rework so that this is not necessary yet still readable - for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i) { - uint64_t w = v->array[i]; - while (w != 0) { - uint64_t t = w & (~w + 1); - int r = __builtin_ctzll(w); - if(iamfirst) {// predicted to be false - printf("%u", r + base); - iamfirst = false; - } else { - printf(",%u",r + base); - } - w ^= t; - } - base += 64; - } -} - - -// TODO: use the fast lower bound, also -int bitset_container_number_of_runs(bitset_container_t *b) { - int num_runs = 0; - uint64_t next_word = b->array[0]; - - for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS-1; ++i) { - uint64_t word = next_word; - next_word = b->array[i+1]; - num_runs += hamming((~word) & (word << 1)) + ( (word >> 63) & ~next_word); - } - - uint64_t word = next_word; - num_runs += hamming((~word) & (word << 1)); - if((word & 0x8000000000000000ULL) != 0) - num_runs++; - return num_runs; -} - -int32_t bitset_container_serialize(const bitset_container_t *container, char *buf) { - int32_t l = sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS; - memcpy(buf, container->array, l); - return(l); -} - - - -int32_t bitset_container_write(const bitset_container_t *container, - char *buf) { - memcpy(buf, container->array, BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t)); - return bitset_container_size_in_bytes(container); -} - - -int32_t bitset_container_read(int32_t cardinality, bitset_container_t *container, - const char *buf) { - container->cardinality = cardinality; - memcpy(container->array, buf, BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t)); - return bitset_container_size_in_bytes(container); -} - -uint32_t bitset_container_serialization_len() { - return(sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS); -} - -void* bitset_container_deserialize(const char *buf, size_t buf_len) { - bitset_container_t *ptr; - size_t l = sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS; - - if(l != buf_len) - return(NULL); - - if((ptr = (bitset_container_t *)malloc(sizeof(bitset_container_t))) != NULL) { - memcpy(ptr, buf, sizeof(bitset_container_t)); - // sizeof(__m256i) == 32 - ptr->array = (uint64_t *) aligned_malloc(32, l); - if (! ptr->array) { - free(ptr); - return NULL; - } - memcpy(ptr->array, buf, l); - ptr->cardinality = bitset_container_compute_cardinality(ptr); - } - - return((void*)ptr); -} - -bool bitset_container_iterate(const bitset_container_t *cont, uint32_t base, roaring_iterator iterator, void *ptr) { - for (int32_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i ) { - uint64_t w = cont->array[i]; - while (w != 0) { - uint64_t t = w & (~w + 1); - int r = __builtin_ctzll(w); - if(!iterator(r + base, ptr)) return false; - w ^= t; - } - base += 64; - } - return true; -} - -bool bitset_container_iterate64(const bitset_container_t *cont, uint32_t base, roaring_iterator64 iterator, uint64_t high_bits, void *ptr) { - for (int32_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i ) { - uint64_t w = cont->array[i]; - while (w != 0) { - uint64_t t = w & (~w + 1); - int r = __builtin_ctzll(w); - if(!iterator(high_bits | (uint64_t)(r + base), ptr)) return false; - w ^= t; - } - base += 64; - } - return true; -} - - -bool bitset_container_equals(const bitset_container_t *container1, const bitset_container_t *container2) { - if((container1->cardinality != BITSET_UNKNOWN_CARDINALITY) && (container2->cardinality != BITSET_UNKNOWN_CARDINALITY)) { - if(container1->cardinality != container2->cardinality) { - return false; - } - } - for(int32_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i ) { - if(container1->array[i] != container2->array[i]) { - return false; - } - } - return true; -} - -bool bitset_container_is_subset(const bitset_container_t *container1, - const bitset_container_t *container2) { - if((container1->cardinality != BITSET_UNKNOWN_CARDINALITY) && (container2->cardinality != BITSET_UNKNOWN_CARDINALITY)) { - if(container1->cardinality > container2->cardinality) { - return false; - } - } - for(int32_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i ) { - if((container1->array[i] & container2->array[i]) != container1->array[i]) { - return false; - } - } - return true; -} - -bool bitset_container_select(const bitset_container_t *container, uint32_t *start_rank, uint32_t rank, uint32_t *element) { - int card = bitset_container_cardinality(container); - if(rank >= *start_rank + card) { - *start_rank += card; - return false; - } - const uint64_t *array = container->array; - int32_t size; - for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 1) { - size = hamming(array[i]); - if(rank <= *start_rank + size) { - uint64_t w = container->array[i]; - uint16_t base = i*64; - while (w != 0) { - uint64_t t = w & (~w + 1); - int r = __builtin_ctzll(w); - if(*start_rank == rank) { - *element = r+base; - return true; - } - w ^= t; - *start_rank += 1; - } - } - else - *start_rank += size; - } - assert(false); - __builtin_unreachable(); -} - - -/* Returns the smallest value (assumes not empty) */ -uint16_t bitset_container_minimum(const bitset_container_t *container) { - for (int32_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i ) { - uint64_t w = container->array[i]; - if (w != 0) { - int r = __builtin_ctzll(w); - return r + i * 64; - } - } - return UINT16_MAX; -} - -/* Returns the largest value (assumes not empty) */ -uint16_t bitset_container_maximum(const bitset_container_t *container) { - for (int32_t i = BITSET_CONTAINER_SIZE_IN_WORDS - 1; i > 0; --i ) { - uint64_t w = container->array[i]; - if (w != 0) { - int r = __builtin_clzll(w); - return i * 64 + 63 - r; - } - } - return 0; -} - -/* Returns the number of values equal or smaller than x */ -int bitset_container_rank(const bitset_container_t *container, uint16_t x) { - uint32_t x32 = x; - int sum = 0; - uint32_t k = 0; - for (; k + 63 <= x32; k += 64) { - sum += hamming(container->array[k / 64]); - } - // at this point, we have covered everything up to k, k not included. - // we have that k < x, but not so large that k+63<=x - // k is a power of 64 - int bitsleft = x32 - k + 1;// will be in [0,64) - uint64_t leftoverword = container->array[k / 64];// k / 64 should be within scope - leftoverword = leftoverword & ((UINT64_C(1) << bitsleft) - 1); - sum += hamming(leftoverword); - return sum; -} - -/* Returns the index of the first value equal or larger than x, or -1 */ -int bitset_container_index_equalorlarger(const bitset_container_t *container, uint16_t x) { - uint32_t x32 = x; - uint32_t k = x32 / 64; - uint64_t word = container->array[k]; - const int diff = x32 - k * 64; // in [0,64) - word = (word >> diff) << diff; // a mask is faster, but we don't care - while(word == 0) { - k++; - if(k == BITSET_CONTAINER_SIZE_IN_WORDS) return -1; - word = container->array[k]; - } - return k * 64 + __builtin_ctzll(word); -} -/* end file /opt/bitmap/CRoaring-0.2.57/src/containers/bitset.c */ -/* begin file /opt/bitmap/CRoaring-0.2.57/src/containers/containers.c */ - - -extern inline const void *container_unwrap_shared( - const void *candidate_shared_container, uint8_t *type); -extern inline void *container_mutable_unwrap_shared( - void *candidate_shared_container, uint8_t *type); - -extern const char *get_container_name(uint8_t typecode); - -extern int container_get_cardinality(const void *container, uint8_t typecode); - -extern void *container_iand(void *c1, uint8_t type1, const void *c2, - uint8_t type2, uint8_t *result_type); - -extern void *container_ior(void *c1, uint8_t type1, const void *c2, - uint8_t type2, uint8_t *result_type); - -extern void *container_ixor(void *c1, uint8_t type1, const void *c2, - uint8_t type2, uint8_t *result_type); - -extern void *container_iandnot(void *c1, uint8_t type1, const void *c2, - uint8_t type2, uint8_t *result_type); - -void container_free(void *container, uint8_t typecode) { - switch (typecode) { - case BITSET_CONTAINER_TYPE_CODE: - bitset_container_free((bitset_container_t *)container); - break; - case ARRAY_CONTAINER_TYPE_CODE: - array_container_free((array_container_t *)container); - break; - case RUN_CONTAINER_TYPE_CODE: - run_container_free((run_container_t *)container); - break; - case SHARED_CONTAINER_TYPE_CODE: - shared_container_free((shared_container_t *)container); - break; - default: - assert(false); - __builtin_unreachable(); - } -} - -void container_printf(const void *container, uint8_t typecode) { - container = container_unwrap_shared(container, &typecode); - switch (typecode) { - case BITSET_CONTAINER_TYPE_CODE: - bitset_container_printf((const bitset_container_t *)container); - return; - case ARRAY_CONTAINER_TYPE_CODE: - array_container_printf((const array_container_t *)container); - return; - case RUN_CONTAINER_TYPE_CODE: - run_container_printf((const run_container_t *)container); - return; - default: - __builtin_unreachable(); - } -} - -void container_printf_as_uint32_array(const void *container, uint8_t typecode, - uint32_t base) { - container = container_unwrap_shared(container, &typecode); - switch (typecode) { - case BITSET_CONTAINER_TYPE_CODE: - bitset_container_printf_as_uint32_array( - (const bitset_container_t *)container, base); - return; - case ARRAY_CONTAINER_TYPE_CODE: - array_container_printf_as_uint32_array( - (const array_container_t *)container, base); - return; - case RUN_CONTAINER_TYPE_CODE: - run_container_printf_as_uint32_array( - (const run_container_t *)container, base); - return; - return; - default: - __builtin_unreachable(); - } -} - -int32_t container_serialize(const void *container, uint8_t typecode, - char *buf) { - container = container_unwrap_shared(container, &typecode); - switch (typecode) { - case BITSET_CONTAINER_TYPE_CODE: - return (bitset_container_serialize((const bitset_container_t *)container, - buf)); - case ARRAY_CONTAINER_TYPE_CODE: - return ( - array_container_serialize((const array_container_t *)container, buf)); - case RUN_CONTAINER_TYPE_CODE: - return (run_container_serialize((const run_container_t *)container, buf)); - default: - assert(0); - __builtin_unreachable(); - return (-1); - } -} - -uint32_t container_serialization_len(const void *container, uint8_t typecode) { - container = container_unwrap_shared(container, &typecode); - switch (typecode) { - case BITSET_CONTAINER_TYPE_CODE: - return bitset_container_serialization_len(); - case ARRAY_CONTAINER_TYPE_CODE: - return array_container_serialization_len( - (const array_container_t *)container); - case RUN_CONTAINER_TYPE_CODE: - return run_container_serialization_len( - (const run_container_t *)container); - default: - assert(0); - __builtin_unreachable(); - return (0); - } -} - -void *container_deserialize(uint8_t typecode, const char *buf, size_t buf_len) { - switch (typecode) { - case BITSET_CONTAINER_TYPE_CODE: - return (bitset_container_deserialize(buf, buf_len)); - case ARRAY_CONTAINER_TYPE_CODE: - return (array_container_deserialize(buf, buf_len)); - case RUN_CONTAINER_TYPE_CODE: - return (run_container_deserialize(buf, buf_len)); - case SHARED_CONTAINER_TYPE_CODE: - printf("this should never happen.\n"); - assert(0); - __builtin_unreachable(); - return (NULL); - default: - assert(0); - __builtin_unreachable(); - return (NULL); - } -} - -extern bool container_nonzero_cardinality(const void *container, - uint8_t typecode); - -extern void container_free(void *container, uint8_t typecode); - -extern int container_to_uint32_array(uint32_t *output, const void *container, - uint8_t typecode, uint32_t base); - -extern void *container_add(void *container, uint16_t val, uint8_t typecode, - uint8_t *new_typecode); - -extern inline bool container_contains(const void *container, uint16_t val, - uint8_t typecode); - -extern void *container_clone(const void *container, uint8_t typecode); - -extern void *container_and(const void *c1, uint8_t type1, const void *c2, - uint8_t type2, uint8_t *result_type); - -extern void *container_or(const void *c1, uint8_t type1, const void *c2, - uint8_t type2, uint8_t *result_type); - -extern void *container_xor(const void *c1, uint8_t type1, const void *c2, - uint8_t type2, uint8_t *result_type); - -void *get_copy_of_container(void *container, uint8_t *typecode, - bool copy_on_write) { - if (copy_on_write) { - shared_container_t *shared_container; - if (*typecode == SHARED_CONTAINER_TYPE_CODE) { - shared_container = (shared_container_t *)container; - shared_container->counter += 1; - return shared_container; - } - assert(*typecode != SHARED_CONTAINER_TYPE_CODE); - - if ((shared_container = (shared_container_t *)malloc( - sizeof(shared_container_t))) == NULL) { - return NULL; - } - - shared_container->container = container; - shared_container->typecode = *typecode; - - shared_container->counter = 2; - *typecode = SHARED_CONTAINER_TYPE_CODE; - - return shared_container; - } // copy_on_write - // otherwise, no copy on write... - const void *actualcontainer = - container_unwrap_shared((const void *)container, typecode); - assert(*typecode != SHARED_CONTAINER_TYPE_CODE); - return container_clone(actualcontainer, *typecode); -} -/** - * Copies a container, requires a typecode. This allocates new memory, caller - * is responsible for deallocation. - */ -void *container_clone(const void *container, uint8_t typecode) { - container = container_unwrap_shared(container, &typecode); - switch (typecode) { - case BITSET_CONTAINER_TYPE_CODE: - return bitset_container_clone((const bitset_container_t *)container); - case ARRAY_CONTAINER_TYPE_CODE: - return array_container_clone((const array_container_t *)container); - case RUN_CONTAINER_TYPE_CODE: - return run_container_clone((const run_container_t *)container); - case SHARED_CONTAINER_TYPE_CODE: - printf("shared containers are not cloneable\n"); - assert(false); - return NULL; - default: - assert(false); - __builtin_unreachable(); - return NULL; - } -} - -void *shared_container_extract_copy(shared_container_t *container, - uint8_t *typecode) { - assert(container->counter > 0); - assert(container->typecode != SHARED_CONTAINER_TYPE_CODE); - container->counter--; - *typecode = container->typecode; - void *answer; - if (container->counter == 0) { - answer = container->container; - container->container = NULL; // paranoid - free(container); - } else { - answer = container_clone(container->container, *typecode); - } - assert(*typecode != SHARED_CONTAINER_TYPE_CODE); - return answer; -} - -void shared_container_free(shared_container_t *container) { - assert(container->counter > 0); - container->counter--; - if (container->counter == 0) { - assert(container->typecode != SHARED_CONTAINER_TYPE_CODE); - container_free(container->container, container->typecode); - container->container = NULL; // paranoid - free(container); - } -} - -extern void *container_not(const void *c1, uint8_t type1, uint8_t *result_type); - -extern void *container_not_range(const void *c1, uint8_t type1, - uint32_t range_start, uint32_t range_end, - uint8_t *result_type); - -extern void *container_inot(void *c1, uint8_t type1, uint8_t *result_type); - -extern void *container_inot_range(void *c1, uint8_t type1, uint32_t range_start, - uint32_t range_end, uint8_t *result_type); - -extern void *container_range_of_ones(uint32_t range_start, uint32_t range_end, - uint8_t *result_type); - -// where are the correponding things for union and intersection?? -extern void *container_lazy_xor(const void *c1, uint8_t type1, const void *c2, - uint8_t type2, uint8_t *result_type); - -extern void *container_lazy_ixor(void *c1, uint8_t type1, const void *c2, - uint8_t type2, uint8_t *result_type); - -extern void *container_andnot(const void *c1, uint8_t type1, const void *c2, - uint8_t type2, uint8_t *result_type); -/* end file /opt/bitmap/CRoaring-0.2.57/src/containers/containers.c */ -/* begin file /opt/bitmap/CRoaring-0.2.57/src/containers/convert.c */ -#include - - -// file contains grubby stuff that must know impl. details of all container -// types. -bitset_container_t *bitset_container_from_array(const array_container_t *a) { - bitset_container_t *ans = bitset_container_create(); - int limit = array_container_cardinality(a); - for (int i = 0; i < limit; ++i) bitset_container_set(ans, a->array[i]); - return ans; -} - -bitset_container_t *bitset_container_from_run(const run_container_t *arr) { - int card = run_container_cardinality(arr); - bitset_container_t *answer = bitset_container_create(); - for (int rlepos = 0; rlepos < arr->n_runs; ++rlepos) { - rle16_t vl = arr->runs[rlepos]; - bitset_set_lenrange(answer->array, vl.value, vl.length); - } - answer->cardinality = card; - return answer; -} - -array_container_t *array_container_from_run(const run_container_t *arr) { - array_container_t *answer = - array_container_create_given_capacity(run_container_cardinality(arr)); - answer->cardinality = 0; - for (int rlepos = 0; rlepos < arr->n_runs; ++rlepos) { - int run_start = arr->runs[rlepos].value; - int run_end = run_start + arr->runs[rlepos].length; - - for (int run_value = run_start; run_value <= run_end; ++run_value) { - answer->array[answer->cardinality++] = (uint16_t)run_value; - } - } - return answer; -} - -array_container_t *array_container_from_bitset(const bitset_container_t *bits) { - array_container_t *result = - array_container_create_given_capacity(bits->cardinality); - result->cardinality = bits->cardinality; - // sse version ends up being slower here - // (bitset_extract_setbits_sse_uint16) - // because of the sparsity of the data - bitset_extract_setbits_uint16(bits->array, BITSET_CONTAINER_SIZE_IN_WORDS, - result->array, 0); - return result; -} - -/* assumes that container has adequate space. Run from [s,e] (inclusive) */ -static void add_run(run_container_t *r, int s, int e) { - r->runs[r->n_runs].value = s; - r->runs[r->n_runs].length = e - s; - r->n_runs++; -} - -run_container_t *run_container_from_array(const array_container_t *c) { - int32_t n_runs = array_container_number_of_runs(c); - run_container_t *answer = run_container_create_given_capacity(n_runs); - int prev = -2; - int run_start = -1; - int32_t card = c->cardinality; - if (card == 0) return answer; - for (int i = 0; i < card; ++i) { - const uint16_t cur_val = c->array[i]; - if (cur_val != prev + 1) { - // new run starts; flush old one, if any - if (run_start != -1) add_run(answer, run_start, prev); - run_start = cur_val; - } - prev = c->array[i]; - } - // now prev is the last seen value - add_run(answer, run_start, prev); - // assert(run_container_cardinality(answer) == c->cardinality); - return answer; -} - -/** - * Convert the runcontainer to either a Bitmap or an Array Container, depending - * on the cardinality. Frees the container. - * Allocates and returns new container, which caller is responsible for freeing - */ - -void *convert_to_bitset_or_array_container(run_container_t *r, int32_t card, - uint8_t *resulttype) { - if (card <= DEFAULT_MAX_SIZE) { - array_container_t *answer = array_container_create_given_capacity(card); - answer->cardinality = 0; - for (int rlepos = 0; rlepos < r->n_runs; ++rlepos) { - uint16_t run_start = r->runs[rlepos].value; - uint16_t run_end = run_start + r->runs[rlepos].length; - for (uint16_t run_value = run_start; run_value <= run_end; - ++run_value) { - answer->array[answer->cardinality++] = run_value; - } - } - assert(card == answer->cardinality); - *resulttype = ARRAY_CONTAINER_TYPE_CODE; - run_container_free(r); - return answer; - } - bitset_container_t *answer = bitset_container_create(); - for (int rlepos = 0; rlepos < r->n_runs; ++rlepos) { - uint16_t run_start = r->runs[rlepos].value; - bitset_set_lenrange(answer->array, run_start, r->runs[rlepos].length); - } - answer->cardinality = card; - *resulttype = BITSET_CONTAINER_TYPE_CODE; - run_container_free(r); - return answer; -} - -/* Converts a run container to either an array or a bitset, IF it saves space. - */ -/* If a conversion occurs, the caller is responsible to free the original - * container and - * he becomes responsible to free the new one. */ -void *convert_run_to_efficient_container(run_container_t *c, - uint8_t *typecode_after) { - int32_t size_as_run_container = - run_container_serialized_size_in_bytes(c->n_runs); - - int32_t size_as_bitset_container = - bitset_container_serialized_size_in_bytes(); - int32_t card = run_container_cardinality(c); - int32_t size_as_array_container = - array_container_serialized_size_in_bytes(card); - - int32_t min_size_non_run = - size_as_bitset_container < size_as_array_container - ? size_as_bitset_container - : size_as_array_container; - if (size_as_run_container <= min_size_non_run) { // no conversion - *typecode_after = RUN_CONTAINER_TYPE_CODE; - return c; - } - if (card <= DEFAULT_MAX_SIZE) { - // to array - array_container_t *answer = array_container_create_given_capacity(card); - answer->cardinality = 0; - for (int rlepos = 0; rlepos < c->n_runs; ++rlepos) { - int run_start = c->runs[rlepos].value; - int run_end = run_start + c->runs[rlepos].length; - - for (int run_value = run_start; run_value <= run_end; ++run_value) { - answer->array[answer->cardinality++] = (uint16_t)run_value; - } - } - *typecode_after = ARRAY_CONTAINER_TYPE_CODE; - return answer; - } - - // else to bitset - bitset_container_t *answer = bitset_container_create(); - - for (int rlepos = 0; rlepos < c->n_runs; ++rlepos) { - int start = c->runs[rlepos].value; - int end = start + c->runs[rlepos].length; - bitset_set_range(answer->array, start, end + 1); - } - answer->cardinality = card; - *typecode_after = BITSET_CONTAINER_TYPE_CODE; - return answer; -} - -// like convert_run_to_efficient_container but frees the old result if needed -void *convert_run_to_efficient_container_and_free(run_container_t *c, - uint8_t *typecode_after) { - void *answer = convert_run_to_efficient_container(c, typecode_after); - if (answer != c) run_container_free(c); - return answer; -} - -/* once converted, the original container is disposed here, rather than - in roaring_array -*/ - -// TODO: split into run- array- and bitset- subfunctions for sanity; -// a few function calls won't really matter. - -void *convert_run_optimize(void *c, uint8_t typecode_original, - uint8_t *typecode_after) { - if (typecode_original == RUN_CONTAINER_TYPE_CODE) { - void *newc = convert_run_to_efficient_container((run_container_t *)c, - typecode_after); - if (newc != c) { - container_free(c, typecode_original); - } - return newc; - } else if (typecode_original == ARRAY_CONTAINER_TYPE_CODE) { - // it might need to be converted to a run container. - array_container_t *c_qua_array = (array_container_t *)c; - int32_t n_runs = array_container_number_of_runs(c_qua_array); - int32_t size_as_run_container = - run_container_serialized_size_in_bytes(n_runs); - int32_t card = array_container_cardinality(c_qua_array); - int32_t size_as_array_container = - array_container_serialized_size_in_bytes(card); - - if (size_as_run_container >= size_as_array_container) { - *typecode_after = ARRAY_CONTAINER_TYPE_CODE; - return c; - } - // else convert array to run container - run_container_t *answer = run_container_create_given_capacity(n_runs); - int prev = -2; - int run_start = -1; - - assert(card > 0); - for (int i = 0; i < card; ++i) { - uint16_t cur_val = c_qua_array->array[i]; - if (cur_val != prev + 1) { - // new run starts; flush old one, if any - if (run_start != -1) add_run(answer, run_start, prev); - run_start = cur_val; - } - prev = c_qua_array->array[i]; - } - assert(run_start >= 0); - // now prev is the last seen value - add_run(answer, run_start, prev); - *typecode_after = RUN_CONTAINER_TYPE_CODE; - array_container_free(c_qua_array); - return answer; - } else if (typecode_original == - BITSET_CONTAINER_TYPE_CODE) { // run conversions on bitset - // does bitset need conversion to run? - bitset_container_t *c_qua_bitset = (bitset_container_t *)c; - int32_t n_runs = bitset_container_number_of_runs(c_qua_bitset); - int32_t size_as_run_container = - run_container_serialized_size_in_bytes(n_runs); - int32_t size_as_bitset_container = - bitset_container_serialized_size_in_bytes(); - - if (size_as_bitset_container <= size_as_run_container) { - // no conversion needed. - *typecode_after = BITSET_CONTAINER_TYPE_CODE; - return c; - } - // bitset to runcontainer (ported from Java RunContainer( - // BitmapContainer bc, int nbrRuns)) - assert(n_runs > 0); // no empty bitmaps - run_container_t *answer = run_container_create_given_capacity(n_runs); - - int long_ctr = 0; - uint64_t cur_word = c_qua_bitset->array[0]; - int run_count = 0; - while (true) { - while (cur_word == UINT64_C(0) && - long_ctr < BITSET_CONTAINER_SIZE_IN_WORDS - 1) - cur_word = c_qua_bitset->array[++long_ctr]; - - if (cur_word == UINT64_C(0)) { - bitset_container_free(c_qua_bitset); - *typecode_after = RUN_CONTAINER_TYPE_CODE; - return answer; - } - - int local_run_start = __builtin_ctzll(cur_word); - int run_start = local_run_start + 64 * long_ctr; - uint64_t cur_word_with_1s = cur_word | (cur_word - 1); - - int run_end = 0; - while (cur_word_with_1s == UINT64_C(0xFFFFFFFFFFFFFFFF) && - long_ctr < BITSET_CONTAINER_SIZE_IN_WORDS - 1) - cur_word_with_1s = c_qua_bitset->array[++long_ctr]; - - if (cur_word_with_1s == UINT64_C(0xFFFFFFFFFFFFFFFF)) { - run_end = 64 + long_ctr * 64; // exclusive, I guess - add_run(answer, run_start, run_end - 1); - bitset_container_free(c_qua_bitset); - *typecode_after = RUN_CONTAINER_TYPE_CODE; - return answer; - } - int local_run_end = __builtin_ctzll(~cur_word_with_1s); - run_end = local_run_end + long_ctr * 64; - add_run(answer, run_start, run_end - 1); - run_count++; - cur_word = cur_word_with_1s & (cur_word_with_1s + 1); - } - return answer; - } else { - assert(false); - __builtin_unreachable(); - return NULL; - } -} - -bitset_container_t *bitset_container_from_run_range(const run_container_t *run, - uint32_t min, uint32_t max) { - bitset_container_t *bitset = bitset_container_create(); - int32_t union_cardinality = 0; - for (int32_t i = 0; i < run->n_runs; ++i) { - uint32_t rle_min = run->runs[i].value; - uint32_t rle_max = rle_min + run->runs[i].length; - bitset_set_lenrange(bitset->array, rle_min, rle_max - rle_min); - union_cardinality += run->runs[i].length + 1; - } - union_cardinality += max - min + 1; - union_cardinality -= bitset_lenrange_cardinality(bitset->array, min, max-min); - bitset_set_lenrange(bitset->array, min, max - min); - bitset->cardinality = union_cardinality; - return bitset; -} -/* end file /opt/bitmap/CRoaring-0.2.57/src/containers/convert.c */ -/* begin file /opt/bitmap/CRoaring-0.2.57/src/containers/mixed_andnot.c */ -/* - * mixed_andnot.c. More methods since operation is not symmetric, - * except no "wide" andnot , so no lazy options motivated. - */ - -#include -#include - - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst, a valid array container that could be the same as dst.*/ -void array_bitset_container_andnot(const array_container_t *src_1, - const bitset_container_t *src_2, - array_container_t *dst) { - // follows Java implementation as of June 2016 - if (dst->capacity < src_1->cardinality) { - array_container_grow(dst, src_1->cardinality, false); - } - int32_t newcard = 0; - const int32_t origcard = src_1->cardinality; - for (int i = 0; i < origcard; ++i) { - uint16_t key = src_1->array[i]; - dst->array[newcard] = key; - newcard += 1 - bitset_container_contains(src_2, key); - } - dst->cardinality = newcard; -} - -/* Compute the andnot of src_1 and src_2 and write the result to - * src_1 */ - -void array_bitset_container_iandnot(array_container_t *src_1, - const bitset_container_t *src_2) { - array_bitset_container_andnot(src_1, src_2, src_1); -} - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst, which does not initially have a valid container. - * Return true for a bitset result; false for array - */ - -bool bitset_array_container_andnot(const bitset_container_t *src_1, - const array_container_t *src_2, void **dst) { - // Java did this directly, but we have option of asm or avx - bitset_container_t *result = bitset_container_create(); - bitset_container_copy(src_1, result); - result->cardinality = - (int32_t)bitset_clear_list(result->array, (uint64_t)result->cardinality, - src_2->array, (uint64_t)src_2->cardinality); - - // do required type conversions. - if (result->cardinality <= DEFAULT_MAX_SIZE) { - *dst = array_container_from_bitset(result); - bitset_container_free(result); - return false; - } - *dst = result; - return true; -} - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst (which has no container initially). It will modify src_1 - * to be dst if the result is a bitset. Otherwise, it will - * free src_1 and dst will be a new array container. In both - * cases, the caller is responsible for deallocating dst. - * Returns true iff dst is a bitset */ - -bool bitset_array_container_iandnot(bitset_container_t *src_1, - const array_container_t *src_2, - void **dst) { - *dst = src_1; - src_1->cardinality = - (int32_t)bitset_clear_list(src_1->array, (uint64_t)src_1->cardinality, - src_2->array, (uint64_t)src_2->cardinality); - - if (src_1->cardinality <= DEFAULT_MAX_SIZE) { - *dst = array_container_from_bitset(src_1); - bitset_container_free(src_1); - return false; // not bitset - } else - return true; -} - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst. Result may be either a bitset or an array container - * (returns "result is bitset"). dst does not initially have - * any container, but becomes either a bitset container (return - * result true) or an array container. - */ - -bool run_bitset_container_andnot(const run_container_t *src_1, - const bitset_container_t *src_2, void **dst) { - // follows the Java implementation as of June 2016 - int card = run_container_cardinality(src_1); - if (card <= DEFAULT_MAX_SIZE) { - // must be an array - array_container_t *answer = array_container_create_given_capacity(card); - answer->cardinality = 0; - for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) { - rle16_t rle = src_1->runs[rlepos]; - for (int run_value = rle.value; run_value <= rle.value + rle.length; - ++run_value) { - if (!bitset_container_get(src_2, (uint16_t)run_value)) { - answer->array[answer->cardinality++] = (uint16_t)run_value; - } - } - } - *dst = answer; - return false; - } else { // we guess it will be a bitset, though have to check guess when - // done - bitset_container_t *answer = bitset_container_clone(src_2); - - uint32_t last_pos = 0; - for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) { - rle16_t rle = src_1->runs[rlepos]; - - uint32_t start = rle.value; - uint32_t end = start + rle.length + 1; - bitset_reset_range(answer->array, last_pos, start); - bitset_flip_range(answer->array, start, end); - last_pos = end; - } - bitset_reset_range(answer->array, last_pos, (uint32_t)(1 << 16)); - - answer->cardinality = bitset_container_compute_cardinality(answer); - - if (answer->cardinality <= DEFAULT_MAX_SIZE) { - *dst = array_container_from_bitset(answer); - bitset_container_free(answer); - return false; // not bitset - } - *dst = answer; - return true; // bitset - } -} - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst. Result may be either a bitset or an array container - * (returns "result is bitset"). dst does not initially have - * any container, but becomes either a bitset container (return - * result true) or an array container. - */ - -bool run_bitset_container_iandnot(run_container_t *src_1, - const bitset_container_t *src_2, void **dst) { - // dummy implementation - bool ans = run_bitset_container_andnot(src_1, src_2, dst); - run_container_free(src_1); - return ans; -} - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst. Result may be either a bitset or an array container - * (returns "result is bitset"). dst does not initially have - * any container, but becomes either a bitset container (return - * result true) or an array container. - */ - -bool bitset_run_container_andnot(const bitset_container_t *src_1, - const run_container_t *src_2, void **dst) { - // follows Java implementation - bitset_container_t *result = bitset_container_create(); - - bitset_container_copy(src_1, result); - for (int32_t rlepos = 0; rlepos < src_2->n_runs; ++rlepos) { - rle16_t rle = src_2->runs[rlepos]; - bitset_reset_range(result->array, rle.value, - rle.value + rle.length + UINT32_C(1)); - } - result->cardinality = bitset_container_compute_cardinality(result); - - if (result->cardinality <= DEFAULT_MAX_SIZE) { - *dst = array_container_from_bitset(result); - bitset_container_free(result); - return false; // not bitset - } - *dst = result; - return true; // bitset -} - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst (which has no container initially). It will modify src_1 - * to be dst if the result is a bitset. Otherwise, it will - * free src_1 and dst will be a new array container. In both - * cases, the caller is responsible for deallocating dst. - * Returns true iff dst is a bitset */ - -bool bitset_run_container_iandnot(bitset_container_t *src_1, - const run_container_t *src_2, void **dst) { - *dst = src_1; - - for (int32_t rlepos = 0; rlepos < src_2->n_runs; ++rlepos) { - rle16_t rle = src_2->runs[rlepos]; - bitset_reset_range(src_1->array, rle.value, - rle.value + rle.length + UINT32_C(1)); - } - src_1->cardinality = bitset_container_compute_cardinality(src_1); - - if (src_1->cardinality <= DEFAULT_MAX_SIZE) { - *dst = array_container_from_bitset(src_1); - bitset_container_free(src_1); - return false; // not bitset - } else - return true; -} - -/* helper. a_out must be a valid array container with adequate capacity. - * Returns the cardinality of the output container. Partly Based on Java - * implementation Util.unsignedDifference. - * - * TODO: Util.unsignedDifference does not use advanceUntil. Is it cheaper - * to avoid advanceUntil? - */ - -static int run_array_array_subtract(const run_container_t *r, - const array_container_t *a_in, - array_container_t *a_out) { - int out_card = 0; - int32_t in_array_pos = - -1; // since advanceUntil always assumes we start the search AFTER this - - for (int rlepos = 0; rlepos < r->n_runs; rlepos++) { - int32_t start = r->runs[rlepos].value; - int32_t end = start + r->runs[rlepos].length + 1; - - in_array_pos = advanceUntil(a_in->array, in_array_pos, - a_in->cardinality, (uint16_t)start); - - if (in_array_pos >= a_in->cardinality) { // run has no items subtracted - for (int32_t i = start; i < end; ++i) - a_out->array[out_card++] = (uint16_t)i; - } else { - uint16_t next_nonincluded = a_in->array[in_array_pos]; - if (next_nonincluded >= end) { - // another case when run goes unaltered - for (int32_t i = start; i < end; ++i) - a_out->array[out_card++] = (uint16_t)i; - in_array_pos--; // ensure we see this item again if necessary - } else { - for (int32_t i = start; i < end; ++i) - if (i != next_nonincluded) - a_out->array[out_card++] = (uint16_t)i; - else // 0 should ensure we don't match - next_nonincluded = - (in_array_pos + 1 >= a_in->cardinality) - ? 0 - : a_in->array[++in_array_pos]; - in_array_pos--; // see again - } - } - } - return out_card; -} - -/* dst does not indicate a valid container initially. Eventually it - * can become any type of container. - */ - -int run_array_container_andnot(const run_container_t *src_1, - const array_container_t *src_2, void **dst) { - // follows the Java impl as of June 2016 - - int card = run_container_cardinality(src_1); - const int arbitrary_threshold = 32; - - if (card <= arbitrary_threshold) { - if (src_2->cardinality == 0) { - *dst = run_container_clone(src_1); - return RUN_CONTAINER_TYPE_CODE; - } - // Java's "lazyandNot.toEfficientContainer" thing - run_container_t *answer = run_container_create_given_capacity( - card + array_container_cardinality(src_2)); - - int rlepos = 0; - int xrlepos = 0; // "x" is src_2 - rle16_t rle = src_1->runs[rlepos]; - int32_t start = rle.value; - int32_t end = start + rle.length + 1; - int32_t xstart = src_2->array[xrlepos]; - - while ((rlepos < src_1->n_runs) && (xrlepos < src_2->cardinality)) { - if (end <= xstart) { - // output the first run - answer->runs[answer->n_runs++] = - (rle16_t){.value = (uint16_t)start, - .length = (uint16_t)(end - start - 1)}; - rlepos++; - if (rlepos < src_1->n_runs) { - start = src_1->runs[rlepos].value; - end = start + src_1->runs[rlepos].length + 1; - } - } else if (xstart + 1 <= start) { - // exit the second run - xrlepos++; - if (xrlepos < src_2->cardinality) { - xstart = src_2->array[xrlepos]; - } - } else { - if (start < xstart) { - answer->runs[answer->n_runs++] = - (rle16_t){.value = (uint16_t)start, - .length = (uint16_t)(xstart - start - 1)}; - } - if (xstart + 1 < end) { - start = xstart + 1; - } else { - rlepos++; - if (rlepos < src_1->n_runs) { - start = src_1->runs[rlepos].value; - end = start + src_1->runs[rlepos].length + 1; - } - } - } - } - if (rlepos < src_1->n_runs) { - answer->runs[answer->n_runs++] = - (rle16_t){.value = (uint16_t)start, - .length = (uint16_t)(end - start - 1)}; - rlepos++; - if (rlepos < src_1->n_runs) { - memcpy(answer->runs + answer->n_runs, src_1->runs + rlepos, - (src_1->n_runs - rlepos) * sizeof(rle16_t)); - answer->n_runs += (src_1->n_runs - rlepos); - } - } - uint8_t return_type; - *dst = convert_run_to_efficient_container(answer, &return_type); - if (answer != *dst) run_container_free(answer); - return return_type; - } - // else it's a bitmap or array - - if (card <= DEFAULT_MAX_SIZE) { - array_container_t *ac = array_container_create_given_capacity(card); - // nb Java code used a generic iterator-based merge to compute - // difference - ac->cardinality = run_array_array_subtract(src_1, src_2, ac); - *dst = ac; - return ARRAY_CONTAINER_TYPE_CODE; - } - bitset_container_t *ans = bitset_container_from_run(src_1); - bool result_is_bitset = bitset_array_container_iandnot(ans, src_2, dst); - return (result_is_bitset ? BITSET_CONTAINER_TYPE_CODE - : ARRAY_CONTAINER_TYPE_CODE); -} - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst (which has no container initially). It will modify src_1 - * to be dst if the result is a bitset. Otherwise, it will - * free src_1 and dst will be a new array container. In both - * cases, the caller is responsible for deallocating dst. - * Returns true iff dst is a bitset */ - -int run_array_container_iandnot(run_container_t *src_1, - const array_container_t *src_2, void **dst) { - // dummy implementation same as June 2016 Java - int ans = run_array_container_andnot(src_1, src_2, dst); - run_container_free(src_1); - return ans; -} - -/* dst must be a valid array container, allowed to be src_1 */ - -void array_run_container_andnot(const array_container_t *src_1, - const run_container_t *src_2, - array_container_t *dst) { - // basically following Java impl as of June 2016 - if (src_1->cardinality > dst->capacity) { - array_container_grow(dst, src_1->cardinality, false); - } - - if (src_2->n_runs == 0) { - memmove(dst->array, src_1->array, - sizeof(uint16_t) * src_1->cardinality); - dst->cardinality = src_1->cardinality; - return; - } - int32_t run_start = src_2->runs[0].value; - int32_t run_end = run_start + src_2->runs[0].length; - int which_run = 0; - - uint16_t val = 0; - int dest_card = 0; - for (int i = 0; i < src_1->cardinality; ++i) { - val = src_1->array[i]; - if (val < run_start) - dst->array[dest_card++] = val; - else if (val <= run_end) { - ; // omitted item - } else { - do { - if (which_run + 1 < src_2->n_runs) { - ++which_run; - run_start = src_2->runs[which_run].value; - run_end = run_start + src_2->runs[which_run].length; - - } else - run_start = run_end = (1 << 16) + 1; - } while (val > run_end); - --i; - } - } - dst->cardinality = dest_card; -} - -/* dst does not indicate a valid container initially. Eventually it - * can become any kind of container. - */ - -void array_run_container_iandnot(array_container_t *src_1, - const run_container_t *src_2) { - array_run_container_andnot(src_1, src_2, src_1); -} - -/* dst does not indicate a valid container initially. Eventually it - * can become any kind of container. - */ - -int run_run_container_andnot(const run_container_t *src_1, - const run_container_t *src_2, void **dst) { - run_container_t *ans = run_container_create(); - run_container_andnot(src_1, src_2, ans); - uint8_t typecode_after; - *dst = convert_run_to_efficient_container_and_free(ans, &typecode_after); - return typecode_after; -} - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst (which has no container initially). It will modify src_1 - * to be dst if the result is a bitset. Otherwise, it will - * free src_1 and dst will be a new array container. In both - * cases, the caller is responsible for deallocating dst. - * Returns true iff dst is a bitset */ - -int run_run_container_iandnot(run_container_t *src_1, - const run_container_t *src_2, void **dst) { - // following Java impl as of June 2016 (dummy) - int ans = run_run_container_andnot(src_1, src_2, dst); - run_container_free(src_1); - return ans; -} - -/* - * dst is a valid array container and may be the same as src_1 - */ - -void array_array_container_andnot(const array_container_t *src_1, - const array_container_t *src_2, - array_container_t *dst) { - array_container_andnot(src_1, src_2, dst); -} - -/* inplace array-array andnot will always be able to reuse the space of - * src_1 */ -void array_array_container_iandnot(array_container_t *src_1, - const array_container_t *src_2) { - array_container_andnot(src_1, src_2, src_1); -} - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst (which has no container initially). Return value is - * "dst is a bitset" - */ - -bool bitset_bitset_container_andnot(const bitset_container_t *src_1, - const bitset_container_t *src_2, - void **dst) { - bitset_container_t *ans = bitset_container_create(); - int card = bitset_container_andnot(src_1, src_2, ans); - if (card <= DEFAULT_MAX_SIZE) { - *dst = array_container_from_bitset(ans); - bitset_container_free(ans); - return false; // not bitset - } else { - *dst = ans; - return true; - } -} - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst (which has no container initially). It will modify src_1 - * to be dst if the result is a bitset. Otherwise, it will - * free src_1 and dst will be a new array container. In both - * cases, the caller is responsible for deallocating dst. - * Returns true iff dst is a bitset */ - -bool bitset_bitset_container_iandnot(bitset_container_t *src_1, - const bitset_container_t *src_2, - void **dst) { - int card = bitset_container_andnot(src_1, src_2, src_1); - if (card <= DEFAULT_MAX_SIZE) { - *dst = array_container_from_bitset(src_1); - bitset_container_free(src_1); - return false; // not bitset - } else { - *dst = src_1; - return true; - } -} -/* end file /opt/bitmap/CRoaring-0.2.57/src/containers/mixed_andnot.c */ -/* begin file /opt/bitmap/CRoaring-0.2.57/src/containers/mixed_equal.c */ - -bool array_container_equal_bitset(const array_container_t* container1, - const bitset_container_t* container2) { - if (container2->cardinality != BITSET_UNKNOWN_CARDINALITY) { - if (container2->cardinality != container1->cardinality) { - return false; - } - } - int32_t pos = 0; - for (int32_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i) { - uint64_t w = container2->array[i]; - while (w != 0) { - uint64_t t = w & (~w + 1); - uint16_t r = i * 64 + __builtin_ctzll(w); - if (pos >= container1->cardinality) { - return false; - } - if (container1->array[pos] != r) { - return false; - } - ++pos; - w ^= t; - } - } - return (pos == container1->cardinality); -} - -bool run_container_equals_array(const run_container_t* container1, - const array_container_t* container2) { - if (run_container_cardinality(container1) != container2->cardinality) - return false; - int32_t pos = 0; - for (int i = 0; i < container1->n_runs; ++i) { - const uint32_t run_start = container1->runs[i].value; - const uint32_t le = container1->runs[i].length; - - if (container2->array[pos] != run_start) { - return false; - } - - if (container2->array[pos + le] != run_start + le) { - return false; - } - - pos += le + 1; - } - return true; -} - -bool run_container_equals_bitset(const run_container_t* container1, - const bitset_container_t* container2) { - if (container2->cardinality != BITSET_UNKNOWN_CARDINALITY) { - if (container2->cardinality != run_container_cardinality(container1)) { - return false; - } - } else { - int32_t card = bitset_container_compute_cardinality( - container2); // modify container2? - if (card != run_container_cardinality(container1)) { - return false; - } - } - for (int i = 0; i < container1->n_runs; ++i) { - uint32_t run_start = container1->runs[i].value; - uint32_t le = container1->runs[i].length; - for (uint32_t j = run_start; j <= run_start + le; ++j) { - // todo: this code could be much faster - if (!bitset_container_contains(container2, j)) { - return false; - } - } - } - return true; -} -/* end file /opt/bitmap/CRoaring-0.2.57/src/containers/mixed_equal.c */ -/* begin file /opt/bitmap/CRoaring-0.2.57/src/containers/mixed_intersection.c */ -/* - * mixed_intersection.c - * - */ - - -/* Compute the intersection of src_1 and src_2 and write the result to - * dst. */ -void array_bitset_container_intersection(const array_container_t *src_1, - const bitset_container_t *src_2, - array_container_t *dst) { - if (dst->capacity < src_1->cardinality) { - array_container_grow(dst, src_1->cardinality, false); - } - int32_t newcard = 0; // dst could be src_1 - const int32_t origcard = src_1->cardinality; - for (int i = 0; i < origcard; ++i) { - uint16_t key = src_1->array[i]; - // this branchless approach is much faster... - dst->array[newcard] = key; - newcard += bitset_container_contains(src_2, key); - /** - * we could do it this way instead... - * if (bitset_container_contains(src_2, key)) { - * dst->array[newcard++] = key; - * } - * but if the result is unpredictible, the processor generates - * many mispredicted branches. - * Difference can be huge (from 3 cycles when predictible all the way - * to 16 cycles when unpredictible. - * See - * https://github.com/lemire/Code-used-on-Daniel-Lemire-s-blog/blob/master/extra/bitset/c/arraybitsetintersection.c - */ - } - dst->cardinality = newcard; -} - -/* Compute the size of the intersection of src_1 and src_2. */ -int array_bitset_container_intersection_cardinality( - const array_container_t *src_1, const bitset_container_t *src_2) { - int32_t newcard = 0; - const int32_t origcard = src_1->cardinality; - for (int i = 0; i < origcard; ++i) { - uint16_t key = src_1->array[i]; - newcard += bitset_container_contains(src_2, key); - } - return newcard; -} - - -bool array_bitset_container_intersect(const array_container_t *src_1, - const bitset_container_t *src_2) { - const int32_t origcard = src_1->cardinality; - for (int i = 0; i < origcard; ++i) { - uint16_t key = src_1->array[i]; - if(bitset_container_contains(src_2, key)) return true; - } - return false; -} - -/* Compute the intersection of src_1 and src_2 and write the result to - * dst. It is allowed for dst to be equal to src_1. We assume that dst is a - * valid container. */ -void array_run_container_intersection(const array_container_t *src_1, - const run_container_t *src_2, - array_container_t *dst) { - if (run_container_is_full(src_2)) { - if (dst != src_1) array_container_copy(src_1, dst); - return; - } - if (dst->capacity < src_1->cardinality) { - array_container_grow(dst, src_1->cardinality, false); - } - if (src_2->n_runs == 0) { - return; - } - int32_t rlepos = 0; - int32_t arraypos = 0; - rle16_t rle = src_2->runs[rlepos]; - int32_t newcard = 0; - while (arraypos < src_1->cardinality) { - const uint16_t arrayval = src_1->array[arraypos]; - while (rle.value + rle.length < - arrayval) { // this will frequently be false - ++rlepos; - if (rlepos == src_2->n_runs) { - dst->cardinality = newcard; - return; // we are done - } - rle = src_2->runs[rlepos]; - } - if (rle.value > arrayval) { - arraypos = advanceUntil(src_1->array, arraypos, src_1->cardinality, - rle.value); - } else { - dst->array[newcard] = arrayval; - newcard++; - arraypos++; - } - } - dst->cardinality = newcard; -} - -/* Compute the intersection of src_1 and src_2 and write the result to - * *dst. If the result is true then the result is a bitset_container_t - * otherwise is a array_container_t. If *dst == src_2, an in-place processing - * is attempted.*/ -bool run_bitset_container_intersection(const run_container_t *src_1, - const bitset_container_t *src_2, - void **dst) { - if (run_container_is_full(src_1)) { - if (*dst != src_2) *dst = bitset_container_clone(src_2); - return true; - } - int32_t card = run_container_cardinality(src_1); - if (card <= DEFAULT_MAX_SIZE) { - // result can only be an array (assuming that we never make a - // RunContainer) - if (card > src_2->cardinality) { - card = src_2->cardinality; - } - array_container_t *answer = array_container_create_given_capacity(card); - *dst = answer; - if (*dst == NULL) { - return false; - } - for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) { - rle16_t rle = src_1->runs[rlepos]; - uint32_t endofrun = (uint32_t)rle.value + rle.length; - for (uint32_t runValue = rle.value; runValue <= endofrun; - ++runValue) { - answer->array[answer->cardinality] = (uint16_t)runValue; - answer->cardinality += - bitset_container_contains(src_2, runValue); - } - } - return false; - } - if (*dst == src_2) { // we attempt in-place - bitset_container_t *answer = (bitset_container_t *)*dst; - uint32_t start = 0; - for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) { - const rle16_t rle = src_1->runs[rlepos]; - uint32_t end = rle.value; - bitset_reset_range(src_2->array, start, end); - - start = end + rle.length + 1; - } - bitset_reset_range(src_2->array, start, UINT32_C(1) << 16); - answer->cardinality = bitset_container_compute_cardinality(answer); - if (src_2->cardinality > DEFAULT_MAX_SIZE) { - return true; - } else { - array_container_t *newanswer = array_container_from_bitset(src_2); - if (newanswer == NULL) { - *dst = NULL; - return false; - } - *dst = newanswer; - return false; - } - } else { // no inplace - // we expect the answer to be a bitmap (if we are lucky) - bitset_container_t *answer = bitset_container_clone(src_2); - - *dst = answer; - if (answer == NULL) { - return true; - } - uint32_t start = 0; - for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) { - const rle16_t rle = src_1->runs[rlepos]; - uint32_t end = rle.value; - bitset_reset_range(answer->array, start, end); - start = end + rle.length + 1; - } - bitset_reset_range(answer->array, start, UINT32_C(1) << 16); - answer->cardinality = bitset_container_compute_cardinality(answer); - - if (answer->cardinality > DEFAULT_MAX_SIZE) { - return true; - } else { - array_container_t *newanswer = array_container_from_bitset(answer); - bitset_container_free((bitset_container_t *)*dst); - if (newanswer == NULL) { - *dst = NULL; - return false; - } - *dst = newanswer; - return false; - } - } -} - -/* Compute the size of the intersection between src_1 and src_2 . */ -int array_run_container_intersection_cardinality(const array_container_t *src_1, - const run_container_t *src_2) { - if (run_container_is_full(src_2)) { - return src_1->cardinality; - } - if (src_2->n_runs == 0) { - return 0; - } - int32_t rlepos = 0; - int32_t arraypos = 0; - rle16_t rle = src_2->runs[rlepos]; - int32_t newcard = 0; - while (arraypos < src_1->cardinality) { - const uint16_t arrayval = src_1->array[arraypos]; - while (rle.value + rle.length < - arrayval) { // this will frequently be false - ++rlepos; - if (rlepos == src_2->n_runs) { - return newcard; // we are done - } - rle = src_2->runs[rlepos]; - } - if (rle.value > arrayval) { - arraypos = advanceUntil(src_1->array, arraypos, src_1->cardinality, - rle.value); - } else { - newcard++; - arraypos++; - } - } - return newcard; -} - -/* Compute the intersection between src_1 and src_2 - **/ -int run_bitset_container_intersection_cardinality( - const run_container_t *src_1, const bitset_container_t *src_2) { - if (run_container_is_full(src_1)) { - return bitset_container_cardinality(src_2); - } - int answer = 0; - for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) { - rle16_t rle = src_1->runs[rlepos]; - answer += - bitset_lenrange_cardinality(src_2->array, rle.value, rle.length); - } - return answer; -} - - -bool array_run_container_intersect(const array_container_t *src_1, - const run_container_t *src_2) { - if( run_container_is_full(src_2) ) { - return !array_container_empty(src_1); - } - if (src_2->n_runs == 0) { - return false; - } - int32_t rlepos = 0; - int32_t arraypos = 0; - rle16_t rle = src_2->runs[rlepos]; - while (arraypos < src_1->cardinality) { - const uint16_t arrayval = src_1->array[arraypos]; - while (rle.value + rle.length < - arrayval) { // this will frequently be false - ++rlepos; - if (rlepos == src_2->n_runs) { - return false; // we are done - } - rle = src_2->runs[rlepos]; - } - if (rle.value > arrayval) { - arraypos = advanceUntil(src_1->array, arraypos, src_1->cardinality, - rle.value); - } else { - return true; - } - } - return false; -} - -/* Compute the intersection between src_1 and src_2 - **/ -bool run_bitset_container_intersect(const run_container_t *src_1, - const bitset_container_t *src_2) { - if( run_container_is_full(src_1) ) { - return !bitset_container_empty(src_2); - } - for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) { - rle16_t rle = src_1->runs[rlepos]; - if(!bitset_lenrange_empty(src_2->array, rle.value,rle.length)) return true; - } - return false; -} - -/* - * Compute the intersection between src_1 and src_2 and write the result - * to *dst. If the return function is true, the result is a bitset_container_t - * otherwise is a array_container_t. - */ -bool bitset_bitset_container_intersection(const bitset_container_t *src_1, - const bitset_container_t *src_2, - void **dst) { - const int newCardinality = bitset_container_and_justcard(src_1, src_2); - if (newCardinality > DEFAULT_MAX_SIZE) { - *dst = bitset_container_create(); - if (*dst != NULL) { - bitset_container_and_nocard(src_1, src_2, - (bitset_container_t *)*dst); - ((bitset_container_t *)*dst)->cardinality = newCardinality; - } - return true; // it is a bitset - } - *dst = array_container_create_given_capacity(newCardinality); - if (*dst != NULL) { - ((array_container_t *)*dst)->cardinality = newCardinality; - bitset_extract_intersection_setbits_uint16( - ((const bitset_container_t *)src_1)->array, - ((const bitset_container_t *)src_2)->array, - BITSET_CONTAINER_SIZE_IN_WORDS, ((array_container_t *)*dst)->array, - 0); - } - return false; // not a bitset -} - -bool bitset_bitset_container_intersection_inplace( - bitset_container_t *src_1, const bitset_container_t *src_2, void **dst) { - const int newCardinality = bitset_container_and_justcard(src_1, src_2); - if (newCardinality > DEFAULT_MAX_SIZE) { - *dst = src_1; - bitset_container_and_nocard(src_1, src_2, src_1); - ((bitset_container_t *)*dst)->cardinality = newCardinality; - return true; // it is a bitset - } - *dst = array_container_create_given_capacity(newCardinality); - if (*dst != NULL) { - ((array_container_t *)*dst)->cardinality = newCardinality; - bitset_extract_intersection_setbits_uint16( - ((const bitset_container_t *)src_1)->array, - ((const bitset_container_t *)src_2)->array, - BITSET_CONTAINER_SIZE_IN_WORDS, ((array_container_t *)*dst)->array, - 0); - } - return false; // not a bitset -} -/* end file /opt/bitmap/CRoaring-0.2.57/src/containers/mixed_intersection.c */ -/* begin file /opt/bitmap/CRoaring-0.2.57/src/containers/mixed_negation.c */ -/* - * mixed_negation.c - * - */ - -#include -#include - - -// TODO: make simplified and optimized negation code across -// the full range. - -/* Negation across the entire range of the container. - * Compute the negation of src and write the result - * to *dst. The complement of a - * sufficiently sparse set will always be dense and a hence a bitmap -' * We assume that dst is pre-allocated and a valid bitset container - * There can be no in-place version. - */ -void array_container_negation(const array_container_t *src, - bitset_container_t *dst) { - uint64_t card = UINT64_C(1 << 16); - bitset_container_set_all(dst); - - dst->cardinality = (int32_t)bitset_clear_list(dst->array, card, src->array, - (uint64_t)src->cardinality); -} - -/* Negation across the entire range of the container - * Compute the negation of src and write the result - * to *dst. A true return value indicates a bitset result, - * otherwise the result is an array container. - * We assume that dst is not pre-allocated. In - * case of failure, *dst will be NULL. - */ -bool bitset_container_negation(const bitset_container_t *src, void **dst) { - return bitset_container_negation_range(src, 0, (1 << 16), dst); -} - -/* inplace version */ -/* - * Same as bitset_container_negation except that if the output is to - * be a - * bitset_container_t, then src is modified and no allocation is made. - * If the output is to be an array_container_t, then caller is responsible - * to free the container. - * In all cases, the result is in *dst. - */ -bool bitset_container_negation_inplace(bitset_container_t *src, void **dst) { - return bitset_container_negation_range_inplace(src, 0, (1 << 16), dst); -} - -/* Negation across the entire range of container - * Compute the negation of src and write the result - * to *dst. Return values are the *_TYPECODES as defined * in containers.h - * We assume that dst is not pre-allocated. In - * case of failure, *dst will be NULL. - */ -int run_container_negation(const run_container_t *src, void **dst) { - return run_container_negation_range(src, 0, (1 << 16), dst); -} - -/* - * Same as run_container_negation except that if the output is to - * be a - * run_container_t, and has the capacity to hold the result, - * then src is modified and no allocation is made. - * In all cases, the result is in *dst. - */ -int run_container_negation_inplace(run_container_t *src, void **dst) { - return run_container_negation_range_inplace(src, 0, (1 << 16), dst); -} - -/* Negation across a range of the container. - * Compute the negation of src and write the result - * to *dst. Returns true if the result is a bitset container - * and false for an array container. *dst is not preallocated. - */ -bool array_container_negation_range(const array_container_t *src, - const int range_start, const int range_end, - void **dst) { - /* close port of the Java implementation */ - if (range_start >= range_end) { - *dst = array_container_clone(src); - return false; - } - - int32_t start_index = - binarySearch(src->array, src->cardinality, (uint16_t)range_start); - if (start_index < 0) start_index = -start_index - 1; - - int32_t last_index = - binarySearch(src->array, src->cardinality, (uint16_t)(range_end - 1)); - if (last_index < 0) last_index = -last_index - 2; - - const int32_t current_values_in_range = last_index - start_index + 1; - const int32_t span_to_be_flipped = range_end - range_start; - const int32_t new_values_in_range = - span_to_be_flipped - current_values_in_range; - const int32_t cardinality_change = - new_values_in_range - current_values_in_range; - const int32_t new_cardinality = src->cardinality + cardinality_change; - - if (new_cardinality > DEFAULT_MAX_SIZE) { - bitset_container_t *temp = bitset_container_from_array(src); - bitset_flip_range(temp->array, (uint32_t)range_start, - (uint32_t)range_end); - temp->cardinality = new_cardinality; - *dst = temp; - return true; - } - - array_container_t *arr = - array_container_create_given_capacity(new_cardinality); - *dst = (void *)arr; - if(new_cardinality == 0) { - arr->cardinality = new_cardinality; - return false; // we are done. - } - // copy stuff before the active area - memcpy(arr->array, src->array, start_index * sizeof(uint16_t)); - - // work on the range - int32_t out_pos = start_index, in_pos = start_index; - int32_t val_in_range = range_start; - for (; val_in_range < range_end && in_pos <= last_index; ++val_in_range) { - if ((uint16_t)val_in_range != src->array[in_pos]) { - arr->array[out_pos++] = (uint16_t)val_in_range; - } else { - ++in_pos; - } - } - for (; val_in_range < range_end; ++val_in_range) - arr->array[out_pos++] = (uint16_t)val_in_range; - - // content after the active range - memcpy(arr->array + out_pos, src->array + (last_index + 1), - (src->cardinality - (last_index + 1)) * sizeof(uint16_t)); - arr->cardinality = new_cardinality; - return false; -} - -/* Even when the result would fit, it is unclear how to make an - * inplace version without inefficient copying. - */ - -bool array_container_negation_range_inplace(array_container_t *src, - const int range_start, - const int range_end, void **dst) { - bool ans = array_container_negation_range(src, range_start, range_end, dst); - // TODO : try a real inplace version - array_container_free(src); - return ans; -} - -/* Negation across a range of the container - * Compute the negation of src and write the result - * to *dst. A true return value indicates a bitset result, - * otherwise the result is an array container. - * We assume that dst is not pre-allocated. In - * case of failure, *dst will be NULL. - */ -bool bitset_container_negation_range(const bitset_container_t *src, - const int range_start, const int range_end, - void **dst) { - // TODO maybe consider density-based estimate - // and sometimes build result directly as array, with - // conversion back to bitset if wrong. Or determine - // actual result cardinality, then go directly for the known final cont. - - // keep computation using bitsets as long as possible. - bitset_container_t *t = bitset_container_clone(src); - bitset_flip_range(t->array, (uint32_t)range_start, (uint32_t)range_end); - t->cardinality = bitset_container_compute_cardinality(t); - - if (t->cardinality > DEFAULT_MAX_SIZE) { - *dst = t; - return true; - } else { - *dst = array_container_from_bitset(t); - bitset_container_free(t); - return false; - } -} - -/* inplace version */ -/* - * Same as bitset_container_negation except that if the output is to - * be a - * bitset_container_t, then src is modified and no allocation is made. - * If the output is to be an array_container_t, then caller is responsible - * to free the container. - * In all cases, the result is in *dst. - */ -bool bitset_container_negation_range_inplace(bitset_container_t *src, - const int range_start, - const int range_end, void **dst) { - bitset_flip_range(src->array, (uint32_t)range_start, (uint32_t)range_end); - src->cardinality = bitset_container_compute_cardinality(src); - if (src->cardinality > DEFAULT_MAX_SIZE) { - *dst = src; - return true; - } - *dst = array_container_from_bitset(src); - bitset_container_free(src); - return false; -} - -/* Negation across a range of container - * Compute the negation of src and write the result - * to *dst. Return values are the *_TYPECODES as defined * in containers.h - * We assume that dst is not pre-allocated. In - * case of failure, *dst will be NULL. - */ -int run_container_negation_range(const run_container_t *src, - const int range_start, const int range_end, - void **dst) { - uint8_t return_typecode; - - // follows the Java implementation - if (range_end <= range_start) { - *dst = run_container_clone(src); - return RUN_CONTAINER_TYPE_CODE; - } - - run_container_t *ans = run_container_create_given_capacity( - src->n_runs + 1); // src->n_runs + 1); - int k = 0; - for (; k < src->n_runs && src->runs[k].value < range_start; ++k) { - ans->runs[k] = src->runs[k]; - ans->n_runs++; - } - - run_container_smart_append_exclusive( - ans, (uint16_t)range_start, (uint16_t)(range_end - range_start - 1)); - - for (; k < src->n_runs; ++k) { - run_container_smart_append_exclusive(ans, src->runs[k].value, - src->runs[k].length); - } - - *dst = convert_run_to_efficient_container(ans, &return_typecode); - if (return_typecode != RUN_CONTAINER_TYPE_CODE) run_container_free(ans); - - return return_typecode; -} - -/* - * Same as run_container_negation except that if the output is to - * be a - * run_container_t, and has the capacity to hold the result, - * then src is modified and no allocation is made. - * In all cases, the result is in *dst. - */ -int run_container_negation_range_inplace(run_container_t *src, - const int range_start, - const int range_end, void **dst) { - uint8_t return_typecode; - - if (range_end <= range_start) { - *dst = src; - return RUN_CONTAINER_TYPE_CODE; - } - - // TODO: efficient special case when range is 0 to 65535 inclusive - - if (src->capacity == src->n_runs) { - // no excess room. More checking to see if result can fit - bool last_val_before_range = false; - bool first_val_in_range = false; - bool last_val_in_range = false; - bool first_val_past_range = false; - - if (range_start > 0) - last_val_before_range = - run_container_contains(src, (uint16_t)(range_start - 1)); - first_val_in_range = run_container_contains(src, (uint16_t)range_start); - - if (last_val_before_range == first_val_in_range) { - last_val_in_range = - run_container_contains(src, (uint16_t)(range_end - 1)); - if (range_end != 0x10000) - first_val_past_range = - run_container_contains(src, (uint16_t)range_end); - - if (last_val_in_range == - first_val_past_range) { // no space for inplace - int ans = run_container_negation_range(src, range_start, - range_end, dst); - run_container_free(src); - return ans; - } - } - } - // all other cases: result will fit - - run_container_t *ans = src; - int my_nbr_runs = src->n_runs; - - ans->n_runs = 0; - int k = 0; - for (; (k < my_nbr_runs) && (src->runs[k].value < range_start); ++k) { - // ans->runs[k] = src->runs[k]; (would be self-copy) - ans->n_runs++; - } - - // as with Java implementation, use locals to give self a buffer of depth 1 - rle16_t buffered = (rle16_t){.value = (uint16_t)0, .length = (uint16_t)0}; - rle16_t next = buffered; - if (k < my_nbr_runs) buffered = src->runs[k]; - - run_container_smart_append_exclusive( - ans, (uint16_t)range_start, (uint16_t)(range_end - range_start - 1)); - - for (; k < my_nbr_runs; ++k) { - if (k + 1 < my_nbr_runs) next = src->runs[k + 1]; - - run_container_smart_append_exclusive(ans, buffered.value, - buffered.length); - buffered = next; - } - - *dst = convert_run_to_efficient_container(ans, &return_typecode); - if (return_typecode != RUN_CONTAINER_TYPE_CODE) run_container_free(ans); - - return return_typecode; -} -/* end file /opt/bitmap/CRoaring-0.2.57/src/containers/mixed_negation.c */ -/* begin file /opt/bitmap/CRoaring-0.2.57/src/containers/mixed_subset.c */ - -bool array_container_is_subset_bitset(const array_container_t* container1, - const bitset_container_t* container2) { - if (container2->cardinality != BITSET_UNKNOWN_CARDINALITY) { - if (container2->cardinality < container1->cardinality) { - return false; - } - } - for (int i = 0; i < container1->cardinality; ++i) { - if (!bitset_container_contains(container2, container1->array[i])) { - return false; - } - } - return true; -} - -bool run_container_is_subset_array(const run_container_t* container1, - const array_container_t* container2) { - if (run_container_cardinality(container1) > container2->cardinality) - return false; - int32_t start_pos = -1, stop_pos = -1; - for (int i = 0; i < container1->n_runs; ++i) { - int32_t start = container1->runs[i].value; - int32_t stop = start + container1->runs[i].length; - start_pos = advanceUntil(container2->array, stop_pos, - container2->cardinality, start); - stop_pos = advanceUntil(container2->array, stop_pos, - container2->cardinality, stop); - if (start_pos == container2->cardinality) { - return false; - } else if (stop_pos - start_pos != stop - start || - container2->array[start_pos] != start || - container2->array[stop_pos] != stop) { - return false; - } - } - return true; -} - -bool array_container_is_subset_run(const array_container_t* container1, - const run_container_t* container2) { - if (container1->cardinality > run_container_cardinality(container2)) - return false; - int i_array = 0, i_run = 0; - while (i_array < container1->cardinality && i_run < container2->n_runs) { - uint32_t start = container2->runs[i_run].value; - uint32_t stop = start + container2->runs[i_run].length; - if (container1->array[i_array] < start) { - return false; - } else if (container1->array[i_array] > stop) { - i_run++; - } else { // the value of the array is in the run - i_array++; - } - } - if (i_array == container1->cardinality) { - return true; - } else { - return false; - } -} - -bool run_container_is_subset_bitset(const run_container_t* container1, - const bitset_container_t* container2) { - // todo: this code could be much faster - if (container2->cardinality != BITSET_UNKNOWN_CARDINALITY) { - if (container2->cardinality < run_container_cardinality(container1)) { - return false; - } - } else { - int32_t card = bitset_container_compute_cardinality( - container2); // modify container2? - if (card < run_container_cardinality(container1)) { - return false; - } - } - for (int i = 0; i < container1->n_runs; ++i) { - uint32_t run_start = container1->runs[i].value; - uint32_t le = container1->runs[i].length; - for (uint32_t j = run_start; j <= run_start + le; ++j) { - if (!bitset_container_contains(container2, j)) { - return false; - } - } - } - return true; -} - -bool bitset_container_is_subset_run(const bitset_container_t* container1, - const run_container_t* container2) { - // todo: this code could be much faster - if (container1->cardinality != BITSET_UNKNOWN_CARDINALITY) { - if (container1->cardinality > run_container_cardinality(container2)) { - return false; - } - } - int32_t i_bitset = 0, i_run = 0; - while (i_bitset < BITSET_CONTAINER_SIZE_IN_WORDS && - i_run < container2->n_runs) { - uint64_t w = container1->array[i_bitset]; - while (w != 0 && i_run < container2->n_runs) { - uint32_t start = container2->runs[i_run].value; - uint32_t stop = start + container2->runs[i_run].length; - uint64_t t = w & (~w + 1); - uint16_t r = i_bitset * 64 + __builtin_ctzll(w); - if (r < start) { - return false; - } else if (r > stop) { - i_run++; - continue; - } else { - w ^= t; - } - } - if (w == 0) { - i_bitset++; - } else { - return false; - } - } - if (i_bitset < BITSET_CONTAINER_SIZE_IN_WORDS) { - // terminated iterating on the run containers, check that rest of bitset - // is empty - for (; i_bitset < BITSET_CONTAINER_SIZE_IN_WORDS; i_bitset++) { - if (container1->array[i_bitset] != 0) { - return false; - } - } - } - return true; -} -/* end file /opt/bitmap/CRoaring-0.2.57/src/containers/mixed_subset.c */ -/* begin file /opt/bitmap/CRoaring-0.2.57/src/containers/mixed_union.c */ -/* - * mixed_union.c - * - */ - -#include -#include - - -/* Compute the union of src_1 and src_2 and write the result to - * dst. */ -void array_bitset_container_union(const array_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst) { - if (src_2 != dst) bitset_container_copy(src_2, dst); - dst->cardinality = (int32_t)bitset_set_list_withcard( - dst->array, dst->cardinality, src_1->array, src_1->cardinality); -} - -/* Compute the union of src_1 and src_2 and write the result to - * dst. It is allowed for src_2 to be dst. This version does not - * update the cardinality of dst (it is set to BITSET_UNKNOWN_CARDINALITY). */ -void array_bitset_container_lazy_union(const array_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst) { - if (src_2 != dst) bitset_container_copy(src_2, dst); - bitset_set_list(dst->array, src_1->array, src_1->cardinality); - dst->cardinality = BITSET_UNKNOWN_CARDINALITY; -} - -void run_bitset_container_union(const run_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst) { - assert(!run_container_is_full(src_1)); // catch this case upstream - if (src_2 != dst) bitset_container_copy(src_2, dst); - for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) { - rle16_t rle = src_1->runs[rlepos]; - bitset_set_lenrange(dst->array, rle.value, rle.length); - } - dst->cardinality = bitset_container_compute_cardinality(dst); -} - -void run_bitset_container_lazy_union(const run_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst) { - assert(!run_container_is_full(src_1)); // catch this case upstream - if (src_2 != dst) bitset_container_copy(src_2, dst); - for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) { - rle16_t rle = src_1->runs[rlepos]; - bitset_set_lenrange(dst->array, rle.value, rle.length); - } - dst->cardinality = BITSET_UNKNOWN_CARDINALITY; -} - -// why do we leave the result as a run container?? -void array_run_container_union(const array_container_t *src_1, - const run_container_t *src_2, - run_container_t *dst) { - if (run_container_is_full(src_2)) { - run_container_copy(src_2, dst); - return; - } - // TODO: see whether the "2*" is spurious - run_container_grow(dst, 2 * (src_1->cardinality + src_2->n_runs), false); - int32_t rlepos = 0; - int32_t arraypos = 0; - rle16_t previousrle; - if (src_2->runs[rlepos].value <= src_1->array[arraypos]) { - previousrle = run_container_append_first(dst, src_2->runs[rlepos]); - rlepos++; - } else { - previousrle = - run_container_append_value_first(dst, src_1->array[arraypos]); - arraypos++; - } - while ((rlepos < src_2->n_runs) && (arraypos < src_1->cardinality)) { - if (src_2->runs[rlepos].value <= src_1->array[arraypos]) { - run_container_append(dst, src_2->runs[rlepos], &previousrle); - rlepos++; - } else { - run_container_append_value(dst, src_1->array[arraypos], - &previousrle); - arraypos++; - } - } - if (arraypos < src_1->cardinality) { - while (arraypos < src_1->cardinality) { - run_container_append_value(dst, src_1->array[arraypos], - &previousrle); - arraypos++; - } - } else { - while (rlepos < src_2->n_runs) { - run_container_append(dst, src_2->runs[rlepos], &previousrle); - rlepos++; - } - } -} - -void array_run_container_inplace_union(const array_container_t *src_1, - run_container_t *src_2) { - if (run_container_is_full(src_2)) { - return; - } - const int32_t maxoutput = src_1->cardinality + src_2->n_runs; - const int32_t neededcapacity = maxoutput + src_2->n_runs; - if (src_2->capacity < neededcapacity) - run_container_grow(src_2, neededcapacity, true); - memmove(src_2->runs + maxoutput, src_2->runs, - src_2->n_runs * sizeof(rle16_t)); - rle16_t *inputsrc2 = src_2->runs + maxoutput; - int32_t rlepos = 0; - int32_t arraypos = 0; - int src2nruns = src_2->n_runs; - src_2->n_runs = 0; - - rle16_t previousrle; - - if (inputsrc2[rlepos].value <= src_1->array[arraypos]) { - previousrle = run_container_append_first(src_2, inputsrc2[rlepos]); - rlepos++; - } else { - previousrle = - run_container_append_value_first(src_2, src_1->array[arraypos]); - arraypos++; - } - - while ((rlepos < src2nruns) && (arraypos < src_1->cardinality)) { - if (inputsrc2[rlepos].value <= src_1->array[arraypos]) { - run_container_append(src_2, inputsrc2[rlepos], &previousrle); - rlepos++; - } else { - run_container_append_value(src_2, src_1->array[arraypos], - &previousrle); - arraypos++; - } - } - if (arraypos < src_1->cardinality) { - while (arraypos < src_1->cardinality) { - run_container_append_value(src_2, src_1->array[arraypos], - &previousrle); - arraypos++; - } - } else { - while (rlepos < src2nruns) { - run_container_append(src_2, inputsrc2[rlepos], &previousrle); - rlepos++; - } - } -} - -bool array_array_container_union(const array_container_t *src_1, - const array_container_t *src_2, void **dst) { - int totalCardinality = src_1->cardinality + src_2->cardinality; - if (totalCardinality <= DEFAULT_MAX_SIZE) { - *dst = array_container_create_given_capacity(totalCardinality); - if (*dst != NULL) { - array_container_union(src_1, src_2, (array_container_t *)*dst); - } else { - return true; // otherwise failure won't be caught - } - return false; // not a bitset - } - *dst = bitset_container_create(); - bool returnval = true; // expect a bitset - if (*dst != NULL) { - bitset_container_t *ourbitset = (bitset_container_t *)*dst; - bitset_set_list(ourbitset->array, src_1->array, src_1->cardinality); - ourbitset->cardinality = (int32_t)bitset_set_list_withcard( - ourbitset->array, src_1->cardinality, src_2->array, - src_2->cardinality); - if (ourbitset->cardinality <= DEFAULT_MAX_SIZE) { - // need to convert! - *dst = array_container_from_bitset(ourbitset); - bitset_container_free(ourbitset); - returnval = false; // not going to be a bitset - } - } - return returnval; -} - -bool array_array_container_inplace_union(array_container_t *src_1, - const array_container_t *src_2, void **dst) { - int totalCardinality = src_1->cardinality + src_2->cardinality; - *dst = NULL; - if (totalCardinality <= DEFAULT_MAX_SIZE) { - if(src_1->capacity < totalCardinality) { - *dst = array_container_create_given_capacity(2 * totalCardinality); // be purposefully generous - if (*dst != NULL) { - array_container_union(src_1, src_2, (array_container_t *)*dst); - } else { - return true; // otherwise failure won't be caught - } - return false; // not a bitset - } else { - memmove(src_1->array + src_2->cardinality, src_1->array, src_1->cardinality * sizeof(uint16_t)); - src_1->cardinality = (int32_t)fast_union_uint16(src_1->array + src_2->cardinality, src_1->cardinality, - src_2->array, src_2->cardinality, src_1->array); - return false; // not a bitset - } - } - *dst = bitset_container_create(); - bool returnval = true; // expect a bitset - if (*dst != NULL) { - bitset_container_t *ourbitset = (bitset_container_t *)*dst; - bitset_set_list(ourbitset->array, src_1->array, src_1->cardinality); - ourbitset->cardinality = (int32_t)bitset_set_list_withcard( - ourbitset->array, src_1->cardinality, src_2->array, - src_2->cardinality); - if (ourbitset->cardinality <= DEFAULT_MAX_SIZE) { - // need to convert! - if(src_1->capacity < ourbitset->cardinality) { - array_container_grow(src_1, ourbitset->cardinality, false); - } - - bitset_extract_setbits_uint16(ourbitset->array, BITSET_CONTAINER_SIZE_IN_WORDS, - src_1->array, 0); - src_1->cardinality = ourbitset->cardinality; - *dst = src_1; - bitset_container_free(ourbitset); - returnval = false; // not going to be a bitset - } - } - return returnval; -} - - -bool array_array_container_lazy_union(const array_container_t *src_1, - const array_container_t *src_2, - void **dst) { - int totalCardinality = src_1->cardinality + src_2->cardinality; - if (totalCardinality <= ARRAY_LAZY_LOWERBOUND) { - *dst = array_container_create_given_capacity(totalCardinality); - if (*dst != NULL) { - array_container_union(src_1, src_2, (array_container_t *)*dst); - } else { - return true; // otherwise failure won't be caught - } - return false; // not a bitset - } - *dst = bitset_container_create(); - bool returnval = true; // expect a bitset - if (*dst != NULL) { - bitset_container_t *ourbitset = (bitset_container_t *)*dst; - bitset_set_list(ourbitset->array, src_1->array, src_1->cardinality); - bitset_set_list(ourbitset->array, src_2->array, src_2->cardinality); - ourbitset->cardinality = BITSET_UNKNOWN_CARDINALITY; - } - return returnval; -} - - -bool array_array_container_lazy_inplace_union(array_container_t *src_1, - const array_container_t *src_2, - void **dst) { - int totalCardinality = src_1->cardinality + src_2->cardinality; - *dst = NULL; - if (totalCardinality <= ARRAY_LAZY_LOWERBOUND) { - if(src_1->capacity < totalCardinality) { - *dst = array_container_create_given_capacity(2 * totalCardinality); // be purposefully generous - if (*dst != NULL) { - array_container_union(src_1, src_2, (array_container_t *)*dst); - } else { - return true; // otherwise failure won't be caught - } - return false; // not a bitset - } else { - memmove(src_1->array + src_2->cardinality, src_1->array, src_1->cardinality * sizeof(uint16_t)); - src_1->cardinality = (int32_t)fast_union_uint16(src_1->array + src_2->cardinality, src_1->cardinality, - src_2->array, src_2->cardinality, src_1->array); - return false; // not a bitset - } - } - *dst = bitset_container_create(); - bool returnval = true; // expect a bitset - if (*dst != NULL) { - bitset_container_t *ourbitset = (bitset_container_t *)*dst; - bitset_set_list(ourbitset->array, src_1->array, src_1->cardinality); - bitset_set_list(ourbitset->array, src_2->array, src_2->cardinality); - ourbitset->cardinality = BITSET_UNKNOWN_CARDINALITY; - } - return returnval; -} -/* end file /opt/bitmap/CRoaring-0.2.57/src/containers/mixed_union.c */ -/* begin file /opt/bitmap/CRoaring-0.2.57/src/containers/mixed_xor.c */ -/* - * mixed_xor.c - */ - -#include -#include - - -/* Compute the xor of src_1 and src_2 and write the result to - * dst (which has no container initially). - * Result is true iff dst is a bitset */ -bool array_bitset_container_xor(const array_container_t *src_1, - const bitset_container_t *src_2, void **dst) { - bitset_container_t *result = bitset_container_create(); - bitset_container_copy(src_2, result); - result->cardinality = (int32_t)bitset_flip_list_withcard( - result->array, result->cardinality, src_1->array, src_1->cardinality); - - // do required type conversions. - if (result->cardinality <= DEFAULT_MAX_SIZE) { - *dst = array_container_from_bitset(result); - bitset_container_free(result); - return false; // not bitset - } - *dst = result; - return true; // bitset -} - -/* Compute the xor of src_1 and src_2 and write the result to - * dst. It is allowed for src_2 to be dst. This version does not - * update the cardinality of dst (it is set to BITSET_UNKNOWN_CARDINALITY). - */ - -void array_bitset_container_lazy_xor(const array_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst) { - if (src_2 != dst) bitset_container_copy(src_2, dst); - bitset_flip_list(dst->array, src_1->array, src_1->cardinality); - dst->cardinality = BITSET_UNKNOWN_CARDINALITY; -} - -/* Compute the xor of src_1 and src_2 and write the result to - * dst. Result may be either a bitset or an array container - * (returns "result is bitset"). dst does not initially have - * any container, but becomes either a bitset container (return - * result true) or an array container. - */ - -bool run_bitset_container_xor(const run_container_t *src_1, - const bitset_container_t *src_2, void **dst) { - bitset_container_t *result = bitset_container_create(); - - bitset_container_copy(src_2, result); - for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) { - rle16_t rle = src_1->runs[rlepos]; - bitset_flip_range(result->array, rle.value, - rle.value + rle.length + UINT32_C(1)); - } - result->cardinality = bitset_container_compute_cardinality(result); - - if (result->cardinality <= DEFAULT_MAX_SIZE) { - *dst = array_container_from_bitset(result); - bitset_container_free(result); - return false; // not bitset - } - *dst = result; - return true; // bitset -} - -/* lazy xor. Dst is initialized and may be equal to src_2. - * Result is left as a bitset container, even if actual - * cardinality would dictate an array container. - */ - -void run_bitset_container_lazy_xor(const run_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst) { - if (src_2 != dst) bitset_container_copy(src_2, dst); - for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) { - rle16_t rle = src_1->runs[rlepos]; - bitset_flip_range(dst->array, rle.value, - rle.value + rle.length + UINT32_C(1)); - } - dst->cardinality = BITSET_UNKNOWN_CARDINALITY; -} - -/* dst does not indicate a valid container initially. Eventually it - * can become any kind of container. - */ - -int array_run_container_xor(const array_container_t *src_1, - const run_container_t *src_2, void **dst) { - // semi following Java XOR implementation as of May 2016 - // the C OR implementation works quite differently and can return a run - // container - // TODO could optimize for full run containers. - - // use of lazy following Java impl. - const int arbitrary_threshold = 32; - if (src_1->cardinality < arbitrary_threshold) { - run_container_t *ans = run_container_create(); - array_run_container_lazy_xor(src_1, src_2, ans); // keeps runs. - uint8_t typecode_after; - *dst = - convert_run_to_efficient_container_and_free(ans, &typecode_after); - return typecode_after; - } - - int card = run_container_cardinality(src_2); - if (card <= DEFAULT_MAX_SIZE) { - // Java implementation works with the array, xoring the run elements via - // iterator - array_container_t *temp = array_container_from_run(src_2); - bool ret_is_bitset = array_array_container_xor(temp, src_1, dst); - array_container_free(temp); - return ret_is_bitset ? BITSET_CONTAINER_TYPE_CODE - : ARRAY_CONTAINER_TYPE_CODE; - - } else { // guess that it will end up as a bitset - bitset_container_t *result = bitset_container_from_run(src_2); - bool is_bitset = bitset_array_container_ixor(result, src_1, dst); - // any necessary type conversion has been done by the ixor - int retval = (is_bitset ? BITSET_CONTAINER_TYPE_CODE - : ARRAY_CONTAINER_TYPE_CODE); - return retval; - } -} - -/* Dst is a valid run container. (Can it be src_2? Let's say not.) - * Leaves result as run container, even if other options are - * smaller. - */ - -void array_run_container_lazy_xor(const array_container_t *src_1, - const run_container_t *src_2, - run_container_t *dst) { - run_container_grow(dst, src_1->cardinality + src_2->n_runs, false); - int32_t rlepos = 0; - int32_t arraypos = 0; - dst->n_runs = 0; - - while ((rlepos < src_2->n_runs) && (arraypos < src_1->cardinality)) { - if (src_2->runs[rlepos].value <= src_1->array[arraypos]) { - run_container_smart_append_exclusive(dst, src_2->runs[rlepos].value, - src_2->runs[rlepos].length); - rlepos++; - } else { - run_container_smart_append_exclusive(dst, src_1->array[arraypos], - 0); - arraypos++; - } - } - while (arraypos < src_1->cardinality) { - run_container_smart_append_exclusive(dst, src_1->array[arraypos], 0); - arraypos++; - } - while (rlepos < src_2->n_runs) { - run_container_smart_append_exclusive(dst, src_2->runs[rlepos].value, - src_2->runs[rlepos].length); - rlepos++; - } -} - -/* dst does not indicate a valid container initially. Eventually it - * can become any kind of container. - */ - -int run_run_container_xor(const run_container_t *src_1, - const run_container_t *src_2, void **dst) { - run_container_t *ans = run_container_create(); - run_container_xor(src_1, src_2, ans); - uint8_t typecode_after; - *dst = convert_run_to_efficient_container_and_free(ans, &typecode_after); - return typecode_after; -} - -/* - * Java implementation (as of May 2016) for array_run, run_run - * and bitset_run don't do anything different for inplace. - * Could adopt the mixed_union.c approach instead (ie, using - * smart_append_exclusive) - * - */ - -bool array_array_container_xor(const array_container_t *src_1, - const array_container_t *src_2, void **dst) { - int totalCardinality = - src_1->cardinality + src_2->cardinality; // upper bound - if (totalCardinality <= DEFAULT_MAX_SIZE) { - *dst = array_container_create_given_capacity(totalCardinality); - array_container_xor(src_1, src_2, (array_container_t *)*dst); - return false; // not a bitset - } - *dst = bitset_container_from_array(src_1); - bool returnval = true; // expect a bitset - bitset_container_t *ourbitset = (bitset_container_t *)*dst; - ourbitset->cardinality = (uint32_t)bitset_flip_list_withcard( - ourbitset->array, src_1->cardinality, src_2->array, src_2->cardinality); - if (ourbitset->cardinality <= DEFAULT_MAX_SIZE) { - // need to convert! - *dst = array_container_from_bitset(ourbitset); - bitset_container_free(ourbitset); - returnval = false; // not going to be a bitset - } - - return returnval; -} - -bool array_array_container_lazy_xor(const array_container_t *src_1, - const array_container_t *src_2, - void **dst) { - int totalCardinality = src_1->cardinality + src_2->cardinality; - // upper bound, but probably poor estimate for xor - if (totalCardinality <= ARRAY_LAZY_LOWERBOUND) { - *dst = array_container_create_given_capacity(totalCardinality); - if (*dst != NULL) - array_container_xor(src_1, src_2, (array_container_t *)*dst); - return false; // not a bitset - } - *dst = bitset_container_from_array(src_1); - bool returnval = true; // expect a bitset (maybe, for XOR??) - if (*dst != NULL) { - bitset_container_t *ourbitset = (bitset_container_t *)*dst; - bitset_flip_list(ourbitset->array, src_2->array, src_2->cardinality); - ourbitset->cardinality = BITSET_UNKNOWN_CARDINALITY; - } - return returnval; -} - -/* Compute the xor of src_1 and src_2 and write the result to - * dst (which has no container initially). Return value is - * "dst is a bitset" - */ - -bool bitset_bitset_container_xor(const bitset_container_t *src_1, - const bitset_container_t *src_2, void **dst) { - bitset_container_t *ans = bitset_container_create(); - int card = bitset_container_xor(src_1, src_2, ans); - if (card <= DEFAULT_MAX_SIZE) { - *dst = array_container_from_bitset(ans); - bitset_container_free(ans); - return false; // not bitset - } else { - *dst = ans; - return true; - } -} - -/* Compute the xor of src_1 and src_2 and write the result to - * dst (which has no container initially). It will modify src_1 - * to be dst if the result is a bitset. Otherwise, it will - * free src_1 and dst will be a new array container. In both - * cases, the caller is responsible for deallocating dst. - * Returns true iff dst is a bitset */ - -bool bitset_array_container_ixor(bitset_container_t *src_1, - const array_container_t *src_2, void **dst) { - *dst = src_1; - src_1->cardinality = (uint32_t)bitset_flip_list_withcard( - src_1->array, src_1->cardinality, src_2->array, src_2->cardinality); - - if (src_1->cardinality <= DEFAULT_MAX_SIZE) { - *dst = array_container_from_bitset(src_1); - bitset_container_free(src_1); - return false; // not bitset - } else - return true; -} - -/* a bunch of in-place, some of which may not *really* be inplace. - * TODO: write actual inplace routine if efficiency warrants it - * Anything inplace with a bitset is a good candidate - */ - -bool bitset_bitset_container_ixor(bitset_container_t *src_1, - const bitset_container_t *src_2, void **dst) { - bool ans = bitset_bitset_container_xor(src_1, src_2, dst); - bitset_container_free(src_1); - return ans; -} - -bool array_bitset_container_ixor(array_container_t *src_1, - const bitset_container_t *src_2, void **dst) { - bool ans = array_bitset_container_xor(src_1, src_2, dst); - array_container_free(src_1); - return ans; -} - -/* Compute the xor of src_1 and src_2 and write the result to - * dst. Result may be either a bitset or an array container - * (returns "result is bitset"). dst does not initially have - * any container, but becomes either a bitset container (return - * result true) or an array container. - */ - -bool run_bitset_container_ixor(run_container_t *src_1, - const bitset_container_t *src_2, void **dst) { - bool ans = run_bitset_container_xor(src_1, src_2, dst); - run_container_free(src_1); - return ans; -} - -bool bitset_run_container_ixor(bitset_container_t *src_1, - const run_container_t *src_2, void **dst) { - bool ans = run_bitset_container_xor(src_2, src_1, dst); - bitset_container_free(src_1); - return ans; -} - -/* dst does not indicate a valid container initially. Eventually it - * can become any kind of container. - */ - -int array_run_container_ixor(array_container_t *src_1, - const run_container_t *src_2, void **dst) { - int ans = array_run_container_xor(src_1, src_2, dst); - array_container_free(src_1); - return ans; -} - -int run_array_container_ixor(run_container_t *src_1, - const array_container_t *src_2, void **dst) { - int ans = array_run_container_xor(src_2, src_1, dst); - run_container_free(src_1); - return ans; -} - -bool array_array_container_ixor(array_container_t *src_1, - const array_container_t *src_2, void **dst) { - bool ans = array_array_container_xor(src_1, src_2, dst); - array_container_free(src_1); - return ans; -} - -int run_run_container_ixor(run_container_t *src_1, const run_container_t *src_2, - void **dst) { - int ans = run_run_container_xor(src_1, src_2, dst); - run_container_free(src_1); - return ans; -} -/* end file /opt/bitmap/CRoaring-0.2.57/src/containers/mixed_xor.c */ -/* begin file /opt/bitmap/CRoaring-0.2.57/src/containers/run.c */ -#include -#include - - -extern inline uint16_t run_container_minimum(const run_container_t *run); -extern inline uint16_t run_container_maximum(const run_container_t *run); -extern inline int32_t interleavedBinarySearch(const rle16_t *array, - int32_t lenarray, uint16_t ikey); -extern inline bool run_container_contains(const run_container_t *run, - uint16_t pos); -extern inline int run_container_index_equalorlarger(const run_container_t *arr, uint16_t x); -extern bool run_container_is_full(const run_container_t *run); -extern bool run_container_nonzero_cardinality(const run_container_t *r); -extern void run_container_clear(run_container_t *run); -extern int32_t run_container_serialized_size_in_bytes(int32_t num_runs); -extern run_container_t *run_container_create_range(uint32_t start, - uint32_t stop); - -bool run_container_add(run_container_t *run, uint16_t pos) { - int32_t index = interleavedBinarySearch(run->runs, run->n_runs, pos); - if (index >= 0) return false; // already there - index = -index - 2; // points to preceding value, possibly -1 - if (index >= 0) { // possible match - int32_t offset = pos - run->runs[index].value; - int32_t le = run->runs[index].length; - if (offset <= le) return false; // already there - if (offset == le + 1) { - // we may need to fuse - if (index + 1 < run->n_runs) { - if (run->runs[index + 1].value == pos + 1) { - // indeed fusion is needed - run->runs[index].length = run->runs[index + 1].value + - run->runs[index + 1].length - - run->runs[index].value; - recoverRoomAtIndex(run, (uint16_t)(index + 1)); - return true; - } - } - run->runs[index].length++; - return true; - } - if (index + 1 < run->n_runs) { - // we may need to fuse - if (run->runs[index + 1].value == pos + 1) { - // indeed fusion is needed - run->runs[index + 1].value = pos; - run->runs[index + 1].length = run->runs[index + 1].length + 1; - return true; - } - } - } - if (index == -1) { - // we may need to extend the first run - if (0 < run->n_runs) { - if (run->runs[0].value == pos + 1) { - run->runs[0].length++; - run->runs[0].value--; - return true; - } - } - } - makeRoomAtIndex(run, (uint16_t)(index + 1)); - run->runs[index + 1].value = pos; - run->runs[index + 1].length = 0; - return true; -} - -/* Create a new run container. Return NULL in case of failure. */ -run_container_t *run_container_create_given_capacity(int32_t size) { - run_container_t *run; - /* Allocate the run container itself. */ - if ((run = (run_container_t *)malloc(sizeof(run_container_t))) == NULL) { - return NULL; - } - if (size <= 0 ) { // we don't want to rely on malloc(0) - run->runs = NULL; - } else if ((run->runs = (rle16_t *)malloc(sizeof(rle16_t) * size)) == NULL) { - free(run); - return NULL; - } - run->capacity = size; - run->n_runs = 0; - return run; -} - -int run_container_shrink_to_fit(run_container_t *src) { - if (src->n_runs == src->capacity) return 0; // nothing to do - int savings = src->capacity - src->n_runs; - src->capacity = src->n_runs; - rle16_t *oldruns = src->runs; - src->runs = (rle16_t *)realloc(oldruns, src->capacity * sizeof(rle16_t)); - if (src->runs == NULL) free(oldruns); // should never happen? - return savings; -} -/* Create a new run container. Return NULL in case of failure. */ -run_container_t *run_container_create(void) { - return run_container_create_given_capacity(RUN_DEFAULT_INIT_SIZE); -} - -run_container_t *run_container_clone(const run_container_t *src) { - run_container_t *run = run_container_create_given_capacity(src->capacity); - if (run == NULL) return NULL; - run->capacity = src->capacity; - run->n_runs = src->n_runs; - memcpy(run->runs, src->runs, src->n_runs * sizeof(rle16_t)); - return run; -} - -/* Free memory. */ -void run_container_free(run_container_t *run) { - if(run->runs != NULL) {// Jon Strabala reports that some tools complain otherwise - free(run->runs); - run->runs = NULL; // pedantic - } - free(run); -} - -void run_container_grow(run_container_t *run, int32_t min, bool copy) { - int32_t newCapacity = - (run->capacity == 0) - ? RUN_DEFAULT_INIT_SIZE - : run->capacity < 64 ? run->capacity * 2 - : run->capacity < 1024 ? run->capacity * 3 / 2 - : run->capacity * 5 / 4; - if (newCapacity < min) newCapacity = min; - run->capacity = newCapacity; - assert(run->capacity >= min); - if (copy) { - rle16_t *oldruns = run->runs; - run->runs = - (rle16_t *)realloc(oldruns, run->capacity * sizeof(rle16_t)); - if (run->runs == NULL) free(oldruns); - } else { - // Jon Strabala reports that some tools complain otherwise - if (run->runs != NULL) { - free(run->runs); - } - run->runs = (rle16_t *)malloc(run->capacity * sizeof(rle16_t)); - } - // handle the case where realloc fails - if (run->runs == NULL) { - fprintf(stderr, "could not allocate memory\n"); - } - assert(run->runs != NULL); -} - -/* copy one container into another */ -void run_container_copy(const run_container_t *src, run_container_t *dst) { - const int32_t n_runs = src->n_runs; - if (src->n_runs > dst->capacity) { - run_container_grow(dst, n_runs, false); - } - dst->n_runs = n_runs; - memcpy(dst->runs, src->runs, sizeof(rle16_t) * n_runs); -} - -/* Compute the union of `src_1' and `src_2' and write the result to `dst' - * It is assumed that `dst' is distinct from both `src_1' and `src_2'. */ -void run_container_union(const run_container_t *src_1, - const run_container_t *src_2, run_container_t *dst) { - // TODO: this could be a lot more efficient - - // we start out with inexpensive checks - const bool if1 = run_container_is_full(src_1); - const bool if2 = run_container_is_full(src_2); - if (if1 || if2) { - if (if1) { - run_container_copy(src_1, dst); - return; - } - if (if2) { - run_container_copy(src_2, dst); - return; - } - } - const int32_t neededcapacity = src_1->n_runs + src_2->n_runs; - if (dst->capacity < neededcapacity) - run_container_grow(dst, neededcapacity, false); - dst->n_runs = 0; - int32_t rlepos = 0; - int32_t xrlepos = 0; - - rle16_t previousrle; - if (src_1->runs[rlepos].value <= src_2->runs[xrlepos].value) { - previousrle = run_container_append_first(dst, src_1->runs[rlepos]); - rlepos++; - } else { - previousrle = run_container_append_first(dst, src_2->runs[xrlepos]); - xrlepos++; - } - - while ((xrlepos < src_2->n_runs) && (rlepos < src_1->n_runs)) { - rle16_t newrl; - if (src_1->runs[rlepos].value <= src_2->runs[xrlepos].value) { - newrl = src_1->runs[rlepos]; - rlepos++; - } else { - newrl = src_2->runs[xrlepos]; - xrlepos++; - } - run_container_append(dst, newrl, &previousrle); - } - while (xrlepos < src_2->n_runs) { - run_container_append(dst, src_2->runs[xrlepos], &previousrle); - xrlepos++; - } - while (rlepos < src_1->n_runs) { - run_container_append(dst, src_1->runs[rlepos], &previousrle); - rlepos++; - } -} - -/* Compute the union of `src_1' and `src_2' and write the result to `src_1' - */ -void run_container_union_inplace(run_container_t *src_1, - const run_container_t *src_2) { - // TODO: this could be a lot more efficient - - // we start out with inexpensive checks - const bool if1 = run_container_is_full(src_1); - const bool if2 = run_container_is_full(src_2); - if (if1 || if2) { - if (if1) { - return; - } - if (if2) { - run_container_copy(src_2, src_1); - return; - } - } - // we move the data to the end of the current array - const int32_t maxoutput = src_1->n_runs + src_2->n_runs; - const int32_t neededcapacity = maxoutput + src_1->n_runs; - if (src_1->capacity < neededcapacity) - run_container_grow(src_1, neededcapacity, true); - memmove(src_1->runs + maxoutput, src_1->runs, - src_1->n_runs * sizeof(rle16_t)); - rle16_t *inputsrc1 = src_1->runs + maxoutput; - const int32_t input1nruns = src_1->n_runs; - src_1->n_runs = 0; - int32_t rlepos = 0; - int32_t xrlepos = 0; - - rle16_t previousrle; - if (inputsrc1[rlepos].value <= src_2->runs[xrlepos].value) { - previousrle = run_container_append_first(src_1, inputsrc1[rlepos]); - rlepos++; - } else { - previousrle = run_container_append_first(src_1, src_2->runs[xrlepos]); - xrlepos++; - } - while ((xrlepos < src_2->n_runs) && (rlepos < input1nruns)) { - rle16_t newrl; - if (inputsrc1[rlepos].value <= src_2->runs[xrlepos].value) { - newrl = inputsrc1[rlepos]; - rlepos++; - } else { - newrl = src_2->runs[xrlepos]; - xrlepos++; - } - run_container_append(src_1, newrl, &previousrle); - } - while (xrlepos < src_2->n_runs) { - run_container_append(src_1, src_2->runs[xrlepos], &previousrle); - xrlepos++; - } - while (rlepos < input1nruns) { - run_container_append(src_1, inputsrc1[rlepos], &previousrle); - rlepos++; - } -} - -/* Compute the symmetric difference of `src_1' and `src_2' and write the result - * to `dst' - * It is assumed that `dst' is distinct from both `src_1' and `src_2'. */ -void run_container_xor(const run_container_t *src_1, - const run_container_t *src_2, run_container_t *dst) { - // don't bother to convert xor with full range into negation - // since negation is implemented similarly - - const int32_t neededcapacity = src_1->n_runs + src_2->n_runs; - if (dst->capacity < neededcapacity) - run_container_grow(dst, neededcapacity, false); - - int32_t pos1 = 0; - int32_t pos2 = 0; - dst->n_runs = 0; - - while ((pos1 < src_1->n_runs) && (pos2 < src_2->n_runs)) { - if (src_1->runs[pos1].value <= src_2->runs[pos2].value) { - run_container_smart_append_exclusive(dst, src_1->runs[pos1].value, - src_1->runs[pos1].length); - pos1++; - } else { - run_container_smart_append_exclusive(dst, src_2->runs[pos2].value, - src_2->runs[pos2].length); - pos2++; - } - } - while (pos1 < src_1->n_runs) { - run_container_smart_append_exclusive(dst, src_1->runs[pos1].value, - src_1->runs[pos1].length); - pos1++; - } - - while (pos2 < src_2->n_runs) { - run_container_smart_append_exclusive(dst, src_2->runs[pos2].value, - src_2->runs[pos2].length); - pos2++; - } -} - -/* Compute the intersection of src_1 and src_2 and write the result to - * dst. It is assumed that dst is distinct from both src_1 and src_2. */ -void run_container_intersection(const run_container_t *src_1, - const run_container_t *src_2, - run_container_t *dst) { - const bool if1 = run_container_is_full(src_1); - const bool if2 = run_container_is_full(src_2); - if (if1 || if2) { - if (if1) { - run_container_copy(src_2, dst); - return; - } - if (if2) { - run_container_copy(src_1, dst); - return; - } - } - // TODO: this could be a lot more efficient, could use SIMD optimizations - const int32_t neededcapacity = src_1->n_runs + src_2->n_runs; - if (dst->capacity < neededcapacity) - run_container_grow(dst, neededcapacity, false); - dst->n_runs = 0; - int32_t rlepos = 0; - int32_t xrlepos = 0; - int32_t start = src_1->runs[rlepos].value; - int32_t end = start + src_1->runs[rlepos].length + 1; - int32_t xstart = src_2->runs[xrlepos].value; - int32_t xend = xstart + src_2->runs[xrlepos].length + 1; - while ((rlepos < src_1->n_runs) && (xrlepos < src_2->n_runs)) { - if (end <= xstart) { - ++rlepos; - if (rlepos < src_1->n_runs) { - start = src_1->runs[rlepos].value; - end = start + src_1->runs[rlepos].length + 1; - } - } else if (xend <= start) { - ++xrlepos; - if (xrlepos < src_2->n_runs) { - xstart = src_2->runs[xrlepos].value; - xend = xstart + src_2->runs[xrlepos].length + 1; - } - } else { // they overlap - const int32_t lateststart = start > xstart ? start : xstart; - int32_t earliestend; - if (end == xend) { // improbable - earliestend = end; - rlepos++; - xrlepos++; - if (rlepos < src_1->n_runs) { - start = src_1->runs[rlepos].value; - end = start + src_1->runs[rlepos].length + 1; - } - if (xrlepos < src_2->n_runs) { - xstart = src_2->runs[xrlepos].value; - xend = xstart + src_2->runs[xrlepos].length + 1; - } - } else if (end < xend) { - earliestend = end; - rlepos++; - if (rlepos < src_1->n_runs) { - start = src_1->runs[rlepos].value; - end = start + src_1->runs[rlepos].length + 1; - } - - } else { // end > xend - earliestend = xend; - xrlepos++; - if (xrlepos < src_2->n_runs) { - xstart = src_2->runs[xrlepos].value; - xend = xstart + src_2->runs[xrlepos].length + 1; - } - } - dst->runs[dst->n_runs].value = (uint16_t)lateststart; - dst->runs[dst->n_runs].length = - (uint16_t)(earliestend - lateststart - 1); - dst->n_runs++; - } - } -} - -/* Compute the size of the intersection of src_1 and src_2 . */ -int run_container_intersection_cardinality(const run_container_t *src_1, - const run_container_t *src_2) { - const bool if1 = run_container_is_full(src_1); - const bool if2 = run_container_is_full(src_2); - if (if1 || if2) { - if (if1) { - return run_container_cardinality(src_2); - } - if (if2) { - return run_container_cardinality(src_1); - } - } - int answer = 0; - int32_t rlepos = 0; - int32_t xrlepos = 0; - int32_t start = src_1->runs[rlepos].value; - int32_t end = start + src_1->runs[rlepos].length + 1; - int32_t xstart = src_2->runs[xrlepos].value; - int32_t xend = xstart + src_2->runs[xrlepos].length + 1; - while ((rlepos < src_1->n_runs) && (xrlepos < src_2->n_runs)) { - if (end <= xstart) { - ++rlepos; - if (rlepos < src_1->n_runs) { - start = src_1->runs[rlepos].value; - end = start + src_1->runs[rlepos].length + 1; - } - } else if (xend <= start) { - ++xrlepos; - if (xrlepos < src_2->n_runs) { - xstart = src_2->runs[xrlepos].value; - xend = xstart + src_2->runs[xrlepos].length + 1; - } - } else { // they overlap - const int32_t lateststart = start > xstart ? start : xstart; - int32_t earliestend; - if (end == xend) { // improbable - earliestend = end; - rlepos++; - xrlepos++; - if (rlepos < src_1->n_runs) { - start = src_1->runs[rlepos].value; - end = start + src_1->runs[rlepos].length + 1; - } - if (xrlepos < src_2->n_runs) { - xstart = src_2->runs[xrlepos].value; - xend = xstart + src_2->runs[xrlepos].length + 1; - } - } else if (end < xend) { - earliestend = end; - rlepos++; - if (rlepos < src_1->n_runs) { - start = src_1->runs[rlepos].value; - end = start + src_1->runs[rlepos].length + 1; - } - - } else { // end > xend - earliestend = xend; - xrlepos++; - if (xrlepos < src_2->n_runs) { - xstart = src_2->runs[xrlepos].value; - xend = xstart + src_2->runs[xrlepos].length + 1; - } - } - answer += earliestend - lateststart; - } - } - return answer; -} - -bool run_container_intersect(const run_container_t *src_1, - const run_container_t *src_2) { - const bool if1 = run_container_is_full(src_1); - const bool if2 = run_container_is_full(src_2); - if (if1 || if2) { - if (if1) { - return !run_container_empty(src_2); - } - if (if2) { - return !run_container_empty(src_1); - } - } - int32_t rlepos = 0; - int32_t xrlepos = 0; - int32_t start = src_1->runs[rlepos].value; - int32_t end = start + src_1->runs[rlepos].length + 1; - int32_t xstart = src_2->runs[xrlepos].value; - int32_t xend = xstart + src_2->runs[xrlepos].length + 1; - while ((rlepos < src_1->n_runs) && (xrlepos < src_2->n_runs)) { - if (end <= xstart) { - ++rlepos; - if (rlepos < src_1->n_runs) { - start = src_1->runs[rlepos].value; - end = start + src_1->runs[rlepos].length + 1; - } - } else if (xend <= start) { - ++xrlepos; - if (xrlepos < src_2->n_runs) { - xstart = src_2->runs[xrlepos].value; - xend = xstart + src_2->runs[xrlepos].length + 1; - } - } else { // they overlap - return true; - } - } - return false; -} - - -/* Compute the difference of src_1 and src_2 and write the result to - * dst. It is assumed that dst is distinct from both src_1 and src_2. */ -void run_container_andnot(const run_container_t *src_1, - const run_container_t *src_2, run_container_t *dst) { - // following Java implementation as of June 2016 - - if (dst->capacity < src_1->n_runs + src_2->n_runs) - run_container_grow(dst, src_1->n_runs + src_2->n_runs, false); - - dst->n_runs = 0; - - int rlepos1 = 0; - int rlepos2 = 0; - int32_t start = src_1->runs[rlepos1].value; - int32_t end = start + src_1->runs[rlepos1].length + 1; - int32_t start2 = src_2->runs[rlepos2].value; - int32_t end2 = start2 + src_2->runs[rlepos2].length + 1; - - while ((rlepos1 < src_1->n_runs) && (rlepos2 < src_2->n_runs)) { - if (end <= start2) { - // output the first run - dst->runs[dst->n_runs++] = - (rle16_t){.value = (uint16_t)start, - .length = (uint16_t)(end - start - 1)}; - rlepos1++; - if (rlepos1 < src_1->n_runs) { - start = src_1->runs[rlepos1].value; - end = start + src_1->runs[rlepos1].length + 1; - } - } else if (end2 <= start) { - // exit the second run - rlepos2++; - if (rlepos2 < src_2->n_runs) { - start2 = src_2->runs[rlepos2].value; - end2 = start2 + src_2->runs[rlepos2].length + 1; - } - } else { - if (start < start2) { - dst->runs[dst->n_runs++] = - (rle16_t){.value = (uint16_t)start, - .length = (uint16_t)(start2 - start - 1)}; - } - if (end2 < end) { - start = end2; - } else { - rlepos1++; - if (rlepos1 < src_1->n_runs) { - start = src_1->runs[rlepos1].value; - end = start + src_1->runs[rlepos1].length + 1; - } - } - } - } - if (rlepos1 < src_1->n_runs) { - dst->runs[dst->n_runs++] = (rle16_t){ - .value = (uint16_t)start, .length = (uint16_t)(end - start - 1)}; - rlepos1++; - if (rlepos1 < src_1->n_runs) { - memcpy(dst->runs + dst->n_runs, src_1->runs + rlepos1, - sizeof(rle16_t) * (src_1->n_runs - rlepos1)); - dst->n_runs += src_1->n_runs - rlepos1; - } - } -} - -int run_container_to_uint32_array(void *vout, const run_container_t *cont, - uint32_t base) { - int outpos = 0; - uint32_t *out = (uint32_t *)vout; - for (int i = 0; i < cont->n_runs; ++i) { - uint32_t run_start = base + cont->runs[i].value; - uint16_t le = cont->runs[i].length; - for (int j = 0; j <= le; ++j) { - uint32_t val = run_start + j; - memcpy(out + outpos, &val, - sizeof(uint32_t)); // should be compiled as a MOV on x64 - outpos++; - } - } - return outpos; -} - -/* - * Print this container using printf (useful for debugging). - */ -void run_container_printf(const run_container_t *cont) { - for (int i = 0; i < cont->n_runs; ++i) { - uint16_t run_start = cont->runs[i].value; - uint16_t le = cont->runs[i].length; - printf("[%d,%d]", run_start, run_start + le); - } -} - -/* - * Print this container using printf as a comma-separated list of 32-bit - * integers starting at base. - */ -void run_container_printf_as_uint32_array(const run_container_t *cont, - uint32_t base) { - if (cont->n_runs == 0) return; - { - uint32_t run_start = base + cont->runs[0].value; - uint16_t le = cont->runs[0].length; - printf("%u", run_start); - for (uint32_t j = 1; j <= le; ++j) printf(",%u", run_start + j); - } - for (int32_t i = 1; i < cont->n_runs; ++i) { - uint32_t run_start = base + cont->runs[i].value; - uint16_t le = cont->runs[i].length; - for (uint32_t j = 0; j <= le; ++j) printf(",%u", run_start + j); - } -} - -int32_t run_container_serialize(const run_container_t *container, char *buf) { - int32_t l, off; - - memcpy(buf, &container->n_runs, off = sizeof(container->n_runs)); - memcpy(&buf[off], &container->capacity, sizeof(container->capacity)); - off += sizeof(container->capacity); - - l = sizeof(rle16_t) * container->n_runs; - memcpy(&buf[off], container->runs, l); - return (off + l); -} - -int32_t run_container_write(const run_container_t *container, char *buf) { - memcpy(buf, &container->n_runs, sizeof(uint16_t)); - memcpy(buf + sizeof(uint16_t), container->runs, - container->n_runs * sizeof(rle16_t)); - return run_container_size_in_bytes(container); -} - -int32_t run_container_read(int32_t cardinality, run_container_t *container, - const char *buf) { - (void)cardinality; - memcpy(&container->n_runs, buf, sizeof(uint16_t)); - if (container->n_runs > container->capacity) - run_container_grow(container, container->n_runs, false); - if(container->n_runs > 0) { - memcpy(container->runs, buf + sizeof(uint16_t), - container->n_runs * sizeof(rle16_t)); - } - return run_container_size_in_bytes(container); -} - -uint32_t run_container_serialization_len(const run_container_t *container) { - return (sizeof(container->n_runs) + sizeof(container->capacity) + - sizeof(rle16_t) * container->n_runs); -} - -void *run_container_deserialize(const char *buf, size_t buf_len) { - run_container_t *ptr; - - if (buf_len < 8 /* n_runs + capacity */) - return (NULL); - else - buf_len -= 8; - - if ((ptr = (run_container_t *)malloc(sizeof(run_container_t))) != NULL) { - size_t len; - int32_t off; - - memcpy(&ptr->n_runs, buf, off = 4); - memcpy(&ptr->capacity, &buf[off], 4); - off += 4; - - len = sizeof(rle16_t) * ptr->n_runs; - - if (len != buf_len) { - free(ptr); - return (NULL); - } - - if ((ptr->runs = (rle16_t *)malloc(len)) == NULL) { - free(ptr); - return (NULL); - } - - memcpy(ptr->runs, &buf[off], len); - - /* Check if returned values are monotonically increasing */ - for (int32_t i = 0, j = 0; i < ptr->n_runs; i++) { - if (ptr->runs[i].value < j) { - free(ptr->runs); - free(ptr); - return (NULL); - } else - j = ptr->runs[i].value; - } - } - - return (ptr); -} - -bool run_container_iterate(const run_container_t *cont, uint32_t base, - roaring_iterator iterator, void *ptr) { - for (int i = 0; i < cont->n_runs; ++i) { - uint32_t run_start = base + cont->runs[i].value; - uint16_t le = cont->runs[i].length; - - for (int j = 0; j <= le; ++j) - if (!iterator(run_start + j, ptr)) return false; - } - return true; -} - -bool run_container_iterate64(const run_container_t *cont, uint32_t base, - roaring_iterator64 iterator, uint64_t high_bits, - void *ptr) { - for (int i = 0; i < cont->n_runs; ++i) { - uint32_t run_start = base + cont->runs[i].value; - uint16_t le = cont->runs[i].length; - - for (int j = 0; j <= le; ++j) - if (!iterator(high_bits | (uint64_t)(run_start + j), ptr)) - return false; - } - return true; -} - -bool run_container_equals(const run_container_t *container1, - const run_container_t *container2) { - if (container1->n_runs != container2->n_runs) { - return false; - } - for (int32_t i = 0; i < container1->n_runs; ++i) { - if ((container1->runs[i].value != container2->runs[i].value) || - (container1->runs[i].length != container2->runs[i].length)) - return false; - } - return true; -} - -bool run_container_is_subset(const run_container_t *container1, - const run_container_t *container2) { - int i1 = 0, i2 = 0; - while (i1 < container1->n_runs && i2 < container2->n_runs) { - int start1 = container1->runs[i1].value; - int stop1 = start1 + container1->runs[i1].length; - int start2 = container2->runs[i2].value; - int stop2 = start2 + container2->runs[i2].length; - if (start1 < start2) { - return false; - } else { // start1 >= start2 - if (stop1 < stop2) { - i1++; - } else if (stop1 == stop2) { - i1++; - i2++; - } else { // stop1 > stop2 - i2++; - } - } - } - if (i1 == container1->n_runs) { - return true; - } else { - return false; - } -} - -// TODO: write smart_append_exclusive version to match the overloaded 1 param -// Java version (or is it even used?) - -// follows the Java implementation closely -// length is the rle-value. Ie, run [10,12) uses a length value 1. -void run_container_smart_append_exclusive(run_container_t *src, - const uint16_t start, - const uint16_t length) { - int old_end; - rle16_t *last_run = src->n_runs ? src->runs + (src->n_runs - 1) : NULL; - rle16_t *appended_last_run = src->runs + src->n_runs; - - if (!src->n_runs || - (start > (old_end = last_run->value + last_run->length + 1))) { - *appended_last_run = (rle16_t){.value = start, .length = length}; - src->n_runs++; - return; - } - if (old_end == start) { - // we merge - last_run->length += (length + 1); - return; - } - int new_end = start + length + 1; - - if (start == last_run->value) { - // wipe out previous - if (new_end < old_end) { - *last_run = (rle16_t){.value = (uint16_t)new_end, - .length = (uint16_t)(old_end - new_end - 1)}; - return; - } else if (new_end > old_end) { - *last_run = (rle16_t){.value = (uint16_t)old_end, - .length = (uint16_t)(new_end - old_end - 1)}; - return; - } else { - src->n_runs--; - return; - } - } - last_run->length = start - last_run->value - 1; - if (new_end < old_end) { - *appended_last_run = - (rle16_t){.value = (uint16_t)new_end, - .length = (uint16_t)(old_end - new_end - 1)}; - src->n_runs++; - } else if (new_end > old_end) { - *appended_last_run = - (rle16_t){.value = (uint16_t)old_end, - .length = (uint16_t)(new_end - old_end - 1)}; - src->n_runs++; - } -} - -bool run_container_select(const run_container_t *container, - uint32_t *start_rank, uint32_t rank, - uint32_t *element) { - for (int i = 0; i < container->n_runs; i++) { - uint16_t length = container->runs[i].length; - if (rank <= *start_rank + length) { - uint16_t value = container->runs[i].value; - *element = value + rank - (*start_rank); - return true; - } else - *start_rank += length + 1; - } - return false; -} - -int run_container_rank(const run_container_t *container, uint16_t x) { - int sum = 0; - uint32_t x32 = x; - for (int i = 0; i < container->n_runs; i++) { - uint32_t startpoint = container->runs[i].value; - uint32_t length = container->runs[i].length; - uint32_t endpoint = length + startpoint; - if (x <= endpoint) { - if (x < startpoint) break; - return sum + (x32 - startpoint) + 1; - } else { - sum += length + 1; - } - } - return sum; -} -/* end file /opt/bitmap/CRoaring-0.2.57/src/containers/run.c */ -/* begin file /opt/bitmap/CRoaring-0.2.57/src/roaring.c */ -#include -#include -#include -#include -#include -#include - -extern inline bool roaring_bitmap_contains(const roaring_bitmap_t *r, - uint32_t val); - -// this is like roaring_bitmap_add, but it populates pointer arguments in such a -// way -// that we can recover the container touched, which, in turn can be used to -// accelerate some functions (when you repeatedly need to add to the same -// container) -void *containerptr_roaring_bitmap_add(roaring_bitmap_t *r, - uint32_t val, - uint8_t *typecode, - int *index) { - uint16_t hb = val >> 16; - const int i = ra_get_index(&r->high_low_container, hb); - if (i >= 0) { - ra_unshare_container_at_index(&r->high_low_container, i); - void *container = - ra_get_container_at_index(&r->high_low_container, i, typecode); - uint8_t newtypecode = *typecode; - void *container2 = - container_add(container, val & 0xFFFF, *typecode, &newtypecode); - *index = i; - if (container2 != container) { - container_free(container, *typecode); - ra_set_container_at_index(&r->high_low_container, i, container2, - newtypecode); - *typecode = newtypecode; - return container2; - } else { - return container; - } - } else { - array_container_t *newac = array_container_create(); - void *container = container_add(newac, val & 0xFFFF, - ARRAY_CONTAINER_TYPE_CODE, typecode); - // we could just assume that it stays an array container - ra_insert_new_key_value_at(&r->high_low_container, -i - 1, hb, - container, *typecode); - *index = -i - 1; - return container; - } -} - -roaring_bitmap_t *roaring_bitmap_create() { - roaring_bitmap_t *ans = - (roaring_bitmap_t *)malloc(sizeof(roaring_bitmap_t)); - if (!ans) { - return NULL; - } - bool is_ok = ra_init(&ans->high_low_container); - if (!is_ok) { - free(ans); - return NULL; - } - ans->copy_on_write = false; - return ans; -} - -roaring_bitmap_t *roaring_bitmap_create_with_capacity(uint32_t cap) { - roaring_bitmap_t *ans = - (roaring_bitmap_t *)malloc(sizeof(roaring_bitmap_t)); - if (!ans) { - return NULL; - } - bool is_ok = ra_init_with_capacity(&ans->high_low_container, cap); - if (!is_ok) { - free(ans); - return NULL; - } - ans->copy_on_write = false; - return ans; -} - -void roaring_bitmap_add_many(roaring_bitmap_t *r, size_t n_args, - const uint32_t *vals) { - void *container = NULL; // hold value of last container touched - uint8_t typecode = 0; // typecode of last container touched - uint32_t prev = 0; // previous valued inserted - size_t i = 0; // index of value - int containerindex = 0; - if (n_args == 0) return; - uint32_t val; - memcpy(&val, vals + i, sizeof(val)); - container = - containerptr_roaring_bitmap_add(r, val, &typecode, &containerindex); - prev = val; - i++; - for (; i < n_args; i++) { - memcpy(&val, vals + i, sizeof(val)); - if (((prev ^ val) >> 16) == - 0) { // no need to seek the container, it is at hand - // because we already have the container at hand, we can do the - // insertion - // automatically, bypassing the roaring_bitmap_add call - uint8_t newtypecode = typecode; - void *container2 = - container_add(container, val & 0xFFFF, typecode, &newtypecode); - if (container2 != container) { // rare instance when we need to - // change the container type - container_free(container, typecode); - ra_set_container_at_index(&r->high_low_container, - containerindex, container2, - newtypecode); - typecode = newtypecode; - container = container2; - } - } else { - container = containerptr_roaring_bitmap_add(r, val, &typecode, - &containerindex); - } - prev = val; - } -} - -roaring_bitmap_t *roaring_bitmap_of_ptr(size_t n_args, const uint32_t *vals) { - roaring_bitmap_t *answer = roaring_bitmap_create(); - roaring_bitmap_add_many(answer, n_args, vals); - return answer; -} - -roaring_bitmap_t *roaring_bitmap_of(size_t n_args, ...) { - // todo: could be greatly optimized but we do not expect this call to ever - // include long lists - roaring_bitmap_t *answer = roaring_bitmap_create(); - va_list ap; - va_start(ap, n_args); - for (size_t i = 1; i <= n_args; i++) { - uint32_t val = va_arg(ap, uint32_t); - roaring_bitmap_add(answer, val); - } - va_end(ap); - return answer; -} - -static inline uint32_t minimum_uint32(uint32_t a, uint32_t b) { - return (a < b) ? a : b; -} - -static inline uint64_t minimum_uint64(uint64_t a, uint64_t b) { - return (a < b) ? a : b; -} - -roaring_bitmap_t *roaring_bitmap_from_range(uint64_t min, uint64_t max, - uint32_t step) { - if(max >= UINT64_C(0x100000000)) { - max = UINT64_C(0x100000000); - } - if (step == 0) return NULL; - if (max <= min) return NULL; - roaring_bitmap_t *answer = roaring_bitmap_create(); - if (step >= (1 << 16)) { - for (uint32_t value = (uint32_t)min; value < max; value += step) { - roaring_bitmap_add(answer, value); - } - return answer; - } - uint64_t min_tmp = min; - do { - uint32_t key = (uint32_t)min_tmp >> 16; - uint32_t container_min = min_tmp & 0xFFFF; - uint32_t container_max = (uint32_t)minimum_uint64(max - (key << 16), 1 << 16); - uint8_t type; - void *container = container_from_range(&type, container_min, - container_max, (uint16_t)step); - ra_append(&answer->high_low_container, key, container, type); - uint32_t gap = container_max - container_min + step - 1; - min_tmp += gap - (gap % step); - } while (min_tmp < max); - // cardinality of bitmap will be ((uint64_t) max - min + step - 1 ) / step - return answer; -} - -void roaring_bitmap_add_range_closed(roaring_bitmap_t *ra, uint32_t min, uint32_t max) { - if (min > max) { - return; - } - - uint32_t min_key = min >> 16; - uint32_t max_key = max >> 16; - - int32_t num_required_containers = max_key - min_key + 1; - int32_t suffix_length = count_greater(ra->high_low_container.keys, - ra->high_low_container.size, - max_key); - int32_t prefix_length = count_less(ra->high_low_container.keys, - ra->high_low_container.size - suffix_length, - min_key); - int32_t common_length = ra->high_low_container.size - prefix_length - suffix_length; - - if (num_required_containers > common_length) { - ra_shift_tail(&ra->high_low_container, suffix_length, - num_required_containers - common_length); - } - - int32_t src = prefix_length + common_length - 1; - int32_t dst = ra->high_low_container.size - suffix_length - 1; - for (uint32_t key = max_key; key != min_key-1; key--) { // beware of min_key==0 - uint32_t container_min = (min_key == key) ? (min & 0xffff) : 0; - uint32_t container_max = (max_key == key) ? (max & 0xffff) : 0xffff; - void* new_container; - uint8_t new_type; - - if (src >= 0 && ra->high_low_container.keys[src] == key) { - ra_unshare_container_at_index(&ra->high_low_container, src); - new_container = container_add_range(ra->high_low_container.containers[src], - ra->high_low_container.typecodes[src], - container_min, container_max, &new_type); - if (new_container != ra->high_low_container.containers[src]) { - container_free(ra->high_low_container.containers[src], - ra->high_low_container.typecodes[src]); - } - src--; - } else { - new_container = container_from_range(&new_type, container_min, - container_max+1, 1); - } - ra_replace_key_and_container_at_index(&ra->high_low_container, dst, - key, new_container, new_type); - dst--; - } -} - -void roaring_bitmap_remove_range_closed(roaring_bitmap_t *ra, uint32_t min, uint32_t max) { - if (min > max) { - return; - } - - uint32_t min_key = min >> 16; - uint32_t max_key = max >> 16; - - int32_t src = count_less(ra->high_low_container.keys, ra->high_low_container.size, min_key); - int32_t dst = src; - while (src < ra->high_low_container.size && ra->high_low_container.keys[src] <= max_key) { - uint32_t container_min = (min_key == ra->high_low_container.keys[src]) ? (min & 0xffff) : 0; - uint32_t container_max = (max_key == ra->high_low_container.keys[src]) ? (max & 0xffff) : 0xffff; - ra_unshare_container_at_index(&ra->high_low_container, src); - void *new_container; - uint8_t new_type; - new_container = container_remove_range(ra->high_low_container.containers[src], - ra->high_low_container.typecodes[src], - container_min, container_max, - &new_type); - if (new_container != ra->high_low_container.containers[src]) { - container_free(ra->high_low_container.containers[src], - ra->high_low_container.typecodes[src]); - } - if (new_container) { - ra_replace_key_and_container_at_index(&ra->high_low_container, dst, - ra->high_low_container.keys[src], - new_container, new_type); - dst++; - } - src++; - } - if (src > dst) { - ra_shift_tail(&ra->high_low_container, ra->high_low_container.size - src, dst - src); - } -} - -void roaring_bitmap_add_range(roaring_bitmap_t *ra, uint64_t min, uint64_t max); -void roaring_bitmap_remove_range(roaring_bitmap_t *ra, uint64_t min, uint64_t max); - -void roaring_bitmap_printf(const roaring_bitmap_t *ra) { - printf("{"); - for (int i = 0; i < ra->high_low_container.size; ++i) { - container_printf_as_uint32_array( - ra->high_low_container.containers[i], - ra->high_low_container.typecodes[i], - ((uint32_t)ra->high_low_container.keys[i]) << 16); - if (i + 1 < ra->high_low_container.size) printf(","); - } - printf("}"); -} - -void roaring_bitmap_printf_describe(const roaring_bitmap_t *ra) { - printf("{"); - for (int i = 0; i < ra->high_low_container.size; ++i) { - printf("%d: %s (%d)", ra->high_low_container.keys[i], - get_full_container_name(ra->high_low_container.containers[i], - ra->high_low_container.typecodes[i]), - container_get_cardinality(ra->high_low_container.containers[i], - ra->high_low_container.typecodes[i])); - if (ra->high_low_container.typecodes[i] == SHARED_CONTAINER_TYPE_CODE) { - printf( - "(shared count = %" PRIu32 " )", - ((shared_container_t *)(ra->high_low_container.containers[i])) - ->counter); - } - - if (i + 1 < ra->high_low_container.size) printf(", "); - } - printf("}"); -} - -typedef struct min_max_sum_s { - uint32_t min; - uint32_t max; - uint64_t sum; -} min_max_sum_t; - -static bool min_max_sum_fnc(uint32_t value, void *param) { - min_max_sum_t *mms = (min_max_sum_t *)param; - if (value > mms->max) mms->max = value; - if (value < mms->min) mms->min = value; - mms->sum += value; - return true; // we always process all data points -} - -/** -* (For advanced users.) -* Collect statistics about the bitmap -*/ -void roaring_bitmap_statistics(const roaring_bitmap_t *ra, - roaring_statistics_t *stat) { - memset(stat, 0, sizeof(*stat)); - stat->n_containers = ra->high_low_container.size; - stat->cardinality = roaring_bitmap_get_cardinality(ra); - min_max_sum_t mms; - mms.min = UINT32_C(0xFFFFFFFF); - mms.max = UINT32_C(0); - mms.sum = 0; - roaring_iterate(ra, &min_max_sum_fnc, &mms); - stat->min_value = mms.min; - stat->max_value = mms.max; - stat->sum_value = mms.sum; - - for (int i = 0; i < ra->high_low_container.size; ++i) { - uint8_t truetype = - get_container_type(ra->high_low_container.containers[i], - ra->high_low_container.typecodes[i]); - uint32_t card = - container_get_cardinality(ra->high_low_container.containers[i], - ra->high_low_container.typecodes[i]); - uint32_t sbytes = - container_size_in_bytes(ra->high_low_container.containers[i], - ra->high_low_container.typecodes[i]); - switch (truetype) { - case BITSET_CONTAINER_TYPE_CODE: - stat->n_bitset_containers++; - stat->n_values_bitset_containers += card; - stat->n_bytes_bitset_containers += sbytes; - break; - case ARRAY_CONTAINER_TYPE_CODE: - stat->n_array_containers++; - stat->n_values_array_containers += card; - stat->n_bytes_array_containers += sbytes; - break; - case RUN_CONTAINER_TYPE_CODE: - stat->n_run_containers++; - stat->n_values_run_containers += card; - stat->n_bytes_run_containers += sbytes; - break; - default: - assert(false); - __builtin_unreachable(); - } - } -} - -roaring_bitmap_t *roaring_bitmap_copy(const roaring_bitmap_t *r) { - roaring_bitmap_t *ans = - (roaring_bitmap_t *)malloc(sizeof(roaring_bitmap_t)); - if (!ans) { - return NULL; - } - bool is_ok = ra_copy(&r->high_low_container, &ans->high_low_container, - r->copy_on_write); - if (!is_ok) { - free(ans); - return NULL; - } - ans->copy_on_write = r->copy_on_write; - return ans; -} - -bool roaring_bitmap_overwrite(roaring_bitmap_t *dest, - const roaring_bitmap_t *src) { - return ra_overwrite(&src->high_low_container, &dest->high_low_container, - src->copy_on_write); -} - -void roaring_bitmap_free(roaring_bitmap_t *r) { - ra_clear(&r->high_low_container); - free(r); -} - -void roaring_bitmap_clear(roaring_bitmap_t *r) { - ra_reset(&r->high_low_container); -} - -void roaring_bitmap_add(roaring_bitmap_t *r, uint32_t val) { - const uint16_t hb = val >> 16; - const int i = ra_get_index(&r->high_low_container, hb); - uint8_t typecode; - if (i >= 0) { - ra_unshare_container_at_index(&r->high_low_container, i); - void *container = - ra_get_container_at_index(&r->high_low_container, i, &typecode); - uint8_t newtypecode = typecode; - void *container2 = - container_add(container, val & 0xFFFF, typecode, &newtypecode); - if (container2 != container) { - container_free(container, typecode); - ra_set_container_at_index(&r->high_low_container, i, container2, - newtypecode); - } - } else { - array_container_t *newac = array_container_create(); - void *container = container_add(newac, val & 0xFFFF, - ARRAY_CONTAINER_TYPE_CODE, &typecode); - // we could just assume that it stays an array container - ra_insert_new_key_value_at(&r->high_low_container, -i - 1, hb, - container, typecode); - } -} - -bool roaring_bitmap_add_checked(roaring_bitmap_t *r, uint32_t val) { - const uint16_t hb = val >> 16; - const int i = ra_get_index(&r->high_low_container, hb); - uint8_t typecode; - bool result = false; - if (i >= 0) { - ra_unshare_container_at_index(&r->high_low_container, i); - void *container = - ra_get_container_at_index(&r->high_low_container, i, &typecode); - - const int oldCardinality = - container_get_cardinality(container, typecode); - - uint8_t newtypecode = typecode; - void *container2 = - container_add(container, val & 0xFFFF, typecode, &newtypecode); - if (container2 != container) { - container_free(container, typecode); - ra_set_container_at_index(&r->high_low_container, i, container2, - newtypecode); - result = true; - } else { - const int newCardinality = - container_get_cardinality(container, newtypecode); - - result = oldCardinality != newCardinality; - } - } else { - array_container_t *newac = array_container_create(); - void *container = container_add(newac, val & 0xFFFF, - ARRAY_CONTAINER_TYPE_CODE, &typecode); - // we could just assume that it stays an array container - ra_insert_new_key_value_at(&r->high_low_container, -i - 1, hb, - container, typecode); - result = true; - } - - return result; -} - -void roaring_bitmap_remove(roaring_bitmap_t *r, uint32_t val) { - const uint16_t hb = val >> 16; - const int i = ra_get_index(&r->high_low_container, hb); - uint8_t typecode; - if (i >= 0) { - ra_unshare_container_at_index(&r->high_low_container, i); - void *container = - ra_get_container_at_index(&r->high_low_container, i, &typecode); - uint8_t newtypecode = typecode; - void *container2 = - container_remove(container, val & 0xFFFF, typecode, &newtypecode); - if (container2 != container) { - container_free(container, typecode); - ra_set_container_at_index(&r->high_low_container, i, container2, - newtypecode); - } - if (container_get_cardinality(container2, newtypecode) != 0) { - ra_set_container_at_index(&r->high_low_container, i, container2, - newtypecode); - } else { - ra_remove_at_index_and_free(&r->high_low_container, i); - } - } -} - -bool roaring_bitmap_remove_checked(roaring_bitmap_t *r, uint32_t val) { - const uint16_t hb = val >> 16; - const int i = ra_get_index(&r->high_low_container, hb); - uint8_t typecode; - bool result = false; - if (i >= 0) { - ra_unshare_container_at_index(&r->high_low_container, i); - void *container = - ra_get_container_at_index(&r->high_low_container, i, &typecode); - - const int oldCardinality = - container_get_cardinality(container, typecode); - - uint8_t newtypecode = typecode; - void *container2 = - container_remove(container, val & 0xFFFF, typecode, &newtypecode); - if (container2 != container) { - container_free(container, typecode); - ra_set_container_at_index(&r->high_low_container, i, container2, - newtypecode); - } - - const int newCardinality = - container_get_cardinality(container2, newtypecode); - - if (newCardinality != 0) { - ra_set_container_at_index(&r->high_low_container, i, container2, - newtypecode); - } else { - ra_remove_at_index_and_free(&r->high_low_container, i); - } - - result = oldCardinality != newCardinality; - } - return result; -} - -void roaring_bitmap_remove_many(roaring_bitmap_t *r, size_t n_args, - const uint32_t *vals) { - if (n_args == 0 || r->high_low_container.size == 0) { - return; - } - int32_t pos = -1; // position of the container used in the previous iteration - for (size_t i = 0; i < n_args; i++) { - uint16_t key = (uint16_t)(vals[i] >> 16); - if (pos < 0 || key != r->high_low_container.keys[pos]) { - pos = ra_get_index(&r->high_low_container, key); - } - if (pos >= 0) { - uint8_t new_typecode; - void *new_container; - new_container = container_remove(r->high_low_container.containers[pos], - vals[i] & 0xffff, - r->high_low_container.typecodes[pos], - &new_typecode); - if (new_container != r->high_low_container.containers[pos]) { - container_free(r->high_low_container.containers[pos], - r->high_low_container.typecodes[pos]); - ra_replace_key_and_container_at_index(&r->high_low_container, - pos, key, new_container, - new_typecode); - } - if (!container_nonzero_cardinality(new_container, new_typecode)) { - container_free(new_container, new_typecode); - ra_remove_at_index(&r->high_low_container, pos); - pos = -1; - } - } - } -} - -// there should be some SIMD optimizations possible here -roaring_bitmap_t *roaring_bitmap_and(const roaring_bitmap_t *x1, - const roaring_bitmap_t *x2) { - uint8_t container_result_type = 0; - const int length1 = x1->high_low_container.size, - length2 = x2->high_low_container.size; - uint32_t neededcap = length1 > length2 ? length2 : length1; - roaring_bitmap_t *answer = roaring_bitmap_create_with_capacity(neededcap); - answer->copy_on_write = x1->copy_on_write && x2->copy_on_write; - - int pos1 = 0, pos2 = 0; - - while (pos1 < length1 && pos2 < length2) { - const uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, pos1); - const uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, pos2); - - if (s1 == s2) { - uint8_t container_type_1, container_type_2; - void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1, - &container_type_1); - void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2, - &container_type_2); - void *c = container_and(c1, container_type_1, c2, container_type_2, - &container_result_type); - if (container_nonzero_cardinality(c, container_result_type)) { - ra_append(&answer->high_low_container, s1, c, - container_result_type); - } else { - container_free( - c, container_result_type); // otherwise:memory leak! - } - ++pos1; - ++pos2; - } else if (s1 < s2) { // s1 < s2 - pos1 = ra_advance_until(&x1->high_low_container, s2, pos1); - } else { // s1 > s2 - pos2 = ra_advance_until(&x2->high_low_container, s1, pos2); - } - } - return answer; -} - -/** - * Compute the union of 'number' bitmaps. - */ -roaring_bitmap_t *roaring_bitmap_or_many(size_t number, - const roaring_bitmap_t **x) { - if (number == 0) { - return roaring_bitmap_create(); - } - if (number == 1) { - return roaring_bitmap_copy(x[0]); - } - roaring_bitmap_t *answer = - roaring_bitmap_lazy_or(x[0], x[1], LAZY_OR_BITSET_CONVERSION); - for (size_t i = 2; i < number; i++) { - roaring_bitmap_lazy_or_inplace(answer, x[i], LAZY_OR_BITSET_CONVERSION); - } - roaring_bitmap_repair_after_lazy(answer); - return answer; -} - -/** - * Compute the xor of 'number' bitmaps. - */ -roaring_bitmap_t *roaring_bitmap_xor_many(size_t number, - const roaring_bitmap_t **x) { - if (number == 0) { - return roaring_bitmap_create(); - } - if (number == 1) { - return roaring_bitmap_copy(x[0]); - } - roaring_bitmap_t *answer = roaring_bitmap_lazy_xor(x[0], x[1]); - for (size_t i = 2; i < number; i++) { - roaring_bitmap_lazy_xor_inplace(answer, x[i]); - } - roaring_bitmap_repair_after_lazy(answer); - return answer; -} - -// inplace and (modifies its first argument). -void roaring_bitmap_and_inplace(roaring_bitmap_t *x1, - const roaring_bitmap_t *x2) { - if (x1 == x2) return; - int pos1 = 0, pos2 = 0, intersection_size = 0; - const int length1 = ra_get_size(&x1->high_low_container); - const int length2 = ra_get_size(&x2->high_low_container); - - // any skipped-over or newly emptied containers in x1 - // have to be freed. - while (pos1 < length1 && pos2 < length2) { - const uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, pos1); - const uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, pos2); - - if (s1 == s2) { - uint8_t typecode1, typecode2, typecode_result; - void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1, - &typecode1); - c1 = get_writable_copy_if_shared(c1, &typecode1); - void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2, - &typecode2); - void *c = - container_iand(c1, typecode1, c2, typecode2, &typecode_result); - if (c != c1) { // in this instance a new container was created, and - // we need to free the old one - container_free(c1, typecode1); - } - if (container_nonzero_cardinality(c, typecode_result)) { - ra_replace_key_and_container_at_index(&x1->high_low_container, - intersection_size, s1, c, - typecode_result); - intersection_size++; - } else { - container_free(c, typecode_result); - } - ++pos1; - ++pos2; - } else if (s1 < s2) { - pos1 = ra_advance_until_freeing(&x1->high_low_container, s2, pos1); - } else { // s1 > s2 - pos2 = ra_advance_until(&x2->high_low_container, s1, pos2); - } - } - - // if we ended early because x2 ran out, then all remaining in x1 should be - // freed - while (pos1 < length1) { - container_free(x1->high_low_container.containers[pos1], - x1->high_low_container.typecodes[pos1]); - ++pos1; - } - - // all containers after this have either been copied or freed - ra_downsize(&x1->high_low_container, intersection_size); -} - -roaring_bitmap_t *roaring_bitmap_or(const roaring_bitmap_t *x1, - const roaring_bitmap_t *x2) { - uint8_t container_result_type = 0; - const int length1 = x1->high_low_container.size, - length2 = x2->high_low_container.size; - if (0 == length1) { - return roaring_bitmap_copy(x2); - } - if (0 == length2) { - return roaring_bitmap_copy(x1); - } - roaring_bitmap_t *answer = - roaring_bitmap_create_with_capacity(length1 + length2); - answer->copy_on_write = x1->copy_on_write && x2->copy_on_write; - int pos1 = 0, pos2 = 0; - uint8_t container_type_1, container_type_2; - uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, pos1); - uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, pos2); - while (true) { - if (s1 == s2) { - void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1, - &container_type_1); - void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2, - &container_type_2); - void *c = container_or(c1, container_type_1, c2, container_type_2, - &container_result_type); - // since we assume that the initial containers are non-empty, the - // result here - // can only be non-empty - ra_append(&answer->high_low_container, s1, c, - container_result_type); - ++pos1; - ++pos2; - if (pos1 == length1) break; - if (pos2 == length2) break; - s1 = ra_get_key_at_index(&x1->high_low_container, pos1); - s2 = ra_get_key_at_index(&x2->high_low_container, pos2); - - } else if (s1 < s2) { // s1 < s2 - void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1, - &container_type_1); - // c1 = container_clone(c1, container_type_1); - c1 = - get_copy_of_container(c1, &container_type_1, x1->copy_on_write); - if (x1->copy_on_write) { - ra_set_container_at_index(&x1->high_low_container, pos1, c1, - container_type_1); - } - ra_append(&answer->high_low_container, s1, c1, container_type_1); - pos1++; - if (pos1 == length1) break; - s1 = ra_get_key_at_index(&x1->high_low_container, pos1); - - } else { // s1 > s2 - void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2, - &container_type_2); - // c2 = container_clone(c2, container_type_2); - c2 = - get_copy_of_container(c2, &container_type_2, x2->copy_on_write); - if (x2->copy_on_write) { - ra_set_container_at_index(&x2->high_low_container, pos2, c2, - container_type_2); - } - ra_append(&answer->high_low_container, s2, c2, container_type_2); - pos2++; - if (pos2 == length2) break; - s2 = ra_get_key_at_index(&x2->high_low_container, pos2); - } - } - if (pos1 == length1) { - ra_append_copy_range(&answer->high_low_container, - &x2->high_low_container, pos2, length2, - x2->copy_on_write); - } else if (pos2 == length2) { - ra_append_copy_range(&answer->high_low_container, - &x1->high_low_container, pos1, length1, - x1->copy_on_write); - } - return answer; -} - -// inplace or (modifies its first argument). -void roaring_bitmap_or_inplace(roaring_bitmap_t *x1, - const roaring_bitmap_t *x2) { - uint8_t container_result_type = 0; - int length1 = x1->high_low_container.size; - const int length2 = x2->high_low_container.size; - - if (0 == length2) return; - - if (0 == length1) { - roaring_bitmap_overwrite(x1, x2); - return; - } - int pos1 = 0, pos2 = 0; - uint8_t container_type_1, container_type_2; - uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, pos1); - uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, pos2); - while (true) { - if (s1 == s2) { - void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1, - &container_type_1); - if (!container_is_full(c1, container_type_1)) { - c1 = get_writable_copy_if_shared(c1, &container_type_1); - - void *c2 = ra_get_container_at_index(&x2->high_low_container, - pos2, &container_type_2); - void *c = - container_ior(c1, container_type_1, c2, container_type_2, - &container_result_type); - if (c != - c1) { // in this instance a new container was created, and - // we need to free the old one - container_free(c1, container_type_1); - } - - ra_set_container_at_index(&x1->high_low_container, pos1, c, - container_result_type); - } - ++pos1; - ++pos2; - if (pos1 == length1) break; - if (pos2 == length2) break; - s1 = ra_get_key_at_index(&x1->high_low_container, pos1); - s2 = ra_get_key_at_index(&x2->high_low_container, pos2); - - } else if (s1 < s2) { // s1 < s2 - pos1++; - if (pos1 == length1) break; - s1 = ra_get_key_at_index(&x1->high_low_container, pos1); - - } else { // s1 > s2 - void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2, - &container_type_2); - c2 = - get_copy_of_container(c2, &container_type_2, x2->copy_on_write); - if (x2->copy_on_write) { - ra_set_container_at_index(&x2->high_low_container, pos2, c2, - container_type_2); - } - - // void *c2_clone = container_clone(c2, container_type_2); - ra_insert_new_key_value_at(&x1->high_low_container, pos1, s2, c2, - container_type_2); - pos1++; - length1++; - pos2++; - if (pos2 == length2) break; - s2 = ra_get_key_at_index(&x2->high_low_container, pos2); - } - } - if (pos1 == length1) { - ra_append_copy_range(&x1->high_low_container, &x2->high_low_container, - pos2, length2, x2->copy_on_write); - } -} - -roaring_bitmap_t *roaring_bitmap_xor(const roaring_bitmap_t *x1, - const roaring_bitmap_t *x2) { - uint8_t container_result_type = 0; - const int length1 = x1->high_low_container.size, - length2 = x2->high_low_container.size; - if (0 == length1) { - return roaring_bitmap_copy(x2); - } - if (0 == length2) { - return roaring_bitmap_copy(x1); - } - roaring_bitmap_t *answer = - roaring_bitmap_create_with_capacity(length1 + length2); - answer->copy_on_write = x1->copy_on_write && x2->copy_on_write; - int pos1 = 0, pos2 = 0; - uint8_t container_type_1, container_type_2; - uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, pos1); - uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, pos2); - while (true) { - if (s1 == s2) { - void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1, - &container_type_1); - void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2, - &container_type_2); - void *c = container_xor(c1, container_type_1, c2, container_type_2, - &container_result_type); - - if (container_nonzero_cardinality(c, container_result_type)) { - ra_append(&answer->high_low_container, s1, c, - container_result_type); - } else { - container_free(c, container_result_type); - } - ++pos1; - ++pos2; - if (pos1 == length1) break; - if (pos2 == length2) break; - s1 = ra_get_key_at_index(&x1->high_low_container, pos1); - s2 = ra_get_key_at_index(&x2->high_low_container, pos2); - - } else if (s1 < s2) { // s1 < s2 - void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1, - &container_type_1); - c1 = - get_copy_of_container(c1, &container_type_1, x1->copy_on_write); - if (x1->copy_on_write) { - ra_set_container_at_index(&x1->high_low_container, pos1, c1, - container_type_1); - } - ra_append(&answer->high_low_container, s1, c1, container_type_1); - pos1++; - if (pos1 == length1) break; - s1 = ra_get_key_at_index(&x1->high_low_container, pos1); - - } else { // s1 > s2 - void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2, - &container_type_2); - c2 = - get_copy_of_container(c2, &container_type_2, x2->copy_on_write); - if (x2->copy_on_write) { - ra_set_container_at_index(&x2->high_low_container, pos2, c2, - container_type_2); - } - ra_append(&answer->high_low_container, s2, c2, container_type_2); - pos2++; - if (pos2 == length2) break; - s2 = ra_get_key_at_index(&x2->high_low_container, pos2); - } - } - if (pos1 == length1) { - ra_append_copy_range(&answer->high_low_container, - &x2->high_low_container, pos2, length2, - x2->copy_on_write); - } else if (pos2 == length2) { - ra_append_copy_range(&answer->high_low_container, - &x1->high_low_container, pos1, length1, - x1->copy_on_write); - } - return answer; -} - -// inplace xor (modifies its first argument). - -void roaring_bitmap_xor_inplace(roaring_bitmap_t *x1, - const roaring_bitmap_t *x2) { - assert(x1 != x2); - uint8_t container_result_type = 0; - int length1 = x1->high_low_container.size; - const int length2 = x2->high_low_container.size; - - if (0 == length2) return; - - if (0 == length1) { - roaring_bitmap_overwrite(x1, x2); - return; - } - - // XOR can have new containers inserted from x2, but can also - // lose containers when x1 and x2 are nonempty and identical. - - int pos1 = 0, pos2 = 0; - uint8_t container_type_1, container_type_2; - uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, pos1); - uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, pos2); - while (true) { - if (s1 == s2) { - void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1, - &container_type_1); - c1 = get_writable_copy_if_shared(c1, &container_type_1); - - void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2, - &container_type_2); - void *c = container_ixor(c1, container_type_1, c2, container_type_2, - &container_result_type); - - if (container_nonzero_cardinality(c, container_result_type)) { - ra_set_container_at_index(&x1->high_low_container, pos1, c, - container_result_type); - ++pos1; - } else { - container_free(c, container_result_type); - ra_remove_at_index(&x1->high_low_container, pos1); - --length1; - } - - ++pos2; - if (pos1 == length1) break; - if (pos2 == length2) break; - s1 = ra_get_key_at_index(&x1->high_low_container, pos1); - s2 = ra_get_key_at_index(&x2->high_low_container, pos2); - - } else if (s1 < s2) { // s1 < s2 - pos1++; - if (pos1 == length1) break; - s1 = ra_get_key_at_index(&x1->high_low_container, pos1); - - } else { // s1 > s2 - void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2, - &container_type_2); - c2 = - get_copy_of_container(c2, &container_type_2, x2->copy_on_write); - if (x2->copy_on_write) { - ra_set_container_at_index(&x2->high_low_container, pos2, c2, - container_type_2); - } - - ra_insert_new_key_value_at(&x1->high_low_container, pos1, s2, c2, - container_type_2); - pos1++; - length1++; - pos2++; - if (pos2 == length2) break; - s2 = ra_get_key_at_index(&x2->high_low_container, pos2); - } - } - if (pos1 == length1) { - ra_append_copy_range(&x1->high_low_container, &x2->high_low_container, - pos2, length2, x2->copy_on_write); - } -} - -roaring_bitmap_t *roaring_bitmap_andnot(const roaring_bitmap_t *x1, - const roaring_bitmap_t *x2) { - uint8_t container_result_type = 0; - const int length1 = x1->high_low_container.size, - length2 = x2->high_low_container.size; - if (0 == length1) { - roaring_bitmap_t *empty_bitmap = roaring_bitmap_create(); - empty_bitmap->copy_on_write = x1->copy_on_write && x2->copy_on_write; - return empty_bitmap; - } - if (0 == length2) { - return roaring_bitmap_copy(x1); - } - roaring_bitmap_t *answer = roaring_bitmap_create_with_capacity(length1); - answer->copy_on_write = x1->copy_on_write && x2->copy_on_write; - - int pos1 = 0, pos2 = 0; - uint8_t container_type_1, container_type_2; - uint16_t s1 = 0; - uint16_t s2 = 0; - while (true) { - s1 = ra_get_key_at_index(&x1->high_low_container, pos1); - s2 = ra_get_key_at_index(&x2->high_low_container, pos2); - - if (s1 == s2) { - void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1, - &container_type_1); - void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2, - &container_type_2); - void *c = - container_andnot(c1, container_type_1, c2, container_type_2, - &container_result_type); - - if (container_nonzero_cardinality(c, container_result_type)) { - ra_append(&answer->high_low_container, s1, c, - container_result_type); - } else { - container_free(c, container_result_type); - } - ++pos1; - ++pos2; - if (pos1 == length1) break; - if (pos2 == length2) break; - } else if (s1 < s2) { // s1 < s2 - const int next_pos1 = - ra_advance_until(&x1->high_low_container, s2, pos1); - ra_append_copy_range(&answer->high_low_container, - &x1->high_low_container, pos1, next_pos1, - x1->copy_on_write); - // TODO : perhaps some of the copy_on_write should be based on - // answer rather than x1 (more stringent?). Many similar cases - pos1 = next_pos1; - if (pos1 == length1) break; - } else { // s1 > s2 - pos2 = ra_advance_until(&x2->high_low_container, s1, pos2); - if (pos2 == length2) break; - } - } - if (pos2 == length2) { - ra_append_copy_range(&answer->high_low_container, - &x1->high_low_container, pos1, length1, - x1->copy_on_write); - } - return answer; -} - -// inplace andnot (modifies its first argument). - -void roaring_bitmap_andnot_inplace(roaring_bitmap_t *x1, - const roaring_bitmap_t *x2) { - assert(x1 != x2); - - uint8_t container_result_type = 0; - int length1 = x1->high_low_container.size; - const int length2 = x2->high_low_container.size; - int intersection_size = 0; - - if (0 == length2) return; - - if (0 == length1) { - roaring_bitmap_clear(x1); - return; - } - - int pos1 = 0, pos2 = 0; - uint8_t container_type_1, container_type_2; - uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, pos1); - uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, pos2); - while (true) { - if (s1 == s2) { - void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1, - &container_type_1); - c1 = get_writable_copy_if_shared(c1, &container_type_1); - - void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2, - &container_type_2); - void *c = - container_iandnot(c1, container_type_1, c2, container_type_2, - &container_result_type); - - if (container_nonzero_cardinality(c, container_result_type)) { - ra_replace_key_and_container_at_index(&x1->high_low_container, - intersection_size++, s1, - c, container_result_type); - } else { - container_free(c, container_result_type); - } - - ++pos1; - ++pos2; - if (pos1 == length1) break; - if (pos2 == length2) break; - s1 = ra_get_key_at_index(&x1->high_low_container, pos1); - s2 = ra_get_key_at_index(&x2->high_low_container, pos2); - - } else if (s1 < s2) { // s1 < s2 - if (pos1 != intersection_size) { - void *c1 = ra_get_container_at_index(&x1->high_low_container, - pos1, &container_type_1); - - ra_replace_key_and_container_at_index(&x1->high_low_container, - intersection_size, s1, c1, - container_type_1); - } - intersection_size++; - pos1++; - if (pos1 == length1) break; - s1 = ra_get_key_at_index(&x1->high_low_container, pos1); - - } else { // s1 > s2 - pos2 = ra_advance_until(&x2->high_low_container, s1, pos2); - if (pos2 == length2) break; - s2 = ra_get_key_at_index(&x2->high_low_container, pos2); - } - } - - if (pos1 < length1) { - // all containers between intersection_size and - // pos1 are junk. However, they have either been moved - // (thus still referenced) or involved in an iandnot - // that will clean up all containers that could not be reused. - // Thus we should not free the junk containers between - // intersection_size and pos1. - if (pos1 > intersection_size) { - // left slide of remaining items - ra_copy_range(&x1->high_low_container, pos1, length1, - intersection_size); - } - // else current placement is fine - intersection_size += (length1 - pos1); - } - ra_downsize(&x1->high_low_container, intersection_size); -} - -uint64_t roaring_bitmap_get_cardinality(const roaring_bitmap_t *ra) { - uint64_t card = 0; - for (int i = 0; i < ra->high_low_container.size; ++i) - card += container_get_cardinality(ra->high_low_container.containers[i], - ra->high_low_container.typecodes[i]); - return card; -} - -uint64_t roaring_bitmap_range_cardinality(const roaring_bitmap_t *ra, - uint64_t range_start, - uint64_t range_end) { - if (range_end > UINT32_MAX) { - range_end = UINT32_MAX + UINT64_C(1); - } - if (range_start >= range_end) { - return 0; - } - range_end--; // make range_end inclusive - // now we have: 0 <= range_start <= range_end <= UINT32_MAX - - int minhb = range_start >> 16; - int maxhb = range_end >> 16; - - uint64_t card = 0; - - int i = ra_get_index(&ra->high_low_container, minhb); - if (i >= 0) { - if (minhb == maxhb) { - card += container_rank(ra->high_low_container.containers[i], - ra->high_low_container.typecodes[i], - range_end & 0xffff); - } else { - card += container_get_cardinality(ra->high_low_container.containers[i], - ra->high_low_container.typecodes[i]); - } - if ((range_start & 0xffff) != 0) { - card -= container_rank(ra->high_low_container.containers[i], - ra->high_low_container.typecodes[i], - (range_start & 0xffff) - 1); - } - i++; - } else { - i = -i - 1; - } - - for (; i < ra->high_low_container.size; i++) { - uint16_t key = ra->high_low_container.keys[i]; - if (key < maxhb) { - card += container_get_cardinality(ra->high_low_container.containers[i], - ra->high_low_container.typecodes[i]); - } else if (key == maxhb) { - card += container_rank(ra->high_low_container.containers[i], - ra->high_low_container.typecodes[i], - range_end & 0xffff); - break; - } else { - break; - } - } - - return card; -} - - -bool roaring_bitmap_is_empty(const roaring_bitmap_t *ra) { - return ra->high_low_container.size == 0; -} - -void roaring_bitmap_to_uint32_array(const roaring_bitmap_t *ra, uint32_t *ans) { - ra_to_uint32_array(&ra->high_low_container, ans); -} - -bool roaring_bitmap_range_uint32_array(const roaring_bitmap_t *ra, size_t offset, size_t limit, uint32_t *ans) { - return ra_range_uint32_array(&ra->high_low_container, offset, limit, ans); -} - -/** convert array and bitmap containers to run containers when it is more - * efficient; - * also convert from run containers when more space efficient. Returns - * true if the result has at least one run container. -*/ -bool roaring_bitmap_run_optimize(roaring_bitmap_t *r) { - bool answer = false; - for (int i = 0; i < r->high_low_container.size; i++) { - uint8_t typecode_original, typecode_after; - ra_unshare_container_at_index( - &r->high_low_container, i); // TODO: this introduces extra cloning! - void *c = ra_get_container_at_index(&r->high_low_container, i, - &typecode_original); - void *c1 = convert_run_optimize(c, typecode_original, &typecode_after); - if (typecode_after == RUN_CONTAINER_TYPE_CODE) answer = true; - ra_set_container_at_index(&r->high_low_container, i, c1, - typecode_after); - } - return answer; -} - -size_t roaring_bitmap_shrink_to_fit(roaring_bitmap_t *r) { - size_t answer = 0; - for (int i = 0; i < r->high_low_container.size; i++) { - uint8_t typecode_original; - void *c = ra_get_container_at_index(&r->high_low_container, i, - &typecode_original); - answer += container_shrink_to_fit(c, typecode_original); - } - answer += ra_shrink_to_fit(&r->high_low_container); - return answer; -} - -/** - * Remove run-length encoding even when it is more space efficient - * return whether a change was applied - */ -bool roaring_bitmap_remove_run_compression(roaring_bitmap_t *r) { - bool answer = false; - for (int i = 0; i < r->high_low_container.size; i++) { - uint8_t typecode_original, typecode_after; - void *c = ra_get_container_at_index(&r->high_low_container, i, - &typecode_original); - if (get_container_type(c, typecode_original) == - RUN_CONTAINER_TYPE_CODE) { - answer = true; - if (typecode_original == SHARED_CONTAINER_TYPE_CODE) { - run_container_t *truec = - (run_container_t *)((shared_container_t *)c)->container; - int32_t card = run_container_cardinality(truec); - void *c1 = convert_to_bitset_or_array_container( - truec, card, &typecode_after); - shared_container_free((shared_container_t *)c); - ra_set_container_at_index(&r->high_low_container, i, c1, - typecode_after); - - } else { - int32_t card = run_container_cardinality((run_container_t *)c); - void *c1 = convert_to_bitset_or_array_container( - (run_container_t *)c, card, &typecode_after); - ra_set_container_at_index(&r->high_low_container, i, c1, - typecode_after); - } - } - } - return answer; -} - -size_t roaring_bitmap_serialize(const roaring_bitmap_t *ra, char *buf) { - size_t portablesize = roaring_bitmap_portable_size_in_bytes(ra); - uint64_t cardinality = roaring_bitmap_get_cardinality(ra); - uint64_t sizeasarray = cardinality * sizeof(uint32_t) + sizeof(uint32_t); - if (portablesize < sizeasarray) { - buf[0] = SERIALIZATION_CONTAINER; - return roaring_bitmap_portable_serialize(ra, buf + 1) + 1; - } else { - buf[0] = SERIALIZATION_ARRAY_UINT32; - memcpy(buf + 1, &cardinality, sizeof(uint32_t)); - roaring_bitmap_to_uint32_array( - ra, (uint32_t *)(buf + 1 + sizeof(uint32_t))); - return 1 + (size_t)sizeasarray; - } -} - -size_t roaring_bitmap_size_in_bytes(const roaring_bitmap_t *ra) { - size_t portablesize = roaring_bitmap_portable_size_in_bytes(ra); - uint64_t sizeasarray = roaring_bitmap_get_cardinality(ra) * sizeof(uint32_t) + - sizeof(uint32_t); - return portablesize < sizeasarray ? portablesize + 1 : (size_t)sizeasarray + 1; -} - -size_t roaring_bitmap_portable_size_in_bytes(const roaring_bitmap_t *ra) { - return ra_portable_size_in_bytes(&ra->high_low_container); -} - - -roaring_bitmap_t *roaring_bitmap_portable_deserialize_safe(const char *buf, size_t maxbytes) { - roaring_bitmap_t *ans = - (roaring_bitmap_t *)malloc(sizeof(roaring_bitmap_t)); - if (ans == NULL) { - return NULL; - } - size_t bytesread; - bool is_ok = ra_portable_deserialize(&ans->high_low_container, buf, maxbytes, &bytesread); - if(is_ok) assert(bytesread <= maxbytes); - ans->copy_on_write = false; - if (!is_ok) { - free(ans); - return NULL; - } - return ans; -} - -roaring_bitmap_t *roaring_bitmap_portable_deserialize(const char *buf) { - return roaring_bitmap_portable_deserialize_safe(buf, SIZE_MAX); -} - - -size_t roaring_bitmap_portable_deserialize_size(const char *buf, size_t maxbytes) { - return ra_portable_deserialize_size(buf, maxbytes); -} - - -size_t roaring_bitmap_portable_serialize(const roaring_bitmap_t *ra, - char *buf) { - return ra_portable_serialize(&ra->high_low_container, buf); -} - -roaring_bitmap_t *roaring_bitmap_deserialize(const void *buf) { - const char *bufaschar = (const char *)buf; - if (*(const unsigned char *)buf == SERIALIZATION_ARRAY_UINT32) { - /* This looks like a compressed set of uint32_t elements */ - uint32_t card; - memcpy(&card, bufaschar + 1, sizeof(uint32_t)); - const uint32_t *elems = - (const uint32_t *)(bufaschar + 1 + sizeof(uint32_t)); - - return roaring_bitmap_of_ptr(card, elems); - } else if (bufaschar[0] == SERIALIZATION_CONTAINER) { - return roaring_bitmap_portable_deserialize(bufaschar + 1); - } else - return (NULL); -} - -bool roaring_iterate(const roaring_bitmap_t *ra, roaring_iterator iterator, - void *ptr) { - for (int i = 0; i < ra->high_low_container.size; ++i) - if (!container_iterate(ra->high_low_container.containers[i], - ra->high_low_container.typecodes[i], - ((uint32_t)ra->high_low_container.keys[i]) << 16, - iterator, ptr)) { - return false; - } - return true; -} - -bool roaring_iterate64(const roaring_bitmap_t *ra, roaring_iterator64 iterator, - uint64_t high_bits, void *ptr) { - for (int i = 0; i < ra->high_low_container.size; ++i) - if (!container_iterate64( - ra->high_low_container.containers[i], - ra->high_low_container.typecodes[i], - ((uint32_t)ra->high_low_container.keys[i]) << 16, iterator, - high_bits, ptr)) { - return false; - } - return true; -} - -/**** -* begin roaring_uint32_iterator_t -*****/ - -static bool loadfirstvalue(roaring_uint32_iterator_t *newit) { - newit->in_container_index = 0; - newit->run_index = 0; - newit->current_value = 0; - if (newit->container_index >= - newit->parent->high_low_container.size) { // otherwise nothing - newit->current_value = UINT32_MAX; - return (newit->has_value = false); - } - // assume not empty - newit->has_value = true; - // we precompute container, typecode and highbits so that successive - // iterators do not have to grab them from odd memory locations - // and have to worry about the (easily predicted) container_unwrap_shared - // call. - newit->container = - newit->parent->high_low_container.containers[newit->container_index]; - newit->typecode = - newit->parent->high_low_container.typecodes[newit->container_index]; - newit->highbits = - ((uint32_t) - newit->parent->high_low_container.keys[newit->container_index]) - << 16; - newit->container = - container_unwrap_shared(newit->container, &(newit->typecode)); - uint32_t wordindex; - uint64_t word; // used for bitsets - switch (newit->typecode) { - case BITSET_CONTAINER_TYPE_CODE: - wordindex = 0; - while ((word = ((const bitset_container_t *)(newit->container)) - ->array[wordindex]) == 0) - wordindex++; // advance - // here "word" is non-zero - newit->in_container_index = wordindex * 64 + __builtin_ctzll(word); - newit->current_value = newit->highbits | newit->in_container_index; - break; - case ARRAY_CONTAINER_TYPE_CODE: - newit->current_value = - newit->highbits | - ((const array_container_t *)(newit->container))->array[0]; - break; - case RUN_CONTAINER_TYPE_CODE: - newit->current_value = - newit->highbits | - (((const run_container_t *)(newit->container))->runs[0].value); - newit->in_run_index = - newit->current_value + - (((const run_container_t *)(newit->container))->runs[0].length); - break; - default: - // if this ever happens, bug! - assert(false); - } // switch (typecode) - return true; -} - -// prerequesite: the value should be in range of the container -static bool loadfirstvalue_largeorequal(roaring_uint32_iterator_t *newit, uint32_t val) { - uint16_t lb = val & 0xFFFF; - newit->in_container_index = 0; - newit->run_index = 0; - newit->current_value = 0; - // assume it is found - newit->has_value = true; - newit->container = - newit->parent->high_low_container.containers[newit->container_index]; - newit->typecode = - newit->parent->high_low_container.typecodes[newit->container_index]; - newit->highbits = - ((uint32_t) - newit->parent->high_low_container.keys[newit->container_index]) - << 16; - newit->container = - container_unwrap_shared(newit->container, &(newit->typecode)); - switch (newit->typecode) { - case BITSET_CONTAINER_TYPE_CODE: - newit->in_container_index = bitset_container_index_equalorlarger((const bitset_container_t *)(newit->container), lb); - newit->current_value = newit->highbits | newit->in_container_index; - break; - case ARRAY_CONTAINER_TYPE_CODE: - newit->in_container_index = array_container_index_equalorlarger((const array_container_t *)(newit->container), lb); - newit->current_value = - newit->highbits | - ((const array_container_t *)(newit->container))->array[newit->in_container_index]; - break; - case RUN_CONTAINER_TYPE_CODE: - newit->run_index = run_container_index_equalorlarger((const run_container_t *)(newit->container), lb); - if(((const run_container_t *)(newit->container))->runs[newit->run_index].value <= lb) { - newit->current_value = val; - } else { - newit->current_value = - newit->highbits | - (((const run_container_t *)(newit->container))->runs[newit->run_index].value); - } - newit->in_run_index = - (newit->highbits | (((const run_container_t *)(newit->container))->runs[newit->run_index].value)) + - (((const run_container_t *)(newit->container))->runs[newit->run_index].length); - - break; - default: - // if this ever happens, bug! - assert(false); - } // switch (typecode) - return true; -} - -void roaring_init_iterator(const roaring_bitmap_t *ra, - roaring_uint32_iterator_t *newit) { - newit->parent = ra; - newit->container_index = 0; - newit->has_value = loadfirstvalue(newit); -} - -roaring_uint32_iterator_t *roaring_create_iterator(const roaring_bitmap_t *ra) { - roaring_uint32_iterator_t *newit = - (roaring_uint32_iterator_t *)malloc(sizeof(roaring_uint32_iterator_t)); - if (newit == NULL) return NULL; - roaring_init_iterator(ra, newit); - return newit; -} - -roaring_uint32_iterator_t *roaring_copy_uint32_iterator( - const roaring_uint32_iterator_t *it) { - roaring_uint32_iterator_t *newit = - (roaring_uint32_iterator_t *)malloc(sizeof(roaring_uint32_iterator_t)); - memcpy(newit, it, sizeof(roaring_uint32_iterator_t)); - return newit; -} - -bool roaring_move_uint32_iterator_equalorlarger(roaring_uint32_iterator_t *it, uint32_t val) { - uint16_t hb = val >> 16; - const int i = ra_get_index(& it->parent->high_low_container, hb); - if (i >= 0) { - uint32_t lowvalue = container_maximum(it->parent->high_low_container.containers[i], it->parent->high_low_container.typecodes[i]); - uint16_t lb = val & 0xFFFF; - if(lowvalue < lb ) { - it->container_index = i+1; // will have to load first value of next container - } else {// the value is necessarily within the range of the container - it->container_index = i; - it->has_value = loadfirstvalue_largeorequal(it, val); - return it->has_value; - } - } else { - // there is no matching, so we are going for the next container - it->container_index = -i-1; - } - it->has_value = loadfirstvalue(it); - return it->has_value; -} - - -bool roaring_advance_uint32_iterator(roaring_uint32_iterator_t *it) { - if (it->container_index >= it->parent->high_low_container.size) { - return (it->has_value = false); - } - uint32_t wordindex; // used for bitsets - uint64_t word; // used for bitsets - switch (it->typecode) { - case BITSET_CONTAINER_TYPE_CODE: - it->in_container_index++; - wordindex = it->in_container_index / 64; - if (wordindex >= BITSET_CONTAINER_SIZE_IN_WORDS) break; - word = ((const bitset_container_t *)(it->container)) - ->array[wordindex] & - (UINT64_MAX << (it->in_container_index % 64)); - // next part could be optimized/simplified - while ((word == 0) && - (wordindex + 1 < BITSET_CONTAINER_SIZE_IN_WORDS)) { - wordindex++; - word = ((const bitset_container_t *)(it->container)) - ->array[wordindex]; - } - if (word != 0) { - it->in_container_index = wordindex * 64 + __builtin_ctzll(word); - it->current_value = it->highbits | it->in_container_index; - return (it->has_value = true); - } - break; - case ARRAY_CONTAINER_TYPE_CODE: - it->in_container_index++; - if (it->in_container_index < - ((const array_container_t *)(it->container))->cardinality) { - it->current_value = it->highbits | - ((const array_container_t *)(it->container)) - ->array[it->in_container_index]; - return true; - } - break; - case RUN_CONTAINER_TYPE_CODE: - if(it->current_value == UINT32_MAX) { - return (it->has_value = false); // without this, we risk an overflow to zero - } - it->current_value++; - if (it->current_value <= it->in_run_index) { - return (it->has_value = true); - } - it->run_index++; - if (it->run_index < - ((const run_container_t *)(it->container))->n_runs) { - it->current_value = - it->highbits | (((const run_container_t *)(it->container)) - ->runs[it->run_index] - .value); - it->in_run_index = it->current_value + - ((const run_container_t *)(it->container)) - ->runs[it->run_index] - .length; - return (it->has_value = true); - } - break; - default: - // if this ever happens, bug! - assert(false); - } // switch (typecode) - // moving to next container - it->container_index++; - return (it->has_value = loadfirstvalue(it)); -} - -uint32_t roaring_read_uint32_iterator(roaring_uint32_iterator_t *it, uint32_t* buf, uint32_t count) { - uint32_t ret = 0; - uint32_t num_values; - uint32_t wordindex; // used for bitsets - uint64_t word; // used for bitsets - const array_container_t* acont; //TODO remove - const run_container_t* rcont; //TODO remove - const bitset_container_t* bcont; //TODO remove - - while (it->has_value && ret < count) { - switch (it->typecode) { - case BITSET_CONTAINER_TYPE_CODE: - bcont = (const bitset_container_t*)(it->container); - wordindex = it->in_container_index / 64; - word = bcont->array[wordindex] & (UINT64_MAX << (it->in_container_index % 64)); - do { - while (word != 0 && ret < count) { - buf[0] = it->highbits | (wordindex * 64 + __builtin_ctzll(word)); - word = word & (word - 1); - buf++; - ret++; - } - while (word == 0 && wordindex+1 < BITSET_CONTAINER_SIZE_IN_WORDS) { - wordindex++; - word = bcont->array[wordindex]; - } - } while (word != 0 && ret < count); - it->has_value = (word != 0); - if (it->has_value) { - it->in_container_index = wordindex * 64 + __builtin_ctzll(word); - it->current_value = it->highbits | it->in_container_index; - } - break; - case ARRAY_CONTAINER_TYPE_CODE: - acont = (const array_container_t *)(it->container); - num_values = minimum_uint32(acont->cardinality - it->in_container_index, count - ret); - for (uint32_t i = 0; i < num_values; i++) { - buf[i] = it->highbits | acont->array[it->in_container_index + i]; - } - buf += num_values; - ret += num_values; - it->in_container_index += num_values; - it->has_value = (it->in_container_index < acont->cardinality); - if (it->has_value) { - it->current_value = it->highbits | acont->array[it->in_container_index]; - } - break; - case RUN_CONTAINER_TYPE_CODE: - rcont = (const run_container_t*)(it->container); - //"in_run_index" name is misleading, read it as "max_value_in_current_run" - do { - num_values = minimum_uint32(it->in_run_index - it->current_value + 1, count - ret); - for (uint32_t i = 0; i < num_values; i++) { - buf[i] = it->current_value + i; - } - it->current_value += num_values; // this can overflow to zero: UINT32_MAX+1=0 - buf += num_values; - ret += num_values; - - if (it->current_value > it->in_run_index || it->current_value == 0) { - it->run_index++; - if (it->run_index < rcont->n_runs) { - it->current_value = it->highbits | rcont->runs[it->run_index].value; - it->in_run_index = it->current_value + rcont->runs[it->run_index].length; - } else { - it->has_value = false; - } - } - } while ((ret < count) && it->has_value); - break; - default: - assert(false); - } - if (it->has_value) { - assert(ret == count); - return ret; - } - it->container_index++; - it->has_value = loadfirstvalue(it); - } - return ret; -} - - - -void roaring_free_uint32_iterator(roaring_uint32_iterator_t *it) { free(it); } - -/**** -* end of roaring_uint32_iterator_t -*****/ - -bool roaring_bitmap_equals(const roaring_bitmap_t *ra1, - const roaring_bitmap_t *ra2) { - if (ra1->high_low_container.size != ra2->high_low_container.size) { - return false; - } - for (int i = 0; i < ra1->high_low_container.size; ++i) { - if (ra1->high_low_container.keys[i] != - ra2->high_low_container.keys[i]) { - return false; - } - } - for (int i = 0; i < ra1->high_low_container.size; ++i) { - bool areequal = container_equals(ra1->high_low_container.containers[i], - ra1->high_low_container.typecodes[i], - ra2->high_low_container.containers[i], - ra2->high_low_container.typecodes[i]); - if (!areequal) { - return false; - } - } - return true; -} - -bool roaring_bitmap_is_subset(const roaring_bitmap_t *ra1, - const roaring_bitmap_t *ra2) { - const int length1 = ra1->high_low_container.size, - length2 = ra2->high_low_container.size; - - int pos1 = 0, pos2 = 0; - - while (pos1 < length1 && pos2 < length2) { - const uint16_t s1 = ra_get_key_at_index(&ra1->high_low_container, pos1); - const uint16_t s2 = ra_get_key_at_index(&ra2->high_low_container, pos2); - - if (s1 == s2) { - uint8_t container_type_1, container_type_2; - void *c1 = ra_get_container_at_index(&ra1->high_low_container, pos1, - &container_type_1); - void *c2 = ra_get_container_at_index(&ra2->high_low_container, pos2, - &container_type_2); - bool subset = - container_is_subset(c1, container_type_1, c2, container_type_2); - if (!subset) return false; - ++pos1; - ++pos2; - } else if (s1 < s2) { // s1 < s2 - return false; - } else { // s1 > s2 - pos2 = ra_advance_until(&ra2->high_low_container, s1, pos2); - } - } - if (pos1 == length1) - return true; - else - return false; -} - -static void insert_flipped_container(roaring_array_t *ans_arr, - const roaring_array_t *x1_arr, uint16_t hb, - uint16_t lb_start, uint16_t lb_end) { - const int i = ra_get_index(x1_arr, hb); - const int j = ra_get_index(ans_arr, hb); - uint8_t ctype_in, ctype_out; - void *flipped_container = NULL; - if (i >= 0) { - void *container_to_flip = - ra_get_container_at_index(x1_arr, i, &ctype_in); - flipped_container = - container_not_range(container_to_flip, ctype_in, (uint32_t)lb_start, - (uint32_t)(lb_end + 1), &ctype_out); - - if (container_get_cardinality(flipped_container, ctype_out)) - ra_insert_new_key_value_at(ans_arr, -j - 1, hb, flipped_container, - ctype_out); - else { - container_free(flipped_container, ctype_out); - } - } else { - flipped_container = container_range_of_ones( - (uint32_t)lb_start, (uint32_t)(lb_end + 1), &ctype_out); - ra_insert_new_key_value_at(ans_arr, -j - 1, hb, flipped_container, - ctype_out); - } -} - -static void inplace_flip_container(roaring_array_t *x1_arr, uint16_t hb, - uint16_t lb_start, uint16_t lb_end) { - const int i = ra_get_index(x1_arr, hb); - uint8_t ctype_in, ctype_out; - void *flipped_container = NULL; - if (i >= 0) { - void *container_to_flip = - ra_get_container_at_index(x1_arr, i, &ctype_in); - flipped_container = container_inot_range( - container_to_flip, ctype_in, (uint32_t)lb_start, - (uint32_t)(lb_end + 1), &ctype_out); - // if a new container was created, the old one was already freed - if (container_get_cardinality(flipped_container, ctype_out)) { - ra_set_container_at_index(x1_arr, i, flipped_container, ctype_out); - } else { - container_free(flipped_container, ctype_out); - ra_remove_at_index(x1_arr, i); - } - - } else { - flipped_container = container_range_of_ones( - (uint32_t)lb_start, (uint32_t)(lb_end + 1), &ctype_out); - ra_insert_new_key_value_at(x1_arr, -i - 1, hb, flipped_container, - ctype_out); - } -} - -static void insert_fully_flipped_container(roaring_array_t *ans_arr, - const roaring_array_t *x1_arr, - uint16_t hb) { - const int i = ra_get_index(x1_arr, hb); - const int j = ra_get_index(ans_arr, hb); - uint8_t ctype_in, ctype_out; - void *flipped_container = NULL; - if (i >= 0) { - void *container_to_flip = - ra_get_container_at_index(x1_arr, i, &ctype_in); - flipped_container = - container_not(container_to_flip, ctype_in, &ctype_out); - if (container_get_cardinality(flipped_container, ctype_out)) - ra_insert_new_key_value_at(ans_arr, -j - 1, hb, flipped_container, - ctype_out); - else { - container_free(flipped_container, ctype_out); - } - } else { - flipped_container = container_range_of_ones(0U, 0x10000U, &ctype_out); - ra_insert_new_key_value_at(ans_arr, -j - 1, hb, flipped_container, - ctype_out); - } -} - -static void inplace_fully_flip_container(roaring_array_t *x1_arr, uint16_t hb) { - const int i = ra_get_index(x1_arr, hb); - uint8_t ctype_in, ctype_out; - void *flipped_container = NULL; - if (i >= 0) { - void *container_to_flip = - ra_get_container_at_index(x1_arr, i, &ctype_in); - flipped_container = - container_inot(container_to_flip, ctype_in, &ctype_out); - - if (container_get_cardinality(flipped_container, ctype_out)) { - ra_set_container_at_index(x1_arr, i, flipped_container, ctype_out); - } else { - container_free(flipped_container, ctype_out); - ra_remove_at_index(x1_arr, i); - } - - } else { - flipped_container = container_range_of_ones(0U, 0x10000U, &ctype_out); - ra_insert_new_key_value_at(x1_arr, -i - 1, hb, flipped_container, - ctype_out); - } -} - -roaring_bitmap_t *roaring_bitmap_flip(const roaring_bitmap_t *x1, - uint64_t range_start, - uint64_t range_end) { - if (range_start >= range_end) { - return roaring_bitmap_copy(x1); - } - if(range_end >= UINT64_C(0x100000000)) { - range_end = UINT64_C(0x100000000); - } - - roaring_bitmap_t *ans = roaring_bitmap_create(); - ans->copy_on_write = x1->copy_on_write; - - uint16_t hb_start = (uint16_t)(range_start >> 16); - const uint16_t lb_start = (uint16_t)range_start; // & 0xFFFF; - uint16_t hb_end = (uint16_t)((range_end - 1) >> 16); - const uint16_t lb_end = (uint16_t)(range_end - 1); // & 0xFFFF; - - ra_append_copies_until(&ans->high_low_container, &x1->high_low_container, - hb_start, x1->copy_on_write); - if (hb_start == hb_end) { - insert_flipped_container(&ans->high_low_container, - &x1->high_low_container, hb_start, lb_start, - lb_end); - } else { - // start and end containers are distinct - if (lb_start > 0) { - // handle first (partial) container - insert_flipped_container(&ans->high_low_container, - &x1->high_low_container, hb_start, - lb_start, 0xFFFF); - ++hb_start; // for the full containers. Can't wrap. - } - - if (lb_end != 0xFFFF) --hb_end; // later we'll handle the partial block - - for (uint32_t hb = hb_start; hb <= hb_end; ++hb) { - insert_fully_flipped_container(&ans->high_low_container, - &x1->high_low_container, hb); - } - - // handle a partial final container - if (lb_end != 0xFFFF) { - insert_flipped_container(&ans->high_low_container, - &x1->high_low_container, hb_end + 1, 0, - lb_end); - ++hb_end; - } - } - ra_append_copies_after(&ans->high_low_container, &x1->high_low_container, - hb_end, x1->copy_on_write); - return ans; -} - -void roaring_bitmap_flip_inplace(roaring_bitmap_t *x1, uint64_t range_start, - uint64_t range_end) { - if (range_start >= range_end) { - return; // empty range - } - if(range_end >= UINT64_C(0x100000000)) { - range_end = UINT64_C(0x100000000); - } - - uint16_t hb_start = (uint16_t)(range_start >> 16); - const uint16_t lb_start = (uint16_t)range_start; - uint16_t hb_end = (uint16_t)((range_end - 1) >> 16); - const uint16_t lb_end = (uint16_t)(range_end - 1); - - if (hb_start == hb_end) { - inplace_flip_container(&x1->high_low_container, hb_start, lb_start, - lb_end); - } else { - // start and end containers are distinct - if (lb_start > 0) { - // handle first (partial) container - inplace_flip_container(&x1->high_low_container, hb_start, lb_start, - 0xFFFF); - ++hb_start; // for the full containers. Can't wrap. - } - - if (lb_end != 0xFFFF) --hb_end; - - for (uint32_t hb = hb_start; hb <= hb_end; ++hb) { - inplace_fully_flip_container(&x1->high_low_container, hb); - } - // handle a partial final container - if (lb_end != 0xFFFF) { - inplace_flip_container(&x1->high_low_container, hb_end + 1, 0, - lb_end); - ++hb_end; - } - } -} - -roaring_bitmap_t *roaring_bitmap_lazy_or(const roaring_bitmap_t *x1, - const roaring_bitmap_t *x2, - const bool bitsetconversion) { - uint8_t container_result_type = 0; - const int length1 = x1->high_low_container.size, - length2 = x2->high_low_container.size; - if (0 == length1) { - return roaring_bitmap_copy(x2); - } - if (0 == length2) { - return roaring_bitmap_copy(x1); - } - roaring_bitmap_t *answer = - roaring_bitmap_create_with_capacity(length1 + length2); - answer->copy_on_write = x1->copy_on_write && x2->copy_on_write; - int pos1 = 0, pos2 = 0; - uint8_t container_type_1, container_type_2; - uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, pos1); - uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, pos2); - while (true) { - if (s1 == s2) { - void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1, - &container_type_1); - void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2, - &container_type_2); - void *c; - if (bitsetconversion && (get_container_type(c1, container_type_1) != - BITSET_CONTAINER_TYPE_CODE) && - (get_container_type(c2, container_type_2) != - BITSET_CONTAINER_TYPE_CODE)) { - void *newc1 = - container_mutable_unwrap_shared(c1, &container_type_1); - newc1 = container_to_bitset(newc1, container_type_1); - container_type_1 = BITSET_CONTAINER_TYPE_CODE; - c = container_lazy_ior(newc1, container_type_1, c2, - container_type_2, - &container_result_type); - if (c != newc1) { // should not happen - container_free(newc1, container_type_1); - } - } else { - c = container_lazy_or(c1, container_type_1, c2, - container_type_2, &container_result_type); - } - // since we assume that the initial containers are non-empty, - // the - // result here - // can only be non-empty - ra_append(&answer->high_low_container, s1, c, - container_result_type); - ++pos1; - ++pos2; - if (pos1 == length1) break; - if (pos2 == length2) break; - s1 = ra_get_key_at_index(&x1->high_low_container, pos1); - s2 = ra_get_key_at_index(&x2->high_low_container, pos2); - - } else if (s1 < s2) { // s1 < s2 - void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1, - &container_type_1); - c1 = - get_copy_of_container(c1, &container_type_1, x1->copy_on_write); - if (x1->copy_on_write) { - ra_set_container_at_index(&x1->high_low_container, pos1, c1, - container_type_1); - } - ra_append(&answer->high_low_container, s1, c1, container_type_1); - pos1++; - if (pos1 == length1) break; - s1 = ra_get_key_at_index(&x1->high_low_container, pos1); - - } else { // s1 > s2 - void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2, - &container_type_2); - c2 = - get_copy_of_container(c2, &container_type_2, x2->copy_on_write); - if (x2->copy_on_write) { - ra_set_container_at_index(&x2->high_low_container, pos2, c2, - container_type_2); - } - ra_append(&answer->high_low_container, s2, c2, container_type_2); - pos2++; - if (pos2 == length2) break; - s2 = ra_get_key_at_index(&x2->high_low_container, pos2); - } - } - if (pos1 == length1) { - ra_append_copy_range(&answer->high_low_container, - &x2->high_low_container, pos2, length2, - x2->copy_on_write); - } else if (pos2 == length2) { - ra_append_copy_range(&answer->high_low_container, - &x1->high_low_container, pos1, length1, - x1->copy_on_write); - } - return answer; -} - -void roaring_bitmap_lazy_or_inplace(roaring_bitmap_t *x1, - const roaring_bitmap_t *x2, - const bool bitsetconversion) { - uint8_t container_result_type = 0; - int length1 = x1->high_low_container.size; - const int length2 = x2->high_low_container.size; - - if (0 == length2) return; - - if (0 == length1) { - roaring_bitmap_overwrite(x1, x2); - return; - } - int pos1 = 0, pos2 = 0; - uint8_t container_type_1, container_type_2; - uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, pos1); - uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, pos2); - while (true) { - if (s1 == s2) { - void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1, - &container_type_1); - if (!container_is_full(c1, container_type_1)) { - if ((bitsetconversion == false) || - (get_container_type(c1, container_type_1) == - BITSET_CONTAINER_TYPE_CODE)) { - c1 = get_writable_copy_if_shared(c1, &container_type_1); - } else { - // convert to bitset - void *oldc1 = c1; - uint8_t oldt1 = container_type_1; - c1 = container_mutable_unwrap_shared(c1, &container_type_1); - c1 = container_to_bitset(c1, container_type_1); - container_free(oldc1, oldt1); - container_type_1 = BITSET_CONTAINER_TYPE_CODE; - } - - void *c2 = ra_get_container_at_index(&x2->high_low_container, - pos2, &container_type_2); - void *c = container_lazy_ior(c1, container_type_1, c2, - container_type_2, - &container_result_type); - if (c != - c1) { // in this instance a new container was created, and - // we need to free the old one - container_free(c1, container_type_1); - } - - ra_set_container_at_index(&x1->high_low_container, pos1, c, - container_result_type); - } - ++pos1; - ++pos2; - if (pos1 == length1) break; - if (pos2 == length2) break; - s1 = ra_get_key_at_index(&x1->high_low_container, pos1); - s2 = ra_get_key_at_index(&x2->high_low_container, pos2); - - } else if (s1 < s2) { // s1 < s2 - pos1++; - if (pos1 == length1) break; - s1 = ra_get_key_at_index(&x1->high_low_container, pos1); - - } else { // s1 > s2 - void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2, - &container_type_2); - // void *c2_clone = container_clone(c2, container_type_2); - c2 = - get_copy_of_container(c2, &container_type_2, x2->copy_on_write); - if (x2->copy_on_write) { - ra_set_container_at_index(&x2->high_low_container, pos2, c2, - container_type_2); - } - ra_insert_new_key_value_at(&x1->high_low_container, pos1, s2, c2, - container_type_2); - pos1++; - length1++; - pos2++; - if (pos2 == length2) break; - s2 = ra_get_key_at_index(&x2->high_low_container, pos2); - } - } - if (pos1 == length1) { - ra_append_copy_range(&x1->high_low_container, &x2->high_low_container, - pos2, length2, x2->copy_on_write); - } -} - -roaring_bitmap_t *roaring_bitmap_lazy_xor(const roaring_bitmap_t *x1, - const roaring_bitmap_t *x2) { - uint8_t container_result_type = 0; - const int length1 = x1->high_low_container.size, - length2 = x2->high_low_container.size; - if (0 == length1) { - return roaring_bitmap_copy(x2); - } - if (0 == length2) { - return roaring_bitmap_copy(x1); - } - roaring_bitmap_t *answer = - roaring_bitmap_create_with_capacity(length1 + length2); - answer->copy_on_write = x1->copy_on_write && x2->copy_on_write; - int pos1 = 0, pos2 = 0; - uint8_t container_type_1, container_type_2; - uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, pos1); - uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, pos2); - while (true) { - if (s1 == s2) { - void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1, - &container_type_1); - void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2, - &container_type_2); - void *c = - container_lazy_xor(c1, container_type_1, c2, container_type_2, - &container_result_type); - - if (container_nonzero_cardinality(c, container_result_type)) { - ra_append(&answer->high_low_container, s1, c, - container_result_type); - } else { - container_free(c, container_result_type); - } - - ++pos1; - ++pos2; - if (pos1 == length1) break; - if (pos2 == length2) break; - s1 = ra_get_key_at_index(&x1->high_low_container, pos1); - s2 = ra_get_key_at_index(&x2->high_low_container, pos2); - - } else if (s1 < s2) { // s1 < s2 - void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1, - &container_type_1); - c1 = - get_copy_of_container(c1, &container_type_1, x1->copy_on_write); - if (x1->copy_on_write) { - ra_set_container_at_index(&x1->high_low_container, pos1, c1, - container_type_1); - } - ra_append(&answer->high_low_container, s1, c1, container_type_1); - pos1++; - if (pos1 == length1) break; - s1 = ra_get_key_at_index(&x1->high_low_container, pos1); - - } else { // s1 > s2 - void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2, - &container_type_2); - c2 = - get_copy_of_container(c2, &container_type_2, x2->copy_on_write); - if (x2->copy_on_write) { - ra_set_container_at_index(&x2->high_low_container, pos2, c2, - container_type_2); - } - ra_append(&answer->high_low_container, s2, c2, container_type_2); - pos2++; - if (pos2 == length2) break; - s2 = ra_get_key_at_index(&x2->high_low_container, pos2); - } - } - if (pos1 == length1) { - ra_append_copy_range(&answer->high_low_container, - &x2->high_low_container, pos2, length2, - x2->copy_on_write); - } else if (pos2 == length2) { - ra_append_copy_range(&answer->high_low_container, - &x1->high_low_container, pos1, length1, - x1->copy_on_write); - } - return answer; -} - -void roaring_bitmap_lazy_xor_inplace(roaring_bitmap_t *x1, - const roaring_bitmap_t *x2) { - assert(x1 != x2); - uint8_t container_result_type = 0; - int length1 = x1->high_low_container.size; - const int length2 = x2->high_low_container.size; - - if (0 == length2) return; - - if (0 == length1) { - roaring_bitmap_overwrite(x1, x2); - return; - } - int pos1 = 0, pos2 = 0; - uint8_t container_type_1, container_type_2; - uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, pos1); - uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, pos2); - while (true) { - if (s1 == s2) { - void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1, - &container_type_1); - c1 = get_writable_copy_if_shared(c1, &container_type_1); - void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2, - &container_type_2); - void *c = - container_lazy_ixor(c1, container_type_1, c2, container_type_2, - &container_result_type); - if (container_nonzero_cardinality(c, container_result_type)) { - ra_set_container_at_index(&x1->high_low_container, pos1, c, - container_result_type); - ++pos1; - } else { - container_free(c, container_result_type); - ra_remove_at_index(&x1->high_low_container, pos1); - --length1; - } - ++pos2; - if (pos1 == length1) break; - if (pos2 == length2) break; - s1 = ra_get_key_at_index(&x1->high_low_container, pos1); - s2 = ra_get_key_at_index(&x2->high_low_container, pos2); - - } else if (s1 < s2) { // s1 < s2 - pos1++; - if (pos1 == length1) break; - s1 = ra_get_key_at_index(&x1->high_low_container, pos1); - - } else { // s1 > s2 - void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2, - &container_type_2); - // void *c2_clone = container_clone(c2, container_type_2); - c2 = - get_copy_of_container(c2, &container_type_2, x2->copy_on_write); - if (x2->copy_on_write) { - ra_set_container_at_index(&x2->high_low_container, pos2, c2, - container_type_2); - } - ra_insert_new_key_value_at(&x1->high_low_container, pos1, s2, c2, - container_type_2); - pos1++; - length1++; - pos2++; - if (pos2 == length2) break; - s2 = ra_get_key_at_index(&x2->high_low_container, pos2); - } - } - if (pos1 == length1) { - ra_append_copy_range(&x1->high_low_container, &x2->high_low_container, - pos2, length2, x2->copy_on_write); - } -} - -void roaring_bitmap_repair_after_lazy(roaring_bitmap_t *ra) { - for (int i = 0; i < ra->high_low_container.size; ++i) { - const uint8_t original_typecode = ra->high_low_container.typecodes[i]; - void *container = ra->high_low_container.containers[i]; - uint8_t new_typecode = original_typecode; - void *newcontainer = - container_repair_after_lazy(container, &new_typecode); - ra->high_low_container.containers[i] = newcontainer; - ra->high_low_container.typecodes[i] = new_typecode; - } -} - - - -/** -* roaring_bitmap_rank returns the number of integers that are smaller or equal -* to x. -*/ -uint64_t roaring_bitmap_rank(const roaring_bitmap_t *bm, uint32_t x) { - uint64_t size = 0; - uint32_t xhigh = x >> 16; - for (int i = 0; i < bm->high_low_container.size; i++) { - uint32_t key = bm->high_low_container.keys[i]; - if (xhigh > key) { - size += - container_get_cardinality(bm->high_low_container.containers[i], - bm->high_low_container.typecodes[i]); - } else if (xhigh == key) { - return size + container_rank(bm->high_low_container.containers[i], - bm->high_low_container.typecodes[i], - x & 0xFFFF); - } else { - return size; - } - } - return size; -} - -/** -* roaring_bitmap_smallest returns the smallest value in the set. -* Returns UINT32_MAX if the set is empty. -*/ -uint32_t roaring_bitmap_minimum(const roaring_bitmap_t *bm) { - if (bm->high_low_container.size > 0) { - void *container = bm->high_low_container.containers[0]; - uint8_t typecode = bm->high_low_container.typecodes[0]; - uint32_t key = bm->high_low_container.keys[0]; - uint32_t lowvalue = container_minimum(container, typecode); - return lowvalue | (key << 16); - } - return UINT32_MAX; -} - -/** -* roaring_bitmap_smallest returns the greatest value in the set. -* Returns 0 if the set is empty. -*/ -uint32_t roaring_bitmap_maximum(const roaring_bitmap_t *bm) { - if (bm->high_low_container.size > 0) { - void *container = - bm->high_low_container.containers[bm->high_low_container.size - 1]; - uint8_t typecode = - bm->high_low_container.typecodes[bm->high_low_container.size - 1]; - uint32_t key = - bm->high_low_container.keys[bm->high_low_container.size - 1]; - uint32_t lowvalue = container_maximum(container, typecode); - return lowvalue | (key << 16); - } - return 0; -} - -bool roaring_bitmap_select(const roaring_bitmap_t *bm, uint32_t rank, - uint32_t *element) { - void *container; - uint8_t typecode; - uint16_t key; - uint32_t start_rank = 0; - int i = 0; - bool valid = false; - while (!valid && i < bm->high_low_container.size) { - container = bm->high_low_container.containers[i]; - typecode = bm->high_low_container.typecodes[i]; - valid = - container_select(container, typecode, &start_rank, rank, element); - i++; - } - - if (valid) { - key = bm->high_low_container.keys[i - 1]; - *element |= (key << 16); - return true; - } else - return false; -} - -bool roaring_bitmap_intersect(const roaring_bitmap_t *x1, - const roaring_bitmap_t *x2) { - const int length1 = x1->high_low_container.size, - length2 = x2->high_low_container.size; - uint64_t answer = 0; - int pos1 = 0, pos2 = 0; - - while (pos1 < length1 && pos2 < length2) { - const uint16_t s1 = ra_get_key_at_index(& x1->high_low_container, pos1); - const uint16_t s2 = ra_get_key_at_index(& x2->high_low_container, pos2); - - if (s1 == s2) { - uint8_t container_type_1, container_type_2; - void *c1 = ra_get_container_at_index(& x1->high_low_container, pos1, - &container_type_1); - void *c2 = ra_get_container_at_index(& x2->high_low_container, pos2, - &container_type_2); - if( container_intersect(c1, container_type_1, c2, container_type_2) ) return true; - ++pos1; - ++pos2; - } else if (s1 < s2) { // s1 < s2 - pos1 = ra_advance_until(& x1->high_low_container, s2, pos1); - } else { // s1 > s2 - pos2 = ra_advance_until(& x2->high_low_container, s1, pos2); - } - } - return answer; -} - - -uint64_t roaring_bitmap_and_cardinality(const roaring_bitmap_t *x1, - const roaring_bitmap_t *x2) { - const int length1 = x1->high_low_container.size, - length2 = x2->high_low_container.size; - uint64_t answer = 0; - int pos1 = 0, pos2 = 0; - - while (pos1 < length1 && pos2 < length2) { - const uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, pos1); - const uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, pos2); - - if (s1 == s2) { - uint8_t container_type_1, container_type_2; - void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1, - &container_type_1); - void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2, - &container_type_2); - answer += container_and_cardinality(c1, container_type_1, c2, - container_type_2); - ++pos1; - ++pos2; - } else if (s1 < s2) { // s1 < s2 - pos1 = ra_advance_until(&x1->high_low_container, s2, pos1); - } else { // s1 > s2 - pos2 = ra_advance_until(&x2->high_low_container, s1, pos2); - } - } - return answer; -} - -double roaring_bitmap_jaccard_index(const roaring_bitmap_t *x1, - const roaring_bitmap_t *x2) { - const uint64_t c1 = roaring_bitmap_get_cardinality(x1); - const uint64_t c2 = roaring_bitmap_get_cardinality(x2); - const uint64_t inter = roaring_bitmap_and_cardinality(x1, x2); - return (double)inter / (double)(c1 + c2 - inter); -} - -uint64_t roaring_bitmap_or_cardinality(const roaring_bitmap_t *x1, - const roaring_bitmap_t *x2) { - const uint64_t c1 = roaring_bitmap_get_cardinality(x1); - const uint64_t c2 = roaring_bitmap_get_cardinality(x2); - const uint64_t inter = roaring_bitmap_and_cardinality(x1, x2); - return c1 + c2 - inter; -} - -uint64_t roaring_bitmap_andnot_cardinality(const roaring_bitmap_t *x1, - const roaring_bitmap_t *x2) { - const uint64_t c1 = roaring_bitmap_get_cardinality(x1); - const uint64_t inter = roaring_bitmap_and_cardinality(x1, x2); - return c1 - inter; -} - -uint64_t roaring_bitmap_xor_cardinality(const roaring_bitmap_t *x1, - const roaring_bitmap_t *x2) { - const uint64_t c1 = roaring_bitmap_get_cardinality(x1); - const uint64_t c2 = roaring_bitmap_get_cardinality(x2); - const uint64_t inter = roaring_bitmap_and_cardinality(x1, x2); - return c1 + c2 - 2 * inter; -} - - -/** - * Check whether a range of values from range_start (included) to range_end (excluded) is present - */ -bool roaring_bitmap_contains_range(const roaring_bitmap_t *r, uint64_t range_start, uint64_t range_end) { - if(range_end >= UINT64_C(0x100000000)) { - range_end = UINT64_C(0x100000000); - } - if (range_start >= range_end) return true; // empty range are always contained! - if (range_end - range_start == 1) return roaring_bitmap_contains(r, (uint32_t)range_start); - uint16_t hb_rs = (uint16_t)(range_start >> 16); - uint16_t hb_re = (uint16_t)((range_end - 1) >> 16); - const int32_t span = hb_re - hb_rs; - const int32_t hlc_sz = ra_get_size(&r->high_low_container); - if (hlc_sz < span + 1) { - return false; - } - int32_t is = ra_get_index(&r->high_low_container, hb_rs); - int32_t ie = ra_get_index(&r->high_low_container, hb_re); - ie = (ie < 0 ? -ie - 1 : ie); - if ((is < 0) || ((ie - is) != span)) { - return false; - } - const uint32_t lb_rs = range_start & 0xFFFF; - const uint32_t lb_re = ((range_end - 1) & 0xFFFF) + 1; - uint8_t typecode; - void *container = ra_get_container_at_index(&r->high_low_container, is, &typecode); - if (hb_rs == hb_re) { - return container_contains_range(container, lb_rs, lb_re, typecode); - } - if (!container_contains_range(container, lb_rs, 1 << 16, typecode)) { - return false; - } - assert(ie < hlc_sz); // would indicate an algorithmic bug - container = ra_get_container_at_index(&r->high_low_container, ie, &typecode); - if (!container_contains_range(container, 0, lb_re, typecode)) { - return false; - } - for (int32_t i = is + 1; i < ie; ++i) { - container = ra_get_container_at_index(&r->high_low_container, i, &typecode); - if (!container_is_full(container, typecode) ) { - return false; - } - } - return true; -} - - -bool roaring_bitmap_is_strict_subset(const roaring_bitmap_t *ra1, - const roaring_bitmap_t *ra2) { - return (roaring_bitmap_get_cardinality(ra2) > - roaring_bitmap_get_cardinality(ra1) && - roaring_bitmap_is_subset(ra1, ra2)); -} -/* end file /opt/bitmap/CRoaring-0.2.57/src/roaring.c */ -/* begin file /opt/bitmap/CRoaring-0.2.57/src/roaring_array.c */ -#include -#include -#include -#include -#include -#include - - -// Convention: [0,ra->size) all elements are initialized -// [ra->size, ra->allocation_size) is junk and contains nothing needing freeing - -extern inline int32_t ra_get_size(const roaring_array_t *ra); -extern inline int32_t ra_get_index(const roaring_array_t *ra, uint16_t x); -extern inline void *ra_get_container_at_index(const roaring_array_t *ra, - uint16_t i, uint8_t *typecode); -extern inline void ra_unshare_container_at_index(roaring_array_t *ra, - uint16_t i); -extern inline void ra_replace_key_and_container_at_index(roaring_array_t *ra, - int32_t i, - uint16_t key, void *c, - uint8_t typecode); -extern inline void ra_set_container_at_index(const roaring_array_t *ra, - int32_t i, void *c, - uint8_t typecode); - -#define INITIAL_CAPACITY 4 - -static bool realloc_array(roaring_array_t *ra, int32_t new_capacity) { - // because we combine the allocations, it is not possible to use realloc - /*ra->keys = - (uint16_t *)realloc(ra->keys, sizeof(uint16_t) * new_capacity); -ra->containers = - (void **)realloc(ra->containers, sizeof(void *) * new_capacity); -ra->typecodes = - (uint8_t *)realloc(ra->typecodes, sizeof(uint8_t) * new_capacity); -if (!ra->keys || !ra->containers || !ra->typecodes) { - free(ra->keys); - free(ra->containers); - free(ra->typecodes); - return false; -}*/ - - if ( new_capacity == 0 ) { - free(ra->containers); - ra->containers = NULL; - ra->keys = NULL; - ra->typecodes = NULL; - ra->allocation_size = 0; - return true; - } - const size_t memoryneeded = - new_capacity * (sizeof(uint16_t) + sizeof(void *) + sizeof(uint8_t)); - void *bigalloc = malloc(memoryneeded); - if (!bigalloc) return false; - void *oldbigalloc = ra->containers; - void **newcontainers = (void **)bigalloc; - uint16_t *newkeys = (uint16_t *)(newcontainers + new_capacity); - uint8_t *newtypecodes = (uint8_t *)(newkeys + new_capacity); - assert((char *)(newtypecodes + new_capacity) == - (char *)bigalloc + memoryneeded); - if(ra->size > 0) { - memcpy(newcontainers, ra->containers, sizeof(void *) * ra->size); - memcpy(newkeys, ra->keys, sizeof(uint16_t) * ra->size); - memcpy(newtypecodes, ra->typecodes, sizeof(uint8_t) * ra->size); - } - ra->containers = newcontainers; - ra->keys = newkeys; - ra->typecodes = newtypecodes; - ra->allocation_size = new_capacity; - free(oldbigalloc); - return true; -} - -bool ra_init_with_capacity(roaring_array_t *new_ra, uint32_t cap) { - if (!new_ra) return false; - new_ra->keys = NULL; - new_ra->containers = NULL; - new_ra->typecodes = NULL; - - new_ra->allocation_size = cap; - new_ra->size = 0; - if(cap > 0) { - void *bigalloc = - malloc(cap * (sizeof(uint16_t) + sizeof(void *) + sizeof(uint8_t))); - if( bigalloc == NULL ) return false; - new_ra->containers = (void **)bigalloc; - new_ra->keys = (uint16_t *)(new_ra->containers + cap); - new_ra->typecodes = (uint8_t *)(new_ra->keys + cap); - } - return true; -} - -int ra_shrink_to_fit(roaring_array_t *ra) { - int savings = (ra->allocation_size - ra->size) * - (sizeof(uint16_t) + sizeof(void *) + sizeof(uint8_t)); - if (!realloc_array(ra, ra->size)) { - return 0; - } - ra->allocation_size = ra->size; - return savings; -} - -bool ra_init(roaring_array_t *t) { - return ra_init_with_capacity(t, INITIAL_CAPACITY); -} - -bool ra_copy(const roaring_array_t *source, roaring_array_t *dest, - bool copy_on_write) { - if (!ra_init_with_capacity(dest, source->size)) return false; - dest->size = source->size; - dest->allocation_size = source->size; - if(dest->size > 0) { - memcpy(dest->keys, source->keys, dest->size * sizeof(uint16_t)); - } - // we go through the containers, turning them into shared containers... - if (copy_on_write) { - for (int32_t i = 0; i < dest->size; ++i) { - source->containers[i] = get_copy_of_container( - source->containers[i], &source->typecodes[i], copy_on_write); - } - // we do a shallow copy to the other bitmap - if(dest->size > 0) { - memcpy(dest->containers, source->containers, - dest->size * sizeof(void *)); - memcpy(dest->typecodes, source->typecodes, - dest->size * sizeof(uint8_t)); - } - } else { - if(dest->size > 0) { - memcpy(dest->typecodes, source->typecodes, - dest->size * sizeof(uint8_t)); - } - for (int32_t i = 0; i < dest->size; i++) { - dest->containers[i] = - container_clone(source->containers[i], source->typecodes[i]); - if (dest->containers[i] == NULL) { - for (int32_t j = 0; j < i; j++) { - container_free(dest->containers[j], dest->typecodes[j]); - } - ra_clear_without_containers(dest); - return false; - } - } - } - return true; -} - -bool ra_overwrite(const roaring_array_t *source, roaring_array_t *dest, - bool copy_on_write) { - ra_clear_containers(dest); // we are going to overwrite them - if (dest->allocation_size < source->size) { - if (!realloc_array(dest, source->size)) { - return false; - } - } - dest->size = source->size; - memcpy(dest->keys, source->keys, dest->size * sizeof(uint16_t)); - // we go through the containers, turning them into shared containers... - if (copy_on_write) { - for (int32_t i = 0; i < dest->size; ++i) { - source->containers[i] = get_copy_of_container( - source->containers[i], &source->typecodes[i], copy_on_write); - } - // we do a shallow copy to the other bitmap - memcpy(dest->containers, source->containers, - dest->size * sizeof(void *)); - memcpy(dest->typecodes, source->typecodes, - dest->size * sizeof(uint8_t)); - } else { - memcpy(dest->typecodes, source->typecodes, - dest->size * sizeof(uint8_t)); - for (int32_t i = 0; i < dest->size; i++) { - dest->containers[i] = - container_clone(source->containers[i], source->typecodes[i]); - if (dest->containers[i] == NULL) { - for (int32_t j = 0; j < i; j++) { - container_free(dest->containers[j], dest->typecodes[j]); - } - ra_clear_without_containers(dest); - return false; - } - } - } - return true; -} - -void ra_clear_containers(roaring_array_t *ra) { - for (int32_t i = 0; i < ra->size; ++i) { - container_free(ra->containers[i], ra->typecodes[i]); - } -} - -void ra_reset(roaring_array_t *ra) { - ra_clear_containers(ra); - ra->size = 0; - ra_shrink_to_fit(ra); -} - -void ra_clear_without_containers(roaring_array_t *ra) { - free(ra->containers); // keys and typecodes are allocated with containers - ra->size = 0; - ra->allocation_size = 0; - ra->containers = NULL; - ra->keys = NULL; - ra->typecodes = NULL; -} - -void ra_clear(roaring_array_t *ra) { - ra_clear_containers(ra); - ra_clear_without_containers(ra); -} - -bool extend_array(roaring_array_t *ra, int32_t k) { - int32_t desired_size = ra->size + k; - assert(desired_size <= MAX_CONTAINERS); - if (desired_size > ra->allocation_size) { - int32_t new_capacity = - (ra->size < 1024) ? 2 * desired_size : 5 * desired_size / 4; - if (new_capacity > MAX_CONTAINERS) { - new_capacity = MAX_CONTAINERS; - } - - return realloc_array(ra, new_capacity); - } - return true; -} - -void ra_append(roaring_array_t *ra, uint16_t key, void *container, - uint8_t typecode) { - extend_array(ra, 1); - const int32_t pos = ra->size; - - ra->keys[pos] = key; - ra->containers[pos] = container; - ra->typecodes[pos] = typecode; - ra->size++; -} - -void ra_append_copy(roaring_array_t *ra, const roaring_array_t *sa, - uint16_t index, bool copy_on_write) { - extend_array(ra, 1); - const int32_t pos = ra->size; - - // old contents is junk not needing freeing - ra->keys[pos] = sa->keys[index]; - // the shared container will be in two bitmaps - if (copy_on_write) { - sa->containers[index] = get_copy_of_container( - sa->containers[index], &sa->typecodes[index], copy_on_write); - ra->containers[pos] = sa->containers[index]; - ra->typecodes[pos] = sa->typecodes[index]; - } else { - ra->containers[pos] = - container_clone(sa->containers[index], sa->typecodes[index]); - ra->typecodes[pos] = sa->typecodes[index]; - } - ra->size++; -} - -void ra_append_copies_until(roaring_array_t *ra, const roaring_array_t *sa, - uint16_t stopping_key, bool copy_on_write) { - for (int32_t i = 0; i < sa->size; ++i) { - if (sa->keys[i] >= stopping_key) break; - ra_append_copy(ra, sa, i, copy_on_write); - } -} - -void ra_append_copy_range(roaring_array_t *ra, const roaring_array_t *sa, - int32_t start_index, int32_t end_index, - bool copy_on_write) { - extend_array(ra, end_index - start_index); - for (int32_t i = start_index; i < end_index; ++i) { - const int32_t pos = ra->size; - ra->keys[pos] = sa->keys[i]; - if (copy_on_write) { - sa->containers[i] = get_copy_of_container( - sa->containers[i], &sa->typecodes[i], copy_on_write); - ra->containers[pos] = sa->containers[i]; - ra->typecodes[pos] = sa->typecodes[i]; - } else { - ra->containers[pos] = - container_clone(sa->containers[i], sa->typecodes[i]); - ra->typecodes[pos] = sa->typecodes[i]; - } - ra->size++; - } -} - -void ra_append_copies_after(roaring_array_t *ra, const roaring_array_t *sa, - uint16_t before_start, bool copy_on_write) { - int start_location = ra_get_index(sa, before_start); - if (start_location >= 0) - ++start_location; - else - start_location = -start_location - 1; - ra_append_copy_range(ra, sa, start_location, sa->size, copy_on_write); -} - -void ra_append_move_range(roaring_array_t *ra, roaring_array_t *sa, - int32_t start_index, int32_t end_index) { - extend_array(ra, end_index - start_index); - - for (int32_t i = start_index; i < end_index; ++i) { - const int32_t pos = ra->size; - - ra->keys[pos] = sa->keys[i]; - ra->containers[pos] = sa->containers[i]; - ra->typecodes[pos] = sa->typecodes[i]; - ra->size++; - } -} - -void ra_append_range(roaring_array_t *ra, roaring_array_t *sa, - int32_t start_index, int32_t end_index, - bool copy_on_write) { - extend_array(ra, end_index - start_index); - - for (int32_t i = start_index; i < end_index; ++i) { - const int32_t pos = ra->size; - ra->keys[pos] = sa->keys[i]; - if (copy_on_write) { - sa->containers[i] = get_copy_of_container( - sa->containers[i], &sa->typecodes[i], copy_on_write); - ra->containers[pos] = sa->containers[i]; - ra->typecodes[pos] = sa->typecodes[i]; - } else { - ra->containers[pos] = - container_clone(sa->containers[i], sa->typecodes[i]); - ra->typecodes[pos] = sa->typecodes[i]; - } - ra->size++; - } -} - -void *ra_get_container(roaring_array_t *ra, uint16_t x, uint8_t *typecode) { - int i = binarySearch(ra->keys, (int32_t)ra->size, x); - if (i < 0) return NULL; - *typecode = ra->typecodes[i]; - return ra->containers[i]; -} - -extern void *ra_get_container_at_index(const roaring_array_t *ra, uint16_t i, - uint8_t *typecode); - -void *ra_get_writable_container(roaring_array_t *ra, uint16_t x, - uint8_t *typecode) { - int i = binarySearch(ra->keys, (int32_t)ra->size, x); - if (i < 0) return NULL; - *typecode = ra->typecodes[i]; - return get_writable_copy_if_shared(ra->containers[i], typecode); -} - -void *ra_get_writable_container_at_index(roaring_array_t *ra, uint16_t i, - uint8_t *typecode) { - assert(i < ra->size); - *typecode = ra->typecodes[i]; - return get_writable_copy_if_shared(ra->containers[i], typecode); -} - -uint16_t ra_get_key_at_index(const roaring_array_t *ra, uint16_t i) { - return ra->keys[i]; -} - -extern int32_t ra_get_index(const roaring_array_t *ra, uint16_t x); - -extern int32_t ra_advance_until(const roaring_array_t *ra, uint16_t x, - int32_t pos); - -// everything skipped over is freed -int32_t ra_advance_until_freeing(roaring_array_t *ra, uint16_t x, int32_t pos) { - while (pos < ra->size && ra->keys[pos] < x) { - container_free(ra->containers[pos], ra->typecodes[pos]); - ++pos; - } - return pos; -} - -void ra_insert_new_key_value_at(roaring_array_t *ra, int32_t i, uint16_t key, - void *container, uint8_t typecode) { - extend_array(ra, 1); - // May be an optimization opportunity with DIY memmove - memmove(&(ra->keys[i + 1]), &(ra->keys[i]), - sizeof(uint16_t) * (ra->size - i)); - memmove(&(ra->containers[i + 1]), &(ra->containers[i]), - sizeof(void *) * (ra->size - i)); - memmove(&(ra->typecodes[i + 1]), &(ra->typecodes[i]), - sizeof(uint8_t) * (ra->size - i)); - ra->keys[i] = key; - ra->containers[i] = container; - ra->typecodes[i] = typecode; - ra->size++; -} - -// note: Java routine set things to 0, enabling GC. -// Java called it "resize" but it was always used to downsize. -// Allowing upsize would break the conventions about -// valid containers below ra->size. - -void ra_downsize(roaring_array_t *ra, int32_t new_length) { - assert(new_length <= ra->size); - ra->size = new_length; -} - -void ra_remove_at_index(roaring_array_t *ra, int32_t i) { - memmove(&(ra->containers[i]), &(ra->containers[i + 1]), - sizeof(void *) * (ra->size - i - 1)); - memmove(&(ra->keys[i]), &(ra->keys[i + 1]), - sizeof(uint16_t) * (ra->size - i - 1)); - memmove(&(ra->typecodes[i]), &(ra->typecodes[i + 1]), - sizeof(uint8_t) * (ra->size - i - 1)); - ra->size--; -} - -void ra_remove_at_index_and_free(roaring_array_t *ra, int32_t i) { - container_free(ra->containers[i], ra->typecodes[i]); - ra_remove_at_index(ra, i); -} - -// used in inplace andNot only, to slide left the containers from -// the mutated RoaringBitmap that are after the largest container of -// the argument RoaringBitmap. In use it should be followed by a call to -// downsize. -// -void ra_copy_range(roaring_array_t *ra, uint32_t begin, uint32_t end, - uint32_t new_begin) { - assert(begin <= end); - assert(new_begin < begin); - - const int range = end - begin; - - // We ensure to previously have freed overwritten containers - // that are not copied elsewhere - - memmove(&(ra->containers[new_begin]), &(ra->containers[begin]), - sizeof(void *) * range); - memmove(&(ra->keys[new_begin]), &(ra->keys[begin]), - sizeof(uint16_t) * range); - memmove(&(ra->typecodes[new_begin]), &(ra->typecodes[begin]), - sizeof(uint8_t) * range); -} - -void ra_shift_tail(roaring_array_t *ra, int32_t count, int32_t distance) { - if (distance > 0) { - extend_array(ra, distance); - } - int32_t srcpos = ra->size - count; - int32_t dstpos = srcpos + distance; - memmove(&(ra->keys[dstpos]), &(ra->keys[srcpos]), - sizeof(uint16_t) * count); - memmove(&(ra->containers[dstpos]), &(ra->containers[srcpos]), - sizeof(void *) * count); - memmove(&(ra->typecodes[dstpos]), &(ra->typecodes[srcpos]), - sizeof(uint8_t) * count); - ra->size += distance; -} - - -size_t ra_size_in_bytes(roaring_array_t *ra) { - size_t cardinality = 0; - size_t tot_len = - 1 /* initial byte type */ + 4 /* tot_len */ + sizeof(roaring_array_t) + - ra->size * (sizeof(uint16_t) + sizeof(void *) + sizeof(uint8_t)); - for (int32_t i = 0; i < ra->size; i++) { - tot_len += - (container_serialization_len(ra->containers[i], ra->typecodes[i]) + - sizeof(uint16_t)); - cardinality += - container_get_cardinality(ra->containers[i], ra->typecodes[i]); - } - - if ((cardinality * sizeof(uint32_t) + sizeof(uint32_t)) < tot_len) { - return cardinality * sizeof(uint32_t) + 1 + sizeof(uint32_t); - } - return tot_len; -} - -void ra_to_uint32_array(const roaring_array_t *ra, uint32_t *ans) { - size_t ctr = 0; - for (int32_t i = 0; i < ra->size; ++i) { - int num_added = container_to_uint32_array( - ans + ctr, ra->containers[i], ra->typecodes[i], - ((uint32_t)ra->keys[i]) << 16); - ctr += num_added; - } -} - -bool ra_range_uint32_array(const roaring_array_t *ra, size_t offset, size_t limit, uint32_t *ans) { - size_t ctr = 0; - size_t dtr = 0; - - size_t t_limit = 0; - - bool first = false; - size_t first_skip = 0; - - uint32_t *t_ans = NULL; - size_t cur_len = 0; - - for (int i = 0; i < ra->size; ++i) { - - const void *container = container_unwrap_shared(ra->containers[i], &ra->typecodes[i]); - switch (ra->typecodes[i]) { - case BITSET_CONTAINER_TYPE_CODE: - t_limit = ((const bitset_container_t *)container)->cardinality; - break; - case ARRAY_CONTAINER_TYPE_CODE: - t_limit = ((const array_container_t *)container)->cardinality; - break; - case RUN_CONTAINER_TYPE_CODE: - t_limit = run_container_cardinality((const run_container_t *)container); - break; - } - if (ctr + t_limit - 1 >= offset && ctr < offset + limit){ - if (!first){ - //first_skip = t_limit - (ctr + t_limit - offset); - first_skip = offset - ctr; - first = true; - t_ans = (uint32_t *)malloc(sizeof(*t_ans) * (first_skip + limit)); - if(t_ans == NULL) { - return false; - } - memset(t_ans, 0, sizeof(*t_ans) * (first_skip + limit)) ; - cur_len = first_skip + limit; - } - if (dtr + t_limit > cur_len){ - uint32_t * append_ans = (uint32_t *)malloc(sizeof(*append_ans) * (cur_len + t_limit)); - if(append_ans == NULL) { - if(t_ans != NULL) free(t_ans); - return false; - } - memset(append_ans, 0, sizeof(*append_ans) * (cur_len + t_limit)); - cur_len = cur_len + t_limit; - memcpy(append_ans, t_ans, dtr * sizeof(uint32_t)); - free(t_ans); - t_ans = append_ans; - } - switch (ra->typecodes[i]) { - case BITSET_CONTAINER_TYPE_CODE: - container_to_uint32_array( - t_ans + dtr, (const bitset_container_t *)container, ra->typecodes[i], - ((uint32_t)ra->keys[i]) << 16); - break; - case ARRAY_CONTAINER_TYPE_CODE: - container_to_uint32_array( - t_ans + dtr, (const array_container_t *)container, ra->typecodes[i], - ((uint32_t)ra->keys[i]) << 16); - break; - case RUN_CONTAINER_TYPE_CODE: - container_to_uint32_array( - t_ans + dtr, (const run_container_t *)container, ra->typecodes[i], - ((uint32_t)ra->keys[i]) << 16); - break; - } - dtr += t_limit; - } - ctr += t_limit; - if (dtr-first_skip >= limit) break; - } - if(t_ans != NULL) { - memcpy(ans, t_ans+first_skip, limit * sizeof(uint32_t)); - free(t_ans); - } - return true; -} - -bool ra_has_run_container(const roaring_array_t *ra) { - for (int32_t k = 0; k < ra->size; ++k) { - if (get_container_type(ra->containers[k], ra->typecodes[k]) == - RUN_CONTAINER_TYPE_CODE) - return true; - } - return false; -} - -uint32_t ra_portable_header_size(const roaring_array_t *ra) { - if (ra_has_run_container(ra)) { - if (ra->size < - NO_OFFSET_THRESHOLD) { // for small bitmaps, we omit the offsets - return 4 + (ra->size + 7) / 8 + 4 * ra->size; - } - return 4 + (ra->size + 7) / 8 + - 8 * ra->size; // - 4 because we pack the size with the cookie - } else { - return 4 + 4 + 8 * ra->size; - } -} - -size_t ra_portable_size_in_bytes(const roaring_array_t *ra) { - size_t count = ra_portable_header_size(ra); - - for (int32_t k = 0; k < ra->size; ++k) { - count += container_size_in_bytes(ra->containers[k], ra->typecodes[k]); - } - return count; -} - -size_t ra_portable_serialize(const roaring_array_t *ra, char *buf) { - char *initbuf = buf; - uint32_t startOffset = 0; - bool hasrun = ra_has_run_container(ra); - if (hasrun) { - uint32_t cookie = SERIAL_COOKIE | ((ra->size - 1) << 16); - memcpy(buf, &cookie, sizeof(cookie)); - buf += sizeof(cookie); - uint32_t s = (ra->size + 7) / 8; - uint8_t *bitmapOfRunContainers = (uint8_t *)calloc(s, 1); - assert(bitmapOfRunContainers != NULL); // todo: handle - for (int32_t i = 0; i < ra->size; ++i) { - if (get_container_type(ra->containers[i], ra->typecodes[i]) == - RUN_CONTAINER_TYPE_CODE) { - bitmapOfRunContainers[i / 8] |= (1 << (i % 8)); - } - } - memcpy(buf, bitmapOfRunContainers, s); - buf += s; - free(bitmapOfRunContainers); - if (ra->size < NO_OFFSET_THRESHOLD) { - startOffset = 4 + 4 * ra->size + s; - } else { - startOffset = 4 + 8 * ra->size + s; - } - } else { // backwards compatibility - uint32_t cookie = SERIAL_COOKIE_NO_RUNCONTAINER; - - memcpy(buf, &cookie, sizeof(cookie)); - buf += sizeof(cookie); - memcpy(buf, &ra->size, sizeof(ra->size)); - buf += sizeof(ra->size); - - startOffset = 4 + 4 + 4 * ra->size + 4 * ra->size; - } - for (int32_t k = 0; k < ra->size; ++k) { - memcpy(buf, &ra->keys[k], sizeof(ra->keys[k])); - buf += sizeof(ra->keys[k]); - // get_cardinality returns a value in [1,1<<16], subtracting one - // we get [0,1<<16 - 1] which fits in 16 bits - uint16_t card = (uint16_t)( - container_get_cardinality(ra->containers[k], ra->typecodes[k]) - 1); - memcpy(buf, &card, sizeof(card)); - buf += sizeof(card); - } - if ((!hasrun) || (ra->size >= NO_OFFSET_THRESHOLD)) { - // writing the containers offsets - for (int32_t k = 0; k < ra->size; k++) { - memcpy(buf, &startOffset, sizeof(startOffset)); - buf += sizeof(startOffset); - startOffset = - startOffset + - container_size_in_bytes(ra->containers[k], ra->typecodes[k]); - } - } - for (int32_t k = 0; k < ra->size; ++k) { - buf += container_write(ra->containers[k], ra->typecodes[k], buf); - } - return buf - initbuf; -} - -// Quickly checks whether there is a serialized bitmap at the pointer, -// not exceeding size "maxbytes" in bytes. This function does not allocate -// memory dynamically. -// -// This function returns 0 if and only if no valid bitmap is found. -// Otherwise, it returns how many bytes are occupied. -// -size_t ra_portable_deserialize_size(const char *buf, const size_t maxbytes) { - size_t bytestotal = sizeof(int32_t);// for cookie - if(bytestotal > maxbytes) return 0; - uint32_t cookie; - memcpy(&cookie, buf, sizeof(int32_t)); - buf += sizeof(uint32_t); - if ((cookie & 0xFFFF) != SERIAL_COOKIE && - cookie != SERIAL_COOKIE_NO_RUNCONTAINER) { - return 0; - } - int32_t size; - - if ((cookie & 0xFFFF) == SERIAL_COOKIE) - size = (cookie >> 16) + 1; - else { - bytestotal += sizeof(int32_t); - if(bytestotal > maxbytes) return 0; - memcpy(&size, buf, sizeof(int32_t)); - buf += sizeof(uint32_t); - } - if (size > (1<<16)) { - return 0; // logically impossible - } - char *bitmapOfRunContainers = NULL; - bool hasrun = (cookie & 0xFFFF) == SERIAL_COOKIE; - if (hasrun) { - int32_t s = (size + 7) / 8; - bytestotal += s; - if(bytestotal > maxbytes) return 0; - bitmapOfRunContainers = (char *)buf; - buf += s; - } - bytestotal += size * 2 * sizeof(uint16_t); - if(bytestotal > maxbytes) return 0; - uint16_t *keyscards = (uint16_t *)buf; - buf += size * 2 * sizeof(uint16_t); - if ((!hasrun) || (size >= NO_OFFSET_THRESHOLD)) { - // skipping the offsets - bytestotal += size * 4; - if(bytestotal > maxbytes) return 0; - buf += size * 4; - } - // Reading the containers - for (int32_t k = 0; k < size; ++k) { - uint16_t tmp; - memcpy(&tmp, keyscards + 2*k+1, sizeof(tmp)); - uint32_t thiscard = tmp + 1; - bool isbitmap = (thiscard > DEFAULT_MAX_SIZE); - bool isrun = false; - if(hasrun) { - if((bitmapOfRunContainers[k / 8] & (1 << (k % 8))) != 0) { - isbitmap = false; - isrun = true; - } - } - if (isbitmap) { - size_t containersize = BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t); - bytestotal += containersize; - if(bytestotal > maxbytes) return 0; - buf += containersize; - } else if (isrun) { - bytestotal += sizeof(uint16_t); - if(bytestotal > maxbytes) return 0; - uint16_t n_runs; - memcpy(&n_runs, buf, sizeof(uint16_t)); - buf += sizeof(uint16_t); - size_t containersize = n_runs * sizeof(rle16_t); - bytestotal += containersize; - if(bytestotal > maxbytes) return 0; - buf += containersize; - } else { - size_t containersize = thiscard * sizeof(uint16_t); - bytestotal += containersize; - if(bytestotal > maxbytes) return 0; - buf += containersize; - } - } - return bytestotal; -} - - -// this function populates answer from the content of buf (reading up to maxbytes bytes). -// The function returns false if a properly serialized bitmap cannot be found. -// if it returns true, readbytes is populated by how many bytes were read, we have that *readbytes <= maxbytes. -bool ra_portable_deserialize(roaring_array_t *answer, const char *buf, const size_t maxbytes, size_t * readbytes) { - *readbytes = sizeof(int32_t);// for cookie - if(*readbytes > maxbytes) { - fprintf(stderr, "Ran out of bytes while reading first 4 bytes.\n"); - return false; - } - uint32_t cookie; - memcpy(&cookie, buf, sizeof(int32_t)); - buf += sizeof(uint32_t); - if ((cookie & 0xFFFF) != SERIAL_COOKIE && - cookie != SERIAL_COOKIE_NO_RUNCONTAINER) { - fprintf(stderr, "I failed to find one of the right cookies. Found %" PRIu32 "\n", - cookie); - return false; - } - int32_t size; - - if ((cookie & 0xFFFF) == SERIAL_COOKIE) - size = (cookie >> 16) + 1; - else { - *readbytes += sizeof(int32_t); - if(*readbytes > maxbytes) { - fprintf(stderr, "Ran out of bytes while reading second part of the cookie.\n"); - return false; - } - memcpy(&size, buf, sizeof(int32_t)); - buf += sizeof(uint32_t); - } - if (size > (1<<16)) { - fprintf(stderr, "You cannot have so many containers, the data must be corrupted: %" PRId32 "\n", - size); - return false; // logically impossible - } - const char *bitmapOfRunContainers = NULL; - bool hasrun = (cookie & 0xFFFF) == SERIAL_COOKIE; - if (hasrun) { - int32_t s = (size + 7) / 8; - *readbytes += s; - if(*readbytes > maxbytes) {// data is corrupted? - fprintf(stderr, "Ran out of bytes while reading run bitmap.\n"); - return false; - } - bitmapOfRunContainers = buf; - buf += s; - } - uint16_t *keyscards = (uint16_t *)buf; - - *readbytes += size * 2 * sizeof(uint16_t); - if(*readbytes > maxbytes) { - fprintf(stderr, "Ran out of bytes while reading key-cardinality array.\n"); - return false; - } - buf += size * 2 * sizeof(uint16_t); - - bool is_ok = ra_init_with_capacity(answer, size); - if (!is_ok) { - fprintf(stderr, "Failed to allocate memory for roaring array. Bailing out.\n"); - return false; - } - - for (int32_t k = 0; k < size; ++k) { - uint16_t tmp; - memcpy(&tmp, keyscards + 2*k, sizeof(tmp)); - answer->keys[k] = tmp; - } - if ((!hasrun) || (size >= NO_OFFSET_THRESHOLD)) { - *readbytes += size * 4; - if(*readbytes > maxbytes) {// data is corrupted? - fprintf(stderr, "Ran out of bytes while reading offsets.\n"); - ra_clear(answer);// we need to clear the containers already allocated, and the roaring array - return false; - } - - // skipping the offsets - buf += size * 4; - } - // Reading the containers - for (int32_t k = 0; k < size; ++k) { - uint16_t tmp; - memcpy(&tmp, keyscards + 2*k+1, sizeof(tmp)); - uint32_t thiscard = tmp + 1; - bool isbitmap = (thiscard > DEFAULT_MAX_SIZE); - bool isrun = false; - if(hasrun) { - if((bitmapOfRunContainers[k / 8] & (1 << (k % 8))) != 0) { - isbitmap = false; - isrun = true; - } - } - if (isbitmap) { - // we check that the read is allowed - size_t containersize = BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t); - *readbytes += containersize; - if(*readbytes > maxbytes) { - fprintf(stderr, "Running out of bytes while reading a bitset container.\n"); - ra_clear(answer);// we need to clear the containers already allocated, and the roaring array - return false; - } - // it is now safe to read - bitset_container_t *c = bitset_container_create(); - if(c == NULL) {// memory allocation failure - fprintf(stderr, "Failed to allocate memory for a bitset container.\n"); - ra_clear(answer);// we need to clear the containers already allocated, and the roaring array - return false; - } - answer->size++; - buf += bitset_container_read(thiscard, c, buf); - answer->containers[k] = c; - answer->typecodes[k] = BITSET_CONTAINER_TYPE_CODE; - } else if (isrun) { - // we check that the read is allowed - *readbytes += sizeof(uint16_t); - if(*readbytes > maxbytes) { - fprintf(stderr, "Running out of bytes while reading a run container (header).\n"); - ra_clear(answer);// we need to clear the containers already allocated, and the roaring array - return false; - } - uint16_t n_runs; - memcpy(&n_runs, buf, sizeof(uint16_t)); - size_t containersize = n_runs * sizeof(rle16_t); - *readbytes += containersize; - if(*readbytes > maxbytes) {// data is corrupted? - fprintf(stderr, "Running out of bytes while reading a run container.\n"); - ra_clear(answer);// we need to clear the containers already allocated, and the roaring array - return false; - } - // it is now safe to read - - run_container_t *c = run_container_create(); - if(c == NULL) {// memory allocation failure - fprintf(stderr, "Failed to allocate memory for a run container.\n"); - ra_clear(answer);// we need to clear the containers already allocated, and the roaring array - return false; - } - answer->size++; - buf += run_container_read(thiscard, c, buf); - answer->containers[k] = c; - answer->typecodes[k] = RUN_CONTAINER_TYPE_CODE; - } else { - // we check that the read is allowed - size_t containersize = thiscard * sizeof(uint16_t); - *readbytes += containersize; - if(*readbytes > maxbytes) {// data is corrupted? - fprintf(stderr, "Running out of bytes while reading an array container.\n"); - ra_clear(answer);// we need to clear the containers already allocated, and the roaring array - return false; - } - // it is now safe to read - array_container_t *c = - array_container_create_given_capacity(thiscard); - if(c == NULL) {// memory allocation failure - fprintf(stderr, "Failed to allocate memory for an array container.\n"); - ra_clear(answer);// we need to clear the containers already allocated, and the roaring array - return false; - } - answer->size++; - buf += array_container_read(thiscard, c, buf); - answer->containers[k] = c; - answer->typecodes[k] = ARRAY_CONTAINER_TYPE_CODE; - } - } - return true; -} -/* end file /opt/bitmap/CRoaring-0.2.57/src/roaring_array.c */ -/* begin file /opt/bitmap/CRoaring-0.2.57/src/roaring_priority_queue.c */ - -struct roaring_pq_element_s { - uint64_t size; - bool is_temporary; - roaring_bitmap_t *bitmap; -}; - -typedef struct roaring_pq_element_s roaring_pq_element_t; - -struct roaring_pq_s { - roaring_pq_element_t *elements; - uint64_t size; -}; - -typedef struct roaring_pq_s roaring_pq_t; - -static inline bool compare(roaring_pq_element_t *t1, roaring_pq_element_t *t2) { - return t1->size < t2->size; -} - -static void pq_add(roaring_pq_t *pq, roaring_pq_element_t *t) { - uint64_t i = pq->size; - pq->elements[pq->size++] = *t; - while (i > 0) { - uint64_t p = (i - 1) >> 1; - roaring_pq_element_t ap = pq->elements[p]; - if (!compare(t, &ap)) break; - pq->elements[i] = ap; - i = p; - } - pq->elements[i] = *t; -} - -static void pq_free(roaring_pq_t *pq) { - free(pq->elements); - pq->elements = NULL; // paranoid - free(pq); -} - -static void percolate_down(roaring_pq_t *pq, uint32_t i) { - uint32_t size = (uint32_t)pq->size; - uint32_t hsize = size >> 1; - roaring_pq_element_t ai = pq->elements[i]; - while (i < hsize) { - uint32_t l = (i << 1) + 1; - uint32_t r = l + 1; - roaring_pq_element_t bestc = pq->elements[l]; - if (r < size) { - if (compare(pq->elements + r, &bestc)) { - l = r; - bestc = pq->elements[r]; - } - } - if (!compare(&bestc, &ai)) { - break; - } - pq->elements[i] = bestc; - i = l; - } - pq->elements[i] = ai; -} - -static roaring_pq_t *create_pq(const roaring_bitmap_t **arr, uint32_t length) { - roaring_pq_t *answer = (roaring_pq_t *)malloc(sizeof(roaring_pq_t)); - answer->elements = - (roaring_pq_element_t *)malloc(sizeof(roaring_pq_element_t) * length); - answer->size = length; - for (uint32_t i = 0; i < length; i++) { - answer->elements[i].bitmap = (roaring_bitmap_t *)arr[i]; - answer->elements[i].is_temporary = false; - answer->elements[i].size = - roaring_bitmap_portable_size_in_bytes(arr[i]); - } - for (int32_t i = (length >> 1); i >= 0; i--) { - percolate_down(answer, i); - } - return answer; -} - -static roaring_pq_element_t pq_poll(roaring_pq_t *pq) { - roaring_pq_element_t ans = *pq->elements; - if (pq->size > 1) { - pq->elements[0] = pq->elements[--pq->size]; - percolate_down(pq, 0); - } else - --pq->size; - // memmove(pq->elements,pq->elements+1,(pq->size-1)*sizeof(roaring_pq_element_t));--pq->size; - return ans; -} - -// this function consumes and frees the inputs -static roaring_bitmap_t *lazy_or_from_lazy_inputs(roaring_bitmap_t *x1, - roaring_bitmap_t *x2) { - uint8_t container_result_type = 0; - const int length1 = ra_get_size(&x1->high_low_container), - length2 = ra_get_size(&x2->high_low_container); - if (0 == length1) { - roaring_bitmap_free(x1); - return x2; - } - if (0 == length2) { - roaring_bitmap_free(x2); - return x1; - } - uint32_t neededcap = length1 > length2 ? length2 : length1; - roaring_bitmap_t *answer = roaring_bitmap_create_with_capacity(neededcap); - int pos1 = 0, pos2 = 0; - uint8_t container_type_1, container_type_2; - uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, pos1); - uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, pos2); - while (true) { - if (s1 == s2) { - // todo: unsharing can be inefficient as it may create a clone where - // none - // is needed, but it has the benefit of being easy to reason about. - ra_unshare_container_at_index(&x1->high_low_container, pos1); - void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1, - &container_type_1); - assert(container_type_1 != SHARED_CONTAINER_TYPE_CODE); - ra_unshare_container_at_index(&x2->high_low_container, pos2); - void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2, - &container_type_2); - assert(container_type_2 != SHARED_CONTAINER_TYPE_CODE); - void *c; - - if ((container_type_2 == BITSET_CONTAINER_TYPE_CODE) && - (container_type_1 != BITSET_CONTAINER_TYPE_CODE)) { - c = container_lazy_ior(c2, container_type_2, c1, - container_type_1, - &container_result_type); - container_free(c1, container_type_1); - if (c != c2) { - container_free(c2, container_type_2); - } - } else { - c = container_lazy_ior(c1, container_type_1, c2, - container_type_2, - &container_result_type); - container_free(c2, container_type_2); - if (c != c1) { - container_free(c1, container_type_1); - } - } - // since we assume that the initial containers are non-empty, the - // result here - // can only be non-empty - ra_append(&answer->high_low_container, s1, c, - container_result_type); - ++pos1; - ++pos2; - if (pos1 == length1) break; - if (pos2 == length2) break; - s1 = ra_get_key_at_index(&x1->high_low_container, pos1); - s2 = ra_get_key_at_index(&x2->high_low_container, pos2); - - } else if (s1 < s2) { // s1 < s2 - void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1, - &container_type_1); - ra_append(&answer->high_low_container, s1, c1, container_type_1); - pos1++; - if (pos1 == length1) break; - s1 = ra_get_key_at_index(&x1->high_low_container, pos1); - - } else { // s1 > s2 - void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2, - &container_type_2); - ra_append(&answer->high_low_container, s2, c2, container_type_2); - pos2++; - if (pos2 == length2) break; - s2 = ra_get_key_at_index(&x2->high_low_container, pos2); - } - } - if (pos1 == length1) { - ra_append_move_range(&answer->high_low_container, - &x2->high_low_container, pos2, length2); - } else if (pos2 == length2) { - ra_append_move_range(&answer->high_low_container, - &x1->high_low_container, pos1, length1); - } - ra_clear_without_containers(&x1->high_low_container); - ra_clear_without_containers(&x2->high_low_container); - free(x1); - free(x2); - return answer; -} - -/** - * Compute the union of 'number' bitmaps using a heap. This can - * sometimes be faster than roaring_bitmap_or_many which uses - * a naive algorithm. Caller is responsible for freeing the - * result. - */ -roaring_bitmap_t *roaring_bitmap_or_many_heap(uint32_t number, - const roaring_bitmap_t **x) { - if (number == 0) { - return roaring_bitmap_create(); - } - if (number == 1) { - return roaring_bitmap_copy(x[0]); - } - roaring_pq_t *pq = create_pq(x, number); - while (pq->size > 1) { - roaring_pq_element_t x1 = pq_poll(pq); - roaring_pq_element_t x2 = pq_poll(pq); - - if (x1.is_temporary && x2.is_temporary) { - roaring_bitmap_t *newb = - lazy_or_from_lazy_inputs(x1.bitmap, x2.bitmap); - // should normally return a fresh new bitmap *except* that - // it can return x1.bitmap or x2.bitmap in degenerate cases - bool temporary = !((newb == x1.bitmap) && (newb == x2.bitmap)); - uint64_t bsize = roaring_bitmap_portable_size_in_bytes(newb); - roaring_pq_element_t newelement = { - .size = bsize, .is_temporary = temporary, .bitmap = newb}; - pq_add(pq, &newelement); - } else if (x2.is_temporary) { - roaring_bitmap_lazy_or_inplace(x2.bitmap, x1.bitmap, false); - x2.size = roaring_bitmap_portable_size_in_bytes(x2.bitmap); - pq_add(pq, &x2); - } else if (x1.is_temporary) { - roaring_bitmap_lazy_or_inplace(x1.bitmap, x2.bitmap, false); - x1.size = roaring_bitmap_portable_size_in_bytes(x1.bitmap); - - pq_add(pq, &x1); - } else { - roaring_bitmap_t *newb = - roaring_bitmap_lazy_or(x1.bitmap, x2.bitmap, false); - uint64_t bsize = roaring_bitmap_portable_size_in_bytes(newb); - roaring_pq_element_t newelement = { - .size = bsize, .is_temporary = true, .bitmap = newb}; - - pq_add(pq, &newelement); - } - } - roaring_pq_element_t X = pq_poll(pq); - roaring_bitmap_t *answer = X.bitmap; - roaring_bitmap_repair_after_lazy(answer); - pq_free(pq); - return answer; -} -/* end file /opt/bitmap/CRoaring-0.2.57/src/roaring_priority_queue.c */ diff --git a/contrib/croaring/roaring/roaring.h b/contrib/croaring/roaring/roaring.h deleted file mode 100644 index 53413b2a06d..00000000000 --- a/contrib/croaring/roaring/roaring.h +++ /dev/null @@ -1,7187 +0,0 @@ -/* auto-generated on Tue Dec 18 09:42:59 CST 2018. Do not edit! */ -/* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/roaring_version.h */ -// /include/roaring/roaring_version.h automatically generated by release.py, do not change by hand -#ifndef ROARING_INCLUDE_ROARING_VERSION -#define ROARING_INCLUDE_ROARING_VERSION -#define ROARING_VERSION = 0.2.57, -enum { - ROARING_VERSION_MAJOR = 0, - ROARING_VERSION_MINOR = 2, - ROARING_VERSION_REVISION = 57 -}; -#endif // ROARING_INCLUDE_ROARING_VERSION -/* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/roaring_version.h */ -/* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/portability.h */ -/* - * portability.h - * - */ - - -#if defined(__clang__) -#pragma clang diagnostic ignored "-Wold-style-cast" -#pragma clang diagnostic ignored "-Wzero-as-null-pointer-constant" -#pragma clang diagnostic ignored "-Wold-style-cast" -#pragma clang diagnostic ignored "-Wcast-align" -#pragma clang diagnostic ignored "-Wcast-qual" -#pragma clang diagnostic ignored "-Wundef" -#endif - -#ifndef INCLUDE_PORTABILITY_H_ -#define INCLUDE_PORTABILITY_H_ - -#ifdef __cplusplus -extern "C" { -#endif - - -#ifndef _GNU_SOURCE -#define _GNU_SOURCE -#endif -//#ifndef __STDC_FORMAT_MACROS -//#define __STDC_FORMAT_MACROS 1 -//#endif - -#if !(defined(_POSIX_C_SOURCE)) || (_POSIX_C_SOURCE < 200809L) -#define _POSIX_C_SOURCE 200809L -#endif -#if !(defined(_XOPEN_SOURCE)) || (_XOPEN_SOURCE < 700) -#define _XOPEN_SOURCE 700 -#endif - -#include -#include -#include // will provide posix_memalign with _POSIX_C_SOURCE as defined above -#if !(defined(__APPLE__)) && !(defined(__FreeBSD__)) -#include // this should never be needed but there are some reports that it is needed. -#endif - - -#if defined(_MSC_VER) && !defined(__clang__) && !defined(_WIN64) -#pragma message( \ - "You appear to be attempting a 32-bit build under Visual Studio. We recommend a 64-bit build instead.") -#endif - -#if defined(__SIZEOF_LONG_LONG__) && __SIZEOF_LONG_LONG__ != 8 -#error This code assumes 64-bit long longs (by use of the GCC intrinsics). Your system is not currently supported. -#endif - -#if defined(_MSC_VER) -#define __restrict__ __restrict -#endif - -#ifndef DISABLE_X64 // some users may want to compile as if they did not have - // an x64 processor - -/////////////////////// -/// We support X64 hardware in the following manner: -/// -/// if IS_X64 is defined then we have at least SSE and SSE2 -/// (All Intel processors sold in the recent past have at least SSE and SSE2 support, -/// going back to the Pentium 4.) -/// -/// if USESSE4 is defined then we assume at least SSE4.2, SSE4.1, -/// SSSE3, SSE3... + IS_X64 -/// if USEAVX is defined, then we assume AVX2, AVX + USESSE4 -/// -/// So if you have hardware that supports AVX but not AVX2, then "USEAVX" -/// won't be enabled. -/// If you have hardware that supports SSE4.1, but not SSE4.2, then USESSE4 -/// won't be defined. -////////////////////// - -// unless DISABLEAVX was defined, if we have __AVX2__, we enable AVX -#if (!defined(USEAVX)) && (!defined(DISABLEAVX)) && (defined(__AVX2__)) -#define USEAVX -#endif - -// if we have __SSE4_2__, we enable SSE4 -#if (defined(__POPCNT__)) && (defined(__SSE4_2__)) -#define USESSE4 -#endif - -#if defined(USEAVX) || defined(__x86_64__) || defined(_M_X64) -// we have an x64 processor -#define IS_X64 -// we include the intrinsic header -#ifndef _MSC_VER -/* Non-Microsoft C/C++-compatible compiler */ -#include // on some recent GCC, this will declare posix_memalign -#endif -#endif - -#ifndef _MSC_VER -/* Non-Microsoft C/C++-compatible compiler, assumes that it supports inline - * assembly */ -#define ROARING_INLINE_ASM -#endif - -#ifdef USEAVX -#define USESSE4 // if we have AVX, then we have SSE4 -#define USE_BMI // we assume that AVX2 and BMI go hand and hand -#define USEAVX2FORDECODING // optimization -// vector operations should work on not just AVX -#define ROARING_VECTOR_OPERATIONS_ENABLED // vector unions (optimization) -#endif - -#endif // DISABLE_X64 - -#ifdef _MSC_VER -/* Microsoft C/C++-compatible compiler */ -#include - -#ifndef __clang__ // if one compiles with MSVC *with* clang, then these - // intrinsics are defined!!! -// sadly there is no way to check whether we are missing these intrinsics -// specifically. - -/* wrappers for Visual Studio built-ins that look like gcc built-ins */ -/* result might be undefined when input_num is zero */ -static inline int __builtin_ctzll(unsigned long long input_num) { - unsigned long index; -#ifdef _WIN64 // highly recommended!!! - _BitScanForward64(&index, input_num); -#else // if we must support 32-bit Windows - if ((uint32_t)input_num != 0) { - _BitScanForward(&index, (uint32_t)input_num); - } else { - _BitScanForward(&index, (uint32_t)(input_num >> 32)); - index += 32; - } -#endif - return index; -} - -/* result might be undefined when input_num is zero */ -static inline int __builtin_clzll(unsigned long long input_num) { - unsigned long index; -#ifdef _WIN64 // highly recommended!!! - _BitScanReverse64(&index, input_num); -#else // if we must support 32-bit Windows - if (input_num > 0xFFFFFFFF) { - _BitScanReverse(&index, (uint32_t)(input_num >> 32)); - index += 32; - } else { - _BitScanReverse(&index, (uint32_t)(input_num)); - } -#endif - return 63 - index; -} - -/* result might be undefined when input_num is zero */ -#ifdef USESSE4 -/* POPCNT support was added to processors around the release of SSE4.2 */ -/* USESSE4 flag guarantees POPCNT support */ -static inline int __builtin_popcountll(unsigned long long input_num) { -#ifdef _WIN64 // highly recommended!!! - return (int)__popcnt64(input_num); -#else // if we must support 32-bit Windows - return (int)(__popcnt((uint32_t)input_num) + - __popcnt((uint32_t)(input_num >> 32))); -#endif -} -#else -/* software implementation avoids POPCNT */ -static inline int __builtin_popcountll(unsigned long long input_num) { - const uint64_t m1 = 0x5555555555555555; //binary: 0101... - const uint64_t m2 = 0x3333333333333333; //binary: 00110011.. - const uint64_t m4 = 0x0f0f0f0f0f0f0f0f; //binary: 4 zeros, 4 ones ... - const uint64_t h01 = 0x0101010101010101; //the sum of 256 to the power of 0,1,2,3... - - input_num -= (input_num >> 1) & m1; - input_num = (input_num & m2) + ((input_num >> 2) & m2); - input_num = (input_num + (input_num >> 4)) & m4; - return (input_num * h01) >> 56; -} -#endif - -/* Use #define so this is effective even under /Ob0 (no inline) */ -#define __builtin_unreachable() __assume(0) -#endif - -#endif - -// without the following, we get lots of warnings about posix_memalign -#ifndef __cplusplus -extern int posix_memalign(void **__memptr, size_t __alignment, size_t __size); -#endif //__cplusplus // C++ does not have a well defined signature - -// portable version of posix_memalign -static inline void *aligned_malloc(size_t alignment, size_t size) { - void *p; -#ifdef _MSC_VER - p = _aligned_malloc(size, alignment); -#elif defined(__MINGW32__) || defined(__MINGW64__) - p = __mingw_aligned_malloc(size, alignment); -#else - // somehow, if this is used before including "x86intrin.h", it creates an - // implicit defined warning. - if (posix_memalign(&p, alignment, size) != 0) return NULL; -#endif - return p; -} - -static inline void aligned_free(void *memblock) { -#ifdef _MSC_VER - _aligned_free(memblock); -#elif defined(__MINGW32__) || defined(__MINGW64__) - __mingw_aligned_free(memblock); -#else - free(memblock); -#endif -} - -#if defined(_MSC_VER) -#define ALIGNED(x) __declspec(align(x)) -#else -#if defined(__GNUC__) -#define ALIGNED(x) __attribute__((aligned(x))) -#endif -#endif - -#ifdef __GNUC__ -#define WARN_UNUSED __attribute__((warn_unused_result)) -#else -#define WARN_UNUSED -#endif - -#define IS_BIG_ENDIAN (*(uint16_t *)"\0\xff" < 0x100) - -static inline int hamming(uint64_t x) { -#ifdef USESSE4 - return (int) _mm_popcnt_u64(x); -#else - // won't work under visual studio, but hopeful we have _mm_popcnt_u64 in - // many cases - return __builtin_popcountll(x); -#endif -} - -#ifndef UINT64_C -#define UINT64_C(c) (c##ULL) -#endif - -#ifndef UINT32_C -#define UINT32_C(c) (c##UL) -#endif - -#ifdef __cplusplus -} -#endif - -#endif /* INCLUDE_PORTABILITY_H_ */ -/* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/portability.h */ -/* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/perfparameters.h */ -#ifndef PERFPARAMETERS_H_ -#define PERFPARAMETERS_H_ - -#include - -/** -During lazy computations, we can transform array containers into bitset -containers as -long as we can expect them to have ARRAY_LAZY_LOWERBOUND values. -*/ -enum { ARRAY_LAZY_LOWERBOUND = 1024 }; - -/* default initial size of a run container - setting it to zero delays the malloc.*/ -enum { RUN_DEFAULT_INIT_SIZE = 0 }; - -/* default initial size of an array container - setting it to zero delays the malloc */ -enum { ARRAY_DEFAULT_INIT_SIZE = 0 }; - -/* automatic bitset conversion during lazy or */ -#ifndef LAZY_OR_BITSET_CONVERSION -#define LAZY_OR_BITSET_CONVERSION true -#endif - -/* automatically attempt to convert a bitset to a full run during lazy - * evaluation */ -#ifndef LAZY_OR_BITSET_CONVERSION_TO_FULL -#define LAZY_OR_BITSET_CONVERSION_TO_FULL true -#endif - -/* automatically attempt to convert a bitset to a full run */ -#ifndef OR_BITSET_CONVERSION_TO_FULL -#define OR_BITSET_CONVERSION_TO_FULL true -#endif - -#endif -/* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/perfparameters.h */ -/* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/array_util.h */ -#ifndef ARRAY_UTIL_H -#define ARRAY_UTIL_H - -#include // for size_t -#include - - -/* - * Good old binary search. - * Assumes that array is sorted, has logarithmic complexity. - * if the result is x, then: - * if ( x>0 ) you have array[x] = ikey - * if ( x<0 ) then inserting ikey at position -x-1 in array (insuring that array[-x-1]=ikey) - * keys the array sorted. - */ -inline int32_t binarySearch(const uint16_t *array, int32_t lenarray, - uint16_t ikey) { - int32_t low = 0; - int32_t high = lenarray - 1; - while (low <= high) { - int32_t middleIndex = (low + high) >> 1; - uint16_t middleValue = array[middleIndex]; - if (middleValue < ikey) { - low = middleIndex + 1; - } else if (middleValue > ikey) { - high = middleIndex - 1; - } else { - return middleIndex; - } - } - return -(low + 1); -} - -/** - * Galloping search - * Assumes that array is sorted, has logarithmic complexity. - * if the result is x, then if x = length, you have that all values in array between pos and length - * are smaller than min. - * otherwise returns the first index x such that array[x] >= min. - */ -static inline int32_t advanceUntil(const uint16_t *array, int32_t pos, - int32_t length, uint16_t min) { - int32_t lower = pos + 1; - - if ((lower >= length) || (array[lower] >= min)) { - return lower; - } - - int32_t spansize = 1; - - while ((lower + spansize < length) && (array[lower + spansize] < min)) { - spansize <<= 1; - } - int32_t upper = (lower + spansize < length) ? lower + spansize : length - 1; - - if (array[upper] == min) { - return upper; - } - if (array[upper] < min) { - // means - // array - // has no - // item - // >= min - // pos = array.length; - return length; - } - - // we know that the next-smallest span was too small - lower += (spansize >> 1); - - int32_t mid = 0; - while (lower + 1 != upper) { - mid = (lower + upper) >> 1; - if (array[mid] == min) { - return mid; - } else if (array[mid] < min) { - lower = mid; - } else { - upper = mid; - } - } - return upper; -} - -/** - * Returns number of elements which are less then $ikey. - * Array elements must be unique and sorted. - */ -static inline int32_t count_less(const uint16_t *array, int32_t lenarray, - uint16_t ikey) { - if (lenarray == 0) return 0; - int32_t pos = binarySearch(array, lenarray, ikey); - return pos >= 0 ? pos : -(pos+1); -} - -/** - * Returns number of elements which are greater then $ikey. - * Array elements must be unique and sorted. - */ -static inline int32_t count_greater(const uint16_t *array, int32_t lenarray, - uint16_t ikey) { - if (lenarray == 0) return 0; - int32_t pos = binarySearch(array, lenarray, ikey); - if (pos >= 0) { - return lenarray - (pos+1); - } else { - return lenarray - (-pos-1); - } -} - -/** - * From Schlegel et al., Fast Sorted-Set Intersection using SIMD Instructions - * Optimized by D. Lemire on May 3rd 2013 - * - * C should have capacity greater than the minimum of s_1 and s_b + 8 - * where 8 is sizeof(__m128i)/sizeof(uint16_t). - */ -int32_t intersect_vector16(const uint16_t *__restrict__ A, size_t s_a, - const uint16_t *__restrict__ B, size_t s_b, - uint16_t *C); - -/** - * Compute the cardinality of the intersection using SSE4 instructions - */ -int32_t intersect_vector16_cardinality(const uint16_t *__restrict__ A, - size_t s_a, - const uint16_t *__restrict__ B, - size_t s_b); - -/* Computes the intersection between one small and one large set of uint16_t. - * Stores the result into buffer and return the number of elements. */ -int32_t intersect_skewed_uint16(const uint16_t *smallarray, size_t size_s, - const uint16_t *largearray, size_t size_l, - uint16_t *buffer); - -/* Computes the size of the intersection between one small and one large set of - * uint16_t. */ -int32_t intersect_skewed_uint16_cardinality(const uint16_t *smallarray, - size_t size_s, - const uint16_t *largearray, - size_t size_l); - - -/* Check whether the size of the intersection between one small and one large set of uint16_t is non-zero. */ -bool intersect_skewed_uint16_nonempty(const uint16_t *smallarray, size_t size_s, - const uint16_t *largearray, size_t size_l); -/** - * Generic intersection function. - */ -int32_t intersect_uint16(const uint16_t *A, const size_t lenA, - const uint16_t *B, const size_t lenB, uint16_t *out); -/** - * Compute the size of the intersection (generic). - */ -int32_t intersect_uint16_cardinality(const uint16_t *A, const size_t lenA, - const uint16_t *B, const size_t lenB); - -/** - * Checking whether the size of the intersection is non-zero. - */ -bool intersect_uint16_nonempty(const uint16_t *A, const size_t lenA, - const uint16_t *B, const size_t lenB); -/** - * Generic union function. - */ -size_t union_uint16(const uint16_t *set_1, size_t size_1, const uint16_t *set_2, - size_t size_2, uint16_t *buffer); - -/** - * Generic XOR function. - */ -int32_t xor_uint16(const uint16_t *array_1, int32_t card_1, - const uint16_t *array_2, int32_t card_2, uint16_t *out); - -/** - * Generic difference function (ANDNOT). - */ -int difference_uint16(const uint16_t *a1, int length1, const uint16_t *a2, - int length2, uint16_t *a_out); - -/** - * Generic intersection function. - */ -size_t intersection_uint32(const uint32_t *A, const size_t lenA, - const uint32_t *B, const size_t lenB, uint32_t *out); - -/** - * Generic intersection function, returns just the cardinality. - */ -size_t intersection_uint32_card(const uint32_t *A, const size_t lenA, - const uint32_t *B, const size_t lenB); - -/** - * Generic union function. - */ -size_t union_uint32(const uint32_t *set_1, size_t size_1, const uint32_t *set_2, - size_t size_2, uint32_t *buffer); - -/** - * A fast SSE-based union function. - */ -uint32_t union_vector16(const uint16_t *__restrict__ set_1, uint32_t size_1, - const uint16_t *__restrict__ set_2, uint32_t size_2, - uint16_t *__restrict__ buffer); -/** - * A fast SSE-based XOR function. - */ -uint32_t xor_vector16(const uint16_t *__restrict__ array1, uint32_t length1, - const uint16_t *__restrict__ array2, uint32_t length2, - uint16_t *__restrict__ output); - -/** - * A fast SSE-based difference function. - */ -int32_t difference_vector16(const uint16_t *__restrict__ A, size_t s_a, - const uint16_t *__restrict__ B, size_t s_b, - uint16_t *C); - -/** - * Generic union function, returns just the cardinality. - */ -size_t union_uint32_card(const uint32_t *set_1, size_t size_1, - const uint32_t *set_2, size_t size_2); - -/** -* combines union_uint16 and union_vector16 optimally -*/ -size_t fast_union_uint16(const uint16_t *set_1, size_t size_1, const uint16_t *set_2, - size_t size_2, uint16_t *buffer); - - -#endif -/* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/array_util.h */ -/* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/roaring_types.h */ -/* - Typedefs used by various components -*/ - -#ifndef ROARING_TYPES_H -#define ROARING_TYPES_H - -typedef bool (*roaring_iterator)(uint32_t value, void *param); -typedef bool (*roaring_iterator64)(uint64_t value, void *param); - -/** -* (For advanced users.) -* The roaring_statistics_t can be used to collect detailed statistics about -* the composition of a roaring bitmap. -*/ -typedef struct roaring_statistics_s { - uint32_t n_containers; /* number of containers */ - - uint32_t n_array_containers; /* number of array containers */ - uint32_t n_run_containers; /* number of run containers */ - uint32_t n_bitset_containers; /* number of bitmap containers */ - - uint32_t - n_values_array_containers; /* number of values in array containers */ - uint32_t n_values_run_containers; /* number of values in run containers */ - uint32_t - n_values_bitset_containers; /* number of values in bitmap containers */ - - uint32_t n_bytes_array_containers; /* number of allocated bytes in array - containers */ - uint32_t n_bytes_run_containers; /* number of allocated bytes in run - containers */ - uint32_t n_bytes_bitset_containers; /* number of allocated bytes in bitmap - containers */ - - uint32_t - max_value; /* the maximal value, undefined if cardinality is zero */ - uint32_t - min_value; /* the minimal value, undefined if cardinality is zero */ - uint64_t sum_value; /* the sum of all values (could be used to compute - average) */ - - uint64_t cardinality; /* total number of values stored in the bitmap */ - - // and n_values_arrays, n_values_rle, n_values_bitmap -} roaring_statistics_t; - -#endif /* ROARING_TYPES_H */ -/* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/roaring_types.h */ -/* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/utilasm.h */ -/* - * utilasm.h - * - */ - -#ifndef INCLUDE_UTILASM_H_ -#define INCLUDE_UTILASM_H_ - - -#if defined(USE_BMI) & defined(ROARING_INLINE_ASM) -#define ASMBITMANIPOPTIMIZATION // optimization flag - -#define ASM_SHIFT_RIGHT(srcReg, bitsReg, destReg) \ - __asm volatile("shrx %1, %2, %0" \ - : "=r"(destReg) \ - : /* write */ \ - "r"(bitsReg), /* read only */ \ - "r"(srcReg) /* read only */ \ - ) - -#define ASM_INPLACESHIFT_RIGHT(srcReg, bitsReg) \ - __asm volatile("shrx %1, %0, %0" \ - : "+r"(srcReg) \ - : /* read/write */ \ - "r"(bitsReg) /* read only */ \ - ) - -#define ASM_SHIFT_LEFT(srcReg, bitsReg, destReg) \ - __asm volatile("shlx %1, %2, %0" \ - : "=r"(destReg) \ - : /* write */ \ - "r"(bitsReg), /* read only */ \ - "r"(srcReg) /* read only */ \ - ) -// set bit at position testBit within testByte to 1 and -// copy cmovDst to cmovSrc if that bit was previously clear -#define ASM_SET_BIT_INC_WAS_CLEAR(testByte, testBit, count) \ - __asm volatile( \ - "bts %2, %0\n" \ - "sbb $-1, %1\n" \ - : "+r"(testByte), /* read/write */ \ - "+r"(count) \ - : /* read/write */ \ - "r"(testBit) /* read only */ \ - ) - -#define ASM_CLEAR_BIT_DEC_WAS_SET(testByte, testBit, count) \ - __asm volatile( \ - "btr %2, %0\n" \ - "sbb $0, %1\n" \ - : "+r"(testByte), /* read/write */ \ - "+r"(count) \ - : /* read/write */ \ - "r"(testBit) /* read only */ \ - ) - -#define ASM_BT64(testByte, testBit, count) \ - __asm volatile( \ - "bt %2,%1\n" \ - "sbb %0,%0" /*could use setb */ \ - : "=r"(count) \ - : /* write */ \ - "r"(testByte), /* read only */ \ - "r"(testBit) /* read only */ \ - ) - -#endif // USE_BMI -#endif /* INCLUDE_UTILASM_H_ */ -/* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/utilasm.h */ -/* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/bitset_util.h */ -#ifndef BITSET_UTIL_H -#define BITSET_UTIL_H - -#include - - -/* - * Set all bits in indexes [begin,end) to true. - */ -static inline void bitset_set_range(uint64_t *bitmap, uint32_t start, - uint32_t end) { - if (start == end) return; - uint32_t firstword = start / 64; - uint32_t endword = (end - 1) / 64; - if (firstword == endword) { - bitmap[firstword] |= ((~UINT64_C(0)) << (start % 64)) & - ((~UINT64_C(0)) >> ((~end + 1) % 64)); - return; - } - bitmap[firstword] |= (~UINT64_C(0)) << (start % 64); - for (uint32_t i = firstword + 1; i < endword; i++) bitmap[i] = ~UINT64_C(0); - bitmap[endword] |= (~UINT64_C(0)) >> ((~end + 1) % 64); -} - - -/* - * Find the cardinality of the bitset in [begin,begin+lenminusone] - */ -static inline int bitset_lenrange_cardinality(uint64_t *bitmap, uint32_t start, - uint32_t lenminusone) { - uint32_t firstword = start / 64; - uint32_t endword = (start + lenminusone) / 64; - if (firstword == endword) { - return hamming(bitmap[firstword] & - ((~UINT64_C(0)) >> ((63 - lenminusone) % 64)) - << (start % 64)); - } - int answer = hamming(bitmap[firstword] & ((~UINT64_C(0)) << (start % 64))); - for (uint32_t i = firstword + 1; i < endword; i++) { - answer += hamming(bitmap[i]); - } - answer += - hamming(bitmap[endword] & - (~UINT64_C(0)) >> (((~start + 1) - lenminusone - 1) % 64)); - return answer; -} - -/* - * Check whether the cardinality of the bitset in [begin,begin+lenminusone] is 0 - */ -static inline bool bitset_lenrange_empty(uint64_t *bitmap, uint32_t start, - uint32_t lenminusone) { - uint32_t firstword = start / 64; - uint32_t endword = (start + lenminusone) / 64; - if (firstword == endword) { - return (bitmap[firstword] & ((~UINT64_C(0)) >> ((63 - lenminusone) % 64)) - << (start % 64)) == 0; - } - if(((bitmap[firstword] & ((~UINT64_C(0)) << (start%64)))) != 0) return false; - for (uint32_t i = firstword + 1; i < endword; i++) { - if(bitmap[i] != 0) return false; - } - if((bitmap[endword] & (~UINT64_C(0)) >> (((~start + 1) - lenminusone - 1) % 64)) != 0) return false; - return true; -} - - -/* - * Set all bits in indexes [begin,begin+lenminusone] to true. - */ -static inline void bitset_set_lenrange(uint64_t *bitmap, uint32_t start, - uint32_t lenminusone) { - uint32_t firstword = start / 64; - uint32_t endword = (start + lenminusone) / 64; - if (firstword == endword) { - bitmap[firstword] |= ((~UINT64_C(0)) >> ((63 - lenminusone) % 64)) - << (start % 64); - return; - } - uint64_t temp = bitmap[endword]; - bitmap[firstword] |= (~UINT64_C(0)) << (start % 64); - for (uint32_t i = firstword + 1; i < endword; i += 2) - bitmap[i] = bitmap[i + 1] = ~UINT64_C(0); - bitmap[endword] = - temp | (~UINT64_C(0)) >> (((~start + 1) - lenminusone - 1) % 64); -} - -/* - * Flip all the bits in indexes [begin,end). - */ -static inline void bitset_flip_range(uint64_t *bitmap, uint32_t start, - uint32_t end) { - if (start == end) return; - uint32_t firstword = start / 64; - uint32_t endword = (end - 1) / 64; - bitmap[firstword] ^= ~((~UINT64_C(0)) << (start % 64)); - for (uint32_t i = firstword; i < endword; i++) bitmap[i] = ~bitmap[i]; - bitmap[endword] ^= ((~UINT64_C(0)) >> ((~end + 1) % 64)); -} - -/* - * Set all bits in indexes [begin,end) to false. - */ -static inline void bitset_reset_range(uint64_t *bitmap, uint32_t start, - uint32_t end) { - if (start == end) return; - uint32_t firstword = start / 64; - uint32_t endword = (end - 1) / 64; - if (firstword == endword) { - bitmap[firstword] &= ~(((~UINT64_C(0)) << (start % 64)) & - ((~UINT64_C(0)) >> ((~end + 1) % 64))); - return; - } - bitmap[firstword] &= ~((~UINT64_C(0)) << (start % 64)); - for (uint32_t i = firstword + 1; i < endword; i++) bitmap[i] = UINT64_C(0); - bitmap[endword] &= ~((~UINT64_C(0)) >> ((~end + 1) % 64)); -} - -/* - * Given a bitset containing "length" 64-bit words, write out the position - * of all the set bits to "out", values start at "base". - * - * The "out" pointer should be sufficient to store the actual number of bits - * set. - * - * Returns how many values were actually decoded. - * - * This function should only be expected to be faster than - * bitset_extract_setbits - * when the density of the bitset is high. - * - * This function uses AVX2 decoding. - */ -size_t bitset_extract_setbits_avx2(uint64_t *bitset, size_t length, void *vout, - size_t outcapacity, uint32_t base); - -/* - * Given a bitset containing "length" 64-bit words, write out the position - * of all the set bits to "out", values start at "base". - * - * The "out" pointer should be sufficient to store the actual number of bits - *set. - * - * Returns how many values were actually decoded. - */ -size_t bitset_extract_setbits(uint64_t *bitset, size_t length, void *vout, - uint32_t base); - -/* - * Given a bitset containing "length" 64-bit words, write out the position - * of all the set bits to "out" as 16-bit integers, values start at "base" (can - *be set to zero) - * - * The "out" pointer should be sufficient to store the actual number of bits - *set. - * - * Returns how many values were actually decoded. - * - * This function should only be expected to be faster than - *bitset_extract_setbits_uint16 - * when the density of the bitset is high. - * - * This function uses SSE decoding. - */ -size_t bitset_extract_setbits_sse_uint16(const uint64_t *bitset, size_t length, - uint16_t *out, size_t outcapacity, - uint16_t base); - -/* - * Given a bitset containing "length" 64-bit words, write out the position - * of all the set bits to "out", values start at "base" - * (can be set to zero) - * - * The "out" pointer should be sufficient to store the actual number of bits - *set. - * - * Returns how many values were actually decoded. - */ -size_t bitset_extract_setbits_uint16(const uint64_t *bitset, size_t length, - uint16_t *out, uint16_t base); - -/* - * Given two bitsets containing "length" 64-bit words, write out the position - * of all the common set bits to "out", values start at "base" - * (can be set to zero) - * - * The "out" pointer should be sufficient to store the actual number of bits - * set. - * - * Returns how many values were actually decoded. - */ -size_t bitset_extract_intersection_setbits_uint16(const uint64_t * __restrict__ bitset1, - const uint64_t * __restrict__ bitset2, - size_t length, uint16_t *out, - uint16_t base); - -/* - * Given a bitset having cardinality card, set all bit values in the list (there - * are length of them) - * and return the updated cardinality. This evidently assumes that the bitset - * already contained data. - */ -uint64_t bitset_set_list_withcard(void *bitset, uint64_t card, - const uint16_t *list, uint64_t length); -/* - * Given a bitset, set all bit values in the list (there - * are length of them). - */ -void bitset_set_list(void *bitset, const uint16_t *list, uint64_t length); - -/* - * Given a bitset having cardinality card, unset all bit values in the list - * (there are length of them) - * and return the updated cardinality. This evidently assumes that the bitset - * already contained data. - */ -uint64_t bitset_clear_list(void *bitset, uint64_t card, const uint16_t *list, - uint64_t length); - -/* - * Given a bitset having cardinality card, toggle all bit values in the list - * (there are length of them) - * and return the updated cardinality. This evidently assumes that the bitset - * already contained data. - */ - -uint64_t bitset_flip_list_withcard(void *bitset, uint64_t card, - const uint16_t *list, uint64_t length); - -void bitset_flip_list(void *bitset, const uint16_t *list, uint64_t length); - -#ifdef USEAVX -/*** - * BEGIN Harley-Seal popcount functions. - */ - -/** - * Compute the population count of a 256-bit word - * This is not especially fast, but it is convenient as part of other functions. - */ -static inline __m256i popcount256(__m256i v) { - const __m256i lookuppos = _mm256_setr_epi8( - /* 0 */ 4 + 0, /* 1 */ 4 + 1, /* 2 */ 4 + 1, /* 3 */ 4 + 2, - /* 4 */ 4 + 1, /* 5 */ 4 + 2, /* 6 */ 4 + 2, /* 7 */ 4 + 3, - /* 8 */ 4 + 1, /* 9 */ 4 + 2, /* a */ 4 + 2, /* b */ 4 + 3, - /* c */ 4 + 2, /* d */ 4 + 3, /* e */ 4 + 3, /* f */ 4 + 4, - - /* 0 */ 4 + 0, /* 1 */ 4 + 1, /* 2 */ 4 + 1, /* 3 */ 4 + 2, - /* 4 */ 4 + 1, /* 5 */ 4 + 2, /* 6 */ 4 + 2, /* 7 */ 4 + 3, - /* 8 */ 4 + 1, /* 9 */ 4 + 2, /* a */ 4 + 2, /* b */ 4 + 3, - /* c */ 4 + 2, /* d */ 4 + 3, /* e */ 4 + 3, /* f */ 4 + 4); - const __m256i lookupneg = _mm256_setr_epi8( - /* 0 */ 4 - 0, /* 1 */ 4 - 1, /* 2 */ 4 - 1, /* 3 */ 4 - 2, - /* 4 */ 4 - 1, /* 5 */ 4 - 2, /* 6 */ 4 - 2, /* 7 */ 4 - 3, - /* 8 */ 4 - 1, /* 9 */ 4 - 2, /* a */ 4 - 2, /* b */ 4 - 3, - /* c */ 4 - 2, /* d */ 4 - 3, /* e */ 4 - 3, /* f */ 4 - 4, - - /* 0 */ 4 - 0, /* 1 */ 4 - 1, /* 2 */ 4 - 1, /* 3 */ 4 - 2, - /* 4 */ 4 - 1, /* 5 */ 4 - 2, /* 6 */ 4 - 2, /* 7 */ 4 - 3, - /* 8 */ 4 - 1, /* 9 */ 4 - 2, /* a */ 4 - 2, /* b */ 4 - 3, - /* c */ 4 - 2, /* d */ 4 - 3, /* e */ 4 - 3, /* f */ 4 - 4); - const __m256i low_mask = _mm256_set1_epi8(0x0f); - - const __m256i lo = _mm256_and_si256(v, low_mask); - const __m256i hi = _mm256_and_si256(_mm256_srli_epi16(v, 4), low_mask); - const __m256i popcnt1 = _mm256_shuffle_epi8(lookuppos, lo); - const __m256i popcnt2 = _mm256_shuffle_epi8(lookupneg, hi); - return _mm256_sad_epu8(popcnt1, popcnt2); -} - -/** - * Simple CSA over 256 bits - */ -static inline void CSA(__m256i *h, __m256i *l, __m256i a, __m256i b, - __m256i c) { - const __m256i u = _mm256_xor_si256(a, b); - *h = _mm256_or_si256(_mm256_and_si256(a, b), _mm256_and_si256(u, c)); - *l = _mm256_xor_si256(u, c); -} - -/** - * Fast Harley-Seal AVX population count function - */ -inline static uint64_t avx2_harley_seal_popcount256(const __m256i *data, - const uint64_t size) { - __m256i total = _mm256_setzero_si256(); - __m256i ones = _mm256_setzero_si256(); - __m256i twos = _mm256_setzero_si256(); - __m256i fours = _mm256_setzero_si256(); - __m256i eights = _mm256_setzero_si256(); - __m256i sixteens = _mm256_setzero_si256(); - __m256i twosA, twosB, foursA, foursB, eightsA, eightsB; - - const uint64_t limit = size - size % 16; - uint64_t i = 0; - - for (; i < limit; i += 16) { - CSA(&twosA, &ones, ones, _mm256_lddqu_si256(data + i), - _mm256_lddqu_si256(data + i + 1)); - CSA(&twosB, &ones, ones, _mm256_lddqu_si256(data + i + 2), - _mm256_lddqu_si256(data + i + 3)); - CSA(&foursA, &twos, twos, twosA, twosB); - CSA(&twosA, &ones, ones, _mm256_lddqu_si256(data + i + 4), - _mm256_lddqu_si256(data + i + 5)); - CSA(&twosB, &ones, ones, _mm256_lddqu_si256(data + i + 6), - _mm256_lddqu_si256(data + i + 7)); - CSA(&foursB, &twos, twos, twosA, twosB); - CSA(&eightsA, &fours, fours, foursA, foursB); - CSA(&twosA, &ones, ones, _mm256_lddqu_si256(data + i + 8), - _mm256_lddqu_si256(data + i + 9)); - CSA(&twosB, &ones, ones, _mm256_lddqu_si256(data + i + 10), - _mm256_lddqu_si256(data + i + 11)); - CSA(&foursA, &twos, twos, twosA, twosB); - CSA(&twosA, &ones, ones, _mm256_lddqu_si256(data + i + 12), - _mm256_lddqu_si256(data + i + 13)); - CSA(&twosB, &ones, ones, _mm256_lddqu_si256(data + i + 14), - _mm256_lddqu_si256(data + i + 15)); - CSA(&foursB, &twos, twos, twosA, twosB); - CSA(&eightsB, &fours, fours, foursA, foursB); - CSA(&sixteens, &eights, eights, eightsA, eightsB); - - total = _mm256_add_epi64(total, popcount256(sixteens)); - } - - total = _mm256_slli_epi64(total, 4); // * 16 - total = _mm256_add_epi64( - total, _mm256_slli_epi64(popcount256(eights), 3)); // += 8 * ... - total = _mm256_add_epi64( - total, _mm256_slli_epi64(popcount256(fours), 2)); // += 4 * ... - total = _mm256_add_epi64( - total, _mm256_slli_epi64(popcount256(twos), 1)); // += 2 * ... - total = _mm256_add_epi64(total, popcount256(ones)); - for (; i < size; i++) - total = - _mm256_add_epi64(total, popcount256(_mm256_lddqu_si256(data + i))); - - return (uint64_t)(_mm256_extract_epi64(total, 0)) + - (uint64_t)(_mm256_extract_epi64(total, 1)) + - (uint64_t)(_mm256_extract_epi64(total, 2)) + - (uint64_t)(_mm256_extract_epi64(total, 3)); -} - -#define AVXPOPCNTFNC(opname, avx_intrinsic) \ - static inline uint64_t avx2_harley_seal_popcount256_##opname( \ - const __m256i *data1, const __m256i *data2, const uint64_t size) { \ - __m256i total = _mm256_setzero_si256(); \ - __m256i ones = _mm256_setzero_si256(); \ - __m256i twos = _mm256_setzero_si256(); \ - __m256i fours = _mm256_setzero_si256(); \ - __m256i eights = _mm256_setzero_si256(); \ - __m256i sixteens = _mm256_setzero_si256(); \ - __m256i twosA, twosB, foursA, foursB, eightsA, eightsB; \ - __m256i A1, A2; \ - const uint64_t limit = size - size % 16; \ - uint64_t i = 0; \ - for (; i < limit; i += 16) { \ - A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i), \ - _mm256_lddqu_si256(data2 + i)); \ - A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 1), \ - _mm256_lddqu_si256(data2 + i + 1)); \ - CSA(&twosA, &ones, ones, A1, A2); \ - A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 2), \ - _mm256_lddqu_si256(data2 + i + 2)); \ - A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 3), \ - _mm256_lddqu_si256(data2 + i + 3)); \ - CSA(&twosB, &ones, ones, A1, A2); \ - CSA(&foursA, &twos, twos, twosA, twosB); \ - A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 4), \ - _mm256_lddqu_si256(data2 + i + 4)); \ - A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 5), \ - _mm256_lddqu_si256(data2 + i + 5)); \ - CSA(&twosA, &ones, ones, A1, A2); \ - A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 6), \ - _mm256_lddqu_si256(data2 + i + 6)); \ - A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 7), \ - _mm256_lddqu_si256(data2 + i + 7)); \ - CSA(&twosB, &ones, ones, A1, A2); \ - CSA(&foursB, &twos, twos, twosA, twosB); \ - CSA(&eightsA, &fours, fours, foursA, foursB); \ - A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 8), \ - _mm256_lddqu_si256(data2 + i + 8)); \ - A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 9), \ - _mm256_lddqu_si256(data2 + i + 9)); \ - CSA(&twosA, &ones, ones, A1, A2); \ - A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 10), \ - _mm256_lddqu_si256(data2 + i + 10)); \ - A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 11), \ - _mm256_lddqu_si256(data2 + i + 11)); \ - CSA(&twosB, &ones, ones, A1, A2); \ - CSA(&foursA, &twos, twos, twosA, twosB); \ - A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 12), \ - _mm256_lddqu_si256(data2 + i + 12)); \ - A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 13), \ - _mm256_lddqu_si256(data2 + i + 13)); \ - CSA(&twosA, &ones, ones, A1, A2); \ - A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 14), \ - _mm256_lddqu_si256(data2 + i + 14)); \ - A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 15), \ - _mm256_lddqu_si256(data2 + i + 15)); \ - CSA(&twosB, &ones, ones, A1, A2); \ - CSA(&foursB, &twos, twos, twosA, twosB); \ - CSA(&eightsB, &fours, fours, foursA, foursB); \ - CSA(&sixteens, &eights, eights, eightsA, eightsB); \ - total = _mm256_add_epi64(total, popcount256(sixteens)); \ - } \ - total = _mm256_slli_epi64(total, 4); \ - total = _mm256_add_epi64(total, \ - _mm256_slli_epi64(popcount256(eights), 3)); \ - total = \ - _mm256_add_epi64(total, _mm256_slli_epi64(popcount256(fours), 2)); \ - total = \ - _mm256_add_epi64(total, _mm256_slli_epi64(popcount256(twos), 1)); \ - total = _mm256_add_epi64(total, popcount256(ones)); \ - for (; i < size; i++) { \ - A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i), \ - _mm256_lddqu_si256(data2 + i)); \ - total = _mm256_add_epi64(total, popcount256(A1)); \ - } \ - return (uint64_t)(_mm256_extract_epi64(total, 0)) + \ - (uint64_t)(_mm256_extract_epi64(total, 1)) + \ - (uint64_t)(_mm256_extract_epi64(total, 2)) + \ - (uint64_t)(_mm256_extract_epi64(total, 3)); \ - } \ - static inline uint64_t avx2_harley_seal_popcount256andstore_##opname( \ - const __m256i *__restrict__ data1, const __m256i *__restrict__ data2, \ - __m256i *__restrict__ out, const uint64_t size) { \ - __m256i total = _mm256_setzero_si256(); \ - __m256i ones = _mm256_setzero_si256(); \ - __m256i twos = _mm256_setzero_si256(); \ - __m256i fours = _mm256_setzero_si256(); \ - __m256i eights = _mm256_setzero_si256(); \ - __m256i sixteens = _mm256_setzero_si256(); \ - __m256i twosA, twosB, foursA, foursB, eightsA, eightsB; \ - __m256i A1, A2; \ - const uint64_t limit = size - size % 16; \ - uint64_t i = 0; \ - for (; i < limit; i += 16) { \ - A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i), \ - _mm256_lddqu_si256(data2 + i)); \ - _mm256_storeu_si256(out + i, A1); \ - A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 1), \ - _mm256_lddqu_si256(data2 + i + 1)); \ - _mm256_storeu_si256(out + i + 1, A2); \ - CSA(&twosA, &ones, ones, A1, A2); \ - A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 2), \ - _mm256_lddqu_si256(data2 + i + 2)); \ - _mm256_storeu_si256(out + i + 2, A1); \ - A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 3), \ - _mm256_lddqu_si256(data2 + i + 3)); \ - _mm256_storeu_si256(out + i + 3, A2); \ - CSA(&twosB, &ones, ones, A1, A2); \ - CSA(&foursA, &twos, twos, twosA, twosB); \ - A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 4), \ - _mm256_lddqu_si256(data2 + i + 4)); \ - _mm256_storeu_si256(out + i + 4, A1); \ - A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 5), \ - _mm256_lddqu_si256(data2 + i + 5)); \ - _mm256_storeu_si256(out + i + 5, A2); \ - CSA(&twosA, &ones, ones, A1, A2); \ - A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 6), \ - _mm256_lddqu_si256(data2 + i + 6)); \ - _mm256_storeu_si256(out + i + 6, A1); \ - A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 7), \ - _mm256_lddqu_si256(data2 + i + 7)); \ - _mm256_storeu_si256(out + i + 7, A2); \ - CSA(&twosB, &ones, ones, A1, A2); \ - CSA(&foursB, &twos, twos, twosA, twosB); \ - CSA(&eightsA, &fours, fours, foursA, foursB); \ - A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 8), \ - _mm256_lddqu_si256(data2 + i + 8)); \ - _mm256_storeu_si256(out + i + 8, A1); \ - A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 9), \ - _mm256_lddqu_si256(data2 + i + 9)); \ - _mm256_storeu_si256(out + i + 9, A2); \ - CSA(&twosA, &ones, ones, A1, A2); \ - A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 10), \ - _mm256_lddqu_si256(data2 + i + 10)); \ - _mm256_storeu_si256(out + i + 10, A1); \ - A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 11), \ - _mm256_lddqu_si256(data2 + i + 11)); \ - _mm256_storeu_si256(out + i + 11, A2); \ - CSA(&twosB, &ones, ones, A1, A2); \ - CSA(&foursA, &twos, twos, twosA, twosB); \ - A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 12), \ - _mm256_lddqu_si256(data2 + i + 12)); \ - _mm256_storeu_si256(out + i + 12, A1); \ - A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 13), \ - _mm256_lddqu_si256(data2 + i + 13)); \ - _mm256_storeu_si256(out + i + 13, A2); \ - CSA(&twosA, &ones, ones, A1, A2); \ - A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 14), \ - _mm256_lddqu_si256(data2 + i + 14)); \ - _mm256_storeu_si256(out + i + 14, A1); \ - A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 15), \ - _mm256_lddqu_si256(data2 + i + 15)); \ - _mm256_storeu_si256(out + i + 15, A2); \ - CSA(&twosB, &ones, ones, A1, A2); \ - CSA(&foursB, &twos, twos, twosA, twosB); \ - CSA(&eightsB, &fours, fours, foursA, foursB); \ - CSA(&sixteens, &eights, eights, eightsA, eightsB); \ - total = _mm256_add_epi64(total, popcount256(sixteens)); \ - } \ - total = _mm256_slli_epi64(total, 4); \ - total = _mm256_add_epi64(total, \ - _mm256_slli_epi64(popcount256(eights), 3)); \ - total = \ - _mm256_add_epi64(total, _mm256_slli_epi64(popcount256(fours), 2)); \ - total = \ - _mm256_add_epi64(total, _mm256_slli_epi64(popcount256(twos), 1)); \ - total = _mm256_add_epi64(total, popcount256(ones)); \ - for (; i < size; i++) { \ - A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i), \ - _mm256_lddqu_si256(data2 + i)); \ - _mm256_storeu_si256(out + i, A1); \ - total = _mm256_add_epi64(total, popcount256(A1)); \ - } \ - return (uint64_t)(_mm256_extract_epi64(total, 0)) + \ - (uint64_t)(_mm256_extract_epi64(total, 1)) + \ - (uint64_t)(_mm256_extract_epi64(total, 2)) + \ - (uint64_t)(_mm256_extract_epi64(total, 3)); \ - } - -AVXPOPCNTFNC(or, _mm256_or_si256) -AVXPOPCNTFNC(union, _mm256_or_si256) -AVXPOPCNTFNC(and, _mm256_and_si256) -AVXPOPCNTFNC(intersection, _mm256_and_si256) -AVXPOPCNTFNC (xor, _mm256_xor_si256) -AVXPOPCNTFNC(andnot, _mm256_andnot_si256) - -/*** - * END Harley-Seal popcount functions. - */ - -#endif // USEAVX - -#endif -/* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/bitset_util.h */ -/* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/array.h */ -/* - * array.h - * - */ - -#ifndef INCLUDE_CONTAINERS_ARRAY_H_ -#define INCLUDE_CONTAINERS_ARRAY_H_ - -#ifdef __cplusplus -extern "C" { -#endif - -#include - - -/* Containers with DEFAULT_MAX_SIZE or less integers should be arrays */ -enum { DEFAULT_MAX_SIZE = 4096 }; - -/* struct array_container - sparse representation of a bitmap - * - * @cardinality: number of indices in `array` (and the bitmap) - * @capacity: allocated size of `array` - * @array: sorted list of integers - */ -struct array_container_s { - int32_t cardinality; - int32_t capacity; - uint16_t *array; -}; - -typedef struct array_container_s array_container_t; - -/* Create a new array with default. Return NULL in case of failure. See also - * array_container_create_given_capacity. */ -array_container_t *array_container_create(void); - -/* Create a new array with a specified capacity size. Return NULL in case of - * failure. */ -array_container_t *array_container_create_given_capacity(int32_t size); - -/* Create a new array containing all values in [min,max). */ -array_container_t * array_container_create_range(uint32_t min, uint32_t max); - -/* - * Shrink the capacity to the actual size, return the number of bytes saved. - */ -int array_container_shrink_to_fit(array_container_t *src); - -/* Free memory owned by `array'. */ -void array_container_free(array_container_t *array); - -/* Duplicate container */ -array_container_t *array_container_clone(const array_container_t *src); - -int32_t array_container_serialize(const array_container_t *container, - char *buf) WARN_UNUSED; - -uint32_t array_container_serialization_len(const array_container_t *container); - -void *array_container_deserialize(const char *buf, size_t buf_len); - -/* Get the cardinality of `array'. */ -static inline int array_container_cardinality(const array_container_t *array) { - return array->cardinality; -} - -static inline bool array_container_nonzero_cardinality( - const array_container_t *array) { - return array->cardinality > 0; -} - -/* Copy one container into another. We assume that they are distinct. */ -void array_container_copy(const array_container_t *src, array_container_t *dst); - -/* Add all the values in [min,max) (included) at a distance k*step from min. - The container must have a size less or equal to DEFAULT_MAX_SIZE after this - addition. */ -void array_container_add_from_range(array_container_t *arr, uint32_t min, - uint32_t max, uint16_t step); - -/* Set the cardinality to zero (does not release memory). */ -static inline void array_container_clear(array_container_t *array) { - array->cardinality = 0; -} - -static inline bool array_container_empty(const array_container_t *array) { - return array->cardinality == 0; -} - -/* check whether the cardinality is equal to the capacity (this does not mean -* that it contains 1<<16 elements) */ -static inline bool array_container_full(const array_container_t *array) { - return array->cardinality == array->capacity; -} - - -/* Compute the union of `src_1' and `src_2' and write the result to `dst' - * It is assumed that `dst' is distinct from both `src_1' and `src_2'. */ -void array_container_union(const array_container_t *src_1, - const array_container_t *src_2, - array_container_t *dst); - -/* symmetric difference, see array_container_union */ -void array_container_xor(const array_container_t *array_1, - const array_container_t *array_2, - array_container_t *out); - -/* Computes the intersection of src_1 and src_2 and write the result to - * dst. It is assumed that dst is distinct from both src_1 and src_2. */ -void array_container_intersection(const array_container_t *src_1, - const array_container_t *src_2, - array_container_t *dst); - -/* Check whether src_1 and src_2 intersect. */ -bool array_container_intersect(const array_container_t *src_1, - const array_container_t *src_2); - - -/* computers the size of the intersection between two arrays. - */ -int array_container_intersection_cardinality(const array_container_t *src_1, - const array_container_t *src_2); - -/* computes the intersection of array1 and array2 and write the result to - * array1. - * */ -void array_container_intersection_inplace(array_container_t *src_1, - const array_container_t *src_2); - -/* - * Write out the 16-bit integers contained in this container as a list of 32-bit - * integers using base - * as the starting value (it might be expected that base has zeros in its 16 - * least significant bits). - * The function returns the number of values written. - * The caller is responsible for allocating enough memory in out. - */ -int array_container_to_uint32_array(void *vout, const array_container_t *cont, - uint32_t base); - -/* Compute the number of runs */ -int32_t array_container_number_of_runs(const array_container_t *a); - -/* - * Print this container using printf (useful for debugging). - */ -void array_container_printf(const array_container_t *v); - -/* - * Print this container using printf as a comma-separated list of 32-bit - * integers starting at base. - */ -void array_container_printf_as_uint32_array(const array_container_t *v, - uint32_t base); - -/** - * Return the serialized size in bytes of a container having cardinality "card". - */ -static inline int32_t array_container_serialized_size_in_bytes(int32_t card) { - return card * 2 + 2; -} - -/** - * Increase capacity to at least min. - * Whether the existing data needs to be copied over depends on the "preserve" - * parameter. If preserve is false, then the new content will be uninitialized, - * otherwise the old content is copied. - */ -void array_container_grow(array_container_t *container, int32_t min, - bool preserve); - -bool array_container_iterate(const array_container_t *cont, uint32_t base, - roaring_iterator iterator, void *ptr); -bool array_container_iterate64(const array_container_t *cont, uint32_t base, - roaring_iterator64 iterator, uint64_t high_bits, - void *ptr); - -/** - * Writes the underlying array to buf, outputs how many bytes were written. - * This is meant to be byte-by-byte compatible with the Java and Go versions of - * Roaring. - * The number of bytes written should be - * array_container_size_in_bytes(container). - * - */ -int32_t array_container_write(const array_container_t *container, char *buf); -/** - * Reads the instance from buf, outputs how many bytes were read. - * This is meant to be byte-by-byte compatible with the Java and Go versions of - * Roaring. - * The number of bytes read should be array_container_size_in_bytes(container). - * You need to provide the (known) cardinality. - */ -int32_t array_container_read(int32_t cardinality, array_container_t *container, - const char *buf); - -/** - * Return the serialized size in bytes of a container (see - * bitset_container_write) - * This is meant to be compatible with the Java and Go versions of Roaring and - * assumes - * that the cardinality of the container is already known. - * - */ -static inline int32_t array_container_size_in_bytes( - const array_container_t *container) { - return container->cardinality * sizeof(uint16_t); -} - -/** - * Return true if the two arrays have the same content. - */ -bool array_container_equals(const array_container_t *container1, - const array_container_t *container2); - -/** - * Return true if container1 is a subset of container2. - */ -bool array_container_is_subset(const array_container_t *container1, - const array_container_t *container2); - -/** - * If the element of given rank is in this container, supposing that the first - * element has rank start_rank, then the function returns true and sets element - * accordingly. - * Otherwise, it returns false and update start_rank. - */ -static inline bool array_container_select(const array_container_t *container, - uint32_t *start_rank, uint32_t rank, - uint32_t *element) { - int card = array_container_cardinality(container); - if (*start_rank + card <= rank) { - *start_rank += card; - return false; - } else { - *element = container->array[rank - *start_rank]; - return true; - } -} - -/* Computes the difference of array1 and array2 and write the result - * to array out. - * Array out does not need to be distinct from array_1 - */ -void array_container_andnot(const array_container_t *array_1, - const array_container_t *array_2, - array_container_t *out); - -/* Append x to the set. Assumes that the value is larger than any preceding - * values. */ -static inline void array_container_append(array_container_t *arr, - uint16_t pos) { - const int32_t capacity = arr->capacity; - - if (array_container_full(arr)) { - array_container_grow(arr, capacity + 1, true); - } - - arr->array[arr->cardinality++] = pos; -} - -/** - * Add value to the set if final cardinality doesn't exceed max_cardinality. - * Return code: - * 1 -- value was added - * 0 -- value was already present - * -1 -- value was not added because cardinality would exceed max_cardinality - */ -static inline int array_container_try_add(array_container_t *arr, uint16_t value, - int32_t max_cardinality) { - const int32_t cardinality = arr->cardinality; - - // best case, we can append. - if ((array_container_empty(arr) || arr->array[cardinality - 1] < value) && - cardinality < max_cardinality) { - array_container_append(arr, value); - return 1; - } - - const int32_t loc = binarySearch(arr->array, cardinality, value); - - if (loc >= 0) { - return 0; - } else if (cardinality < max_cardinality) { - if (array_container_full(arr)) { - array_container_grow(arr, arr->capacity + 1, true); - } - const int32_t insert_idx = -loc - 1; - memmove(arr->array + insert_idx + 1, arr->array + insert_idx, - (cardinality - insert_idx) * sizeof(uint16_t)); - arr->array[insert_idx] = value; - arr->cardinality++; - return 1; - } else { - return -1; - } -} - -/* Add value to the set. Returns true if x was not already present. */ -static inline bool array_container_add(array_container_t *arr, uint16_t value) { - return array_container_try_add(arr, value, INT32_MAX) == 1; -} - -/* Remove x from the set. Returns true if x was present. */ -static inline bool array_container_remove(array_container_t *arr, - uint16_t pos) { - const int32_t idx = binarySearch(arr->array, arr->cardinality, pos); - const bool is_present = idx >= 0; - if (is_present) { - memmove(arr->array + idx, arr->array + idx + 1, - (arr->cardinality - idx - 1) * sizeof(uint16_t)); - arr->cardinality--; - } - - return is_present; -} - -/* Check whether x is present. */ -inline bool array_container_contains(const array_container_t *arr, - uint16_t pos) { - // return binarySearch(arr->array, arr->cardinality, pos) >= 0; - // binary search with fallback to linear search for short ranges - int32_t low = 0; - const uint16_t * carr = (const uint16_t *) arr->array; - int32_t high = arr->cardinality - 1; - // while (high - low >= 0) { - while(high >= low + 16) { - int32_t middleIndex = (low + high)>>1; - uint16_t middleValue = carr[middleIndex]; - if (middleValue < pos) { - low = middleIndex + 1; - } else if (middleValue > pos) { - high = middleIndex - 1; - } else { - return true; - } - } - - for (int i=low; i <= high; i++) { - uint16_t v = carr[i]; - if (v == pos) { - return true; - } - if ( v > pos ) return false; - } - return false; - -} - - -//* Check whether a range of values from range_start (included) to range_end (excluded) is present. */ -static inline bool array_container_contains_range(const array_container_t *arr, - uint32_t range_start, uint32_t range_end) { - - const uint16_t rs_included = range_start; - const uint16_t re_included = range_end - 1; - - const uint16_t *carr = (const uint16_t *) arr->array; - - const int32_t start = advanceUntil(carr, -1, arr->cardinality, rs_included); - const int32_t end = advanceUntil(carr, start - 1, arr->cardinality, re_included); - - return (start < arr->cardinality) && (end < arr->cardinality) - && (((uint16_t)(end - start)) == re_included - rs_included) - && (carr[start] == rs_included) && (carr[end] == re_included); -} - -/* Returns the smallest value (assumes not empty) */ -inline uint16_t array_container_minimum(const array_container_t *arr) { - if (arr->cardinality == 0) return 0; - return arr->array[0]; -} - -/* Returns the largest value (assumes not empty) */ -inline uint16_t array_container_maximum(const array_container_t *arr) { - if (arr->cardinality == 0) return 0; - return arr->array[arr->cardinality - 1]; -} - -/* Returns the number of values equal or smaller than x */ -inline int array_container_rank(const array_container_t *arr, uint16_t x) { - const int32_t idx = binarySearch(arr->array, arr->cardinality, x); - const bool is_present = idx >= 0; - if (is_present) { - return idx + 1; - } else { - return -idx - 1; - } -} - -/* Returns the index of the first value equal or smaller than x, or -1 */ -inline int array_container_index_equalorlarger(const array_container_t *arr, uint16_t x) { - const int32_t idx = binarySearch(arr->array, arr->cardinality, x); - const bool is_present = idx >= 0; - if (is_present) { - return idx; - } else { - int32_t candidate = - idx - 1; - if(candidate < arr->cardinality) return candidate; - return -1; - } -} - -/* - * Adds all values in range [min,max] using hint: - * nvals_less is the number of array values less than $min - * nvals_greater is the number of array values greater than $max - */ -static inline void array_container_add_range_nvals(array_container_t *array, - uint32_t min, uint32_t max, - int32_t nvals_less, - int32_t nvals_greater) { - int32_t union_cardinality = nvals_less + (max - min + 1) + nvals_greater; - if (union_cardinality > array->capacity) { - array_container_grow(array, union_cardinality, true); - } - memmove(&(array->array[union_cardinality - nvals_greater]), - &(array->array[array->cardinality - nvals_greater]), - nvals_greater * sizeof(uint16_t)); - for (uint32_t i = 0; i <= max - min; i++) { - array->array[nvals_less + i] = min + i; - } - array->cardinality = union_cardinality; -} - -/** - * Adds all values in range [min,max]. - */ -static inline void array_container_add_range(array_container_t *array, - uint32_t min, uint32_t max) { - int32_t nvals_greater = count_greater(array->array, array->cardinality, max); - int32_t nvals_less = count_less(array->array, array->cardinality - nvals_greater, min); - array_container_add_range_nvals(array, min, max, nvals_less, nvals_greater); -} - -/* - * Removes all elements array[pos] .. array[pos+count-1] - */ -static inline void array_container_remove_range(array_container_t *array, - uint32_t pos, uint32_t count) { - if (count != 0) { - memmove(&(array->array[pos]), &(array->array[pos+count]), - (array->cardinality - pos - count) * sizeof(uint16_t)); - array->cardinality -= count; - } -} - -#ifdef __cplusplus -} -#endif - -#endif /* INCLUDE_CONTAINERS_ARRAY_H_ */ -/* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/array.h */ -/* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/bitset.h */ -/* - * bitset.h - * - */ - -#ifndef INCLUDE_CONTAINERS_BITSET_H_ -#define INCLUDE_CONTAINERS_BITSET_H_ - -#include -#include - -#ifdef USEAVX -#define ALIGN_AVX __attribute__((aligned(sizeof(__m256i)))) -#else -#define ALIGN_AVX -#endif - -enum { - BITSET_CONTAINER_SIZE_IN_WORDS = (1 << 16) / 64, - BITSET_UNKNOWN_CARDINALITY = -1 -}; - -struct bitset_container_s { - int32_t cardinality; - uint64_t *array; -}; - -typedef struct bitset_container_s bitset_container_t; - -/* Create a new bitset. Return NULL in case of failure. */ -bitset_container_t *bitset_container_create(void); - -/* Free memory. */ -void bitset_container_free(bitset_container_t *bitset); - -/* Clear bitset (sets bits to 0). */ -void bitset_container_clear(bitset_container_t *bitset); - -/* Set all bits to 1. */ -void bitset_container_set_all(bitset_container_t *bitset); - -/* Duplicate bitset */ -bitset_container_t *bitset_container_clone(const bitset_container_t *src); - -int32_t bitset_container_serialize(const bitset_container_t *container, - char *buf) WARN_UNUSED; - -uint32_t bitset_container_serialization_len(void); - -void *bitset_container_deserialize(const char *buf, size_t buf_len); - -/* Set the bit in [begin,end). WARNING: as of April 2016, this method is slow - * and - * should not be used in performance-sensitive code. Ever. */ -void bitset_container_set_range(bitset_container_t *bitset, uint32_t begin, - uint32_t end); - -#ifdef ASMBITMANIPOPTIMIZATION -/* Set the ith bit. */ -static inline void bitset_container_set(bitset_container_t *bitset, - uint16_t pos) { - uint64_t shift = 6; - uint64_t offset; - uint64_t p = pos; - ASM_SHIFT_RIGHT(p, shift, offset); - uint64_t load = bitset->array[offset]; - ASM_SET_BIT_INC_WAS_CLEAR(load, p, bitset->cardinality); - bitset->array[offset] = load; -} - -/* Unset the ith bit. */ -static inline void bitset_container_unset(bitset_container_t *bitset, - uint16_t pos) { - uint64_t shift = 6; - uint64_t offset; - uint64_t p = pos; - ASM_SHIFT_RIGHT(p, shift, offset); - uint64_t load = bitset->array[offset]; - ASM_CLEAR_BIT_DEC_WAS_SET(load, p, bitset->cardinality); - bitset->array[offset] = load; -} - -/* Add `pos' to `bitset'. Returns true if `pos' was not present. Might be slower - * than bitset_container_set. */ -static inline bool bitset_container_add(bitset_container_t *bitset, - uint16_t pos) { - uint64_t shift = 6; - uint64_t offset; - uint64_t p = pos; - ASM_SHIFT_RIGHT(p, shift, offset); - uint64_t load = bitset->array[offset]; - // could be possibly slightly further optimized - const int32_t oldcard = bitset->cardinality; - ASM_SET_BIT_INC_WAS_CLEAR(load, p, bitset->cardinality); - bitset->array[offset] = load; - return bitset->cardinality - oldcard; -} - -/* Remove `pos' from `bitset'. Returns true if `pos' was present. Might be - * slower than bitset_container_unset. */ -static inline bool bitset_container_remove(bitset_container_t *bitset, - uint16_t pos) { - uint64_t shift = 6; - uint64_t offset; - uint64_t p = pos; - ASM_SHIFT_RIGHT(p, shift, offset); - uint64_t load = bitset->array[offset]; - // could be possibly slightly further optimized - const int32_t oldcard = bitset->cardinality; - ASM_CLEAR_BIT_DEC_WAS_SET(load, p, bitset->cardinality); - bitset->array[offset] = load; - return oldcard - bitset->cardinality; -} - -/* Get the value of the ith bit. */ -inline bool bitset_container_get(const bitset_container_t *bitset, - uint16_t pos) { - uint64_t word = bitset->array[pos >> 6]; - const uint64_t p = pos; - ASM_INPLACESHIFT_RIGHT(word, p); - return word & 1; -} - -#else - -/* Set the ith bit. */ -static inline void bitset_container_set(bitset_container_t *bitset, - uint16_t pos) { - const uint64_t old_word = bitset->array[pos >> 6]; - const int index = pos & 63; - const uint64_t new_word = old_word | (UINT64_C(1) << index); - bitset->cardinality += (uint32_t)((old_word ^ new_word) >> index); - bitset->array[pos >> 6] = new_word; -} - -/* Unset the ith bit. */ -static inline void bitset_container_unset(bitset_container_t *bitset, - uint16_t pos) { - const uint64_t old_word = bitset->array[pos >> 6]; - const int index = pos & 63; - const uint64_t new_word = old_word & (~(UINT64_C(1) << index)); - bitset->cardinality -= (uint32_t)((old_word ^ new_word) >> index); - bitset->array[pos >> 6] = new_word; -} - -/* Add `pos' to `bitset'. Returns true if `pos' was not present. Might be slower - * than bitset_container_set. */ -static inline bool bitset_container_add(bitset_container_t *bitset, - uint16_t pos) { - const uint64_t old_word = bitset->array[pos >> 6]; - const int index = pos & 63; - const uint64_t new_word = old_word | (UINT64_C(1) << index); - const uint64_t increment = (old_word ^ new_word) >> index; - bitset->cardinality += (uint32_t)increment; - bitset->array[pos >> 6] = new_word; - return increment > 0; -} - -/* Remove `pos' from `bitset'. Returns true if `pos' was present. Might be - * slower than bitset_container_unset. */ -static inline bool bitset_container_remove(bitset_container_t *bitset, - uint16_t pos) { - const uint64_t old_word = bitset->array[pos >> 6]; - const int index = pos & 63; - const uint64_t new_word = old_word & (~(UINT64_C(1) << index)); - const uint64_t increment = (old_word ^ new_word) >> index; - bitset->cardinality -= (uint32_t)increment; - bitset->array[pos >> 6] = new_word; - return increment > 0; -} - -/* Get the value of the ith bit. */ -inline bool bitset_container_get(const bitset_container_t *bitset, - uint16_t pos) { - const uint64_t word = bitset->array[pos >> 6]; - return (word >> (pos & 63)) & 1; -} - -#endif - -/* -* Check if all bits are set in a range of positions from pos_start (included) to -* pos_end (excluded). -*/ -static inline bool bitset_container_get_range(const bitset_container_t *bitset, - uint32_t pos_start, uint32_t pos_end) { - - const uint32_t start = pos_start >> 6; - const uint32_t end = pos_end >> 6; - - const uint64_t first = ~((1ULL << (pos_start & 0x3F)) - 1); - const uint64_t last = (1ULL << (pos_end & 0x3F)) - 1; - - if (start == end) return ((bitset->array[end] & first & last) == (first & last)); - if ((bitset->array[start] & first) != first) return false; - - if ((end < BITSET_CONTAINER_SIZE_IN_WORDS) && ((bitset->array[end] & last) != last)){ - - return false; - } - - for (uint16_t i = start + 1; (i < BITSET_CONTAINER_SIZE_IN_WORDS) && (i < end); ++i){ - - if (bitset->array[i] != UINT64_C(0xFFFFFFFFFFFFFFFF)) return false; - } - - return true; -} - -/* Check whether `bitset' is present in `array'. Calls bitset_container_get. */ -inline bool bitset_container_contains(const bitset_container_t *bitset, - uint16_t pos) { - return bitset_container_get(bitset, pos); -} - -/* -* Check whether a range of bits from position `pos_start' (included) to `pos_end' (excluded) -* is present in `bitset'. Calls bitset_container_get_all. -*/ -static inline bool bitset_container_contains_range(const bitset_container_t *bitset, - uint32_t pos_start, uint32_t pos_end) { - return bitset_container_get_range(bitset, pos_start, pos_end); -} - -/* Get the number of bits set */ -static inline int bitset_container_cardinality( - const bitset_container_t *bitset) { - return bitset->cardinality; -} - - - - -/* Copy one container into another. We assume that they are distinct. */ -void bitset_container_copy(const bitset_container_t *source, - bitset_container_t *dest); - -/* Add all the values [min,max) at a distance k*step from min: min, - * min+step,.... */ -void bitset_container_add_from_range(bitset_container_t *bitset, uint32_t min, - uint32_t max, uint16_t step); - -/* Get the number of bits set (force computation). This does not modify bitset. - * To update the cardinality, you should do - * bitset->cardinality = bitset_container_compute_cardinality(bitset).*/ -int bitset_container_compute_cardinality(const bitset_container_t *bitset); - -/* Get whether there is at least one bit set (see bitset_container_empty for the reverse), - when the cardinality is unknown, it is computed and stored in the struct */ -static inline bool bitset_container_nonzero_cardinality( - bitset_container_t *bitset) { - // account for laziness - if (bitset->cardinality == BITSET_UNKNOWN_CARDINALITY) { - // could bail early instead with a nonzero result - bitset->cardinality = bitset_container_compute_cardinality(bitset); - } - return bitset->cardinality > 0; -} - -/* Check whether this bitset is empty (see bitset_container_nonzero_cardinality for the reverse), - * it never modifies the bitset struct. */ -static inline bool bitset_container_empty( - const bitset_container_t *bitset) { - if (bitset->cardinality == BITSET_UNKNOWN_CARDINALITY) { - for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i ++) { - if((bitset->array[i]) != 0) return false; - } - return true; - } - return bitset->cardinality == 0; -} - - -/* Get whether there is at least one bit set (see bitset_container_empty for the reverse), - the bitset is never modified */ -static inline bool bitset_container_const_nonzero_cardinality( - const bitset_container_t *bitset) { - return !bitset_container_empty(bitset); -} - -/* - * Check whether the two bitsets intersect - */ -bool bitset_container_intersect(const bitset_container_t *src_1, - const bitset_container_t *src_2); - -/* Computes the union of bitsets `src_1' and `src_2' into `dst' and return the - * cardinality. */ -int bitset_container_or(const bitset_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst); - -/* Computes the union of bitsets `src_1' and `src_2' and return the cardinality. - */ -int bitset_container_or_justcard(const bitset_container_t *src_1, - const bitset_container_t *src_2); - -/* Computes the union of bitsets `src_1' and `src_2' into `dst' and return the - * cardinality. Same as bitset_container_or. */ -int bitset_container_union(const bitset_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst); - -/* Computes the union of bitsets `src_1' and `src_2' and return the - * cardinality. Same as bitset_container_or_justcard. */ -int bitset_container_union_justcard(const bitset_container_t *src_1, - const bitset_container_t *src_2); - -/* Computes the union of bitsets `src_1' and `src_2' into `dst', but does not - * update the cardinality. Provided to optimize chained operations. */ -int bitset_container_or_nocard(const bitset_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst); - -/* Computes the intersection of bitsets `src_1' and `src_2' into `dst' and - * return the cardinality. */ -int bitset_container_and(const bitset_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst); - -/* Computes the intersection of bitsets `src_1' and `src_2' and return the - * cardinality. */ -int bitset_container_and_justcard(const bitset_container_t *src_1, - const bitset_container_t *src_2); - -/* Computes the intersection of bitsets `src_1' and `src_2' into `dst' and - * return the cardinality. Same as bitset_container_and. */ -int bitset_container_intersection(const bitset_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst); - -/* Computes the intersection of bitsets `src_1' and `src_2' and return the - * cardinality. Same as bitset_container_and_justcard. */ -int bitset_container_intersection_justcard(const bitset_container_t *src_1, - const bitset_container_t *src_2); - -/* Computes the intersection of bitsets `src_1' and `src_2' into `dst', but does - * not update the cardinality. Provided to optimize chained operations. */ -int bitset_container_and_nocard(const bitset_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst); - -/* Computes the exclusive or of bitsets `src_1' and `src_2' into `dst' and - * return the cardinality. */ -int bitset_container_xor(const bitset_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst); - -/* Computes the exclusive or of bitsets `src_1' and `src_2' and return the - * cardinality. */ -int bitset_container_xor_justcard(const bitset_container_t *src_1, - const bitset_container_t *src_2); - -/* Computes the exclusive or of bitsets `src_1' and `src_2' into `dst', but does - * not update the cardinality. Provided to optimize chained operations. */ -int bitset_container_xor_nocard(const bitset_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst); - -/* Computes the and not of bitsets `src_1' and `src_2' into `dst' and return the - * cardinality. */ -int bitset_container_andnot(const bitset_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst); - -/* Computes the and not of bitsets `src_1' and `src_2' and return the - * cardinality. */ -int bitset_container_andnot_justcard(const bitset_container_t *src_1, - const bitset_container_t *src_2); - -/* Computes the and not or of bitsets `src_1' and `src_2' into `dst', but does - * not update the cardinality. Provided to optimize chained operations. */ -int bitset_container_andnot_nocard(const bitset_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst); - -/* - * Write out the 16-bit integers contained in this container as a list of 32-bit - * integers using base - * as the starting value (it might be expected that base has zeros in its 16 - * least significant bits). - * The function returns the number of values written. - * The caller is responsible for allocating enough memory in out. - * The out pointer should point to enough memory (the cardinality times 32 - * bits). - */ -int bitset_container_to_uint32_array(void *out, const bitset_container_t *cont, - uint32_t base); - -/* - * Print this container using printf (useful for debugging). - */ -void bitset_container_printf(const bitset_container_t *v); - -/* - * Print this container using printf as a comma-separated list of 32-bit - * integers starting at base. - */ -void bitset_container_printf_as_uint32_array(const bitset_container_t *v, - uint32_t base); - -/** - * Return the serialized size in bytes of a container. - */ -static inline int32_t bitset_container_serialized_size_in_bytes(void) { - return BITSET_CONTAINER_SIZE_IN_WORDS * 8; -} - -/** - * Return the the number of runs. - */ -int bitset_container_number_of_runs(bitset_container_t *b); - -bool bitset_container_iterate(const bitset_container_t *cont, uint32_t base, - roaring_iterator iterator, void *ptr); -bool bitset_container_iterate64(const bitset_container_t *cont, uint32_t base, - roaring_iterator64 iterator, uint64_t high_bits, - void *ptr); - -/** - * Writes the underlying array to buf, outputs how many bytes were written. - * This is meant to be byte-by-byte compatible with the Java and Go versions of - * Roaring. - * The number of bytes written should be - * bitset_container_size_in_bytes(container). - */ -int32_t bitset_container_write(const bitset_container_t *container, char *buf); - -/** - * Reads the instance from buf, outputs how many bytes were read. - * This is meant to be byte-by-byte compatible with the Java and Go versions of - * Roaring. - * The number of bytes read should be bitset_container_size_in_bytes(container). - * You need to provide the (known) cardinality. - */ -int32_t bitset_container_read(int32_t cardinality, - bitset_container_t *container, const char *buf); -/** - * Return the serialized size in bytes of a container (see - * bitset_container_write). - * This is meant to be compatible with the Java and Go versions of Roaring and - * assumes - * that the cardinality of the container is already known or can be computed. - */ -static inline int32_t bitset_container_size_in_bytes( - const bitset_container_t *container) { - (void)container; - return BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t); -} - -/** - * Return true if the two containers have the same content. - */ -bool bitset_container_equals(const bitset_container_t *container1, - const bitset_container_t *container2); - -/** -* Return true if container1 is a subset of container2. -*/ -bool bitset_container_is_subset(const bitset_container_t *container1, - const bitset_container_t *container2); - -/** - * If the element of given rank is in this container, supposing that the first - * element has rank start_rank, then the function returns true and sets element - * accordingly. - * Otherwise, it returns false and update start_rank. - */ -bool bitset_container_select(const bitset_container_t *container, - uint32_t *start_rank, uint32_t rank, - uint32_t *element); - -/* Returns the smallest value (assumes not empty) */ -uint16_t bitset_container_minimum(const bitset_container_t *container); - -/* Returns the largest value (assumes not empty) */ -uint16_t bitset_container_maximum(const bitset_container_t *container); - -/* Returns the number of values equal or smaller than x */ -int bitset_container_rank(const bitset_container_t *container, uint16_t x); - -/* Returns the index of the first value equal or larger than x, or -1 */ -int bitset_container_index_equalorlarger(const bitset_container_t *container, uint16_t x); -#endif /* INCLUDE_CONTAINERS_BITSET_H_ */ -/* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/bitset.h */ -/* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/run.h */ -/* - * run.h - * - */ - -#ifndef INCLUDE_CONTAINERS_RUN_H_ -#define INCLUDE_CONTAINERS_RUN_H_ - -#ifdef __cplusplus -extern "C" { -#endif - -#include -#include -#include -#include - - -/* struct rle16_s - run length pair - * - * @value: start position of the run - * @length: length of the run is `length + 1` - * - * An RLE pair {v, l} would represent the integers between the interval - * [v, v+l+1], e.g. {3, 2} = [3, 4, 5]. - */ -struct rle16_s { - uint16_t value; - uint16_t length; -}; - -typedef struct rle16_s rle16_t; - -/* struct run_container_s - run container bitmap - * - * @n_runs: number of rle_t pairs in `runs`. - * @capacity: capacity in rle_t pairs `runs` can hold. - * @runs: pairs of rle_t. - * - */ -struct run_container_s { - int32_t n_runs; - int32_t capacity; - rle16_t *runs; -}; - -typedef struct run_container_s run_container_t; - -/* Create a new run container. Return NULL in case of failure. */ -run_container_t *run_container_create(void); - -/* Create a new run container with given capacity. Return NULL in case of - * failure. */ -run_container_t *run_container_create_given_capacity(int32_t size); - -/* - * Shrink the capacity to the actual size, return the number of bytes saved. - */ -int run_container_shrink_to_fit(run_container_t *src); - -/* Free memory owned by `run'. */ -void run_container_free(run_container_t *run); - -/* Duplicate container */ -run_container_t *run_container_clone(const run_container_t *src); - -int32_t run_container_serialize(const run_container_t *container, - char *buf) WARN_UNUSED; - -uint32_t run_container_serialization_len(const run_container_t *container); - -void *run_container_deserialize(const char *buf, size_t buf_len); - -/* - * Effectively deletes the value at index index, repacking data. - */ -static inline void recoverRoomAtIndex(run_container_t *run, uint16_t index) { - memmove(run->runs + index, run->runs + (1 + index), - (run->n_runs - index - 1) * sizeof(rle16_t)); - run->n_runs--; -} - -/** - * Good old binary search through rle data - */ -inline int32_t interleavedBinarySearch(const rle16_t *array, int32_t lenarray, - uint16_t ikey) { - int32_t low = 0; - int32_t high = lenarray - 1; - while (low <= high) { - int32_t middleIndex = (low + high) >> 1; - uint16_t middleValue = array[middleIndex].value; - if (middleValue < ikey) { - low = middleIndex + 1; - } else if (middleValue > ikey) { - high = middleIndex - 1; - } else { - return middleIndex; - } - } - return -(low + 1); -} - -/* - * Returns index of the run which contains $ikey - */ -static inline int32_t rle16_find_run(const rle16_t *array, int32_t lenarray, - uint16_t ikey) { - int32_t low = 0; - int32_t high = lenarray - 1; - while (low <= high) { - int32_t middleIndex = (low + high) >> 1; - uint16_t min = array[middleIndex].value; - uint16_t max = array[middleIndex].value + array[middleIndex].length; - if (ikey > max) { - low = middleIndex + 1; - } else if (ikey < min) { - high = middleIndex - 1; - } else { - return middleIndex; - } - } - return -(low + 1); -} - - -/** - * Returns number of runs which can'be be merged with the key because they - * are less than the key. - * Note that [5,6,7,8] can be merged with the key 9 and won't be counted. - */ -static inline int32_t rle16_count_less(const rle16_t* array, int32_t lenarray, - uint16_t key) { - if (lenarray == 0) return 0; - int32_t low = 0; - int32_t high = lenarray - 1; - while (low <= high) { - int32_t middleIndex = (low + high) >> 1; - uint16_t min_value = array[middleIndex].value; - uint16_t max_value = array[middleIndex].value + array[middleIndex].length; - if (max_value + UINT32_C(1) < key) { // uint32 arithmetic - low = middleIndex + 1; - } else if (key < min_value) { - high = middleIndex - 1; - } else { - return middleIndex; - } - } - return low; -} - -static inline int32_t rle16_count_greater(const rle16_t* array, int32_t lenarray, - uint16_t key) { - if (lenarray == 0) return 0; - int32_t low = 0; - int32_t high = lenarray - 1; - while (low <= high) { - int32_t middleIndex = (low + high) >> 1; - uint16_t min_value = array[middleIndex].value; - uint16_t max_value = array[middleIndex].value + array[middleIndex].length; - if (max_value < key) { - low = middleIndex + 1; - } else if (key + UINT32_C(1) < min_value) { // uint32 arithmetic - high = middleIndex - 1; - } else { - return lenarray - (middleIndex + 1); - } - } - return lenarray - low; -} - -/** - * increase capacity to at least min. Whether the - * existing data needs to be copied over depends on copy. If "copy" is false, - * then the new content will be uninitialized, otherwise a copy is made. - */ -void run_container_grow(run_container_t *run, int32_t min, bool copy); - -/** - * Moves the data so that we can write data at index - */ -static inline void makeRoomAtIndex(run_container_t *run, uint16_t index) { - /* This function calls realloc + memmove sequentially to move by one index. - * Potentially copying twice the array. - */ - if (run->n_runs + 1 > run->capacity) - run_container_grow(run, run->n_runs + 1, true); - memmove(run->runs + 1 + index, run->runs + index, - (run->n_runs - index) * sizeof(rle16_t)); - run->n_runs++; -} - -/* Add `pos' to `run'. Returns true if `pos' was not present. */ -bool run_container_add(run_container_t *run, uint16_t pos); - -/* Remove `pos' from `run'. Returns true if `pos' was present. */ -static inline bool run_container_remove(run_container_t *run, uint16_t pos) { - int32_t index = interleavedBinarySearch(run->runs, run->n_runs, pos); - if (index >= 0) { - int32_t le = run->runs[index].length; - if (le == 0) { - recoverRoomAtIndex(run, (uint16_t)index); - } else { - run->runs[index].value++; - run->runs[index].length--; - } - return true; - } - index = -index - 2; // points to preceding value, possibly -1 - if (index >= 0) { // possible match - int32_t offset = pos - run->runs[index].value; - int32_t le = run->runs[index].length; - if (offset < le) { - // need to break in two - run->runs[index].length = (uint16_t)(offset - 1); - // need to insert - uint16_t newvalue = pos + 1; - int32_t newlength = le - offset - 1; - makeRoomAtIndex(run, (uint16_t)(index + 1)); - run->runs[index + 1].value = newvalue; - run->runs[index + 1].length = (uint16_t)newlength; - return true; - - } else if (offset == le) { - run->runs[index].length--; - return true; - } - } - // no match - return false; -} - -/* Check whether `pos' is present in `run'. */ -inline bool run_container_contains(const run_container_t *run, uint16_t pos) { - int32_t index = interleavedBinarySearch(run->runs, run->n_runs, pos); - if (index >= 0) return true; - index = -index - 2; // points to preceding value, possibly -1 - if (index != -1) { // possible match - int32_t offset = pos - run->runs[index].value; - int32_t le = run->runs[index].length; - if (offset <= le) return true; - } - return false; -} - -/* -* Check whether all positions in a range of positions from pos_start (included) -* to pos_end (excluded) is present in `run'. -*/ -static inline bool run_container_contains_range(const run_container_t *run, - uint32_t pos_start, uint32_t pos_end) { - uint32_t count = 0; - int32_t index = interleavedBinarySearch(run->runs, run->n_runs, pos_start); - if (index < 0) { - index = -index - 2; - if ((index == -1) || ((pos_start - run->runs[index].value) > run->runs[index].length)){ - return false; - } - } - for (int32_t i = index; i < run->n_runs; ++i) { - const uint32_t stop = run->runs[i].value + run->runs[i].length; - if (run->runs[i].value >= pos_end) break; - if (stop >= pos_end) { - count += (((pos_end - run->runs[i].value) > 0) ? (pos_end - run->runs[i].value) : 0); - break; - } - const uint32_t min = (stop - pos_start) > 0 ? (stop - pos_start) : 0; - count += (min < run->runs[i].length) ? min : run->runs[i].length; - } - return count >= (pos_end - pos_start - 1); -} - -#ifdef USEAVX - -/* Get the cardinality of `run'. Requires an actual computation. */ -static inline int run_container_cardinality(const run_container_t *run) { - const int32_t n_runs = run->n_runs; - const rle16_t *runs = run->runs; - - /* by initializing with n_runs, we omit counting the +1 for each pair. */ - int sum = n_runs; - int32_t k = 0; - const int32_t step = sizeof(__m256i) / sizeof(rle16_t); - if (n_runs > step) { - __m256i total = _mm256_setzero_si256(); - for (; k + step <= n_runs; k += step) { - __m256i ymm1 = _mm256_lddqu_si256((const __m256i *)(runs + k)); - __m256i justlengths = _mm256_srli_epi32(ymm1, 16); - total = _mm256_add_epi32(total, justlengths); - } - // a store might be faster than extract? - uint32_t buffer[sizeof(__m256i) / sizeof(rle16_t)]; - _mm256_storeu_si256((__m256i *)buffer, total); - sum += (buffer[0] + buffer[1]) + (buffer[2] + buffer[3]) + - (buffer[4] + buffer[5]) + (buffer[6] + buffer[7]); - } - for (; k < n_runs; ++k) { - sum += runs[k].length; - } - - return sum; -} - -#else - -/* Get the cardinality of `run'. Requires an actual computation. */ -static inline int run_container_cardinality(const run_container_t *run) { - const int32_t n_runs = run->n_runs; - const rle16_t *runs = run->runs; - - /* by initializing with n_runs, we omit counting the +1 for each pair. */ - int sum = n_runs; - for (int k = 0; k < n_runs; ++k) { - sum += runs[k].length; - } - - return sum; -} -#endif - -/* Card > 0?, see run_container_empty for the reverse */ -static inline bool run_container_nonzero_cardinality( - const run_container_t *run) { - return run->n_runs > 0; // runs never empty -} - -/* Card == 0?, see run_container_nonzero_cardinality for the reverse */ -static inline bool run_container_empty( - const run_container_t *run) { - return run->n_runs == 0; // runs never empty -} - - - -/* Copy one container into another. We assume that they are distinct. */ -void run_container_copy(const run_container_t *src, run_container_t *dst); - -/* Set the cardinality to zero (does not release memory). */ -static inline void run_container_clear(run_container_t *run) { - run->n_runs = 0; -} - -/** - * Append run described by vl to the run container, possibly merging. - * It is assumed that the run would be inserted at the end of the container, no - * check is made. - * It is assumed that the run container has the necessary capacity: caller is - * responsible for checking memory capacity. - * - * - * This is not a safe function, it is meant for performance: use with care. - */ -static inline void run_container_append(run_container_t *run, rle16_t vl, - rle16_t *previousrl) { - const uint32_t previousend = previousrl->value + previousrl->length; - if (vl.value > previousend + 1) { // we add a new one - run->runs[run->n_runs] = vl; - run->n_runs++; - *previousrl = vl; - } else { - uint32_t newend = vl.value + vl.length + UINT32_C(1); - if (newend > previousend) { // we merge - previousrl->length = (uint16_t)(newend - 1 - previousrl->value); - run->runs[run->n_runs - 1] = *previousrl; - } - } -} - -/** - * Like run_container_append but it is assumed that the content of run is empty. - */ -static inline rle16_t run_container_append_first(run_container_t *run, - rle16_t vl) { - run->runs[run->n_runs] = vl; - run->n_runs++; - return vl; -} - -/** - * append a single value given by val to the run container, possibly merging. - * It is assumed that the value would be inserted at the end of the container, - * no check is made. - * It is assumed that the run container has the necessary capacity: caller is - * responsible for checking memory capacity. - * - * This is not a safe function, it is meant for performance: use with care. - */ -static inline void run_container_append_value(run_container_t *run, - uint16_t val, - rle16_t *previousrl) { - const uint32_t previousend = previousrl->value + previousrl->length; - if (val > previousend + 1) { // we add a new one - //*previousrl = (rle16_t){.value = val, .length = 0};// requires C99 - previousrl->value = val; - previousrl->length = 0; - - run->runs[run->n_runs] = *previousrl; - run->n_runs++; - } else if (val == previousend + 1) { // we merge - previousrl->length++; - run->runs[run->n_runs - 1] = *previousrl; - } -} - -/** - * Like run_container_append_value but it is assumed that the content of run is - * empty. - */ -static inline rle16_t run_container_append_value_first(run_container_t *run, - uint16_t val) { - // rle16_t newrle = (rle16_t){.value = val, .length = 0};// requires C99 - rle16_t newrle; - newrle.value = val; - newrle.length = 0; - - run->runs[run->n_runs] = newrle; - run->n_runs++; - return newrle; -} - -/* Check whether the container spans the whole chunk (cardinality = 1<<16). - * This check can be done in constant time (inexpensive). */ -static inline bool run_container_is_full(const run_container_t *run) { - rle16_t vl = run->runs[0]; - return (run->n_runs == 1) && (vl.value == 0) && (vl.length == 0xFFFF); -} - -/* Compute the union of `src_1' and `src_2' and write the result to `dst' - * It is assumed that `dst' is distinct from both `src_1' and `src_2'. */ -void run_container_union(const run_container_t *src_1, - const run_container_t *src_2, run_container_t *dst); - -/* Compute the union of `src_1' and `src_2' and write the result to `src_1' */ -void run_container_union_inplace(run_container_t *src_1, - const run_container_t *src_2); - -/* Compute the intersection of src_1 and src_2 and write the result to - * dst. It is assumed that dst is distinct from both src_1 and src_2. */ -void run_container_intersection(const run_container_t *src_1, - const run_container_t *src_2, - run_container_t *dst); - -/* Compute the size of the intersection of src_1 and src_2 . */ -int run_container_intersection_cardinality(const run_container_t *src_1, - const run_container_t *src_2); - -/* Check whether src_1 and src_2 intersect. */ -bool run_container_intersect(const run_container_t *src_1, - const run_container_t *src_2); - -/* Compute the symmetric difference of `src_1' and `src_2' and write the result - * to `dst' - * It is assumed that `dst' is distinct from both `src_1' and `src_2'. */ -void run_container_xor(const run_container_t *src_1, - const run_container_t *src_2, run_container_t *dst); - -/* - * Write out the 16-bit integers contained in this container as a list of 32-bit - * integers using base - * as the starting value (it might be expected that base has zeros in its 16 - * least significant bits). - * The function returns the number of values written. - * The caller is responsible for allocating enough memory in out. - */ -int run_container_to_uint32_array(void *vout, const run_container_t *cont, - uint32_t base); - -/* - * Print this container using printf (useful for debugging). - */ -void run_container_printf(const run_container_t *v); - -/* - * Print this container using printf as a comma-separated list of 32-bit - * integers starting at base. - */ -void run_container_printf_as_uint32_array(const run_container_t *v, - uint32_t base); - -/** - * Return the serialized size in bytes of a container having "num_runs" runs. - */ -static inline int32_t run_container_serialized_size_in_bytes(int32_t num_runs) { - return sizeof(uint16_t) + - sizeof(rle16_t) * num_runs; // each run requires 2 2-byte entries. -} - -bool run_container_iterate(const run_container_t *cont, uint32_t base, - roaring_iterator iterator, void *ptr); -bool run_container_iterate64(const run_container_t *cont, uint32_t base, - roaring_iterator64 iterator, uint64_t high_bits, - void *ptr); - -/** - * Writes the underlying array to buf, outputs how many bytes were written. - * This is meant to be byte-by-byte compatible with the Java and Go versions of - * Roaring. - * The number of bytes written should be run_container_size_in_bytes(container). - */ -int32_t run_container_write(const run_container_t *container, char *buf); - -/** - * Reads the instance from buf, outputs how many bytes were read. - * This is meant to be byte-by-byte compatible with the Java and Go versions of - * Roaring. - * The number of bytes read should be bitset_container_size_in_bytes(container). - * The cardinality parameter is provided for consistency with other containers, - * but - * it might be effectively ignored.. - */ -int32_t run_container_read(int32_t cardinality, run_container_t *container, - const char *buf); - -/** - * Return the serialized size in bytes of a container (see run_container_write). - * This is meant to be compatible with the Java and Go versions of Roaring. - */ -static inline int32_t run_container_size_in_bytes( - const run_container_t *container) { - return run_container_serialized_size_in_bytes(container->n_runs); -} - -/** - * Return true if the two containers have the same content. - */ -bool run_container_equals(const run_container_t *container1, - const run_container_t *container2); - -/** -* Return true if container1 is a subset of container2. -*/ -bool run_container_is_subset(const run_container_t *container1, - const run_container_t *container2); - -/** - * Used in a start-finish scan that appends segments, for XOR and NOT - */ - -void run_container_smart_append_exclusive(run_container_t *src, - const uint16_t start, - const uint16_t length); - -/** -* The new container consists of a single run [start,stop). -* It is required that stop>start, the caller is responsability for this check. -* It is required that stop <= (1<<16), the caller is responsability for this check. -* The cardinality of the created container is stop - start. -* Returns NULL on failure -*/ -static inline run_container_t *run_container_create_range(uint32_t start, - uint32_t stop) { - run_container_t *rc = run_container_create_given_capacity(1); - if (rc) { - rle16_t r; - r.value = (uint16_t)start; - r.length = (uint16_t)(stop - start - 1); - run_container_append_first(rc, r); - } - return rc; -} - -/** - * If the element of given rank is in this container, supposing that the first - * element has rank start_rank, then the function returns true and sets element - * accordingly. - * Otherwise, it returns false and update start_rank. - */ -bool run_container_select(const run_container_t *container, - uint32_t *start_rank, uint32_t rank, - uint32_t *element); - -/* Compute the difference of src_1 and src_2 and write the result to - * dst. It is assumed that dst is distinct from both src_1 and src_2. */ - -void run_container_andnot(const run_container_t *src_1, - const run_container_t *src_2, run_container_t *dst); - -/* Returns the smallest value (assumes not empty) */ -inline uint16_t run_container_minimum(const run_container_t *run) { - if (run->n_runs == 0) return 0; - return run->runs[0].value; -} - -/* Returns the largest value (assumes not empty) */ -inline uint16_t run_container_maximum(const run_container_t *run) { - if (run->n_runs == 0) return 0; - return run->runs[run->n_runs - 1].value + run->runs[run->n_runs - 1].length; -} - -/* Returns the number of values equal or smaller than x */ -int run_container_rank(const run_container_t *arr, uint16_t x); - -/* Returns the index of the first run containing a value at least as large as x, or -1 */ -inline int run_container_index_equalorlarger(const run_container_t *arr, uint16_t x) { - int32_t index = interleavedBinarySearch(arr->runs, arr->n_runs, x); - if (index >= 0) return index; - index = -index - 2; // points to preceding run, possibly -1 - if (index != -1) { // possible match - int32_t offset = x - arr->runs[index].value; - int32_t le = arr->runs[index].length; - if (offset <= le) return index; - } - index += 1; - if(index < arr->n_runs) { - return index; - } - return -1; -} - -/* - * Add all values in range [min, max] using hint. - */ -static inline void run_container_add_range_nruns(run_container_t* run, - uint32_t min, uint32_t max, - int32_t nruns_less, - int32_t nruns_greater) { - int32_t nruns_common = run->n_runs - nruns_less - nruns_greater; - if (nruns_common == 0) { - makeRoomAtIndex(run, nruns_less); - run->runs[nruns_less].value = min; - run->runs[nruns_less].length = max - min; - } else { - uint32_t common_min = run->runs[nruns_less].value; - uint32_t common_max = run->runs[nruns_less + nruns_common - 1].value + - run->runs[nruns_less + nruns_common - 1].length; - uint32_t result_min = (common_min < min) ? common_min : min; - uint32_t result_max = (common_max > max) ? common_max : max; - - run->runs[nruns_less].value = result_min; - run->runs[nruns_less].length = result_max - result_min; - - memmove(&(run->runs[nruns_less + 1]), - &(run->runs[run->n_runs - nruns_greater]), - nruns_greater*sizeof(rle16_t)); - run->n_runs = nruns_less + 1 + nruns_greater; - } -} - -/** - * Add all values in range [min, max] - */ -static inline void run_container_add_range(run_container_t* run, - uint32_t min, uint32_t max) { - int32_t nruns_greater = rle16_count_greater(run->runs, run->n_runs, max); - int32_t nruns_less = rle16_count_less(run->runs, run->n_runs - nruns_greater, min); - run_container_add_range_nruns(run, min, max, nruns_less, nruns_greater); -} - -/** - * Shifts last $count elements either left (distance < 0) or right (distance > 0) - */ -static inline void run_container_shift_tail(run_container_t* run, - int32_t count, int32_t distance) { - if (distance > 0) { - if (run->capacity < count+distance) { - run_container_grow(run, count+distance, true); - } - } - int32_t srcpos = run->n_runs - count; - int32_t dstpos = srcpos + distance; - memmove(&(run->runs[dstpos]), &(run->runs[srcpos]), sizeof(rle16_t) * count); - run->n_runs += distance; -} - -/** - * Remove all elements in range [min, max] - */ -static inline void run_container_remove_range(run_container_t *run, uint32_t min, uint32_t max) { - int32_t first = rle16_find_run(run->runs, run->n_runs, min); - int32_t last = rle16_find_run(run->runs, run->n_runs, max); - - if (first >= 0 && min > run->runs[first].value && - max < run->runs[first].value + run->runs[first].length) { - // split this run into two adjacent runs - - // right subinterval - makeRoomAtIndex(run, first+1); - run->runs[first+1].value = max + 1; - run->runs[first+1].length = (run->runs[first].value + run->runs[first].length) - (max + 1); - - // left subinterval - run->runs[first].length = (min - 1) - run->runs[first].value; - - return; - } - - // update left-most partial run - if (first >= 0) { - if (min > run->runs[first].value) { - run->runs[first].length = (min - 1) - run->runs[first].value; - first++; - } - } else { - first = -first-1; - } - - // update right-most run - if (last >= 0) { - uint16_t run_max = run->runs[last].value + run->runs[last].length; - if (run_max > max) { - run->runs[last].value = max + 1; - run->runs[last].length = run_max - (max + 1); - last--; - } - } else { - last = (-last-1) - 1; - } - - // remove intermediate runs - if (first <= last) { - run_container_shift_tail(run, run->n_runs - (last+1), -(last-first+1)); - } -} - -#ifdef __cplusplus -} -#endif - -#endif /* INCLUDE_CONTAINERS_RUN_H_ */ -/* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/run.h */ -/* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/convert.h */ -/* - * convert.h - * - */ - -#ifndef INCLUDE_CONTAINERS_CONVERT_H_ -#define INCLUDE_CONTAINERS_CONVERT_H_ - -#ifdef __cplusplus -extern "C" { -#endif - -/* Convert an array into a bitset. The input container is not freed or modified. - */ -bitset_container_t *bitset_container_from_array(const array_container_t *arr); - -/* Convert a run into a bitset. The input container is not freed or modified. */ -bitset_container_t *bitset_container_from_run(const run_container_t *arr); - -/* Convert a run into an array. The input container is not freed or modified. */ -array_container_t *array_container_from_run(const run_container_t *arr); - -/* Convert a bitset into an array. The input container is not freed or modified. - */ -array_container_t *array_container_from_bitset(const bitset_container_t *bits); - -/* Convert an array into a run. The input container is not freed or modified. - */ -run_container_t *run_container_from_array(const array_container_t *c); - -/* convert a run into either an array or a bitset - * might free the container */ -void *convert_to_bitset_or_array_container(run_container_t *r, int32_t card, - uint8_t *resulttype); - -/* convert containers to and from runcontainers, as is most space efficient. - * The container might be freed. */ -void *convert_run_optimize(void *c, uint8_t typecode_original, - uint8_t *typecode_after); - -/* converts a run container to either an array or a bitset, IF it saves space. - */ -/* If a conversion occurs, the caller is responsible to free the original - * container and - * he becomes reponsible to free the new one. */ -void *convert_run_to_efficient_container(run_container_t *c, - uint8_t *typecode_after); -// like convert_run_to_efficient_container but frees the old result if needed -void *convert_run_to_efficient_container_and_free(run_container_t *c, - uint8_t *typecode_after); - -/** - * Create new bitset container which is a union of run container and - * range [min, max]. Caller is responsible for freeing run container. - */ -bitset_container_t *bitset_container_from_run_range(const run_container_t *run, - uint32_t min, uint32_t max); - - -#ifdef __cplusplus -} -#endif - -#endif /* INCLUDE_CONTAINERS_CONVERT_H_ */ -/* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/convert.h */ -/* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/mixed_equal.h */ -/* - * mixed_equal.h - * - */ - -#ifndef CONTAINERS_MIXED_EQUAL_H_ -#define CONTAINERS_MIXED_EQUAL_H_ - - -/** - * Return true if the two containers have the same content. - */ -bool array_container_equal_bitset(const array_container_t* container1, - const bitset_container_t* container2); - -/** - * Return true if the two containers have the same content. - */ -bool run_container_equals_array(const run_container_t* container1, - const array_container_t* container2); -/** - * Return true if the two containers have the same content. - */ -bool run_container_equals_bitset(const run_container_t* container1, - const bitset_container_t* container2); - -#endif /* CONTAINERS_MIXED_EQUAL_H_ */ -/* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/mixed_equal.h */ -/* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/mixed_subset.h */ -/* - * mixed_subset.h - * - */ - -#ifndef CONTAINERS_MIXED_SUBSET_H_ -#define CONTAINERS_MIXED_SUBSET_H_ - - -/** - * Return true if container1 is a subset of container2. - */ -bool array_container_is_subset_bitset(const array_container_t* container1, - const bitset_container_t* container2); - -/** -* Return true if container1 is a subset of container2. - */ -bool run_container_is_subset_array(const run_container_t* container1, - const array_container_t* container2); - -/** -* Return true if container1 is a subset of container2. - */ -bool array_container_is_subset_run(const array_container_t* container1, - const run_container_t* container2); - -/** -* Return true if container1 is a subset of container2. - */ -bool run_container_is_subset_bitset(const run_container_t* container1, - const bitset_container_t* container2); - -/** -* Return true if container1 is a subset of container2. -*/ -bool bitset_container_is_subset_run(const bitset_container_t* container1, - const run_container_t* container2); - -#endif /* CONTAINERS_MIXED_SUBSET_H_ */ -/* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/mixed_subset.h */ -/* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/mixed_andnot.h */ -/* - * mixed_andnot.h - */ -#ifndef INCLUDE_CONTAINERS_MIXED_ANDNOT_H_ -#define INCLUDE_CONTAINERS_MIXED_ANDNOT_H_ - - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst, a valid array container that could be the same as dst.*/ -void array_bitset_container_andnot(const array_container_t *src_1, - const bitset_container_t *src_2, - array_container_t *dst); - -/* Compute the andnot of src_1 and src_2 and write the result to - * src_1 */ - -void array_bitset_container_iandnot(array_container_t *src_1, - const bitset_container_t *src_2); - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst, which does not initially have a valid container. - * Return true for a bitset result; false for array - */ - -bool bitset_array_container_andnot(const bitset_container_t *src_1, - const array_container_t *src_2, void **dst); - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst (which has no container initially). It will modify src_1 - * to be dst if the result is a bitset. Otherwise, it will - * free src_1 and dst will be a new array container. In both - * cases, the caller is responsible for deallocating dst. - * Returns true iff dst is a bitset */ - -bool bitset_array_container_iandnot(bitset_container_t *src_1, - const array_container_t *src_2, void **dst); - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst. Result may be either a bitset or an array container - * (returns "result is bitset"). dst does not initially have - * any container, but becomes either a bitset container (return - * result true) or an array container. - */ - -bool run_bitset_container_andnot(const run_container_t *src_1, - const bitset_container_t *src_2, void **dst); - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst. Result may be either a bitset or an array container - * (returns "result is bitset"). dst does not initially have - * any container, but becomes either a bitset container (return - * result true) or an array container. - */ - -bool run_bitset_container_iandnot(run_container_t *src_1, - const bitset_container_t *src_2, void **dst); - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst. Result may be either a bitset or an array container - * (returns "result is bitset"). dst does not initially have - * any container, but becomes either a bitset container (return - * result true) or an array container. - */ - -bool bitset_run_container_andnot(const bitset_container_t *src_1, - const run_container_t *src_2, void **dst); - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst (which has no container initially). It will modify src_1 - * to be dst if the result is a bitset. Otherwise, it will - * free src_1 and dst will be a new array container. In both - * cases, the caller is responsible for deallocating dst. - * Returns true iff dst is a bitset */ - -bool bitset_run_container_iandnot(bitset_container_t *src_1, - const run_container_t *src_2, void **dst); - -/* dst does not indicate a valid container initially. Eventually it - * can become any type of container. - */ - -int run_array_container_andnot(const run_container_t *src_1, - const array_container_t *src_2, void **dst); - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst (which has no container initially). It will modify src_1 - * to be dst if the result is a bitset. Otherwise, it will - * free src_1 and dst will be a new array container. In both - * cases, the caller is responsible for deallocating dst. - * Returns true iff dst is a bitset */ - -int run_array_container_iandnot(run_container_t *src_1, - const array_container_t *src_2, void **dst); - -/* dst must be a valid array container, allowed to be src_1 */ - -void array_run_container_andnot(const array_container_t *src_1, - const run_container_t *src_2, - array_container_t *dst); - -/* dst does not indicate a valid container initially. Eventually it - * can become any kind of container. - */ - -void array_run_container_iandnot(array_container_t *src_1, - const run_container_t *src_2); - -/* dst does not indicate a valid container initially. Eventually it - * can become any kind of container. - */ - -int run_run_container_andnot(const run_container_t *src_1, - const run_container_t *src_2, void **dst); - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst (which has no container initially). It will modify src_1 - * to be dst if the result is a bitset. Otherwise, it will - * free src_1 and dst will be a new array container. In both - * cases, the caller is responsible for deallocating dst. - * Returns true iff dst is a bitset */ - -int run_run_container_iandnot(run_container_t *src_1, - const run_container_t *src_2, void **dst); - -/* - * dst is a valid array container and may be the same as src_1 - */ - -void array_array_container_andnot(const array_container_t *src_1, - const array_container_t *src_2, - array_container_t *dst); - -/* inplace array-array andnot will always be able to reuse the space of - * src_1 */ -void array_array_container_iandnot(array_container_t *src_1, - const array_container_t *src_2); - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst (which has no container initially). Return value is - * "dst is a bitset" - */ - -bool bitset_bitset_container_andnot(const bitset_container_t *src_1, - const bitset_container_t *src_2, - void **dst); - -/* Compute the andnot of src_1 and src_2 and write the result to - * dst (which has no container initially). It will modify src_1 - * to be dst if the result is a bitset. Otherwise, it will - * free src_1 and dst will be a new array container. In both - * cases, the caller is responsible for deallocating dst. - * Returns true iff dst is a bitset */ - -bool bitset_bitset_container_iandnot(bitset_container_t *src_1, - const bitset_container_t *src_2, - void **dst); -#endif -/* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/mixed_andnot.h */ -/* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/mixed_intersection.h */ -/* - * mixed_intersection.h - * - */ - -#ifndef INCLUDE_CONTAINERS_MIXED_INTERSECTION_H_ -#define INCLUDE_CONTAINERS_MIXED_INTERSECTION_H_ - -/* These functions appear to exclude cases where the - * inputs have the same type and the output is guaranteed - * to have the same type as the inputs. Eg, array intersection - */ - - -/* Compute the intersection of src_1 and src_2 and write the result to - * dst. It is allowed for dst to be equal to src_1. We assume that dst is a - * valid container. */ -void array_bitset_container_intersection(const array_container_t *src_1, - const bitset_container_t *src_2, - array_container_t *dst); - -/* Compute the size of the intersection of src_1 and src_2. */ -int array_bitset_container_intersection_cardinality( - const array_container_t *src_1, const bitset_container_t *src_2); - - - -/* Checking whether src_1 and src_2 intersect. */ -bool array_bitset_container_intersect(const array_container_t *src_1, - const bitset_container_t *src_2); - -/* - * Compute the intersection between src_1 and src_2 and write the result - * to *dst. If the return function is true, the result is a bitset_container_t - * otherwise is a array_container_t. We assume that dst is not pre-allocated. In - * case of failure, *dst will be NULL. - */ -bool bitset_bitset_container_intersection(const bitset_container_t *src_1, - const bitset_container_t *src_2, - void **dst); - -/* Compute the intersection between src_1 and src_2 and write the result to - * dst. It is allowed for dst to be equal to src_1. We assume that dst is a - * valid container. */ -void array_run_container_intersection(const array_container_t *src_1, - const run_container_t *src_2, - array_container_t *dst); - -/* Compute the intersection between src_1 and src_2 and write the result to - * *dst. If the result is true then the result is a bitset_container_t - * otherwise is a array_container_t. - * If *dst == src_2, then an in-place intersection is attempted - **/ -bool run_bitset_container_intersection(const run_container_t *src_1, - const bitset_container_t *src_2, - void **dst); - -/* Compute the size of the intersection between src_1 and src_2 . */ -int array_run_container_intersection_cardinality(const array_container_t *src_1, - const run_container_t *src_2); - -/* Compute the size of the intersection between src_1 and src_2 - **/ -int run_bitset_container_intersection_cardinality(const run_container_t *src_1, - const bitset_container_t *src_2); - - -/* Check that src_1 and src_2 intersect. */ -bool array_run_container_intersect(const array_container_t *src_1, - const run_container_t *src_2); - -/* Check that src_1 and src_2 intersect. - **/ -bool run_bitset_container_intersect(const run_container_t *src_1, - const bitset_container_t *src_2); - -/* - * Same as bitset_bitset_container_intersection except that if the output is to - * be a - * bitset_container_t, then src_1 is modified and no allocation is made. - * If the output is to be an array_container_t, then caller is responsible - * to free the container. - * In all cases, the result is in *dst. - */ -bool bitset_bitset_container_intersection_inplace( - bitset_container_t *src_1, const bitset_container_t *src_2, void **dst); - -#endif /* INCLUDE_CONTAINERS_MIXED_INTERSECTION_H_ */ -/* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/mixed_intersection.h */ -/* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/mixed_negation.h */ -/* - * mixed_negation.h - * - */ - -#ifndef INCLUDE_CONTAINERS_MIXED_NEGATION_H_ -#define INCLUDE_CONTAINERS_MIXED_NEGATION_H_ - - -/* Negation across the entire range of the container. - * Compute the negation of src and write the result - * to *dst. The complement of a - * sufficiently sparse set will always be dense and a hence a bitmap - * We assume that dst is pre-allocated and a valid bitset container - * There can be no in-place version. - */ -void array_container_negation(const array_container_t *src, - bitset_container_t *dst); - -/* Negation across the entire range of the container - * Compute the negation of src and write the result - * to *dst. A true return value indicates a bitset result, - * otherwise the result is an array container. - * We assume that dst is not pre-allocated. In - * case of failure, *dst will be NULL. - */ -bool bitset_container_negation(const bitset_container_t *src, void **dst); - -/* inplace version */ -/* - * Same as bitset_container_negation except that if the output is to - * be a - * bitset_container_t, then src is modified and no allocation is made. - * If the output is to be an array_container_t, then caller is responsible - * to free the container. - * In all cases, the result is in *dst. - */ -bool bitset_container_negation_inplace(bitset_container_t *src, void **dst); - -/* Negation across the entire range of container - * Compute the negation of src and write the result - * to *dst. - * Return values are the *_TYPECODES as defined * in containers.h - * We assume that dst is not pre-allocated. In - * case of failure, *dst will be NULL. - */ -int run_container_negation(const run_container_t *src, void **dst); - -/* - * Same as run_container_negation except that if the output is to - * be a - * run_container_t, and has the capacity to hold the result, - * then src is modified and no allocation is made. - * In all cases, the result is in *dst. - */ -int run_container_negation_inplace(run_container_t *src, void **dst); - -/* Negation across a range of the container. - * Compute the negation of src and write the result - * to *dst. Returns true if the result is a bitset container - * and false for an array container. *dst is not preallocated. - */ -bool array_container_negation_range(const array_container_t *src, - const int range_start, const int range_end, - void **dst); - -/* Even when the result would fit, it is unclear how to make an - * inplace version without inefficient copying. Thus this routine - * may be a wrapper for the non-in-place version - */ -bool array_container_negation_range_inplace(array_container_t *src, - const int range_start, - const int range_end, void **dst); - -/* Negation across a range of the container - * Compute the negation of src and write the result - * to *dst. A true return value indicates a bitset result, - * otherwise the result is an array container. - * We assume that dst is not pre-allocated. In - * case of failure, *dst will be NULL. - */ -bool bitset_container_negation_range(const bitset_container_t *src, - const int range_start, const int range_end, - void **dst); - -/* inplace version */ -/* - * Same as bitset_container_negation except that if the output is to - * be a - * bitset_container_t, then src is modified and no allocation is made. - * If the output is to be an array_container_t, then caller is responsible - * to free the container. - * In all cases, the result is in *dst. - */ -bool bitset_container_negation_range_inplace(bitset_container_t *src, - const int range_start, - const int range_end, void **dst); - -/* Negation across a range of container - * Compute the negation of src and write the result - * to *dst. Return values are the *_TYPECODES as defined * in containers.h - * We assume that dst is not pre-allocated. In - * case of failure, *dst will be NULL. - */ -int run_container_negation_range(const run_container_t *src, - const int range_start, const int range_end, - void **dst); - -/* - * Same as run_container_negation except that if the output is to - * be a - * run_container_t, and has the capacity to hold the result, - * then src is modified and no allocation is made. - * In all cases, the result is in *dst. - */ -int run_container_negation_range_inplace(run_container_t *src, - const int range_start, - const int range_end, void **dst); - -#endif /* INCLUDE_CONTAINERS_MIXED_NEGATION_H_ */ -/* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/mixed_negation.h */ -/* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/mixed_union.h */ -/* - * mixed_intersection.h - * - */ - -#ifndef INCLUDE_CONTAINERS_MIXED_UNION_H_ -#define INCLUDE_CONTAINERS_MIXED_UNION_H_ - -/* These functions appear to exclude cases where the - * inputs have the same type and the output is guaranteed - * to have the same type as the inputs. Eg, bitset unions - */ - - -/* Compute the union of src_1 and src_2 and write the result to - * dst. It is allowed for src_2 to be dst. */ -void array_bitset_container_union(const array_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst); - -/* Compute the union of src_1 and src_2 and write the result to - * dst. It is allowed for src_2 to be dst. This version does not - * update the cardinality of dst (it is set to BITSET_UNKNOWN_CARDINALITY). */ -void array_bitset_container_lazy_union(const array_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst); - -/* - * Compute the union between src_1 and src_2 and write the result - * to *dst. If the return function is true, the result is a bitset_container_t - * otherwise is a array_container_t. We assume that dst is not pre-allocated. In - * case of failure, *dst will be NULL. - */ -bool array_array_container_union(const array_container_t *src_1, - const array_container_t *src_2, void **dst); - -/* - * Compute the union between src_1 and src_2 and write the result - * to *dst if it cannot be written to src_1. If the return function is true, - * the result is a bitset_container_t - * otherwise is a array_container_t. When the result is an array_container_t, it - * it either written to src_1 (if *dst is null) or to *dst. - * If the result is a bitset_container_t and *dst is null, then there was a failure. - */ -bool array_array_container_inplace_union(array_container_t *src_1, - const array_container_t *src_2, void **dst); - -/* - * Same as array_array_container_union except that it will more eagerly produce - * a bitset. - */ -bool array_array_container_lazy_union(const array_container_t *src_1, - const array_container_t *src_2, - void **dst); - -/* - * Same as array_array_container_inplace_union except that it will more eagerly produce - * a bitset. - */ -bool array_array_container_lazy_inplace_union(array_container_t *src_1, - const array_container_t *src_2, - void **dst); - -/* Compute the union of src_1 and src_2 and write the result to - * dst. We assume that dst is a - * valid container. The result might need to be further converted to array or - * bitset container, - * the caller is responsible for the eventual conversion. */ -void array_run_container_union(const array_container_t *src_1, - const run_container_t *src_2, - run_container_t *dst); - -/* Compute the union of src_1 and src_2 and write the result to - * src2. The result might need to be further converted to array or - * bitset container, - * the caller is responsible for the eventual conversion. */ -void array_run_container_inplace_union(const array_container_t *src_1, - run_container_t *src_2); - -/* Compute the union of src_1 and src_2 and write the result to - * dst. It is allowed for dst to be src_2. - * If run_container_is_full(src_1) is true, you must not be calling this - *function. - **/ -void run_bitset_container_union(const run_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst); - -/* Compute the union of src_1 and src_2 and write the result to - * dst. It is allowed for dst to be src_2. This version does not - * update the cardinality of dst (it is set to BITSET_UNKNOWN_CARDINALITY). - * If run_container_is_full(src_1) is true, you must not be calling this - * function. - * */ -void run_bitset_container_lazy_union(const run_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst); - -#endif /* INCLUDE_CONTAINERS_MIXED_UNION_H_ */ -/* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/mixed_union.h */ -/* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/mixed_xor.h */ -/* - * mixed_xor.h - * - */ - -#ifndef INCLUDE_CONTAINERS_MIXED_XOR_H_ -#define INCLUDE_CONTAINERS_MIXED_XOR_H_ - -/* These functions appear to exclude cases where the - * inputs have the same type and the output is guaranteed - * to have the same type as the inputs. Eg, bitset unions - */ - -/* - * Java implementation (as of May 2016) for array_run, run_run - * and bitset_run don't do anything different for inplace. - * (They are not truly in place.) - */ - - - -/* Compute the xor of src_1 and src_2 and write the result to - * dst (which has no container initially). - * Result is true iff dst is a bitset */ -bool array_bitset_container_xor(const array_container_t *src_1, - const bitset_container_t *src_2, void **dst); - -/* Compute the xor of src_1 and src_2 and write the result to - * dst. It is allowed for src_2 to be dst. This version does not - * update the cardinality of dst (it is set to BITSET_UNKNOWN_CARDINALITY). - */ - -void array_bitset_container_lazy_xor(const array_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst); -/* Compute the xor of src_1 and src_2 and write the result to - * dst (which has no container initially). Return value is - * "dst is a bitset" - */ - -bool bitset_bitset_container_xor(const bitset_container_t *src_1, - const bitset_container_t *src_2, void **dst); - -/* Compute the xor of src_1 and src_2 and write the result to - * dst. Result may be either a bitset or an array container - * (returns "result is bitset"). dst does not initially have - * any container, but becomes either a bitset container (return - * result true) or an array container. - */ - -bool run_bitset_container_xor(const run_container_t *src_1, - const bitset_container_t *src_2, void **dst); - -/* lazy xor. Dst is initialized and may be equal to src_2. - * Result is left as a bitset container, even if actual - * cardinality would dictate an array container. - */ - -void run_bitset_container_lazy_xor(const run_container_t *src_1, - const bitset_container_t *src_2, - bitset_container_t *dst); - -/* dst does not indicate a valid container initially. Eventually it - * can become any kind of container. - */ - -int array_run_container_xor(const array_container_t *src_1, - const run_container_t *src_2, void **dst); - -/* dst does not initially have a valid container. Creates either - * an array or a bitset container, indicated by return code - */ - -bool array_array_container_xor(const array_container_t *src_1, - const array_container_t *src_2, void **dst); - -/* dst does not initially have a valid container. Creates either - * an array or a bitset container, indicated by return code. - * A bitset container will not have a valid cardinality and the - * container type might not be correct for the actual cardinality - */ - -bool array_array_container_lazy_xor(const array_container_t *src_1, - const array_container_t *src_2, void **dst); - -/* Dst is a valid run container. (Can it be src_2? Let's say not.) - * Leaves result as run container, even if other options are - * smaller. - */ - -void array_run_container_lazy_xor(const array_container_t *src_1, - const run_container_t *src_2, - run_container_t *dst); - -/* dst does not indicate a valid container initially. Eventually it - * can become any kind of container. - */ - -int run_run_container_xor(const run_container_t *src_1, - const run_container_t *src_2, void **dst); - -/* INPLACE versions (initial implementation may not exploit all inplace - * opportunities (if any...) - */ - -/* Compute the xor of src_1 and src_2 and write the result to - * dst (which has no container initially). It will modify src_1 - * to be dst if the result is a bitset. Otherwise, it will - * free src_1 and dst will be a new array container. In both - * cases, the caller is responsible for deallocating dst. - * Returns true iff dst is a bitset */ - -bool bitset_array_container_ixor(bitset_container_t *src_1, - const array_container_t *src_2, void **dst); - -bool bitset_bitset_container_ixor(bitset_container_t *src_1, - const bitset_container_t *src_2, void **dst); - -bool array_bitset_container_ixor(array_container_t *src_1, - const bitset_container_t *src_2, void **dst); - -/* Compute the xor of src_1 and src_2 and write the result to - * dst. Result may be either a bitset or an array container - * (returns "result is bitset"). dst does not initially have - * any container, but becomes either a bitset container (return - * result true) or an array container. - */ - -bool run_bitset_container_ixor(run_container_t *src_1, - const bitset_container_t *src_2, void **dst); - -bool bitset_run_container_ixor(bitset_container_t *src_1, - const run_container_t *src_2, void **dst); - -/* dst does not indicate a valid container initially. Eventually it - * can become any kind of container. - */ - -int array_run_container_ixor(array_container_t *src_1, - const run_container_t *src_2, void **dst); - -int run_array_container_ixor(run_container_t *src_1, - const array_container_t *src_2, void **dst); - -bool array_array_container_ixor(array_container_t *src_1, - const array_container_t *src_2, void **dst); - -int run_run_container_ixor(run_container_t *src_1, const run_container_t *src_2, - void **dst); -#endif -/* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/mixed_xor.h */ -/* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/containers.h */ -#ifndef CONTAINERS_CONTAINERS_H -#define CONTAINERS_CONTAINERS_H - -#ifdef __cplusplus -extern "C" { -#endif - -#include -#include -#include - - -// would enum be possible or better? - -/** - * The switch case statements follow - * BITSET_CONTAINER_TYPE_CODE -- ARRAY_CONTAINER_TYPE_CODE -- - * RUN_CONTAINER_TYPE_CODE - * so it makes more sense to number them 1, 2, 3 (in the vague hope that the - * compiler might exploit this ordering). - */ - -#define BITSET_CONTAINER_TYPE_CODE 1 -#define ARRAY_CONTAINER_TYPE_CODE 2 -#define RUN_CONTAINER_TYPE_CODE 3 -#define SHARED_CONTAINER_TYPE_CODE 4 - -// macro for pairing container type codes -#define CONTAINER_PAIR(c1, c2) (4 * (c1) + (c2)) - -/** - * A shared container is a wrapper around a container - * with reference counting. - */ - -struct shared_container_s { - void *container; - uint8_t typecode; - uint32_t counter; // to be managed atomically -}; - -typedef struct shared_container_s shared_container_t; - -/* - * With copy_on_write = true - * Create a new shared container if the typecode is not SHARED_CONTAINER_TYPE, - * otherwise, increase the count - * If copy_on_write = false, then clone. - * Return NULL in case of failure. - **/ -void *get_copy_of_container(void *container, uint8_t *typecode, - bool copy_on_write); - -/* Frees a shared container (actually decrement its counter and only frees when - * the counter falls to zero). */ -void shared_container_free(shared_container_t *container); - -/* extract a copy from the shared container, freeing the shared container if -there is just one instance left, -clone instances when the counter is higher than one -*/ -void *shared_container_extract_copy(shared_container_t *container, - uint8_t *typecode); - -/* access to container underneath */ -inline const void *container_unwrap_shared( - const void *candidate_shared_container, uint8_t *type) { - if (*type == SHARED_CONTAINER_TYPE_CODE) { - *type = - ((const shared_container_t *)candidate_shared_container)->typecode; - assert(*type != SHARED_CONTAINER_TYPE_CODE); - return ((const shared_container_t *)candidate_shared_container)->container; - } else { - return candidate_shared_container; - } -} - - -/* access to container underneath */ -inline void *container_mutable_unwrap_shared( - void *candidate_shared_container, uint8_t *type) { - if (*type == SHARED_CONTAINER_TYPE_CODE) { - *type = - ((shared_container_t *)candidate_shared_container)->typecode; - assert(*type != SHARED_CONTAINER_TYPE_CODE); - return ((shared_container_t *)candidate_shared_container)->container; - } else { - return candidate_shared_container; - } -} - -/* access to container underneath and queries its type */ -static inline uint8_t get_container_type(const void *container, uint8_t type) { - if (type == SHARED_CONTAINER_TYPE_CODE) { - return ((const shared_container_t *)container)->typecode; - } else { - return type; - } -} - -/** - * Copies a container, requires a typecode. This allocates new memory, caller - * is responsible for deallocation. If the container is not shared, then it is - * physically cloned. Sharable containers are not cloneable. - */ -void *container_clone(const void *container, uint8_t typecode); - -/* access to container underneath, cloning it if needed */ -static inline void *get_writable_copy_if_shared( - void *candidate_shared_container, uint8_t *type) { - if (*type == SHARED_CONTAINER_TYPE_CODE) { - return shared_container_extract_copy( - (shared_container_t *)candidate_shared_container, type); - } else { - return candidate_shared_container; - } -} - -/** - * End of shared container code - */ - -static const char *container_names[] = {"bitset", "array", "run", "shared"}; -static const char *shared_container_names[] = { - "bitset (shared)", "array (shared)", "run (shared)"}; - -// no matter what the initial container was, convert it to a bitset -// if a new container is produced, caller responsible for freeing the previous -// one -// container should not be a shared container -static inline void *container_to_bitset(void *container, uint8_t typecode) { - bitset_container_t *result = NULL; - switch (typecode) { - case BITSET_CONTAINER_TYPE_CODE: - return container; // nothing to do - case ARRAY_CONTAINER_TYPE_CODE: - result = - bitset_container_from_array((array_container_t *)container); - return result; - case RUN_CONTAINER_TYPE_CODE: - result = bitset_container_from_run((run_container_t *)container); - return result; - case SHARED_CONTAINER_TYPE_CODE: - assert(false); - } - assert(false); - __builtin_unreachable(); - return 0; // unreached -} - -/** - * Get the container name from the typecode - */ -static inline const char *get_container_name(uint8_t typecode) { - switch (typecode) { - case BITSET_CONTAINER_TYPE_CODE: - return container_names[0]; - case ARRAY_CONTAINER_TYPE_CODE: - return container_names[1]; - case RUN_CONTAINER_TYPE_CODE: - return container_names[2]; - case SHARED_CONTAINER_TYPE_CODE: - return container_names[3]; - default: - assert(false); - __builtin_unreachable(); - return "unknown"; - } -} - -static inline const char *get_full_container_name(const void *container, - uint8_t typecode) { - switch (typecode) { - case BITSET_CONTAINER_TYPE_CODE: - return container_names[0]; - case ARRAY_CONTAINER_TYPE_CODE: - return container_names[1]; - case RUN_CONTAINER_TYPE_CODE: - return container_names[2]; - case SHARED_CONTAINER_TYPE_CODE: - switch (((const shared_container_t *)container)->typecode) { - case BITSET_CONTAINER_TYPE_CODE: - return shared_container_names[0]; - case ARRAY_CONTAINER_TYPE_CODE: - return shared_container_names[1]; - case RUN_CONTAINER_TYPE_CODE: - return shared_container_names[2]; - default: - assert(false); - __builtin_unreachable(); - return "unknown"; - } - break; - default: - assert(false); - __builtin_unreachable(); - return "unknown"; - } - __builtin_unreachable(); - return NULL; -} - -/** - * Get the container cardinality (number of elements), requires a typecode - */ -static inline int container_get_cardinality(const void *container, - uint8_t typecode) { - container = container_unwrap_shared(container, &typecode); - switch (typecode) { - case BITSET_CONTAINER_TYPE_CODE: - return bitset_container_cardinality( - (const bitset_container_t *)container); - case ARRAY_CONTAINER_TYPE_CODE: - return array_container_cardinality( - (const array_container_t *)container); - case RUN_CONTAINER_TYPE_CODE: - return run_container_cardinality( - (const run_container_t *)container); - } - assert(false); - __builtin_unreachable(); - return 0; // unreached -} - - - -// returns true if a container is known to be full. Note that a lazy bitset -// container -// might be full without us knowing -static inline bool container_is_full(const void *container, uint8_t typecode) { - container = container_unwrap_shared(container, &typecode); - switch (typecode) { - case BITSET_CONTAINER_TYPE_CODE: - return bitset_container_cardinality( - (const bitset_container_t *)container) == (1 << 16); - case ARRAY_CONTAINER_TYPE_CODE: - return array_container_cardinality( - (const array_container_t *)container) == (1 << 16); - case RUN_CONTAINER_TYPE_CODE: - return run_container_is_full((const run_container_t *)container); - } - assert(false); - __builtin_unreachable(); - return 0; // unreached -} - -static inline int container_shrink_to_fit(void *container, uint8_t typecode) { - container = container_mutable_unwrap_shared(container, &typecode); - switch (typecode) { - case BITSET_CONTAINER_TYPE_CODE: - return 0; // no shrinking possible - case ARRAY_CONTAINER_TYPE_CODE: - return array_container_shrink_to_fit( - (array_container_t *)container); - case RUN_CONTAINER_TYPE_CODE: - return run_container_shrink_to_fit((run_container_t *)container); - } - assert(false); - __builtin_unreachable(); - return 0; // unreached -} - - -/** - * make a container with a run of ones - */ -/* initially always use a run container, even if an array might be - * marginally - * smaller */ -static inline void *container_range_of_ones(uint32_t range_start, - uint32_t range_end, - uint8_t *result_type) { - assert(range_end >= range_start); - uint64_t cardinality = range_end - range_start + 1; - if(cardinality <= 2) { - *result_type = ARRAY_CONTAINER_TYPE_CODE; - return array_container_create_range(range_start, range_end); - } else { - *result_type = RUN_CONTAINER_TYPE_CODE; - return run_container_create_range(range_start, range_end); - } -} - - -/* Create a container with all the values between in [min,max) at a - distance k*step from min. */ -static inline void *container_from_range(uint8_t *type, uint32_t min, - uint32_t max, uint16_t step) { - if (step == 0) return NULL; // being paranoid - if (step == 1) { - return container_range_of_ones(min,max,type); - // Note: the result is not always a run (need to check the cardinality) - //*type = RUN_CONTAINER_TYPE_CODE; - //return run_container_create_range(min, max); - } - int size = (max - min + step - 1) / step; - if (size <= DEFAULT_MAX_SIZE) { // array container - *type = ARRAY_CONTAINER_TYPE_CODE; - array_container_t *array = array_container_create_given_capacity(size); - array_container_add_from_range(array, min, max, step); - assert(array->cardinality == size); - return array; - } else { // bitset container - *type = BITSET_CONTAINER_TYPE_CODE; - bitset_container_t *bitset = bitset_container_create(); - bitset_container_add_from_range(bitset, min, max, step); - assert(bitset->cardinality == size); - return bitset; - } -} - -/** - * "repair" the container after lazy operations. - */ -static inline void *container_repair_after_lazy(void *container, - uint8_t *typecode) { - container = get_writable_copy_if_shared( - container, typecode); // TODO: this introduces unnecessary cloning - void *result = NULL; - switch (*typecode) { - case BITSET_CONTAINER_TYPE_CODE: - ((bitset_container_t *)container)->cardinality = - bitset_container_compute_cardinality( - (bitset_container_t *)container); - if (((bitset_container_t *)container)->cardinality <= - DEFAULT_MAX_SIZE) { - result = array_container_from_bitset( - (const bitset_container_t *)container); - bitset_container_free((bitset_container_t *)container); - *typecode = ARRAY_CONTAINER_TYPE_CODE; - return result; - } - return container; - case ARRAY_CONTAINER_TYPE_CODE: - return container; // nothing to do - case RUN_CONTAINER_TYPE_CODE: - return convert_run_to_efficient_container_and_free( - (run_container_t *)container, typecode); - case SHARED_CONTAINER_TYPE_CODE: - assert(false); - } - assert(false); - __builtin_unreachable(); - return 0; // unreached -} - -/** - * Writes the underlying array to buf, outputs how many bytes were written. - * This is meant to be byte-by-byte compatible with the Java and Go versions of - * Roaring. - * The number of bytes written should be - * container_write(container, buf). - * - */ -static inline int32_t container_write(const void *container, uint8_t typecode, - char *buf) { - container = container_unwrap_shared(container, &typecode); - switch (typecode) { - case BITSET_CONTAINER_TYPE_CODE: - return bitset_container_write((const bitset_container_t *)container, buf); - case ARRAY_CONTAINER_TYPE_CODE: - return array_container_write((const array_container_t *)container, buf); - case RUN_CONTAINER_TYPE_CODE: - return run_container_write((const run_container_t *)container, buf); - } - assert(false); - __builtin_unreachable(); - return 0; // unreached -} - -/** - * Get the container size in bytes under portable serialization (see - * container_write), requires a - * typecode - */ -static inline int32_t container_size_in_bytes(const void *container, - uint8_t typecode) { - container = container_unwrap_shared(container, &typecode); - switch (typecode) { - case BITSET_CONTAINER_TYPE_CODE: - return bitset_container_size_in_bytes( - (const bitset_container_t *)container); - case ARRAY_CONTAINER_TYPE_CODE: - return array_container_size_in_bytes( - (const array_container_t *)container); - case RUN_CONTAINER_TYPE_CODE: - return run_container_size_in_bytes((const run_container_t *)container); - } - assert(false); - __builtin_unreachable(); - return 0; // unreached -} - -/** - * print the container (useful for debugging), requires a typecode - */ -void container_printf(const void *container, uint8_t typecode); - -/** - * print the content of the container as a comma-separated list of 32-bit values - * starting at base, requires a typecode - */ -void container_printf_as_uint32_array(const void *container, uint8_t typecode, - uint32_t base); - -/** - * Checks whether a container is not empty, requires a typecode - */ -static inline bool container_nonzero_cardinality(const void *container, - uint8_t typecode) { - container = container_unwrap_shared(container, &typecode); - switch (typecode) { - case BITSET_CONTAINER_TYPE_CODE: - return bitset_container_const_nonzero_cardinality( - (const bitset_container_t *)container); - case ARRAY_CONTAINER_TYPE_CODE: - return array_container_nonzero_cardinality( - (const array_container_t *)container); - case RUN_CONTAINER_TYPE_CODE: - return run_container_nonzero_cardinality( - (const run_container_t *)container); - } - assert(false); - __builtin_unreachable(); - return 0; // unreached -} - -/** - * Recover memory from a container, requires a typecode - */ -void container_free(void *container, uint8_t typecode); - -/** - * Convert a container to an array of values, requires a typecode as well as a - * "base" (most significant values) - * Returns number of ints added. - */ -static inline int container_to_uint32_array(uint32_t *output, - const void *container, - uint8_t typecode, uint32_t base) { - container = container_unwrap_shared(container, &typecode); - switch (typecode) { - case BITSET_CONTAINER_TYPE_CODE: - return bitset_container_to_uint32_array( - output, (const bitset_container_t *)container, base); - case ARRAY_CONTAINER_TYPE_CODE: - return array_container_to_uint32_array( - output, (const array_container_t *)container, base); - case RUN_CONTAINER_TYPE_CODE: - return run_container_to_uint32_array( - output, (const run_container_t *)container, base); - } - assert(false); - __builtin_unreachable(); - return 0; // unreached -} - -/** - * Add a value to a container, requires a typecode, fills in new_typecode and - * return (possibly different) container. - * This function may allocate a new container, and caller is responsible for - * memory deallocation - */ -static inline void *container_add(void *container, uint16_t val, - uint8_t typecode, uint8_t *new_typecode) { - container = get_writable_copy_if_shared(container, &typecode); - switch (typecode) { - case BITSET_CONTAINER_TYPE_CODE: - bitset_container_set((bitset_container_t *)container, val); - *new_typecode = BITSET_CONTAINER_TYPE_CODE; - return container; - case ARRAY_CONTAINER_TYPE_CODE: { - array_container_t *ac = (array_container_t *)container; - if (array_container_try_add(ac, val, DEFAULT_MAX_SIZE) != -1) { - *new_typecode = ARRAY_CONTAINER_TYPE_CODE; - return ac; - } else { - bitset_container_t* bitset = bitset_container_from_array(ac); - bitset_container_add(bitset, val); - *new_typecode = BITSET_CONTAINER_TYPE_CODE; - return bitset; - } - } break; - case RUN_CONTAINER_TYPE_CODE: - // per Java, no container type adjustments are done (revisit?) - run_container_add((run_container_t *)container, val); - *new_typecode = RUN_CONTAINER_TYPE_CODE; - return container; - default: - assert(false); - __builtin_unreachable(); - return NULL; - } -} - -/** - * Remove a value from a container, requires a typecode, fills in new_typecode - * and - * return (possibly different) container. - * This function may allocate a new container, and caller is responsible for - * memory deallocation - */ -static inline void *container_remove(void *container, uint16_t val, - uint8_t typecode, uint8_t *new_typecode) { - container = get_writable_copy_if_shared(container, &typecode); - switch (typecode) { - case BITSET_CONTAINER_TYPE_CODE: - if (bitset_container_remove((bitset_container_t *)container, val)) { - if (bitset_container_cardinality( - (bitset_container_t *)container) <= DEFAULT_MAX_SIZE) { - *new_typecode = ARRAY_CONTAINER_TYPE_CODE; - return array_container_from_bitset( - (bitset_container_t *)container); - } - } - *new_typecode = typecode; - return container; - case ARRAY_CONTAINER_TYPE_CODE: - *new_typecode = typecode; - array_container_remove((array_container_t *)container, val); - return container; - case RUN_CONTAINER_TYPE_CODE: - // per Java, no container type adjustments are done (revisit?) - run_container_remove((run_container_t *)container, val); - *new_typecode = RUN_CONTAINER_TYPE_CODE; - return container; - default: - assert(false); - __builtin_unreachable(); - return NULL; - } -} - -/** - * Check whether a value is in a container, requires a typecode - */ -inline bool container_contains(const void *container, uint16_t val, - uint8_t typecode) { - container = container_unwrap_shared(container, &typecode); - switch (typecode) { - case BITSET_CONTAINER_TYPE_CODE: - return bitset_container_get((const bitset_container_t *)container, - val); - case ARRAY_CONTAINER_TYPE_CODE: - return array_container_contains( - (const array_container_t *)container, val); - case RUN_CONTAINER_TYPE_CODE: - return run_container_contains((const run_container_t *)container, - val); - default: - assert(false); - __builtin_unreachable(); - return false; - } -} - -/** - * Check whether a range of values from range_start (included) to range_end (excluded) - * is in a container, requires a typecode - */ -static inline bool container_contains_range(const void *container, uint32_t range_start, - uint32_t range_end, uint8_t typecode) { - container = container_unwrap_shared(container, &typecode); - switch (typecode) { - case BITSET_CONTAINER_TYPE_CODE: - return bitset_container_get_range((const bitset_container_t *)container, - range_start, range_end); - case ARRAY_CONTAINER_TYPE_CODE: - return array_container_contains_range((const array_container_t *)container, - range_start, range_end); - case RUN_CONTAINER_TYPE_CODE: - return run_container_contains_range((const run_container_t *)container, - range_start, range_end); - default: - assert(false); - __builtin_unreachable(); - return false; - } -} - -int32_t container_serialize(const void *container, uint8_t typecode, - char *buf) WARN_UNUSED; - -uint32_t container_serialization_len(const void *container, uint8_t typecode); - -void *container_deserialize(uint8_t typecode, const char *buf, size_t buf_len); - -/** - * Returns true if the two containers have the same content. Note that - * two containers having different types can be "equal" in this sense. - */ -static inline bool container_equals(const void *c1, uint8_t type1, - const void *c2, uint8_t type2) { - c1 = container_unwrap_shared(c1, &type1); - c2 = container_unwrap_shared(c2, &type2); - switch (CONTAINER_PAIR(type1, type2)) { - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - return bitset_container_equals((const bitset_container_t *)c1, - (const bitset_container_t *)c2); - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - RUN_CONTAINER_TYPE_CODE): - return run_container_equals_bitset((const run_container_t *)c2, - (const bitset_container_t *)c1); - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - return run_container_equals_bitset((const run_container_t *)c1, - (const bitset_container_t *)c2); - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - ARRAY_CONTAINER_TYPE_CODE): - // java would always return false? - return array_container_equal_bitset((const array_container_t *)c2, - (const bitset_container_t *)c1); - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - // java would always return false? - return array_container_equal_bitset((const array_container_t *)c1, - (const bitset_container_t *)c2); - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): - return run_container_equals_array((const run_container_t *)c2, - (const array_container_t *)c1); - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE): - return run_container_equals_array((const run_container_t *)c1, - (const array_container_t *)c2); - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, - ARRAY_CONTAINER_TYPE_CODE): - return array_container_equals((const array_container_t *)c1, - (const array_container_t *)c2); - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): - return run_container_equals((const run_container_t *)c1, - (const run_container_t *)c2); - default: - assert(false); - __builtin_unreachable(); - return false; - } -} - -/** - * Returns true if the container c1 is a subset of the container c2. Note that - * c1 can be a subset of c2 even if they have a different type. - */ -static inline bool container_is_subset(const void *c1, uint8_t type1, - const void *c2, uint8_t type2) { - c1 = container_unwrap_shared(c1, &type1); - c2 = container_unwrap_shared(c2, &type2); - switch (CONTAINER_PAIR(type1, type2)) { - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - return bitset_container_is_subset((const bitset_container_t *)c1, - (const bitset_container_t *)c2); - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - RUN_CONTAINER_TYPE_CODE): - return bitset_container_is_subset_run((const bitset_container_t *)c1, - (const run_container_t *)c2); - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - return run_container_is_subset_bitset((const run_container_t *)c1, - (const bitset_container_t *)c2); - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - ARRAY_CONTAINER_TYPE_CODE): - return false; // by construction, size(c1) > size(c2) - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - return array_container_is_subset_bitset((const array_container_t *)c1, - (const bitset_container_t *)c2); - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): - return array_container_is_subset_run((const array_container_t *)c1, - (const run_container_t *)c2); - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE): - return run_container_is_subset_array((const run_container_t *)c1, - (const array_container_t *)c2); - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, - ARRAY_CONTAINER_TYPE_CODE): - return array_container_is_subset((const array_container_t *)c1, - (const array_container_t *)c2); - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): - return run_container_is_subset((const run_container_t *)c1, - (const run_container_t *)c2); - default: - assert(false); - __builtin_unreachable(); - return false; - } -} - -// macro-izations possibilities for generic non-inplace binary-op dispatch - -/** - * Compute intersection between two containers, generate a new container (having - * type result_type), requires a typecode. This allocates new memory, caller - * is responsible for deallocation. - */ -static inline void *container_and(const void *c1, uint8_t type1, const void *c2, - uint8_t type2, uint8_t *result_type) { - c1 = container_unwrap_shared(c1, &type1); - c2 = container_unwrap_shared(c2, &type2); - void *result = NULL; - switch (CONTAINER_PAIR(type1, type2)) { - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - *result_type = bitset_bitset_container_intersection( - (const bitset_container_t *)c1, - (const bitset_container_t *)c2, &result) - ? BITSET_CONTAINER_TYPE_CODE - : ARRAY_CONTAINER_TYPE_CODE; - return result; - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, - ARRAY_CONTAINER_TYPE_CODE): - result = array_container_create(); - array_container_intersection((const array_container_t *)c1, - (const array_container_t *)c2, - (array_container_t *)result); - *result_type = ARRAY_CONTAINER_TYPE_CODE; // never bitset - return result; - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): - result = run_container_create(); - run_container_intersection((const run_container_t *)c1, - (const run_container_t *)c2, - (run_container_t *)result); - return convert_run_to_efficient_container_and_free( - (run_container_t *)result, result_type); - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - ARRAY_CONTAINER_TYPE_CODE): - result = array_container_create(); - array_bitset_container_intersection((const array_container_t *)c2, - (const bitset_container_t *)c1, - (array_container_t *)result); - *result_type = ARRAY_CONTAINER_TYPE_CODE; // never bitset - return result; - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - result = array_container_create(); - *result_type = ARRAY_CONTAINER_TYPE_CODE; // never bitset - array_bitset_container_intersection((const array_container_t *)c1, - (const bitset_container_t *)c2, - (array_container_t *)result); - return result; - - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - RUN_CONTAINER_TYPE_CODE): - *result_type = run_bitset_container_intersection( - (const run_container_t *)c2, - (const bitset_container_t *)c1, &result) - ? BITSET_CONTAINER_TYPE_CODE - : ARRAY_CONTAINER_TYPE_CODE; - return result; - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - *result_type = run_bitset_container_intersection( - (const run_container_t *)c1, - (const bitset_container_t *)c2, &result) - ? BITSET_CONTAINER_TYPE_CODE - : ARRAY_CONTAINER_TYPE_CODE; - return result; - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): - result = array_container_create(); - *result_type = ARRAY_CONTAINER_TYPE_CODE; // never bitset - array_run_container_intersection((const array_container_t *)c1, - (const run_container_t *)c2, - (array_container_t *)result); - return result; - - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE): - result = array_container_create(); - *result_type = ARRAY_CONTAINER_TYPE_CODE; // never bitset - array_run_container_intersection((const array_container_t *)c2, - (const run_container_t *)c1, - (array_container_t *)result); - return result; - default: - assert(false); - __builtin_unreachable(); - return NULL; - } -} - -/** - * Compute the size of the intersection between two containers. - */ -static inline int container_and_cardinality(const void *c1, uint8_t type1, - const void *c2, uint8_t type2) { - c1 = container_unwrap_shared(c1, &type1); - c2 = container_unwrap_shared(c2, &type2); - switch (CONTAINER_PAIR(type1, type2)) { - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - return bitset_container_and_justcard( - (const bitset_container_t *)c1, (const bitset_container_t *)c2); - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, - ARRAY_CONTAINER_TYPE_CODE): - return array_container_intersection_cardinality( - (const array_container_t *)c1, (const array_container_t *)c2); - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): - return run_container_intersection_cardinality( - (const run_container_t *)c1, (const run_container_t *)c2); - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - ARRAY_CONTAINER_TYPE_CODE): - return array_bitset_container_intersection_cardinality( - (const array_container_t *)c2, (const bitset_container_t *)c1); - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - return array_bitset_container_intersection_cardinality( - (const array_container_t *)c1, (const bitset_container_t *)c2); - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - RUN_CONTAINER_TYPE_CODE): - return run_bitset_container_intersection_cardinality( - (const run_container_t *)c2, (const bitset_container_t *)c1); - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - return run_bitset_container_intersection_cardinality( - (const run_container_t *)c1, (const bitset_container_t *)c2); - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): - return array_run_container_intersection_cardinality( - (const array_container_t *)c1, (const run_container_t *)c2); - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE): - return array_run_container_intersection_cardinality( - (const array_container_t *)c2, (const run_container_t *)c1); - default: - assert(false); - __builtin_unreachable(); - return 0; - } -} - -/** - * Check whether two containers intersect. - */ -static inline bool container_intersect(const void *c1, uint8_t type1, const void *c2, - uint8_t type2) { - c1 = container_unwrap_shared(c1, &type1); - c2 = container_unwrap_shared(c2, &type2); - switch (CONTAINER_PAIR(type1, type2)) { - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - return bitset_container_intersect( - (const bitset_container_t *)c1, - (const bitset_container_t *)c2); - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, - ARRAY_CONTAINER_TYPE_CODE): - return array_container_intersect((const array_container_t *)c1, - (const array_container_t *)c2); - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): - return run_container_intersect((const run_container_t *)c1, - (const run_container_t *)c2); - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - ARRAY_CONTAINER_TYPE_CODE): - return array_bitset_container_intersect((const array_container_t *)c2, - (const bitset_container_t *)c1); - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - return array_bitset_container_intersect((const array_container_t *)c1, - (const bitset_container_t *)c2); - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - RUN_CONTAINER_TYPE_CODE): - return run_bitset_container_intersect( - (const run_container_t *)c2, - (const bitset_container_t *)c1); - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - return run_bitset_container_intersect( - (const run_container_t *)c1, - (const bitset_container_t *)c2); - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): - return array_run_container_intersect((const array_container_t *)c1, - (const run_container_t *)c2); - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE): - return array_run_container_intersect((const array_container_t *)c2, - (const run_container_t *)c1); - default: - assert(false); - __builtin_unreachable(); - return 0; - } -} - -/** - * Compute intersection between two containers, with result in the first - container if possible. If the returned pointer is identical to c1, - then the container has been modified. If the returned pointer is different - from c1, then a new container has been created and the caller is responsible - for freeing it. - The type of the first container may change. Returns the modified - (and possibly new) container. -*/ -static inline void *container_iand(void *c1, uint8_t type1, const void *c2, - uint8_t type2, uint8_t *result_type) { - c1 = get_writable_copy_if_shared(c1, &type1); - c2 = container_unwrap_shared(c2, &type2); - void *result = NULL; - switch (CONTAINER_PAIR(type1, type2)) { - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - *result_type = - bitset_bitset_container_intersection_inplace( - (bitset_container_t *)c1, (const bitset_container_t *)c2, &result) - ? BITSET_CONTAINER_TYPE_CODE - : ARRAY_CONTAINER_TYPE_CODE; - return result; - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, - ARRAY_CONTAINER_TYPE_CODE): - array_container_intersection_inplace((array_container_t *)c1, - (const array_container_t *)c2); - *result_type = ARRAY_CONTAINER_TYPE_CODE; - return c1; - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): - result = run_container_create(); - run_container_intersection((const run_container_t *)c1, - (const run_container_t *)c2, - (run_container_t *)result); - // as of January 2016, Java code used non-in-place intersection for - // two runcontainers - return convert_run_to_efficient_container_and_free( - (run_container_t *)result, result_type); - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - ARRAY_CONTAINER_TYPE_CODE): - // c1 is a bitmap so no inplace possible - result = array_container_create(); - array_bitset_container_intersection((const array_container_t *)c2, - (const bitset_container_t *)c1, - (array_container_t *)result); - *result_type = ARRAY_CONTAINER_TYPE_CODE; // never bitset - return result; - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - *result_type = ARRAY_CONTAINER_TYPE_CODE; // never bitset - array_bitset_container_intersection( - (const array_container_t *)c1, (const bitset_container_t *)c2, - (array_container_t *)c1); // allowed - return c1; - - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - RUN_CONTAINER_TYPE_CODE): - // will attempt in-place computation - *result_type = run_bitset_container_intersection( - (const run_container_t *)c2, - (const bitset_container_t *)c1, &c1) - ? BITSET_CONTAINER_TYPE_CODE - : ARRAY_CONTAINER_TYPE_CODE; - return c1; - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - *result_type = run_bitset_container_intersection( - (const run_container_t *)c1, - (const bitset_container_t *)c2, &result) - ? BITSET_CONTAINER_TYPE_CODE - : ARRAY_CONTAINER_TYPE_CODE; - return result; - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): - result = array_container_create(); - *result_type = ARRAY_CONTAINER_TYPE_CODE; // never bitset - array_run_container_intersection((const array_container_t *)c1, - (const run_container_t *)c2, - (array_container_t *)result); - return result; - - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE): - result = array_container_create(); - *result_type = ARRAY_CONTAINER_TYPE_CODE; // never bitset - array_run_container_intersection((const array_container_t *)c2, - (const run_container_t *)c1, - (array_container_t *)result); - return result; - default: - assert(false); - __builtin_unreachable(); - return NULL; - } -} - -/** - * Compute union between two containers, generate a new container (having type - * result_type), requires a typecode. This allocates new memory, caller - * is responsible for deallocation. - */ -static inline void *container_or(const void *c1, uint8_t type1, const void *c2, - uint8_t type2, uint8_t *result_type) { - c1 = container_unwrap_shared(c1, &type1); - c2 = container_unwrap_shared(c2, &type2); - void *result = NULL; - switch (CONTAINER_PAIR(type1, type2)) { - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - result = bitset_container_create(); - bitset_container_or((const bitset_container_t *)c1, - (const bitset_container_t *)c2, - (bitset_container_t *)result); - *result_type = BITSET_CONTAINER_TYPE_CODE; - return result; - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, - ARRAY_CONTAINER_TYPE_CODE): - *result_type = array_array_container_union( - (const array_container_t *)c1, - (const array_container_t *)c2, &result) - ? BITSET_CONTAINER_TYPE_CODE - : ARRAY_CONTAINER_TYPE_CODE; - return result; - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): - result = run_container_create(); - run_container_union((const run_container_t *)c1, - (const run_container_t *)c2, - (run_container_t *)result); - *result_type = RUN_CONTAINER_TYPE_CODE; - // todo: could be optimized since will never convert to array - result = convert_run_to_efficient_container_and_free( - (run_container_t *)result, (uint8_t *)result_type); - return result; - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - ARRAY_CONTAINER_TYPE_CODE): - result = bitset_container_create(); - array_bitset_container_union((const array_container_t *)c2, - (const bitset_container_t *)c1, - (bitset_container_t *)result); - *result_type = BITSET_CONTAINER_TYPE_CODE; - return result; - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - result = bitset_container_create(); - array_bitset_container_union((const array_container_t *)c1, - (const bitset_container_t *)c2, - (bitset_container_t *)result); - *result_type = BITSET_CONTAINER_TYPE_CODE; - return result; - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - RUN_CONTAINER_TYPE_CODE): - if (run_container_is_full((const run_container_t *)c2)) { - result = run_container_create(); - *result_type = RUN_CONTAINER_TYPE_CODE; - run_container_copy((const run_container_t *)c2, - (run_container_t *)result); - return result; - } - result = bitset_container_create(); - run_bitset_container_union((const run_container_t *)c2, - (const bitset_container_t *)c1, - (bitset_container_t *)result); - *result_type = BITSET_CONTAINER_TYPE_CODE; - return result; - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - if (run_container_is_full((const run_container_t *)c1)) { - result = run_container_create(); - *result_type = RUN_CONTAINER_TYPE_CODE; - run_container_copy((const run_container_t *)c1, - (run_container_t *)result); - return result; - } - result = bitset_container_create(); - run_bitset_container_union((const run_container_t *)c1, - (const bitset_container_t *)c2, - (bitset_container_t *)result); - *result_type = BITSET_CONTAINER_TYPE_CODE; - return result; - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): - result = run_container_create(); - array_run_container_union((const array_container_t *)c1, - (const run_container_t *)c2, - (run_container_t *)result); - result = convert_run_to_efficient_container_and_free( - (run_container_t *)result, (uint8_t *)result_type); - return result; - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE): - result = run_container_create(); - array_run_container_union((const array_container_t *)c2, - (const run_container_t *)c1, - (run_container_t *)result); - result = convert_run_to_efficient_container_and_free( - (run_container_t *)result, (uint8_t *)result_type); - return result; - default: - assert(false); - __builtin_unreachable(); - return NULL; // unreached - } -} - -/** - * Compute union between two containers, generate a new container (having type - * result_type), requires a typecode. This allocates new memory, caller - * is responsible for deallocation. - * - * This lazy version delays some operations such as the maintenance of the - * cardinality. It requires repair later on the generated containers. - */ -static inline void *container_lazy_or(const void *c1, uint8_t type1, - const void *c2, uint8_t type2, - uint8_t *result_type) { - c1 = container_unwrap_shared(c1, &type1); - c2 = container_unwrap_shared(c2, &type2); - void *result = NULL; - switch (CONTAINER_PAIR(type1, type2)) { - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - result = bitset_container_create(); - bitset_container_or_nocard( - (const bitset_container_t *)c1, (const bitset_container_t *)c2, - (bitset_container_t *)result); // is lazy - *result_type = BITSET_CONTAINER_TYPE_CODE; - return result; - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, - ARRAY_CONTAINER_TYPE_CODE): - *result_type = array_array_container_lazy_union( - (const array_container_t *)c1, - (const array_container_t *)c2, &result) - ? BITSET_CONTAINER_TYPE_CODE - : ARRAY_CONTAINER_TYPE_CODE; - return result; - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): - result = run_container_create(); - run_container_union((const run_container_t *)c1, - (const run_container_t *)c2, - (run_container_t *)result); - *result_type = RUN_CONTAINER_TYPE_CODE; - // we are being lazy - result = convert_run_to_efficient_container( - (run_container_t *)result, result_type); - return result; - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - ARRAY_CONTAINER_TYPE_CODE): - result = bitset_container_create(); - array_bitset_container_lazy_union( - (const array_container_t *)c2, (const bitset_container_t *)c1, - (bitset_container_t *)result); // is lazy - *result_type = BITSET_CONTAINER_TYPE_CODE; - return result; - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - result = bitset_container_create(); - array_bitset_container_lazy_union( - (const array_container_t *)c1, (const bitset_container_t *)c2, - (bitset_container_t *)result); // is lazy - *result_type = BITSET_CONTAINER_TYPE_CODE; - return result; - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - RUN_CONTAINER_TYPE_CODE): - if (run_container_is_full((const run_container_t *)c2)) { - result = run_container_create(); - *result_type = RUN_CONTAINER_TYPE_CODE; - run_container_copy((const run_container_t *)c2, - (run_container_t *)result); - return result; - } - result = bitset_container_create(); - run_bitset_container_lazy_union( - (const run_container_t *)c2, (const bitset_container_t *)c1, - (bitset_container_t *)result); // is lazy - *result_type = BITSET_CONTAINER_TYPE_CODE; - return result; - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - if (run_container_is_full((const run_container_t *)c1)) { - result = run_container_create(); - *result_type = RUN_CONTAINER_TYPE_CODE; - run_container_copy((const run_container_t *)c1, - (run_container_t *)result); - return result; - } - result = bitset_container_create(); - run_bitset_container_lazy_union( - (const run_container_t *)c1, (const bitset_container_t *)c2, - (bitset_container_t *)result); // is lazy - *result_type = BITSET_CONTAINER_TYPE_CODE; - return result; - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): - result = run_container_create(); - array_run_container_union((const array_container_t *)c1, - (const run_container_t *)c2, - (run_container_t *)result); - *result_type = RUN_CONTAINER_TYPE_CODE; - // next line skipped since we are lazy - // result = convert_run_to_efficient_container(result, result_type); - return result; - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE): - result = run_container_create(); - array_run_container_union( - (const array_container_t *)c2, (const run_container_t *)c1, - (run_container_t *)result); // TODO make lazy - *result_type = RUN_CONTAINER_TYPE_CODE; - // next line skipped since we are lazy - // result = convert_run_to_efficient_container(result, result_type); - return result; - default: - assert(false); - __builtin_unreachable(); - return NULL; // unreached - } -} - -/** - * Compute the union between two containers, with result in the first container. - * If the returned pointer is identical to c1, then the container has been - * modified. - * If the returned pointer is different from c1, then a new container has been - * created and the caller is responsible for freeing it. - * The type of the first container may change. Returns the modified - * (and possibly new) container -*/ -static inline void *container_ior(void *c1, uint8_t type1, const void *c2, - uint8_t type2, uint8_t *result_type) { - c1 = get_writable_copy_if_shared(c1, &type1); - c2 = container_unwrap_shared(c2, &type2); - void *result = NULL; - switch (CONTAINER_PAIR(type1, type2)) { - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - bitset_container_or((const bitset_container_t *)c1, - (const bitset_container_t *)c2, - (bitset_container_t *)c1); -#ifdef OR_BITSET_CONVERSION_TO_FULL - if (((bitset_container_t *)c1)->cardinality == - (1 << 16)) { // we convert - result = run_container_create_range(0, (1 << 16)); - *result_type = RUN_CONTAINER_TYPE_CODE; - return result; - } -#endif - *result_type = BITSET_CONTAINER_TYPE_CODE; - return c1; - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, - ARRAY_CONTAINER_TYPE_CODE): - *result_type = array_array_container_inplace_union( - (array_container_t *)c1, - (const array_container_t *)c2, &result) - ? BITSET_CONTAINER_TYPE_CODE - : ARRAY_CONTAINER_TYPE_CODE; - if((result == NULL) - && (*result_type == ARRAY_CONTAINER_TYPE_CODE)) { - return c1; // the computation was done in-place! - } - return result; - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): - run_container_union_inplace((run_container_t *)c1, - (const run_container_t *)c2); - return convert_run_to_efficient_container((run_container_t *)c1, - result_type); - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - ARRAY_CONTAINER_TYPE_CODE): - array_bitset_container_union((const array_container_t *)c2, - (const bitset_container_t *)c1, - (bitset_container_t *)c1); - *result_type = BITSET_CONTAINER_TYPE_CODE; // never array - return c1; - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - // c1 is an array, so no in-place possible - result = bitset_container_create(); - *result_type = BITSET_CONTAINER_TYPE_CODE; - array_bitset_container_union((const array_container_t *)c1, - (const bitset_container_t *)c2, - (bitset_container_t *)result); - return result; - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - RUN_CONTAINER_TYPE_CODE): - if (run_container_is_full((const run_container_t *)c2)) { - result = run_container_create(); - *result_type = RUN_CONTAINER_TYPE_CODE; - run_container_copy((const run_container_t *)c2, - (run_container_t *)result); - return result; - } - run_bitset_container_union((const run_container_t *)c2, - (const bitset_container_t *)c1, - (bitset_container_t *)c1); // allowed - *result_type = BITSET_CONTAINER_TYPE_CODE; - return c1; - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - if (run_container_is_full((const run_container_t *)c1)) { - *result_type = RUN_CONTAINER_TYPE_CODE; - - return c1; - } - result = bitset_container_create(); - run_bitset_container_union((const run_container_t *)c1, - (const bitset_container_t *)c2, - (bitset_container_t *)result); - *result_type = BITSET_CONTAINER_TYPE_CODE; - return result; - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): - result = run_container_create(); - array_run_container_union((const array_container_t *)c1, - (const run_container_t *)c2, - (run_container_t *)result); - result = convert_run_to_efficient_container_and_free( - (run_container_t *)result, result_type); - return result; - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE): - array_run_container_inplace_union((const array_container_t *)c2, - (run_container_t *)c1); - c1 = convert_run_to_efficient_container((run_container_t *)c1, - result_type); - return c1; - default: - assert(false); - __builtin_unreachable(); - return NULL; - } -} - -/** - * Compute the union between two containers, with result in the first container. - * If the returned pointer is identical to c1, then the container has been - * modified. - * If the returned pointer is different from c1, then a new container has been - * created and the caller is responsible for freeing it. - * The type of the first container may change. Returns the modified - * (and possibly new) container - * - * This lazy version delays some operations such as the maintenance of the - * cardinality. It requires repair later on the generated containers. -*/ -static inline void *container_lazy_ior(void *c1, uint8_t type1, const void *c2, - uint8_t type2, uint8_t *result_type) { - assert(type1 != SHARED_CONTAINER_TYPE_CODE); - // c1 = get_writable_copy_if_shared(c1,&type1); - c2 = container_unwrap_shared(c2, &type2); - void *result = NULL; - switch (CONTAINER_PAIR(type1, type2)) { - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): -#ifdef LAZY_OR_BITSET_CONVERSION_TO_FULL - // if we have two bitsets, we might as well compute the cardinality - bitset_container_or((const bitset_container_t *)c1, - (const bitset_container_t *)c2, - (bitset_container_t *)c1); - // it is possible that two bitsets can lead to a full container - if (((bitset_container_t *)c1)->cardinality == - (1 << 16)) { // we convert - result = run_container_create_range(0, (1 << 16)); - *result_type = RUN_CONTAINER_TYPE_CODE; - return result; - } -#else - bitset_container_or_nocard((const bitset_container_t *)c1, - (const bitset_container_t *)c2, - (bitset_container_t *)c1); - -#endif - *result_type = BITSET_CONTAINER_TYPE_CODE; - return c1; - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, - ARRAY_CONTAINER_TYPE_CODE): - *result_type = array_array_container_lazy_inplace_union( - (array_container_t *)c1, - (const array_container_t *)c2, &result) - ? BITSET_CONTAINER_TYPE_CODE - : ARRAY_CONTAINER_TYPE_CODE; - if((result == NULL) - && (*result_type == ARRAY_CONTAINER_TYPE_CODE)) { - return c1; // the computation was done in-place! - } - return result; - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): - run_container_union_inplace((run_container_t *)c1, - (const run_container_t *)c2); - *result_type = RUN_CONTAINER_TYPE_CODE; - return convert_run_to_efficient_container((run_container_t *)c1, - result_type); - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - ARRAY_CONTAINER_TYPE_CODE): - array_bitset_container_lazy_union( - (const array_container_t *)c2, (const bitset_container_t *)c1, - (bitset_container_t *)c1); // is lazy - *result_type = BITSET_CONTAINER_TYPE_CODE; // never array - return c1; - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - // c1 is an array, so no in-place possible - result = bitset_container_create(); - *result_type = BITSET_CONTAINER_TYPE_CODE; - array_bitset_container_lazy_union( - (const array_container_t *)c1, (const bitset_container_t *)c2, - (bitset_container_t *)result); // is lazy - return result; - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - RUN_CONTAINER_TYPE_CODE): - if (run_container_is_full((const run_container_t *)c2)) { - result = run_container_create(); - *result_type = RUN_CONTAINER_TYPE_CODE; - run_container_copy((const run_container_t *)c2, - (run_container_t *)result); - return result; - } - run_bitset_container_lazy_union( - (const run_container_t *)c2, (const bitset_container_t *)c1, - (bitset_container_t *)c1); // allowed // lazy - *result_type = BITSET_CONTAINER_TYPE_CODE; - return c1; - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - if (run_container_is_full((const run_container_t *)c1)) { - *result_type = RUN_CONTAINER_TYPE_CODE; - return c1; - } - result = bitset_container_create(); - run_bitset_container_lazy_union( - (const run_container_t *)c1, (const bitset_container_t *)c2, - (bitset_container_t *)result); // lazy - *result_type = BITSET_CONTAINER_TYPE_CODE; - return result; - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): - result = run_container_create(); - array_run_container_union((const array_container_t *)c1, - (const run_container_t *)c2, - (run_container_t *)result); - *result_type = RUN_CONTAINER_TYPE_CODE; - // next line skipped since we are lazy - // result = convert_run_to_efficient_container_and_free(result, - // result_type); - return result; - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE): - array_run_container_inplace_union((const array_container_t *)c2, - (run_container_t *)c1); - *result_type = RUN_CONTAINER_TYPE_CODE; - // next line skipped since we are lazy - // result = convert_run_to_efficient_container_and_free(result, - // result_type); - return c1; - default: - assert(false); - __builtin_unreachable(); - return NULL; - } -} - -/** - * Compute symmetric difference (xor) between two containers, generate a new - * container (having type result_type), requires a typecode. This allocates new - * memory, caller is responsible for deallocation. - */ -static inline void *container_xor(const void *c1, uint8_t type1, const void *c2, - uint8_t type2, uint8_t *result_type) { - c1 = container_unwrap_shared(c1, &type1); - c2 = container_unwrap_shared(c2, &type2); - void *result = NULL; - switch (CONTAINER_PAIR(type1, type2)) { - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - *result_type = bitset_bitset_container_xor( - (const bitset_container_t *)c1, - (const bitset_container_t *)c2, &result) - ? BITSET_CONTAINER_TYPE_CODE - : ARRAY_CONTAINER_TYPE_CODE; - return result; - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, - ARRAY_CONTAINER_TYPE_CODE): - *result_type = array_array_container_xor( - (const array_container_t *)c1, - (const array_container_t *)c2, &result) - ? BITSET_CONTAINER_TYPE_CODE - : ARRAY_CONTAINER_TYPE_CODE; - return result; - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): - *result_type = - run_run_container_xor((const run_container_t *)c1, - (const run_container_t *)c2, &result); - return result; - - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - ARRAY_CONTAINER_TYPE_CODE): - *result_type = array_bitset_container_xor( - (const array_container_t *)c2, - (const bitset_container_t *)c1, &result) - ? BITSET_CONTAINER_TYPE_CODE - : ARRAY_CONTAINER_TYPE_CODE; - return result; - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - *result_type = array_bitset_container_xor( - (const array_container_t *)c1, - (const bitset_container_t *)c2, &result) - ? BITSET_CONTAINER_TYPE_CODE - : ARRAY_CONTAINER_TYPE_CODE; - return result; - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - RUN_CONTAINER_TYPE_CODE): - *result_type = run_bitset_container_xor( - (const run_container_t *)c2, - (const bitset_container_t *)c1, &result) - ? BITSET_CONTAINER_TYPE_CODE - : ARRAY_CONTAINER_TYPE_CODE; - return result; - - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - - *result_type = run_bitset_container_xor( - (const run_container_t *)c1, - (const bitset_container_t *)c2, &result) - ? BITSET_CONTAINER_TYPE_CODE - : ARRAY_CONTAINER_TYPE_CODE; - return result; - - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): - *result_type = - array_run_container_xor((const array_container_t *)c1, - (const run_container_t *)c2, &result); - return result; - - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE): - *result_type = - array_run_container_xor((const array_container_t *)c2, - (const run_container_t *)c1, &result); - return result; - - default: - assert(false); - __builtin_unreachable(); - return NULL; // unreached - } -} - -/** - * Compute xor between two containers, generate a new container (having type - * result_type), requires a typecode. This allocates new memory, caller - * is responsible for deallocation. - * - * This lazy version delays some operations such as the maintenance of the - * cardinality. It requires repair later on the generated containers. - */ -static inline void *container_lazy_xor(const void *c1, uint8_t type1, - const void *c2, uint8_t type2, - uint8_t *result_type) { - c1 = container_unwrap_shared(c1, &type1); - c2 = container_unwrap_shared(c2, &type2); - void *result = NULL; - switch (CONTAINER_PAIR(type1, type2)) { - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - result = bitset_container_create(); - bitset_container_xor_nocard( - (const bitset_container_t *)c1, (const bitset_container_t *)c2, - (bitset_container_t *)result); // is lazy - *result_type = BITSET_CONTAINER_TYPE_CODE; - return result; - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, - ARRAY_CONTAINER_TYPE_CODE): - *result_type = array_array_container_lazy_xor( - (const array_container_t *)c1, - (const array_container_t *)c2, &result) - ? BITSET_CONTAINER_TYPE_CODE - : ARRAY_CONTAINER_TYPE_CODE; - return result; - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): - // nothing special done yet. - *result_type = - run_run_container_xor((const run_container_t *)c1, - (const run_container_t *)c2, &result); - return result; - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - ARRAY_CONTAINER_TYPE_CODE): - result = bitset_container_create(); - *result_type = BITSET_CONTAINER_TYPE_CODE; - array_bitset_container_lazy_xor((const array_container_t *)c2, - (const bitset_container_t *)c1, - (bitset_container_t *)result); - return result; - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - result = bitset_container_create(); - *result_type = BITSET_CONTAINER_TYPE_CODE; - array_bitset_container_lazy_xor((const array_container_t *)c1, - (const bitset_container_t *)c2, - (bitset_container_t *)result); - return result; - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - RUN_CONTAINER_TYPE_CODE): - result = bitset_container_create(); - run_bitset_container_lazy_xor((const run_container_t *)c2, - (const bitset_container_t *)c1, - (bitset_container_t *)result); - *result_type = BITSET_CONTAINER_TYPE_CODE; - return result; - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - result = bitset_container_create(); - run_bitset_container_lazy_xor((const run_container_t *)c1, - (const bitset_container_t *)c2, - (bitset_container_t *)result); - *result_type = BITSET_CONTAINER_TYPE_CODE; - return result; - - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): - result = run_container_create(); - array_run_container_lazy_xor((const array_container_t *)c1, - (const run_container_t *)c2, - (run_container_t *)result); - *result_type = RUN_CONTAINER_TYPE_CODE; - // next line skipped since we are lazy - // result = convert_run_to_efficient_container(result, result_type); - return result; - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE): - result = run_container_create(); - array_run_container_lazy_xor((const array_container_t *)c2, - (const run_container_t *)c1, - (run_container_t *)result); - *result_type = RUN_CONTAINER_TYPE_CODE; - // next line skipped since we are lazy - // result = convert_run_to_efficient_container(result, result_type); - return result; - default: - assert(false); - __builtin_unreachable(); - return NULL; // unreached - } -} - -/** - * Compute the xor between two containers, with result in the first container. - * If the returned pointer is identical to c1, then the container has been - * modified. - * If the returned pointer is different from c1, then a new container has been - * created and the caller is responsible for freeing it. - * The type of the first container may change. Returns the modified - * (and possibly new) container -*/ -static inline void *container_ixor(void *c1, uint8_t type1, const void *c2, - uint8_t type2, uint8_t *result_type) { - c1 = get_writable_copy_if_shared(c1, &type1); - c2 = container_unwrap_shared(c2, &type2); - void *result = NULL; - switch (CONTAINER_PAIR(type1, type2)) { - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - *result_type = bitset_bitset_container_ixor( - (bitset_container_t *)c1, - (const bitset_container_t *)c2, &result) - ? BITSET_CONTAINER_TYPE_CODE - : ARRAY_CONTAINER_TYPE_CODE; - return result; - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, - ARRAY_CONTAINER_TYPE_CODE): - *result_type = array_array_container_ixor( - (array_container_t *)c1, - (const array_container_t *)c2, &result) - ? BITSET_CONTAINER_TYPE_CODE - : ARRAY_CONTAINER_TYPE_CODE; - return result; - - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): - *result_type = run_run_container_ixor( - (run_container_t *)c1, (const run_container_t *)c2, &result); - return result; - - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - ARRAY_CONTAINER_TYPE_CODE): - *result_type = bitset_array_container_ixor( - (bitset_container_t *)c1, - (const array_container_t *)c2, &result) - ? BITSET_CONTAINER_TYPE_CODE - : ARRAY_CONTAINER_TYPE_CODE; - return result; - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - *result_type = array_bitset_container_ixor( - (array_container_t *)c1, - (const bitset_container_t *)c2, &result) - ? BITSET_CONTAINER_TYPE_CODE - : ARRAY_CONTAINER_TYPE_CODE; - - return result; - - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - RUN_CONTAINER_TYPE_CODE): - *result_type = - bitset_run_container_ixor((bitset_container_t *)c1, - (const run_container_t *)c2, &result) - ? BITSET_CONTAINER_TYPE_CODE - : ARRAY_CONTAINER_TYPE_CODE; - - return result; - - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - *result_type = run_bitset_container_ixor( - (run_container_t *)c1, - (const bitset_container_t *)c2, &result) - ? BITSET_CONTAINER_TYPE_CODE - : ARRAY_CONTAINER_TYPE_CODE; - - return result; - - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): - *result_type = array_run_container_ixor( - (array_container_t *)c1, (const run_container_t *)c2, &result); - return result; - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE): - *result_type = run_array_container_ixor( - (run_container_t *)c1, (const array_container_t *)c2, &result); - return result; - default: - assert(false); - __builtin_unreachable(); - return NULL; - } -} - -/** - * Compute the xor between two containers, with result in the first container. - * If the returned pointer is identical to c1, then the container has been - * modified. - * If the returned pointer is different from c1, then a new container has been - * created and the caller is responsible for freeing it. - * The type of the first container may change. Returns the modified - * (and possibly new) container - * - * This lazy version delays some operations such as the maintenance of the - * cardinality. It requires repair later on the generated containers. -*/ -static inline void *container_lazy_ixor(void *c1, uint8_t type1, const void *c2, - uint8_t type2, uint8_t *result_type) { - assert(type1 != SHARED_CONTAINER_TYPE_CODE); - // c1 = get_writable_copy_if_shared(c1,&type1); - c2 = container_unwrap_shared(c2, &type2); - switch (CONTAINER_PAIR(type1, type2)) { - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - bitset_container_xor_nocard((bitset_container_t *)c1, - (const bitset_container_t *)c2, - (bitset_container_t *)c1); // is lazy - *result_type = BITSET_CONTAINER_TYPE_CODE; - return c1; - // TODO: other cases being lazy, esp. when we know inplace not likely - // could see the corresponding code for union - default: - // we may have a dirty bitset (without a precomputed cardinality) and - // calling container_ixor on it might be unsafe. - if( (type1 == BITSET_CONTAINER_TYPE_CODE) - && (((const bitset_container_t *)c1)->cardinality == BITSET_UNKNOWN_CARDINALITY)) { - ((bitset_container_t *)c1)->cardinality = bitset_container_compute_cardinality((bitset_container_t *)c1); - } - return container_ixor(c1, type1, c2, type2, result_type); - } -} - -/** - * Compute difference (andnot) between two containers, generate a new - * container (having type result_type), requires a typecode. This allocates new - * memory, caller is responsible for deallocation. - */ -static inline void *container_andnot(const void *c1, uint8_t type1, - const void *c2, uint8_t type2, - uint8_t *result_type) { - c1 = container_unwrap_shared(c1, &type1); - c2 = container_unwrap_shared(c2, &type2); - void *result = NULL; - switch (CONTAINER_PAIR(type1, type2)) { - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - *result_type = bitset_bitset_container_andnot( - (const bitset_container_t *)c1, - (const bitset_container_t *)c2, &result) - ? BITSET_CONTAINER_TYPE_CODE - : ARRAY_CONTAINER_TYPE_CODE; - return result; - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, - ARRAY_CONTAINER_TYPE_CODE): - result = array_container_create(); - array_array_container_andnot((const array_container_t *)c1, - (const array_container_t *)c2, - (array_container_t *)result); - *result_type = ARRAY_CONTAINER_TYPE_CODE; - return result; - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): - if (run_container_is_full((const run_container_t *)c2)) { - result = array_container_create(); - *result_type = ARRAY_CONTAINER_TYPE_CODE; - return result; - } - *result_type = - run_run_container_andnot((const run_container_t *)c1, - (const run_container_t *)c2, &result); - return result; - - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - ARRAY_CONTAINER_TYPE_CODE): - *result_type = bitset_array_container_andnot( - (const bitset_container_t *)c1, - (const array_container_t *)c2, &result) - ? BITSET_CONTAINER_TYPE_CODE - : ARRAY_CONTAINER_TYPE_CODE; - return result; - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - result = array_container_create(); - array_bitset_container_andnot((const array_container_t *)c1, - (const bitset_container_t *)c2, - (array_container_t *)result); - *result_type = ARRAY_CONTAINER_TYPE_CODE; - return result; - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - RUN_CONTAINER_TYPE_CODE): - if (run_container_is_full((const run_container_t *)c2)) { - result = array_container_create(); - *result_type = ARRAY_CONTAINER_TYPE_CODE; - return result; - } - *result_type = bitset_run_container_andnot( - (const bitset_container_t *)c1, - (const run_container_t *)c2, &result) - ? BITSET_CONTAINER_TYPE_CODE - : ARRAY_CONTAINER_TYPE_CODE; - return result; - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - - *result_type = run_bitset_container_andnot( - (const run_container_t *)c1, - (const bitset_container_t *)c2, &result) - ? BITSET_CONTAINER_TYPE_CODE - : ARRAY_CONTAINER_TYPE_CODE; - return result; - - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): - if (run_container_is_full((const run_container_t *)c2)) { - result = array_container_create(); - *result_type = ARRAY_CONTAINER_TYPE_CODE; - return result; - } - result = array_container_create(); - array_run_container_andnot((const array_container_t *)c1, - (const run_container_t *)c2, - (array_container_t *)result); - *result_type = ARRAY_CONTAINER_TYPE_CODE; - return result; - - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE): - *result_type = run_array_container_andnot( - (const run_container_t *)c1, (const array_container_t *)c2, - &result); - return result; - - default: - assert(false); - __builtin_unreachable(); - return NULL; // unreached - } -} - -/** - * Compute the andnot between two containers, with result in the first - * container. - * If the returned pointer is identical to c1, then the container has been - * modified. - * If the returned pointer is different from c1, then a new container has been - * created and the caller is responsible for freeing it. - * The type of the first container may change. Returns the modified - * (and possibly new) container -*/ -static inline void *container_iandnot(void *c1, uint8_t type1, const void *c2, - uint8_t type2, uint8_t *result_type) { - c1 = get_writable_copy_if_shared(c1, &type1); - c2 = container_unwrap_shared(c2, &type2); - void *result = NULL; - switch (CONTAINER_PAIR(type1, type2)) { - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - *result_type = bitset_bitset_container_iandnot( - (bitset_container_t *)c1, - (const bitset_container_t *)c2, &result) - ? BITSET_CONTAINER_TYPE_CODE - : ARRAY_CONTAINER_TYPE_CODE; - return result; - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, - ARRAY_CONTAINER_TYPE_CODE): - array_array_container_iandnot((array_container_t *)c1, - (const array_container_t *)c2); - *result_type = ARRAY_CONTAINER_TYPE_CODE; - return c1; - - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): - *result_type = run_run_container_iandnot( - (run_container_t *)c1, (const run_container_t *)c2, &result); - return result; - - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - ARRAY_CONTAINER_TYPE_CODE): - *result_type = bitset_array_container_iandnot( - (bitset_container_t *)c1, - (const array_container_t *)c2, &result) - ? BITSET_CONTAINER_TYPE_CODE - : ARRAY_CONTAINER_TYPE_CODE; - return result; - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - *result_type = ARRAY_CONTAINER_TYPE_CODE; - - array_bitset_container_iandnot((array_container_t *)c1, - (const bitset_container_t *)c2); - return c1; - - case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE, - RUN_CONTAINER_TYPE_CODE): - *result_type = bitset_run_container_iandnot( - (bitset_container_t *)c1, - (const run_container_t *)c2, &result) - ? BITSET_CONTAINER_TYPE_CODE - : ARRAY_CONTAINER_TYPE_CODE; - - return result; - - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, - BITSET_CONTAINER_TYPE_CODE): - *result_type = run_bitset_container_iandnot( - (run_container_t *)c1, - (const bitset_container_t *)c2, &result) - ? BITSET_CONTAINER_TYPE_CODE - : ARRAY_CONTAINER_TYPE_CODE; - - return result; - - case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE): - *result_type = ARRAY_CONTAINER_TYPE_CODE; - array_run_container_iandnot((array_container_t *)c1, - (const run_container_t *)c2); - return c1; - case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE): - *result_type = run_array_container_iandnot( - (run_container_t *)c1, (const array_container_t *)c2, &result); - return result; - default: - assert(false); - __builtin_unreachable(); - return NULL; - } -} - -/** - * Visit all values x of the container once, passing (base+x,ptr) - * to iterator. You need to specify a container and its type. - * Returns true if the iteration should continue. - */ -static inline bool container_iterate(const void *container, uint8_t typecode, - uint32_t base, roaring_iterator iterator, - void *ptr) { - container = container_unwrap_shared(container, &typecode); - switch (typecode) { - case BITSET_CONTAINER_TYPE_CODE: - return bitset_container_iterate( - (const bitset_container_t *)container, base, iterator, ptr); - case ARRAY_CONTAINER_TYPE_CODE: - return array_container_iterate((const array_container_t *)container, - base, iterator, ptr); - case RUN_CONTAINER_TYPE_CODE: - return run_container_iterate((const run_container_t *)container, - base, iterator, ptr); - default: - assert(false); - __builtin_unreachable(); - } - assert(false); - __builtin_unreachable(); - return false; -} - -static inline bool container_iterate64(const void *container, uint8_t typecode, - uint32_t base, - roaring_iterator64 iterator, - uint64_t high_bits, void *ptr) { - container = container_unwrap_shared(container, &typecode); - switch (typecode) { - case BITSET_CONTAINER_TYPE_CODE: - return bitset_container_iterate64( - (const bitset_container_t *)container, base, iterator, - high_bits, ptr); - case ARRAY_CONTAINER_TYPE_CODE: - return array_container_iterate64( - (const array_container_t *)container, base, iterator, high_bits, - ptr); - case RUN_CONTAINER_TYPE_CODE: - return run_container_iterate64((const run_container_t *)container, - base, iterator, high_bits, ptr); - default: - assert(false); - __builtin_unreachable(); - } - assert(false); - __builtin_unreachable(); - return false; -} - -static inline void *container_not(const void *c, uint8_t typ, - uint8_t *result_type) { - c = container_unwrap_shared(c, &typ); - void *result = NULL; - switch (typ) { - case BITSET_CONTAINER_TYPE_CODE: - *result_type = bitset_container_negation( - (const bitset_container_t *)c, &result) - ? BITSET_CONTAINER_TYPE_CODE - : ARRAY_CONTAINER_TYPE_CODE; - return result; - case ARRAY_CONTAINER_TYPE_CODE: - result = bitset_container_create(); - *result_type = BITSET_CONTAINER_TYPE_CODE; - array_container_negation((const array_container_t *)c, - (bitset_container_t *)result); - return result; - case RUN_CONTAINER_TYPE_CODE: - *result_type = - run_container_negation((const run_container_t *)c, &result); - return result; - - default: - assert(false); - __builtin_unreachable(); - } - assert(false); - __builtin_unreachable(); - return NULL; -} - -static inline void *container_not_range(const void *c, uint8_t typ, - uint32_t range_start, - uint32_t range_end, - uint8_t *result_type) { - c = container_unwrap_shared(c, &typ); - void *result = NULL; - switch (typ) { - case BITSET_CONTAINER_TYPE_CODE: - *result_type = - bitset_container_negation_range((const bitset_container_t *)c, - range_start, range_end, &result) - ? BITSET_CONTAINER_TYPE_CODE - : ARRAY_CONTAINER_TYPE_CODE; - return result; - case ARRAY_CONTAINER_TYPE_CODE: - *result_type = - array_container_negation_range((const array_container_t *)c, - range_start, range_end, &result) - ? BITSET_CONTAINER_TYPE_CODE - : ARRAY_CONTAINER_TYPE_CODE; - return result; - case RUN_CONTAINER_TYPE_CODE: - *result_type = run_container_negation_range( - (const run_container_t *)c, range_start, range_end, &result); - return result; - - default: - assert(false); - __builtin_unreachable(); - } - assert(false); - __builtin_unreachable(); - return NULL; -} - -static inline void *container_inot(void *c, uint8_t typ, uint8_t *result_type) { - c = get_writable_copy_if_shared(c, &typ); - void *result = NULL; - switch (typ) { - case BITSET_CONTAINER_TYPE_CODE: - *result_type = bitset_container_negation_inplace( - (bitset_container_t *)c, &result) - ? BITSET_CONTAINER_TYPE_CODE - : ARRAY_CONTAINER_TYPE_CODE; - return result; - case ARRAY_CONTAINER_TYPE_CODE: - // will never be inplace - result = bitset_container_create(); - *result_type = BITSET_CONTAINER_TYPE_CODE; - array_container_negation((array_container_t *)c, - (bitset_container_t *)result); - array_container_free((array_container_t *)c); - return result; - case RUN_CONTAINER_TYPE_CODE: - *result_type = - run_container_negation_inplace((run_container_t *)c, &result); - return result; - - default: - assert(false); - __builtin_unreachable(); - } - assert(false); - __builtin_unreachable(); - return NULL; -} - -static inline void *container_inot_range(void *c, uint8_t typ, - uint32_t range_start, - uint32_t range_end, - uint8_t *result_type) { - c = get_writable_copy_if_shared(c, &typ); - void *result = NULL; - switch (typ) { - case BITSET_CONTAINER_TYPE_CODE: - *result_type = - bitset_container_negation_range_inplace( - (bitset_container_t *)c, range_start, range_end, &result) - ? BITSET_CONTAINER_TYPE_CODE - : ARRAY_CONTAINER_TYPE_CODE; - return result; - case ARRAY_CONTAINER_TYPE_CODE: - *result_type = - array_container_negation_range_inplace( - (array_container_t *)c, range_start, range_end, &result) - ? BITSET_CONTAINER_TYPE_CODE - : ARRAY_CONTAINER_TYPE_CODE; - return result; - case RUN_CONTAINER_TYPE_CODE: - *result_type = run_container_negation_range_inplace( - (run_container_t *)c, range_start, range_end, &result); - return result; - - default: - assert(false); - __builtin_unreachable(); - } - assert(false); - __builtin_unreachable(); - return NULL; -} - -/** - * If the element of given rank is in this container, supposing that - * the first - * element has rank start_rank, then the function returns true and - * sets element - * accordingly. - * Otherwise, it returns false and update start_rank. - */ -static inline bool container_select(const void *container, uint8_t typecode, - uint32_t *start_rank, uint32_t rank, - uint32_t *element) { - container = container_unwrap_shared(container, &typecode); - switch (typecode) { - case BITSET_CONTAINER_TYPE_CODE: - return bitset_container_select((const bitset_container_t *)container, - start_rank, rank, element); - case ARRAY_CONTAINER_TYPE_CODE: - return array_container_select((const array_container_t *)container, - start_rank, rank, element); - case RUN_CONTAINER_TYPE_CODE: - return run_container_select((const run_container_t *)container, - start_rank, rank, element); - default: - assert(false); - __builtin_unreachable(); - } - assert(false); - __builtin_unreachable(); - return false; -} - -static inline uint16_t container_maximum(const void *container, - uint8_t typecode) { - container = container_unwrap_shared(container, &typecode); - switch (typecode) { - case BITSET_CONTAINER_TYPE_CODE: - return bitset_container_maximum((const bitset_container_t *)container); - case ARRAY_CONTAINER_TYPE_CODE: - return array_container_maximum((const array_container_t *)container); - case RUN_CONTAINER_TYPE_CODE: - return run_container_maximum((const run_container_t *)container); - default: - assert(false); - __builtin_unreachable(); - } - assert(false); - __builtin_unreachable(); - return false; -} - -static inline uint16_t container_minimum(const void *container, - uint8_t typecode) { - container = container_unwrap_shared(container, &typecode); - switch (typecode) { - case BITSET_CONTAINER_TYPE_CODE: - return bitset_container_minimum((const bitset_container_t *)container); - case ARRAY_CONTAINER_TYPE_CODE: - return array_container_minimum((const array_container_t *)container); - case RUN_CONTAINER_TYPE_CODE: - return run_container_minimum((const run_container_t *)container); - default: - assert(false); - __builtin_unreachable(); - } - assert(false); - __builtin_unreachable(); - return false; -} - -// number of values smaller or equal to x -static inline int container_rank(const void *container, uint8_t typecode, - uint16_t x) { - container = container_unwrap_shared(container, &typecode); - switch (typecode) { - case BITSET_CONTAINER_TYPE_CODE: - return bitset_container_rank((const bitset_container_t *)container, x); - case ARRAY_CONTAINER_TYPE_CODE: - return array_container_rank((const array_container_t *)container, x); - case RUN_CONTAINER_TYPE_CODE: - return run_container_rank((const run_container_t *)container, x); - default: - assert(false); - __builtin_unreachable(); - } - assert(false); - __builtin_unreachable(); - return false; -} - -/** - * Add all values in range [min, max] to a given container. - * - * If the returned pointer is different from $container, then a new container - * has been created and the caller is responsible for freeing it. - * The type of the first container may change. Returns the modified - * (and possibly new) container. - */ -static inline void *container_add_range(void *container, uint8_t type, - uint32_t min, uint32_t max, - uint8_t *result_type) { - // NB: when selecting new container type, we perform only inexpensive checks - switch (type) { - case BITSET_CONTAINER_TYPE_CODE: { - bitset_container_t *bitset = (bitset_container_t *) container; - - int32_t union_cardinality = 0; - union_cardinality += bitset->cardinality; - union_cardinality += max - min + 1; - union_cardinality -= bitset_lenrange_cardinality(bitset->array, min, max-min); - - if (union_cardinality == INT32_C(0x10000)) { - *result_type = RUN_CONTAINER_TYPE_CODE; - return run_container_create_range(0, INT32_C(0x10000)); - } else { - *result_type = BITSET_CONTAINER_TYPE_CODE; - bitset_set_lenrange(bitset->array, min, max - min); - bitset->cardinality = union_cardinality; - return bitset; - } - } - case ARRAY_CONTAINER_TYPE_CODE: { - array_container_t *array = (array_container_t *) container; - - int32_t nvals_greater = count_greater(array->array, array->cardinality, max); - int32_t nvals_less = count_less(array->array, array->cardinality - nvals_greater, min); - int32_t union_cardinality = nvals_less + (max - min + 1) + nvals_greater; - - if (union_cardinality == INT32_C(0x10000)) { - *result_type = RUN_CONTAINER_TYPE_CODE; - return run_container_create_range(0, INT32_C(0x10000)); - } else if (union_cardinality <= DEFAULT_MAX_SIZE) { - *result_type = ARRAY_CONTAINER_TYPE_CODE; - array_container_add_range_nvals(array, min, max, nvals_less, nvals_greater); - return array; - } else { - *result_type = BITSET_CONTAINER_TYPE_CODE; - bitset_container_t *bitset = bitset_container_from_array(array); - bitset_set_lenrange(bitset->array, min, max - min); - bitset->cardinality = union_cardinality; - return bitset; - } - } - case RUN_CONTAINER_TYPE_CODE: { - run_container_t *run = (run_container_t *) container; - - int32_t nruns_greater = rle16_count_greater(run->runs, run->n_runs, max); - int32_t nruns_less = rle16_count_less(run->runs, run->n_runs - nruns_greater, min); - - int32_t run_size_bytes = (nruns_less + 1 + nruns_greater) * sizeof(rle16_t); - int32_t bitset_size_bytes = BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t); - - if (run_size_bytes <= bitset_size_bytes) { - run_container_add_range_nruns(run, min, max, nruns_less, nruns_greater); - *result_type = RUN_CONTAINER_TYPE_CODE; - return run; - } else { - *result_type = BITSET_CONTAINER_TYPE_CODE; - return bitset_container_from_run_range(run, min, max); - } - } - default: - __builtin_unreachable(); - } -} - -/* - * Removes all elements in range [min, max]. - * Returns one of: - * - NULL if no elements left - * - pointer to the original container - * - pointer to a newly-allocated container (if it is more efficient) - * - * If the returned pointer is different from $container, then a new container - * has been created and the caller is responsible for freeing the original container. - */ -static inline void *container_remove_range(void *container, uint8_t type, - uint32_t min, uint32_t max, - uint8_t *result_type) { - switch (type) { - case BITSET_CONTAINER_TYPE_CODE: { - bitset_container_t *bitset = (bitset_container_t *) container; - - int32_t result_cardinality = bitset->cardinality - - bitset_lenrange_cardinality(bitset->array, min, max-min); - - if (result_cardinality == 0) { - return NULL; - } else if (result_cardinality < DEFAULT_MAX_SIZE) { - *result_type = ARRAY_CONTAINER_TYPE_CODE; - bitset_reset_range(bitset->array, min, max+1); - bitset->cardinality = result_cardinality; - return array_container_from_bitset(bitset); - } else { - *result_type = BITSET_CONTAINER_TYPE_CODE; - bitset_reset_range(bitset->array, min, max+1); - bitset->cardinality = result_cardinality; - return bitset; - } - } - case ARRAY_CONTAINER_TYPE_CODE: { - array_container_t *array = (array_container_t *) container; - - int32_t nvals_greater = count_greater(array->array, array->cardinality, max); - int32_t nvals_less = count_less(array->array, array->cardinality - nvals_greater, min); - int32_t result_cardinality = nvals_less + nvals_greater; - - if (result_cardinality == 0) { - return NULL; - } else { - *result_type = ARRAY_CONTAINER_TYPE_CODE; - array_container_remove_range(array, nvals_less, - array->cardinality - result_cardinality); - return array; - } - } - case RUN_CONTAINER_TYPE_CODE: { - run_container_t *run = (run_container_t *) container; - - if (run->n_runs == 0) { - return NULL; - } - if (min <= run_container_minimum(run) && max >= run_container_maximum(run)) { - return NULL; - } - - run_container_remove_range(run, min, max); - - if (run_container_serialized_size_in_bytes(run->n_runs) <= - bitset_container_serialized_size_in_bytes()) { - *result_type = RUN_CONTAINER_TYPE_CODE; - return run; - } else { - *result_type = BITSET_CONTAINER_TYPE_CODE; - return bitset_container_from_run(run); - } - } - default: - __builtin_unreachable(); - } -} - -#ifdef __cplusplus -} -#endif - -#endif /* CONTAINERS_CONTAINERS_H */ - -/* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/containers/containers.h */ -/* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/roaring_array.h */ -#ifndef INCLUDE_ROARING_ARRAY_H -#define INCLUDE_ROARING_ARRAY_H -#ifdef __cplusplus -extern "C" { -#endif - -#include -#include -#include - -#define MAX_CONTAINERS 65536 - -#define SERIALIZATION_ARRAY_UINT32 1 -#define SERIALIZATION_CONTAINER 2 - -enum { - SERIAL_COOKIE_NO_RUNCONTAINER = 12346, - SERIAL_COOKIE = 12347, - NO_OFFSET_THRESHOLD = 4 -}; - -/** - * Roaring arrays are array-based key-value pairs having containers as values - * and 16-bit integer keys. A roaring bitmap might be implemented as such. - */ - -// parallel arrays. Element sizes quite different. -// Alternative is array -// of structs. Which would have better -// cache performance through binary searches? - -typedef struct roaring_array_s { - int32_t size; - int32_t allocation_size; - void **containers; - uint16_t *keys; - uint8_t *typecodes; -} roaring_array_t; - -/** - * Create a new roaring array - */ -roaring_array_t *ra_create(void); - -/** - * Initialize an existing roaring array with the specified capacity (in number - * of containers) - */ -bool ra_init_with_capacity(roaring_array_t *new_ra, uint32_t cap); - -/** - * Initialize with default capacity - */ -bool ra_init(roaring_array_t *t); - -/** - * Copies this roaring array, we assume that dest is not initialized - */ -bool ra_copy(const roaring_array_t *source, roaring_array_t *dest, - bool copy_on_write); - -/* - * Shrinks the capacity, returns the number of bytes saved. - */ -int ra_shrink_to_fit(roaring_array_t *ra); - -/** - * Copies this roaring array, we assume that dest is initialized - */ -bool ra_overwrite(const roaring_array_t *source, roaring_array_t *dest, - bool copy_on_write); - -/** - * Frees the memory used by a roaring array - */ -void ra_clear(roaring_array_t *r); - -/** - * Frees the memory used by a roaring array, but does not free the containers - */ -void ra_clear_without_containers(roaring_array_t *r); - -/** - * Frees just the containers - */ -void ra_clear_containers(roaring_array_t *ra); - -/** - * Get the index corresponding to a 16-bit key - */ -inline int32_t ra_get_index(const roaring_array_t *ra, uint16_t x) { - if ((ra->size == 0) || ra->keys[ra->size - 1] == x) return ra->size - 1; - return binarySearch(ra->keys, (int32_t)ra->size, x); -} - -/** - * Retrieves the container at index i, filling in the typecode - */ -inline void *ra_get_container_at_index(const roaring_array_t *ra, uint16_t i, - uint8_t *typecode) { - *typecode = ra->typecodes[i]; - return ra->containers[i]; -} - -/** - * Retrieves the key at index i - */ -uint16_t ra_get_key_at_index(const roaring_array_t *ra, uint16_t i); - -/** - * Add a new key-value pair at index i - */ -void ra_insert_new_key_value_at(roaring_array_t *ra, int32_t i, uint16_t key, - void *container, uint8_t typecode); - -/** - * Append a new key-value pair - */ -void ra_append(roaring_array_t *ra, uint16_t s, void *c, uint8_t typecode); - -/** - * Append a new key-value pair to ra, cloning (in COW sense) a value from sa - * at index index - */ -void ra_append_copy(roaring_array_t *ra, const roaring_array_t *sa, - uint16_t index, bool copy_on_write); - -/** - * Append new key-value pairs to ra, cloning (in COW sense) values from sa - * at indexes - * [start_index, end_index) - */ -void ra_append_copy_range(roaring_array_t *ra, const roaring_array_t *sa, - int32_t start_index, int32_t end_index, - bool copy_on_write); - -/** appends from sa to ra, ending with the greatest key that is - * is less or equal stopping_key - */ -void ra_append_copies_until(roaring_array_t *ra, const roaring_array_t *sa, - uint16_t stopping_key, bool copy_on_write); - -/** appends from sa to ra, starting with the smallest key that is - * is strictly greater than before_start - */ - -void ra_append_copies_after(roaring_array_t *ra, const roaring_array_t *sa, - uint16_t before_start, bool copy_on_write); - -/** - * Move the key-value pairs to ra from sa at indexes - * [start_index, end_index), old array should not be freed - * (use ra_clear_without_containers) - **/ -void ra_append_move_range(roaring_array_t *ra, roaring_array_t *sa, - int32_t start_index, int32_t end_index); -/** - * Append new key-value pairs to ra, from sa at indexes - * [start_index, end_index) - */ -void ra_append_range(roaring_array_t *ra, roaring_array_t *sa, - int32_t start_index, int32_t end_index, - bool copy_on_write); - -/** - * Set the container at the corresponding index using the specified - * typecode. - */ -inline void ra_set_container_at_index(const roaring_array_t *ra, int32_t i, - void *c, uint8_t typecode) { - assert(i < ra->size); - ra->containers[i] = c; - ra->typecodes[i] = typecode; -} - -/** - * If needed, increase the capacity of the array so that it can fit k values - * (at - * least); - */ -bool extend_array(roaring_array_t *ra, int32_t k); - -inline int32_t ra_get_size(const roaring_array_t *ra) { return ra->size; } - -static inline int32_t ra_advance_until(const roaring_array_t *ra, uint16_t x, - int32_t pos) { - return advanceUntil(ra->keys, pos, ra->size, x); -} - -int32_t ra_advance_until_freeing(roaring_array_t *ra, uint16_t x, int32_t pos); - -void ra_downsize(roaring_array_t *ra, int32_t new_length); - -inline void ra_replace_key_and_container_at_index(roaring_array_t *ra, - int32_t i, uint16_t key, - void *c, uint8_t typecode) { - assert(i < ra->size); - - ra->keys[i] = key; - ra->containers[i] = c; - ra->typecodes[i] = typecode; -} - -// write set bits to an array -void ra_to_uint32_array(const roaring_array_t *ra, uint32_t *ans); - -bool ra_range_uint32_array(const roaring_array_t *ra, size_t offset, size_t limit, uint32_t *ans); - -/** - * write a bitmap to a buffer. This is meant to be compatible with - * the - * Java and Go versions. Return the size in bytes of the serialized - * output (which should be ra_portable_size_in_bytes(ra)). - */ -size_t ra_portable_serialize(const roaring_array_t *ra, char *buf); - -/** - * read a bitmap from a serialized version. This is meant to be compatible - * with the Java and Go versions. - * maxbytes indicates how many bytes available from buf. - * When the function returns true, roaring_array_t is populated with the data - * and *readbytes indicates how many bytes were read. In all cases, if the function - * returns true, then maxbytes >= *readbytes. - */ -bool ra_portable_deserialize(roaring_array_t *ra, const char *buf, const size_t maxbytes, size_t * readbytes); - -/** - * Quickly checks whether there is a serialized bitmap at the pointer, - * not exceeding size "maxbytes" in bytes. This function does not allocate - * memory dynamically. - * - * This function returns 0 if and only if no valid bitmap is found. - * Otherwise, it returns how many bytes are occupied by the bitmap data. - */ -size_t ra_portable_deserialize_size(const char *buf, const size_t maxbytes); - -/** - * How many bytes are required to serialize this bitmap (meant to be - * compatible - * with Java and Go versions) - */ -size_t ra_portable_size_in_bytes(const roaring_array_t *ra); - -/** - * return true if it contains at least one run container. - */ -bool ra_has_run_container(const roaring_array_t *ra); - -/** - * Size of the header when serializing (meant to be compatible - * with Java and Go versions) - */ -uint32_t ra_portable_header_size(const roaring_array_t *ra); - -/** - * If the container at the index i is share, unshare it (creating a local - * copy if needed). - */ -static inline void ra_unshare_container_at_index(roaring_array_t *ra, - uint16_t i) { - assert(i < ra->size); - ra->containers[i] = - get_writable_copy_if_shared(ra->containers[i], &ra->typecodes[i]); -} - -/** - * remove at index i, sliding over all entries after i - */ -void ra_remove_at_index(roaring_array_t *ra, int32_t i); - - -/** -* clears all containers, sets the size at 0 and shrinks the memory usage. -*/ -void ra_reset(roaring_array_t *ra); - -/** - * remove at index i, sliding over all entries after i. Free removed container. - */ -void ra_remove_at_index_and_free(roaring_array_t *ra, int32_t i); - -/** - * remove a chunk of indices, sliding over entries after it - */ -// void ra_remove_index_range(roaring_array_t *ra, int32_t begin, int32_t end); - -// used in inplace andNot only, to slide left the containers from -// the mutated RoaringBitmap that are after the largest container of -// the argument RoaringBitmap. It is followed by a call to resize. -// -void ra_copy_range(roaring_array_t *ra, uint32_t begin, uint32_t end, - uint32_t new_begin); - -/** - * Shifts rightmost $count containers to the left (distance < 0) or - * to the right (distance > 0). - * Allocates memory if necessary. - * This function doesn't free or create new containers. - * Caller is responsible for that. - */ -void ra_shift_tail(roaring_array_t *ra, int32_t count, int32_t distance); - -#ifdef __cplusplus -} -#endif - -#endif -/* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/roaring_array.h */ -/* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/misc/configreport.h */ -/* - * configreport.h - * - */ - -#ifndef INCLUDE_MISC_CONFIGREPORT_H_ -#define INCLUDE_MISC_CONFIGREPORT_H_ - -#include // for size_t -#include -#include - - -#ifdef IS_X64 -// useful for basic info (0) -static inline void native_cpuid(unsigned int *eax, unsigned int *ebx, - unsigned int *ecx, unsigned int *edx) { -#ifdef ROARING_INLINE_ASM - __asm volatile("cpuid" - : "=a"(*eax), "=b"(*ebx), "=c"(*ecx), "=d"(*edx) - : "0"(*eax), "2"(*ecx)); -#endif /* not sure what to do when inline assembly is unavailable*/ -} - -// CPUID instruction takes no parameters as CPUID implicitly uses the EAX -// register. -// The EAX register should be loaded with a value specifying what information to -// return -static inline void cpuinfo(int code, int *eax, int *ebx, int *ecx, int *edx) { -#ifdef ROARING_INLINE_ASM - __asm__ volatile("cpuid;" // call cpuid instruction - : "=a"(*eax), "=b"(*ebx), "=c"(*ecx), - "=d"(*edx) // output equal to "movl %%eax %1" - : "a"(code) // input equal to "movl %1, %%eax" - //:"%eax","%ebx","%ecx","%edx"// clobbered register - ); -#endif /* not sure what to do when inline assembly is unavailable*/ -} - -static inline int computecacheline() { - int eax = 0, ebx = 0, ecx = 0, edx = 0; - cpuinfo((int)0x80000006, &eax, &ebx, &ecx, &edx); - return ecx & 0xFF; -} - -// this is quite imperfect, but can be handy -static inline const char *guessprocessor() { - unsigned eax = 1, ebx = 0, ecx = 0, edx = 0; - native_cpuid(&eax, &ebx, &ecx, &edx); - const char *codename; - switch (eax >> 4) { - case 0x506E: - codename = "Skylake"; - break; - case 0x406C: - codename = "CherryTrail"; - break; - case 0x306D: - codename = "Broadwell"; - break; - case 0x306C: - codename = "Haswell"; - break; - case 0x306A: - codename = "IvyBridge"; - break; - case 0x206A: - case 0x206D: - codename = "SandyBridge"; - break; - case 0x2065: - case 0x206C: - case 0x206F: - codename = "Westmere"; - break; - case 0x106E: - case 0x106A: - case 0x206E: - codename = "Nehalem"; - break; - case 0x1067: - case 0x106D: - codename = "Penryn"; - break; - case 0x006F: - case 0x1066: - codename = "Merom"; - break; - case 0x0066: - codename = "Presler"; - break; - case 0x0063: - case 0x0064: - codename = "Prescott"; - break; - case 0x006D: - codename = "Dothan"; - break; - case 0x0366: - codename = "Cedarview"; - break; - case 0x0266: - codename = "Lincroft"; - break; - case 0x016C: - codename = "Pineview"; - break; - default: - codename = "UNKNOWN"; - break; - } - return codename; -} - -static inline void tellmeall() { - printf("Intel processor: %s\t", guessprocessor()); - -#ifdef __VERSION__ - printf(" compiler version: %s\t", __VERSION__); -#endif - printf("\tBuild option USEAVX "); -#ifdef USEAVX - printf("enabled\n"); -#else - printf("disabled\n"); -#endif -#ifndef __AVX2__ - printf("AVX2 is NOT available.\n"); -#endif - - if ((sizeof(int) != 4) || (sizeof(long) != 8)) { - printf("number of bytes: int = %lu long = %lu \n", - (long unsigned int)sizeof(size_t), - (long unsigned int)sizeof(int)); - } -#if __LITTLE_ENDIAN__ -// This is what we expect! -// printf("you have little endian machine"); -#endif -#if __BIG_ENDIAN__ - printf("you have a big endian machine"); -#endif -#if __CHAR_BIT__ - if (__CHAR_BIT__ != 8) printf("on your machine, chars don't have 8bits???"); -#endif - if (computecacheline() != 64) - printf("cache line: %d bytes\n", computecacheline()); -} -#else - -static inline void tellmeall() { - printf("Non-X64 processor\n"); -#ifdef __arm__ - printf("ARM processor detected\n"); -#endif -#ifdef __VERSION__ - printf(" compiler version: %s\t", __VERSION__); -#endif - if ((sizeof(int) != 4) || (sizeof(long) != 8)) { - printf("number of bytes: int = %lu long = %lu \n", - (long unsigned int)sizeof(size_t), - (long unsigned int)sizeof(int)); - } -#if __LITTLE_ENDIAN__ -// This is what we expect! -// printf("you have little endian machine"); -#endif -#if __BIG_ENDIAN__ - printf("you have a big endian machine"); -#endif -#if __CHAR_BIT__ - if (__CHAR_BIT__ != 8) printf("on your machine, chars don't have 8bits???"); -#endif -} - -#endif - -#endif /* INCLUDE_MISC_CONFIGREPORT_H_ */ -/* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/misc/configreport.h */ -/* begin file /opt/bitmap/CRoaring-0.2.57/include/roaring/roaring.h */ -/* -An implementation of Roaring Bitmaps in C. -*/ - -#ifndef ROARING_H -#define ROARING_H -#ifdef __cplusplus -extern "C" { -#endif - -#include - -typedef struct roaring_bitmap_s { - roaring_array_t high_low_container; - bool copy_on_write; /* copy_on_write: whether you want to use copy-on-write - (saves memory and avoids - copies but needs more care in a threaded context). - Most users should ignore this flag. - Note: if you do turn this flag to 'true', enabling - COW, then ensure that you do so for all of your bitmaps since - interactions between bitmaps with and without COW is unsafe. */ -} roaring_bitmap_t; - - -void *containerptr_roaring_bitmap_add(roaring_bitmap_t *r, - uint32_t val, - uint8_t *typecode, - int *index); -/** - * Creates a new bitmap (initially empty) - */ -roaring_bitmap_t *roaring_bitmap_create(void); - -/** - * Add all the values between min (included) and max (excluded) that are at a - * distance k*step from min. -*/ -roaring_bitmap_t *roaring_bitmap_from_range(uint64_t min, uint64_t max, - uint32_t step); - -/** - * Creates a new bitmap (initially empty) with a provided - * container-storage capacity (it is a performance hint). - */ -roaring_bitmap_t *roaring_bitmap_create_with_capacity(uint32_t cap); - -/** - * Creates a new bitmap from a pointer of uint32_t integers - */ -roaring_bitmap_t *roaring_bitmap_of_ptr(size_t n_args, const uint32_t *vals); - -/** - * Describe the inner structure of the bitmap. - */ -void roaring_bitmap_printf_describe(const roaring_bitmap_t *ra); - -/** - * Creates a new bitmap from a list of uint32_t integers - */ -roaring_bitmap_t *roaring_bitmap_of(size_t n, ...); - -/** - * Copies a bitmap. This does memory allocation. The caller is responsible for - * memory management. - * - */ -roaring_bitmap_t *roaring_bitmap_copy(const roaring_bitmap_t *r); - - -/** - * Copies a bitmap from src to dest. It is assumed that the pointer dest - * is to an already allocated bitmap. The content of the dest bitmap is - * freed/deleted. - * - * It might be preferable and simpler to call roaring_bitmap_copy except - * that roaring_bitmap_overwrite can save on memory allocations. - * - */ -bool roaring_bitmap_overwrite(roaring_bitmap_t *dest, - const roaring_bitmap_t *src); - -/** - * Print the content of the bitmap. - */ -void roaring_bitmap_printf(const roaring_bitmap_t *ra); - -/** - * Computes the intersection between two bitmaps and returns new bitmap. The - * caller is - * responsible for memory management. - * - */ -roaring_bitmap_t *roaring_bitmap_and(const roaring_bitmap_t *x1, - const roaring_bitmap_t *x2); - -/** - * Computes the size of the intersection between two bitmaps. - * - */ -uint64_t roaring_bitmap_and_cardinality(const roaring_bitmap_t *x1, - const roaring_bitmap_t *x2); - - -/** - * Check whether two bitmaps intersect. - * - */ -bool roaring_bitmap_intersect(const roaring_bitmap_t *x1, - const roaring_bitmap_t *x2); - -/** - * Computes the Jaccard index between two bitmaps. (Also known as the Tanimoto - * distance, - * or the Jaccard similarity coefficient) - * - * The Jaccard index is undefined if both bitmaps are empty. - * - */ -double roaring_bitmap_jaccard_index(const roaring_bitmap_t *x1, - const roaring_bitmap_t *x2); - -/** - * Computes the size of the union between two bitmaps. - * - */ -uint64_t roaring_bitmap_or_cardinality(const roaring_bitmap_t *x1, - const roaring_bitmap_t *x2); - -/** - * Computes the size of the difference (andnot) between two bitmaps. - * - */ -uint64_t roaring_bitmap_andnot_cardinality(const roaring_bitmap_t *x1, - const roaring_bitmap_t *x2); - -/** - * Computes the size of the symmetric difference (andnot) between two bitmaps. - * - */ -uint64_t roaring_bitmap_xor_cardinality(const roaring_bitmap_t *x1, - const roaring_bitmap_t *x2); - -/** - * Inplace version modifies x1, x1 == x2 is allowed - */ -void roaring_bitmap_and_inplace(roaring_bitmap_t *x1, - const roaring_bitmap_t *x2); - -/** - * Computes the union between two bitmaps and returns new bitmap. The caller is - * responsible for memory management. - */ -roaring_bitmap_t *roaring_bitmap_or(const roaring_bitmap_t *x1, - const roaring_bitmap_t *x2); - -/** - * Inplace version of roaring_bitmap_or, modifies x1. TDOO: decide whether x1 == - *x2 ok - * - */ -void roaring_bitmap_or_inplace(roaring_bitmap_t *x1, - const roaring_bitmap_t *x2); - -/** - * Compute the union of 'number' bitmaps. See also roaring_bitmap_or_many_heap. - * Caller is responsible for freeing the - * result. - * - */ -roaring_bitmap_t *roaring_bitmap_or_many(size_t number, - const roaring_bitmap_t **x); - -/** - * Compute the union of 'number' bitmaps using a heap. This can - * sometimes be faster than roaring_bitmap_or_many which uses - * a naive algorithm. Caller is responsible for freeing the - * result. - * - */ -roaring_bitmap_t *roaring_bitmap_or_many_heap(uint32_t number, - const roaring_bitmap_t **x); - -/** - * Computes the symmetric difference (xor) between two bitmaps - * and returns new bitmap. The caller is responsible for memory management. - */ -roaring_bitmap_t *roaring_bitmap_xor(const roaring_bitmap_t *x1, - const roaring_bitmap_t *x2); - -/** - * Inplace version of roaring_bitmap_xor, modifies x1. x1 != x2. - * - */ -void roaring_bitmap_xor_inplace(roaring_bitmap_t *x1, - const roaring_bitmap_t *x2); - -/** - * Compute the xor of 'number' bitmaps. - * Caller is responsible for freeing the - * result. - * - */ -roaring_bitmap_t *roaring_bitmap_xor_many(size_t number, - const roaring_bitmap_t **x); - -/** - * Computes the difference (andnot) between two bitmaps - * and returns new bitmap. The caller is responsible for memory management. - */ -roaring_bitmap_t *roaring_bitmap_andnot(const roaring_bitmap_t *x1, - const roaring_bitmap_t *x2); - -/** - * Inplace version of roaring_bitmap_andnot, modifies x1. x1 != x2. - * - */ -void roaring_bitmap_andnot_inplace(roaring_bitmap_t *x1, - const roaring_bitmap_t *x2); - -/** - * TODO: consider implementing: - * Compute the xor of 'number' bitmaps using a heap. This can - * sometimes be faster than roaring_bitmap_xor_many which uses - * a naive algorithm. Caller is responsible for freeing the - * result. - * - * roaring_bitmap_t *roaring_bitmap_xor_many_heap(uint32_t number, - * const roaring_bitmap_t **x); - */ - -/** - * Frees the memory. - */ -void roaring_bitmap_free(roaring_bitmap_t *r); - -/** - * Add value n_args from pointer vals, faster than repeatedly calling - * roaring_bitmap_add - * - */ -void roaring_bitmap_add_many(roaring_bitmap_t *r, size_t n_args, - const uint32_t *vals); - -/** - * Add value x - * - */ -void roaring_bitmap_add(roaring_bitmap_t *r, uint32_t x); - -/** - * Add value x - * Returns true if a new value was added, false if the value was already existing. - */ -bool roaring_bitmap_add_checked(roaring_bitmap_t *r, uint32_t x); - -/** - * Add all values in range [min, max] - */ -void roaring_bitmap_add_range_closed(roaring_bitmap_t *ra, uint32_t min, uint32_t max); - -/** - * Add all values in range [min, max) - */ -inline void roaring_bitmap_add_range(roaring_bitmap_t *ra, uint64_t min, uint64_t max) { - if(max == min) return; - roaring_bitmap_add_range_closed(ra, (uint32_t)min, (uint32_t)(max - 1)); -} - -/** - * Remove value x - * - */ -void roaring_bitmap_remove(roaring_bitmap_t *r, uint32_t x); - -/** Remove all values in range [min, max] */ -void roaring_bitmap_remove_range_closed(roaring_bitmap_t *ra, uint32_t min, uint32_t max); - -/** Remove all values in range [min, max) */ -inline void roaring_bitmap_remove_range(roaring_bitmap_t *ra, uint64_t min, uint64_t max) { - if(max == min) return; - roaring_bitmap_remove_range_closed(ra, (uint32_t)min, (uint32_t)(max - 1)); -} - -/** Remove multiple values */ -void roaring_bitmap_remove_many(roaring_bitmap_t *r, size_t n_args, - const uint32_t *vals); - -/** - * Remove value x - * Returns true if a new value was removed, false if the value was not existing. - */ -bool roaring_bitmap_remove_checked(roaring_bitmap_t *r, uint32_t x); - -/** - * Check if value x is present - */ -inline bool roaring_bitmap_contains(const roaring_bitmap_t *r, uint32_t val) { - const uint16_t hb = val >> 16; - /* - * the next function call involves a binary search and lots of branching. - */ - int32_t i = ra_get_index(&r->high_low_container, hb); - if (i < 0) return false; - - uint8_t typecode; - // next call ought to be cheap - void *container = - ra_get_container_at_index(&r->high_low_container, i, &typecode); - // rest might be a tad expensive, possibly involving another round of binary search - return container_contains(container, val & 0xFFFF, typecode); -} - -/** - * Check whether a range of values from range_start (included) to range_end (excluded) is present - */ -bool roaring_bitmap_contains_range(const roaring_bitmap_t *r, uint64_t range_start, uint64_t range_end); - -/** - * Get the cardinality of the bitmap (number of elements). - */ -uint64_t roaring_bitmap_get_cardinality(const roaring_bitmap_t *ra); - -/** - * Returns number of elements in range [range_start, range_end). - */ -uint64_t roaring_bitmap_range_cardinality(const roaring_bitmap_t *ra, - uint64_t range_start, uint64_t range_end); - -/** -* Returns true if the bitmap is empty (cardinality is zero). -*/ -bool roaring_bitmap_is_empty(const roaring_bitmap_t *ra); - - -/** -* Empties the bitmap -*/ -void roaring_bitmap_clear(roaring_bitmap_t *ra); - -/** - * Convert the bitmap to an array. Write the output to "ans", - * caller is responsible to ensure that there is enough memory - * allocated - * (e.g., ans = malloc(roaring_bitmap_get_cardinality(mybitmap) - * * sizeof(uint32_t)) - */ -void roaring_bitmap_to_uint32_array(const roaring_bitmap_t *ra, uint32_t *ans); - - -/** - * Convert the bitmap to an array from "offset" by "limit". Write the output to "ans". - * so, you can get data in paging. - * caller is responsible to ensure that there is enough memory - * allocated - * (e.g., ans = malloc(roaring_bitmap_get_cardinality(limit) - * * sizeof(uint32_t)) - * Return false in case of failure (e.g., insufficient memory) - */ -bool roaring_bitmap_range_uint32_array(const roaring_bitmap_t *ra, size_t offset, size_t limit, uint32_t *ans); - -/** - * Remove run-length encoding even when it is more space efficient - * return whether a change was applied - */ -bool roaring_bitmap_remove_run_compression(roaring_bitmap_t *r); - -/** convert array and bitmap containers to run containers when it is more - * efficient; - * also convert from run containers when more space efficient. Returns - * true if the result has at least one run container. - * Additional savings might be possible by calling shrinkToFit(). - */ -bool roaring_bitmap_run_optimize(roaring_bitmap_t *r); - -/** - * If needed, reallocate memory to shrink the memory usage. Returns - * the number of bytes saved. -*/ -size_t roaring_bitmap_shrink_to_fit(roaring_bitmap_t *r); - -/** -* write the bitmap to an output pointer, this output buffer should refer to -* at least roaring_bitmap_size_in_bytes(ra) allocated bytes. -* -* see roaring_bitmap_portable_serialize if you want a format that's compatible -* with Java and Go implementations -* -* this format has the benefit of being sometimes more space efficient than -* roaring_bitmap_portable_serialize -* e.g., when the data is sparse. -* -* Returns how many bytes were written which should be -* roaring_bitmap_size_in_bytes(ra). -*/ -size_t roaring_bitmap_serialize(const roaring_bitmap_t *ra, char *buf); - -/** use with roaring_bitmap_serialize -* see roaring_bitmap_portable_deserialize if you want a format that's -* compatible with Java and Go implementations -*/ -roaring_bitmap_t *roaring_bitmap_deserialize(const void *buf); - -/** - * How many bytes are required to serialize this bitmap (NOT compatible - * with Java and Go versions) - */ -size_t roaring_bitmap_size_in_bytes(const roaring_bitmap_t *ra); - -/** - * read a bitmap from a serialized version. This is meant to be compatible with - * the Java and Go versions. See format specification at - * https://github.com/RoaringBitmap/RoaringFormatSpec - * In case of failure, a null pointer is returned. - * This function is unsafe in the sense that if there is no valid serialized - * bitmap at the pointer, then many bytes could be read, possibly causing a buffer - * overflow. For a safer approach, - * call roaring_bitmap_portable_deserialize_safe. - */ -roaring_bitmap_t *roaring_bitmap_portable_deserialize(const char *buf); - -/** - * read a bitmap from a serialized version in a safe manner (reading up to maxbytes). - * This is meant to be compatible with - * the Java and Go versions. See format specification at - * https://github.com/RoaringBitmap/RoaringFormatSpec - * In case of failure, a null pointer is returned. - */ -roaring_bitmap_t *roaring_bitmap_portable_deserialize_safe(const char *buf, size_t maxbytes); - -/** - * Check how many bytes would be read (up to maxbytes) at this pointer if there - * is a bitmap, returns zero if there is no valid bitmap. - * This is meant to be compatible with - * the Java and Go versions. See format specification at - * https://github.com/RoaringBitmap/RoaringFormatSpec - */ -size_t roaring_bitmap_portable_deserialize_size(const char *buf, size_t maxbytes); - - -/** - * How many bytes are required to serialize this bitmap (meant to be compatible - * with Java and Go versions). See format specification at - * https://github.com/RoaringBitmap/RoaringFormatSpec - */ -size_t roaring_bitmap_portable_size_in_bytes(const roaring_bitmap_t *ra); - -/** - * write a bitmap to a char buffer. The output buffer should refer to at least - * roaring_bitmap_portable_size_in_bytes(ra) bytes of allocated memory. - * This is meant to be compatible with - * the - * Java and Go versions. Returns how many bytes were written which should be - * roaring_bitmap_portable_size_in_bytes(ra). See format specification at - * https://github.com/RoaringBitmap/RoaringFormatSpec - */ -size_t roaring_bitmap_portable_serialize(const roaring_bitmap_t *ra, char *buf); - -/** - * Iterate over the bitmap elements. The function iterator is called once for - * all the values with ptr (can be NULL) as the second parameter of each call. - * - * roaring_iterator is simply a pointer to a function that returns bool - * (true means that the iteration should continue while false means that it - * should stop), - * and takes (uint32_t,void*) as inputs. - * - * Returns true if the roaring_iterator returned true throughout (so that - * all data points were necessarily visited). - */ -bool roaring_iterate(const roaring_bitmap_t *ra, roaring_iterator iterator, - void *ptr); - -bool roaring_iterate64(const roaring_bitmap_t *ra, roaring_iterator64 iterator, - uint64_t high_bits, void *ptr); - -/** - * Return true if the two bitmaps contain the same elements. - */ -bool roaring_bitmap_equals(const roaring_bitmap_t *ra1, - const roaring_bitmap_t *ra2); - -/** - * Return true if all the elements of ra1 are also in ra2. - */ -bool roaring_bitmap_is_subset(const roaring_bitmap_t *ra1, - const roaring_bitmap_t *ra2); - -/** - * Return true if all the elements of ra1 are also in ra2 and ra2 is strictly - * greater - * than ra1. - */ -bool roaring_bitmap_is_strict_subset(const roaring_bitmap_t *ra1, - const roaring_bitmap_t *ra2); - -/** - * (For expert users who seek high performance.) - * - * Computes the union between two bitmaps and returns new bitmap. The caller is - * responsible for memory management. - * - * The lazy version defers some computations such as the maintenance of the - * cardinality counts. Thus you need - * to call roaring_bitmap_repair_after_lazy after executing "lazy" computations. - * It is safe to repeatedly call roaring_bitmap_lazy_or_inplace on the result. - * The bitsetconversion conversion is a flag which determines - * whether container-container operations force a bitset conversion. - **/ -roaring_bitmap_t *roaring_bitmap_lazy_or(const roaring_bitmap_t *x1, - const roaring_bitmap_t *x2, - const bool bitsetconversion); - -/** - * (For expert users who seek high performance.) - * Inplace version of roaring_bitmap_lazy_or, modifies x1 - * The bitsetconversion conversion is a flag which determines - * whether container-container operations force a bitset conversion. - */ -void roaring_bitmap_lazy_or_inplace(roaring_bitmap_t *x1, - const roaring_bitmap_t *x2, - const bool bitsetconversion); - -/** - * (For expert users who seek high performance.) - * - * Execute maintenance operations on a bitmap created from - * roaring_bitmap_lazy_or - * or modified with roaring_bitmap_lazy_or_inplace. - */ -void roaring_bitmap_repair_after_lazy(roaring_bitmap_t *x1); - -/** - * Computes the symmetric difference between two bitmaps and returns new bitmap. - *The caller is - * responsible for memory management. - * - * The lazy version defers some computations such as the maintenance of the - * cardinality counts. Thus you need - * to call roaring_bitmap_repair_after_lazy after executing "lazy" computations. - * It is safe to repeatedly call roaring_bitmap_lazy_xor_inplace on the result. - * - */ -roaring_bitmap_t *roaring_bitmap_lazy_xor(const roaring_bitmap_t *x1, - const roaring_bitmap_t *x2); - -/** - * (For expert users who seek high performance.) - * Inplace version of roaring_bitmap_lazy_xor, modifies x1. x1 != x2 - * - */ -void roaring_bitmap_lazy_xor_inplace(roaring_bitmap_t *x1, - const roaring_bitmap_t *x2); - -/** - * compute the negation of the roaring bitmap within a specified - * interval: [range_start, range_end). The number of negated values is - * range_end - range_start. - * Areas outside the range are passed through unchanged. - */ - -roaring_bitmap_t *roaring_bitmap_flip(const roaring_bitmap_t *x1, - uint64_t range_start, uint64_t range_end); - -/** - * compute (in place) the negation of the roaring bitmap within a specified - * interval: [range_start, range_end). The number of negated values is - * range_end - range_start. - * Areas outside the range are passed through unchanged. - */ - -void roaring_bitmap_flip_inplace(roaring_bitmap_t *x1, uint64_t range_start, - uint64_t range_end); - -/** - * If the size of the roaring bitmap is strictly greater than rank, then this - function returns true and set element to the element of given rank. - Otherwise, it returns false. - */ -bool roaring_bitmap_select(const roaring_bitmap_t *ra, uint32_t rank, - uint32_t *element); -/** -* roaring_bitmap_rank returns the number of integers that are smaller or equal -* to x. -*/ -uint64_t roaring_bitmap_rank(const roaring_bitmap_t *bm, uint32_t x); - -/** -* roaring_bitmap_smallest returns the smallest value in the set. -* Returns UINT32_MAX if the set is empty. -*/ -uint32_t roaring_bitmap_minimum(const roaring_bitmap_t *bm); - -/** -* roaring_bitmap_smallest returns the greatest value in the set. -* Returns 0 if the set is empty. -*/ -uint32_t roaring_bitmap_maximum(const roaring_bitmap_t *bm); - -/** -* (For advanced users.) -* Collect statistics about the bitmap, see roaring_types.h for -* a description of roaring_statistics_t -*/ -void roaring_bitmap_statistics(const roaring_bitmap_t *ra, - roaring_statistics_t *stat); - -/********************* -* What follows is code use to iterate through values in a roaring bitmap - -roaring_bitmap_t *ra =... -roaring_uint32_iterator_t i; -roaring_create_iterator(ra, &i); -while(i.has_value) { - printf("value = %d\n", i.current_value); - roaring_advance_uint32_iterator(&i); -} - -Obviously, if you modify the underlying bitmap, the iterator -becomes invalid. So don't. -*/ - -typedef struct roaring_uint32_iterator_s { - const roaring_bitmap_t *parent; // owner - int32_t container_index; // point to the current container index - int32_t in_container_index; // for bitset and array container, this is out - // index - int32_t run_index; // for run container, this points at the run - uint32_t in_run_index; // within a run, this is our index (points at the - // end of the current run) - - uint32_t current_value; - bool has_value; - - const void - *container; // should be: - // parent->high_low_container.containers[container_index]; - uint8_t typecode; // should be: - // parent->high_low_container.typecodes[container_index]; - uint32_t highbits; // should be: - // parent->high_low_container.keys[container_index]) << - // 16; - -} roaring_uint32_iterator_t; - -/** -* Initialize an iterator object that can be used to iterate through the -* values. If there is a value, then it->has_value is true. -* The first value is in it->current_value. The iterator traverses the values -* in increasing order. -*/ -void roaring_init_iterator(const roaring_bitmap_t *ra, - roaring_uint32_iterator_t *newit); - -/** -* Create an iterator object that can be used to iterate through the -* values. Caller is responsible for calling roaring_free_iterator. -* The iterator is initialized. If there is a value, then it->has_value is true. -* The first value is in it->current_value. The iterator traverses the values -* in increasing order. -* -* This function calls roaring_init_iterator. -*/ -roaring_uint32_iterator_t *roaring_create_iterator(const roaring_bitmap_t *ra); - -/** -* Advance the iterator. If there is a new value, then it->has_value is true. -* The new value is in it->current_value. Values are traversed in increasing -* orders. For convenience, returns it->has_value. -*/ -bool roaring_advance_uint32_iterator(roaring_uint32_iterator_t *it); - -/** -* Move the iterator to the first value >= val. If there is a such a value, then it->has_value is true. -* The new value is in it->current_value. For convenience, returns it->has_value. -*/ -bool roaring_move_uint32_iterator_equalorlarger(roaring_uint32_iterator_t *it, uint32_t val) ; -/** -* Creates a copy of an iterator. -* Caller must free it. -*/ -roaring_uint32_iterator_t *roaring_copy_uint32_iterator( - const roaring_uint32_iterator_t *it); - -/** -* Free memory following roaring_create_iterator -*/ -void roaring_free_uint32_iterator(roaring_uint32_iterator_t *it); - -/* - * Reads next ${count} values from iterator into user-supplied ${buf}. - * Returns the number of read elements. - * This number can be smaller than ${count}, which means that iterator is drained. - * - * This function satisfies semantics of iteration and can be used together with - * other iterator functions. - * - first value is copied from ${it}->current_value - * - after function returns, iterator is positioned at the next element - */ -uint32_t roaring_read_uint32_iterator(roaring_uint32_iterator_t *it, uint32_t* buf, uint32_t count); - -#ifdef __cplusplus -} -#endif - -#endif - -/* end file /opt/bitmap/CRoaring-0.2.57/include/roaring/roaring.h */ diff --git a/contrib/croaring/roaring/roaring.hh b/contrib/croaring/roaring/roaring.hh deleted file mode 100644 index 6266fff2758..00000000000 --- a/contrib/croaring/roaring/roaring.hh +++ /dev/null @@ -1,1732 +0,0 @@ -/* auto-generated on Tue Dec 18 09:42:59 CST 2018. Do not edit! */ -#include "roaring.h" -/* begin file /opt/bitmap/CRoaring-0.2.57/cpp/roaring.hh */ -/* -A C++ header for Roaring Bitmaps. -*/ -#ifndef INCLUDE_ROARING_HH_ -#define INCLUDE_ROARING_HH_ - -#include - -#include -#include -#include -#include - -class RoaringSetBitForwardIterator; - -class Roaring { - public: - /** - * Create an empty bitmap - */ - Roaring() { - bool is_ok = ra_init(&roaring.high_low_container); - if (!is_ok) { - throw std::runtime_error("failed memory alloc in constructor"); - } - roaring.copy_on_write = false; - } - - /** - * Construct a bitmap from a list of integer values. - */ - Roaring(size_t n, const uint32_t *data) : Roaring() { - roaring_bitmap_add_many(&roaring, n, data); - } - - /** - * Copy constructor - */ - Roaring(const Roaring &r) { - bool is_ok = - ra_copy(&r.roaring.high_low_container, &roaring.high_low_container, - r.roaring.copy_on_write); - if (!is_ok) { - throw std::runtime_error("failed memory alloc in constructor"); - } - roaring.copy_on_write = r.roaring.copy_on_write; - } - - /** - * Move constructor. The moved object remains valid, i.e. - * all methods can still be called on it. - */ - Roaring(Roaring &&r) { - roaring = std::move(r.roaring); - - // left the moved object in a valid state - bool is_ok = ra_init_with_capacity(&r.roaring.high_low_container, 1); - if (!is_ok) { - throw std::runtime_error("failed memory alloc in constructor"); - } - } - - /** - * Construct a roaring object from the C struct. - * - * Passing a NULL point is unsafe. - * the pointer to the C struct will be invalid after the call. - */ - Roaring(roaring_bitmap_t *s) { - // steal the interior struct - roaring.high_low_container = s->high_low_container; - roaring.copy_on_write = s->copy_on_write; - // deallocate the old container - free(s); - } - - /** - * Construct a bitmap from a list of integer values. - */ - static Roaring bitmapOf(size_t n, ...) { - Roaring ans; - va_list vl; - va_start(vl, n); - for (size_t i = 0; i < n; i++) { - ans.add(va_arg(vl, uint32_t)); - } - va_end(vl); - return ans; - } - - /** - * Add value x - * - */ - void add(uint32_t x) { roaring_bitmap_add(&roaring, x); } - - /** - * Add value x - * Returns true if a new value was added, false if the value was already existing. - */ - bool addChecked(uint32_t x) { - return roaring_bitmap_add_checked(&roaring, x); - } - - /** - * add if all values from x (included) to y (excluded) - */ - void addRange(const uint64_t x, const uint64_t y) { - return roaring_bitmap_add_range(&roaring, x, y); - } - - /** - * Add value n_args from pointer vals - * - */ - void addMany(size_t n_args, const uint32_t *vals) { - roaring_bitmap_add_many(&roaring, n_args, vals); - } - - /** - * Remove value x - * - */ - void remove(uint32_t x) { roaring_bitmap_remove(&roaring, x); } - - /** - * Remove value x - * Returns true if a new value was removed, false if the value was not existing. - */ - bool removeChecked(uint32_t x) { - return roaring_bitmap_remove_checked(&roaring, x); - } - - /** - * Return the largest value (if not empty) - * - */ - uint32_t maximum() const { return roaring_bitmap_maximum(&roaring); } - - /** - * Return the smallest value (if not empty) - * - */ - uint32_t minimum() const { return roaring_bitmap_minimum(&roaring); } - - /** - * Check if value x is present - */ - bool contains(uint32_t x) const { - return roaring_bitmap_contains(&roaring, x); - } - - /** - * Check if all values from x (included) to y (excluded) are present - */ - bool containsRange(const uint64_t x, const uint64_t y) const { - return roaring_bitmap_contains_range(&roaring, x, y); - } - - /** - * Destructor - */ - ~Roaring() { ra_clear(&roaring.high_low_container); } - - /** - * Copies the content of the provided bitmap, and - * discard the current content. - */ - Roaring &operator=(const Roaring &r) { - ra_clear(&roaring.high_low_container); - bool is_ok = - ra_copy(&r.roaring.high_low_container, &roaring.high_low_container, - r.roaring.copy_on_write); - if (!is_ok) { - throw std::runtime_error("failed memory alloc in assignment"); - } - roaring.copy_on_write = r.roaring.copy_on_write; - return *this; - } - - /** - * Moves the content of the provided bitmap, and - * discard the current content. - */ - Roaring &operator=(Roaring &&r) { - ra_clear(&roaring.high_low_container); - - roaring = std::move(r.roaring); - bool is_ok = ra_init_with_capacity(&r.roaring.high_low_container, 1); - if (!is_ok) { - throw std::runtime_error("failed memory alloc in assignment"); - } - - return *this; - } - - /** - * Compute the intersection between the current bitmap and the provided - * bitmap, - * writing the result in the current bitmap. The provided bitmap is not - * modified. - */ - Roaring &operator&=(const Roaring &r) { - roaring_bitmap_and_inplace(&roaring, &r.roaring); - return *this; - } - - /** - * Compute the difference between the current bitmap and the provided - * bitmap, - * writing the result in the current bitmap. The provided bitmap is not - * modified. - */ - Roaring &operator-=(const Roaring &r) { - roaring_bitmap_andnot_inplace(&roaring, &r.roaring); - return *this; - } - - /** - * Compute the union between the current bitmap and the provided bitmap, - * writing the result in the current bitmap. The provided bitmap is not - * modified. - * - * See also the fastunion function to aggregate many bitmaps more quickly. - */ - Roaring &operator|=(const Roaring &r) { - roaring_bitmap_or_inplace(&roaring, &r.roaring); - return *this; - } - - /** - * Compute the symmetric union between the current bitmap and the provided - * bitmap, - * writing the result in the current bitmap. The provided bitmap is not - * modified. - */ - Roaring &operator^=(const Roaring &r) { - roaring_bitmap_xor_inplace(&roaring, &r.roaring); - return *this; - } - - /** - * Exchange the content of this bitmap with another. - */ - void swap(Roaring &r) { std::swap(r.roaring, roaring); } - - /** - * Get the cardinality of the bitmap (number of elements). - */ - uint64_t cardinality() const { - return roaring_bitmap_get_cardinality(&roaring); - } - - /** - * Returns true if the bitmap is empty (cardinality is zero). - */ - bool isEmpty() const { return roaring_bitmap_is_empty(&roaring); } - - /** - * Returns true if the bitmap is subset of the other. - */ - bool isSubset(const Roaring &r) const { - return roaring_bitmap_is_subset(&roaring, &r.roaring); - } - - /** - * Returns true if the bitmap is strict subset of the other. - */ - bool isStrictSubset(const Roaring &r) const { - return roaring_bitmap_is_strict_subset(&roaring, &r.roaring); - } - - /** - * Convert the bitmap to an array. Write the output to "ans", - * caller is responsible to ensure that there is enough memory - * allocated - * (e.g., ans = new uint32[mybitmap.cardinality()];) - */ - void toUint32Array(uint32_t *ans) const { - roaring_bitmap_to_uint32_array(&roaring, ans); - } - /** - * to int array with pagination - * - */ - void rangeUint32Array(uint32_t *ans, size_t offset, size_t limit) const { - roaring_bitmap_range_uint32_array(&roaring, offset, limit, ans); - } - - /** - * Return true if the two bitmaps contain the same elements. - */ - bool operator==(const Roaring &r) const { - return roaring_bitmap_equals(&roaring, &r.roaring); - } - - /** - * compute the negation of the roaring bitmap within a specified interval. - * areas outside the range are passed through unchanged. - */ - void flip(uint64_t range_start, uint64_t range_end) { - roaring_bitmap_flip_inplace(&roaring, range_start, range_end); - } - - /** - * Remove run-length encoding even when it is more space efficient - * return whether a change was applied - */ - bool removeRunCompression() { - return roaring_bitmap_remove_run_compression(&roaring); - } - - /** convert array and bitmap containers to run containers when it is more - * efficient; - * also convert from run containers when more space efficient. Returns - * true if the result has at least one run container. - * Additional savings might be possible by calling shrinkToFit(). - */ - bool runOptimize() { return roaring_bitmap_run_optimize(&roaring); } - - /** - * If needed, reallocate memory to shrink the memory usage. Returns - * the number of bytes saved. - */ - size_t shrinkToFit() { return roaring_bitmap_shrink_to_fit(&roaring); } - - /** - * Iterate over the bitmap elements. The function iterator is called once for - * all the values with ptr (can be NULL) as the second parameter of each call. - * - * roaring_iterator is simply a pointer to a function that returns bool - * (true means that the iteration should continue while false means that it - * should stop), and takes (uint32_t,void*) as inputs. - */ - void iterate(roaring_iterator iterator, void *ptr) const { - roaring_iterate(&roaring, iterator, ptr); - } - - /** - * If the size of the roaring bitmap is strictly greater than rank, then - * this function returns true and set element to the element of given rank. - * Otherwise, it returns false. - */ - bool select(uint32_t rnk, uint32_t *element) const { - return roaring_bitmap_select(&roaring, rnk, element); - } - - /** - * Computes the size of the intersection between two bitmaps. - * - */ - uint64_t and_cardinality(const Roaring &r) const { - return roaring_bitmap_and_cardinality(&roaring, &r.roaring); - } - - /** - * Check whether the two bitmaps intersect. - * - */ - bool intersect(const Roaring &r) const { - return roaring_bitmap_intersect(&roaring, &r.roaring); - } - - /** - * Computes the Jaccard index between two bitmaps. (Also known as the - * Tanimoto distance, - * or the Jaccard similarity coefficient) - * - * The Jaccard index is undefined if both bitmaps are empty. - * - */ - double jaccard_index(const Roaring &r) const { - return roaring_bitmap_jaccard_index(&roaring, &r.roaring); - } - - /** - * Computes the size of the union between two bitmaps. - * - */ - uint64_t or_cardinality(const Roaring &r) const { - return roaring_bitmap_or_cardinality(&roaring, &r.roaring); - } - - /** - * Computes the size of the difference (andnot) between two bitmaps. - * - */ - uint64_t andnot_cardinality(const Roaring &r) const { - return roaring_bitmap_andnot_cardinality(&roaring, &r.roaring); - } - - /** - * Computes the size of the symmetric difference (andnot) between two - * bitmaps. - * - */ - uint64_t xor_cardinality(const Roaring &r) const { - return roaring_bitmap_xor_cardinality(&roaring, &r.roaring); - } - - /** - * Returns the number of integers that are smaller or equal to x. - */ - uint64_t rank(uint32_t x) const { return roaring_bitmap_rank(&roaring, x); } - - /** - * write a bitmap to a char buffer. This is meant to be compatible with - * the - * Java and Go versions. Returns how many bytes were written which should be - * getSizeInBytes(). - * - * Setting the portable flag to false enable a custom format that - * can save space compared to the portable format (e.g., for very - * sparse bitmaps). - * - * Boost users can serialize bitmaps in this manner: - * - * BOOST_SERIALIZATION_SPLIT_FREE(Roaring) - * namespace boost { - * namespace serialization { - * - * template - * void save(Archive& ar, const Roaring& bitmask, - * const unsigned int version) { - * std::size_t expected_size_in_bytes = bitmask.getSizeInBytes(); - * std::vector buffer(expected_size_in_bytes); - * std::size_t size_in_bytes = bitmask.write(buffer.data()); - * - * ar& size_in_bytes; - * ar& boost::serialization::make_binary_object(buffer.data(), - * size_in_bytes); - * } - * template - * void load(Archive& ar, Roaring& bitmask, - * const unsigned int version) { - * std::size_t size_in_bytes = 0; - * ar& size_in_bytes; - * std::vector buffer(size_in_bytes); - * ar& boost::serialization::make_binary_object(buffer.data(), - * size_in_bytes); - * bitmask = Roaring::readSafe(buffer.data(), size_in_bytes); - *} - *} // namespace serialization - *} // namespace boost - */ - size_t write(char *buf, bool portable = true) const { - if (portable) - return roaring_bitmap_portable_serialize(&roaring, buf); - else - return roaring_bitmap_serialize(&roaring, buf); - } - - /** - * read a bitmap from a serialized version. This is meant to be compatible - * with the Java and Go versions. - * - * Setting the portable flag to false enable a custom format that - * can save space compared to the portable format (e.g., for very - * sparse bitmaps). - * - * This function is unsafe in the sense that if you provide bad data, - * many, many bytes could be read. See also readSafe. - */ - static Roaring read(const char *buf, bool portable = true) { - roaring_bitmap_t * r = portable ? roaring_bitmap_portable_deserialize(buf) : roaring_bitmap_deserialize(buf); - if (r == NULL) { - throw std::runtime_error("failed alloc while reading"); - } - return Roaring(r); - } - /** - * read a bitmap from a serialized version, reading no more than maxbytes bytes. - * This is meant to be compatible with the Java and Go versions. - * - */ - static Roaring readSafe(const char *buf, size_t maxbytes) { - roaring_bitmap_t * r = roaring_bitmap_portable_deserialize_safe(buf,maxbytes); - if (r == NULL) { - throw std::runtime_error("failed alloc while reading"); - } - return Roaring(r); - } - /** - * How many bytes are required to serialize this bitmap (meant to be - * compatible - * with Java and Go versions) - * - * Setting the portable flag to false enable a custom format that - * can save space compared to the portable format (e.g., for very - * sparse bitmaps). - */ - size_t getSizeInBytes(bool portable = true) const { - if (portable) - return roaring_bitmap_portable_size_in_bytes(&roaring); - else - return roaring_bitmap_size_in_bytes(&roaring); - } - - /** - * Computes the intersection between two bitmaps and returns new bitmap. - * The current bitmap and the provided bitmap are unchanged. - */ - Roaring operator&(const Roaring &o) const { - roaring_bitmap_t *r = roaring_bitmap_and(&roaring, &o.roaring); - if (r == NULL) { - throw std::runtime_error("failed materalization in and"); - } - return Roaring(r); - } - - /** - * Computes the difference between two bitmaps and returns new bitmap. - * The current bitmap and the provided bitmap are unchanged. - */ - Roaring operator-(const Roaring &o) const { - roaring_bitmap_t *r = roaring_bitmap_andnot(&roaring, &o.roaring); - if (r == NULL) { - throw std::runtime_error("failed materalization in andnot"); - } - return Roaring(r); - } - - /** - * Computes the union between two bitmaps and returns new bitmap. - * The current bitmap and the provided bitmap are unchanged. - */ - Roaring operator|(const Roaring &o) const { - roaring_bitmap_t *r = roaring_bitmap_or(&roaring, &o.roaring); - if (r == NULL) { - throw std::runtime_error("failed materalization in or"); - } - return Roaring(r); - } - - /** - * Computes the symmetric union between two bitmaps and returns new bitmap. - * The current bitmap and the provided bitmap are unchanged. - */ - Roaring operator^(const Roaring &o) const { - roaring_bitmap_t *r = roaring_bitmap_xor(&roaring, &o.roaring); - if (r == NULL) { - throw std::runtime_error("failed materalization in xor"); - } - return Roaring(r); - } - - /** - * Whether or not we apply copy and write. - */ - void setCopyOnWrite(bool val) { roaring.copy_on_write = val; } - - /** - * Print the content of the bitmap - */ - void printf() const { roaring_bitmap_printf(&roaring); } - - /** - * Print the content of the bitmap into a string - */ - std::string toString() const { - struct iter_data { - std::string str; - char first_char = '{'; - } outer_iter_data; - if (!isEmpty()) { - iterate( - [](uint32_t value, void *inner_iter_data) -> bool { - ((iter_data *)inner_iter_data)->str += - ((iter_data *)inner_iter_data)->first_char; - ((iter_data *)inner_iter_data)->str += - std::to_string(value); - ((iter_data *)inner_iter_data)->first_char = ','; - return true; - }, - (void *)&outer_iter_data); - } else - outer_iter_data.str = '{'; - outer_iter_data.str += '}'; - return outer_iter_data.str; - } - - /** - * Whether or not copy and write is active. - */ - bool getCopyOnWrite() const { return roaring.copy_on_write; } - - /** - * computes the logical or (union) between "n" bitmaps (referenced by a - * pointer). - */ - static Roaring fastunion(size_t n, const Roaring **inputs) { - const roaring_bitmap_t **x = - (const roaring_bitmap_t **)malloc(n * sizeof(roaring_bitmap_t *)); - if (x == NULL) { - throw std::runtime_error("failed memory alloc in fastunion"); - } - for (size_t k = 0; k < n; ++k) x[k] = &inputs[k]->roaring; - - roaring_bitmap_t *c_ans = roaring_bitmap_or_many(n, x); - if (c_ans == NULL) { - free(x); - throw std::runtime_error("failed memory alloc in fastunion"); - } - Roaring ans(c_ans); - free(x); - return ans; - } - - typedef RoaringSetBitForwardIterator const_iterator; - - /** - * Returns an iterator that can be used to access the position of the - * set bits. The running time complexity of a full scan is proportional to - * the - * number - * of set bits: be aware that if you have long strings of 1s, this can be - * very inefficient. - * - * It can be much faster to use the toArray method if you want to - * retrieve the set bits. - */ - const_iterator begin() const; - - /** - * A bogus iterator that can be used together with begin() - * for constructions such as for(auto i = b.begin(); - * i!=b.end(); ++i) {} - */ - const_iterator &end() const; - - roaring_bitmap_t roaring; -}; - -/** - * Used to go through the set bits. Not optimally fast, but convenient. - */ -class RoaringSetBitForwardIterator final { - public: - typedef std::forward_iterator_tag iterator_category; - typedef uint32_t *pointer; - typedef uint32_t &reference_type; - typedef uint32_t value_type; - typedef int32_t difference_type; - typedef RoaringSetBitForwardIterator type_of_iterator; - - /** - * Provides the location of the set bit. - */ - value_type operator*() const { return i.current_value; } - - bool operator<(const type_of_iterator &o) { - if (!i.has_value) return false; - if (!o.i.has_value) return true; - return i.current_value < *o; - } - - bool operator<=(const type_of_iterator &o) { - if (!o.i.has_value) return true; - if (!i.has_value) return false; - return i.current_value <= *o; - } - - bool operator>(const type_of_iterator &o) { - if (!o.i.has_value) return false; - if (!i.has_value) return true; - return i.current_value > *o; - } - - bool operator>=(const type_of_iterator &o) { - if (!i.has_value) return true; - if (!o.i.has_value) return false; - return i.current_value >= *o; - } - - /** - * Move the iterator to the first value >= val. - */ - void equalorlarger(uint32_t val) { - roaring_move_uint32_iterator_equalorlarger(&i,val); - } - - type_of_iterator &operator++() { // ++i, must returned inc. value - roaring_advance_uint32_iterator(&i); - return *this; - } - - type_of_iterator operator++(int) { // i++, must return orig. value - RoaringSetBitForwardIterator orig(*this); - roaring_advance_uint32_iterator(&i); - return orig; - } - - bool operator==(const RoaringSetBitForwardIterator &o) const { - return i.current_value == *o && i.has_value == o.i.has_value; - } - - bool operator!=(const RoaringSetBitForwardIterator &o) const { - return i.current_value != *o || i.has_value != o.i.has_value; - } - - RoaringSetBitForwardIterator(const Roaring &parent, - bool exhausted = false) { - if (exhausted) { - i.parent = &parent.roaring; - i.container_index = INT32_MAX; - i.has_value = false; - i.current_value = UINT32_MAX; - } else { - roaring_init_iterator(&parent.roaring, &i); - } - } - - RoaringSetBitForwardIterator &operator=( - const RoaringSetBitForwardIterator &o) = default; - RoaringSetBitForwardIterator &operator=(RoaringSetBitForwardIterator &&o) = - default; - - ~RoaringSetBitForwardIterator() = default; - - RoaringSetBitForwardIterator(const RoaringSetBitForwardIterator &o) - : i(o.i) {} - - roaring_uint32_iterator_t i; -}; - -inline RoaringSetBitForwardIterator Roaring::begin() const { - return RoaringSetBitForwardIterator(*this); -} - -inline RoaringSetBitForwardIterator &Roaring::end() const { - static RoaringSetBitForwardIterator e(*this, true); - return e; -} - -#endif /* INCLUDE_ROARING_HH_ */ -/* end file /opt/bitmap/CRoaring-0.2.57/cpp/roaring.hh */ -/* begin file /opt/bitmap/CRoaring-0.2.57/cpp/roaring64map.hh */ -/* -A C++ header for 64-bit Roaring Bitmaps, implemented by way of a map of many -32-bit Roaring Bitmaps. -*/ -#ifndef INCLUDE_ROARING_64_MAP_HH_ -#define INCLUDE_ROARING_64_MAP_HH_ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - - -class Roaring64MapSetBitForwardIterator; - -class Roaring64Map { - public: - /** - * Create an empty bitmap - */ - Roaring64Map() = default; - - /** - * Construct a bitmap from a list of 32-bit integer values. - */ - Roaring64Map(size_t n, const uint32_t *data) { addMany(n, data); } - - /** - * Construct a bitmap from a list of 64-bit integer values. - */ - Roaring64Map(size_t n, const uint64_t *data) { addMany(n, data); } - - /** - * Copy constructor - */ - Roaring64Map(const Roaring64Map &r) = default; - - /** - * Move constructor - */ - Roaring64Map(Roaring64Map &&r) = default; - - /** - * Construct a 64-bit map from a 32-bit one - */ - Roaring64Map(const Roaring &r) { emplaceOrInsert(0, r); } - - /** - * Construct a roaring object from the C struct. - * - * Passing a NULL point is unsafe. - */ - Roaring64Map(roaring_bitmap_t *s) { emplaceOrInsert(0, s); } - - /** - * Construct a bitmap from a list of integer values. - */ - static Roaring64Map bitmapOf(size_t n...) { - Roaring64Map ans; - va_list vl; - va_start(vl, n); - for (size_t i = 0; i < n; i++) { - ans.add(va_arg(vl, uint64_t)); - } - va_end(vl); - return ans; - } - - /** - * Add value x - * - */ - void add(uint32_t x) { - roarings[0].add(x); - roarings[0].setCopyOnWrite(copyOnWrite); - } - void add(uint64_t x) { - roarings[highBytes(x)].add(lowBytes(x)); - roarings[highBytes(x)].setCopyOnWrite(copyOnWrite); - } - - /** - * Add value x - * Returns true if a new value was added, false if the value was already existing. - */ - bool addChecked(uint32_t x) { - bool result = roarings[0].addChecked(x); - roarings[0].setCopyOnWrite(copyOnWrite); - return result; - } - bool addChecked(uint64_t x) { - bool result = roarings[highBytes(x)].addChecked(lowBytes(x)); - roarings[highBytes(x)].setCopyOnWrite(copyOnWrite); - return result; - } - - /** - * Add value n_args from pointer vals - * - */ - void addMany(size_t n_args, const uint32_t *vals) { - for (size_t lcv = 0; lcv < n_args; lcv++) { - roarings[0].add(vals[lcv]); - roarings[0].setCopyOnWrite(copyOnWrite); - } - } - void addMany(size_t n_args, const uint64_t *vals) { - for (size_t lcv = 0; lcv < n_args; lcv++) { - roarings[highBytes(vals[lcv])].add(lowBytes(vals[lcv])); - roarings[highBytes(vals[lcv])].setCopyOnWrite(copyOnWrite); - } - } - - /** - * Remove value x - * - */ - void remove(uint32_t x) { roarings[0].remove(x); } - void remove(uint64_t x) { - auto roaring_iter = roarings.find(highBytes(x)); - if (roaring_iter != roarings.cend()) - roaring_iter->second.remove(lowBytes(x)); - } - - /** - * Remove value x - * Returns true if a new value was removed, false if the value was not existing. - */ - bool removeChecked(uint32_t x) { - return roarings[0].removeChecked(x); - } - bool removeChecked(uint64_t x) { - auto roaring_iter = roarings.find(highBytes(x)); - if (roaring_iter != roarings.cend()) - return roaring_iter->second.removeChecked(lowBytes(x)); - return false; - } - - /** - * Return the largest value (if not empty) - * - */ - uint64_t maximum() const { - for (auto roaring_iter = roarings.crbegin(); - roaring_iter != roarings.crend(); ++roaring_iter) { - if (!roaring_iter->second.isEmpty()) { - return uniteBytes(roaring_iter->first, - roaring_iter->second.maximum()); - } - } - // we put std::numeric_limits<>::max/min in parenthesis - // to avoid a clash with the Windows.h header under Windows - return (std::numeric_limits::min)(); - } - - /** - * Return the smallest value (if not empty) - * - */ - uint64_t minimum() const { - for (auto roaring_iter = roarings.cbegin(); - roaring_iter != roarings.cend(); ++roaring_iter) { - if (!roaring_iter->second.isEmpty()) { - return uniteBytes(roaring_iter->first, - roaring_iter->second.minimum()); - } - } - // we put std::numeric_limits<>::max/min in parenthesis - // to avoid a clash with the Windows.h header under Windows - return (std::numeric_limits::max)(); - } - - /** - * Check if value x is present - */ - bool contains(uint32_t x) const { - return roarings.count(0) == 0 ? false : roarings.at(0).contains(x); - } - bool contains(uint64_t x) const { - return roarings.count(highBytes(x)) == 0 - ? false - : roarings.at(highBytes(x)).contains(lowBytes(x)); - } - - /** - * Destructor - */ - ~Roaring64Map() = default; - - /** - * Copies the content of the provided bitmap, and - * discards the current content. - */ - Roaring64Map &operator=(const Roaring64Map &r) { - roarings = r.roarings; - copyOnWrite = r.copyOnWrite; - return *this; - } - - /** - * Moves the content of the provided bitmap, and - * discards the current content. - */ - Roaring64Map &operator=(Roaring64Map &&r) { - roarings = std::move(r.roarings); - copyOnWrite = r.copyOnWrite; - return *this; - } - - /** - * Compute the intersection between the current bitmap and the provided - * bitmap, - * writing the result in the current bitmap. The provided bitmap is not - * modified. - */ - Roaring64Map &operator&=(const Roaring64Map &r) { - for (auto &map_entry : roarings) { - if (r.roarings.count(map_entry.first) == 1) - map_entry.second &= r.roarings.at(map_entry.first); - else - map_entry.second = Roaring(); - } - return *this; - } - - /** - * Compute the difference between the current bitmap and the provided - * bitmap, - * writing the result in the current bitmap. The provided bitmap is not - * modified. - */ - Roaring64Map &operator-=(const Roaring64Map &r) { - for (auto &map_entry : roarings) { - if (r.roarings.count(map_entry.first) == 1) - map_entry.second -= r.roarings.at(map_entry.first); - } - return *this; - } - - /** - * Compute the union between the current bitmap and the provided bitmap, - * writing the result in the current bitmap. The provided bitmap is not - * modified. - * - * See also the fastunion function to aggregate many bitmaps more quickly. - */ - Roaring64Map &operator|=(const Roaring64Map &r) { - for (const auto &map_entry : r.roarings) { - if (roarings.count(map_entry.first) == 0) { - roarings[map_entry.first] = map_entry.second; - roarings[map_entry.first].setCopyOnWrite(copyOnWrite); - } else - roarings[map_entry.first] |= map_entry.second; - } - return *this; - } - - /** - * Compute the symmetric union between the current bitmap and the provided - * bitmap, - * writing the result in the current bitmap. The provided bitmap is not - * modified. - */ - Roaring64Map &operator^=(const Roaring64Map &r) { - for (const auto &map_entry : r.roarings) { - if (roarings.count(map_entry.first) == 0) { - roarings[map_entry.first] = map_entry.second; - roarings[map_entry.first].setCopyOnWrite(copyOnWrite); - } else - roarings[map_entry.first] ^= map_entry.second; - } - return *this; - } - - /** - * Exchange the content of this bitmap with another. - */ - void swap(Roaring64Map &r) { roarings.swap(r.roarings); } - - /** - * Get the cardinality of the bitmap (number of elements). - * Throws std::length_error in the special case where the bitmap is full - * (cardinality() == 2^64). Check isFull() before calling to avoid - * exception. - */ - uint64_t cardinality() const { - if (isFull()) { - throw std::length_error( - "bitmap is full, cardinality is 2^64, " - "unable to represent in a 64-bit integer"); - } - return std::accumulate( - roarings.cbegin(), roarings.cend(), (uint64_t)0, - [](uint64_t previous, - const std::pair &map_entry) { - return previous + map_entry.second.cardinality(); - }); - } - - /** - * Returns true if the bitmap is empty (cardinality is zero). - */ - bool isEmpty() const { - return std::all_of(roarings.cbegin(), roarings.cend(), - [](const std::pair &map_entry) { - return map_entry.second.isEmpty(); - }); - } - - /** - * Returns true if the bitmap is full (cardinality is max uint64_t + 1). - */ - bool isFull() const { - // only bother to check if map is fully saturated - // - // we put std::numeric_limits<>::max/min in parenthesis - // to avoid a clash with the Windows.h header under Windows - return roarings.size() == - ((size_t)(std::numeric_limits::max)()) + 1 - ? std::all_of( - roarings.cbegin(), roarings.cend(), - [](const std::pair &roaring_map_entry) { - // roarings within map are saturated if cardinality - // is uint32_t max + 1 - return roaring_map_entry.second.cardinality() == - ((uint64_t) - (std::numeric_limits::max)()) + - 1; - }) - : false; - } - - /** - * Returns true if the bitmap is subset of the other. - */ - bool isSubset(const Roaring64Map &r) const { - for (const auto &map_entry : roarings) { - auto roaring_iter = r.roarings.find(map_entry.first); - if (roaring_iter == roarings.cend()) - return false; - else if (!map_entry.second.isSubset(roaring_iter->second)) - return false; - } - return true; - } - - /** - * Returns true if the bitmap is strict subset of the other. - * Throws std::length_error in the special case where the bitmap is full - * (cardinality() == 2^64). Check isFull() before calling to avoid exception. - */ - bool isStrictSubset(const Roaring64Map &r) const { - return isSubset(r) && cardinality() != r.cardinality(); - } - - /** - * Convert the bitmap to an array. Write the output to "ans", - * caller is responsible to ensure that there is enough memory - * allocated - * (e.g., ans = new uint32[mybitmap.cardinality()];) - */ - void toUint64Array(uint64_t *ans) const { - // Annoyingly, VS 2017 marks std::accumulate() as [[nodiscard]] - (void)std::accumulate(roarings.cbegin(), roarings.cend(), ans, - [](uint64_t *previous, - const std::pair &map_entry) { - for (uint32_t low_bits : map_entry.second) - *previous++ = - uniteBytes(map_entry.first, low_bits); - return previous; - }); - } - - /** - * Return true if the two bitmaps contain the same elements. - */ - bool operator==(const Roaring64Map &r) const { - // we cannot use operator == on the map because either side may contain - // empty Roaring Bitmaps - auto lhs_iter = roarings.cbegin(); - auto rhs_iter = r.roarings.cbegin(); - do { - // if the left map has reached its end, ensure that the right map - // contains only empty Bitmaps - if (lhs_iter == roarings.cend()) { - while (rhs_iter != r.roarings.cend()) { - if (rhs_iter->second.isEmpty()) { - ++rhs_iter; - continue; - } - return false; - } - return true; - } - // if the left map has an empty bitmap, skip it - if (lhs_iter->second.isEmpty()) { - ++lhs_iter; - continue; - } - - do { - // if the right map has reached its end, ensure that the right - // map contains only empty Bitmaps - if (rhs_iter == r.roarings.cend()) { - while (lhs_iter != roarings.cend()) { - if (lhs_iter->second.isEmpty()) { - ++lhs_iter; - continue; - } - return false; - } - return true; - } - // if the right map has an empty bitmap, skip it - if (rhs_iter->second.isEmpty()) { - ++rhs_iter; - continue; - } - } while (false); - // if neither map has reached its end ensure elements are equal and - // move to the next element in both - } while (lhs_iter++->second == rhs_iter++->second); - return false; - } - - /** - * compute the negation of the roaring bitmap within a specified interval. - * areas outside the range are passed through unchanged. - */ - void flip(uint64_t range_start, uint64_t range_end) { - uint32_t start_high = highBytes(range_start); - uint32_t start_low = lowBytes(range_start); - uint32_t end_high = highBytes(range_end); - uint32_t end_low = lowBytes(range_end); - - if (start_high == end_high) { - roarings[start_high].flip(start_low, end_low); - return; - } - // we put std::numeric_limits<>::max/min in parenthesis - // to avoid a clash with the Windows.h header under Windows - roarings[start_high].flip(start_low, - (std::numeric_limits::max)()); - roarings[start_high++].setCopyOnWrite(copyOnWrite); - - for (; start_high <= highBytes(range_end) - 1; ++start_high) { - roarings[start_high].flip((std::numeric_limits::min)(), - (std::numeric_limits::max)()); - roarings[start_high].setCopyOnWrite(copyOnWrite); - } - - roarings[start_high].flip((std::numeric_limits::min)(), - end_low); - roarings[start_high].setCopyOnWrite(copyOnWrite); - } - - /** - * Remove run-length encoding even when it is more space efficient - * return whether a change was applied - */ - bool removeRunCompression() { - return std::accumulate( - roarings.begin(), roarings.end(), false, - [](bool previous, std::pair &map_entry) { - return map_entry.second.removeRunCompression() && previous; - }); - } - - /** convert array and bitmap containers to run containers when it is more - * efficient; - * also convert from run containers when more space efficient. Returns - * true if the result has at least one run container. - * Additional savings might be possible by calling shrinkToFit(). - */ - bool runOptimize() { - return std::accumulate( - roarings.begin(), roarings.end(), false, - [](bool previous, std::pair &map_entry) { - return map_entry.second.runOptimize() && previous; - }); - } - - /** - * If needed, reallocate memory to shrink the memory usage. Returns - * the number of bytes saved. - */ - size_t shrinkToFit() { - size_t savedBytes = 0; - auto iter = roarings.begin(); - while (iter != roarings.cend()) { - if (iter->second.isEmpty()) { - // empty Roarings are 84 bytes - savedBytes += 88; - roarings.erase(iter++); - } else { - savedBytes += iter->second.shrinkToFit(); - iter++; - } - } - return savedBytes; - } - - /** - * Iterate over the bitmap elements. The function iterator is called once - * for all the values with ptr (can be NULL) as the second parameter of each - * call. - * - * roaring_iterator is simply a pointer to a function that returns bool - * (true means that the iteration should continue while false means that it - * should stop), and takes (uint32_t,void*) as inputs. - */ - void iterate(roaring_iterator64 iterator, void *ptr) const { - std::for_each(roarings.begin(), roarings.cend(), - [=](const std::pair &map_entry) { - roaring_iterate64(&map_entry.second.roaring, iterator, - uint64_t(map_entry.first) << 32, - ptr); - }); - } - - /** - * If the size of the roaring bitmap is strictly greater than rank, then - this - function returns true and set element to the element of given rank. - Otherwise, it returns false. - */ - bool select(uint64_t rnk, uint64_t *element) const { - for (const auto &map_entry : roarings) { - uint64_t sub_cardinality = (uint64_t)map_entry.second.cardinality(); - if (rnk < sub_cardinality) { - *element = ((uint64_t)map_entry.first) << 32; - // assuming little endian - return map_entry.second.select((uint32_t)rnk, - ((uint32_t *)element)); - } - rnk -= sub_cardinality; - } - return false; - } - - /** - * Returns the number of integers that are smaller or equal to x. - */ - uint64_t rank(uint64_t x) const { - uint64_t result = 0; - auto roaring_destination = roarings.find(highBytes(x)); - if (roaring_destination != roarings.cend()) { - for (auto roaring_iter = roarings.cbegin(); - roaring_iter != roaring_destination; ++roaring_iter) { - result += roaring_iter->second.cardinality(); - } - result += roaring_destination->second.rank(lowBytes(x)); - return result; - } - roaring_destination = roarings.lower_bound(highBytes(x)); - for (auto roaring_iter = roarings.cbegin(); - roaring_iter != roaring_destination; ++roaring_iter) { - result += roaring_iter->second.cardinality(); - } - return result; - } - - /** - * write a bitmap to a char buffer. This is meant to be compatible with - * the - * Java and Go versions. Returns how many bytes were written which should be - * getSizeInBytes(). - * - * Setting the portable flag to false enable a custom format that - * can save space compared to the portable format (e.g., for very - * sparse bitmaps). - */ - size_t write(char *buf, bool portable = true) const { - const char *orig = buf; - // push map size - *((uint64_t *)buf) = roarings.size(); - buf += sizeof(uint64_t); - std::for_each( - roarings.cbegin(), roarings.cend(), - [&buf, portable](const std::pair &map_entry) { - // push map key - memcpy(buf, &map_entry.first, - sizeof(uint32_t)); // this is undefined: - // *((uint32_t*)buf) = - // map_entry.first; - buf += sizeof(uint32_t); - // push map value Roaring - buf += map_entry.second.write(buf, portable); - }); - return buf - orig; - } - - /** - * read a bitmap from a serialized version. This is meant to be compatible - * with - * the - * Java and Go versions. - * - * Setting the portable flag to false enable a custom format that - * can save space compared to the portable format (e.g., for very - * sparse bitmaps). - * - * This function is unsafe in the sense that if you provide bad data, - * many bytes could be read, possibly causing a buffer overflow. See also readSafe. - */ - static Roaring64Map read(const char *buf, bool portable = true) { - Roaring64Map result; - // get map size - uint64_t map_size = *((uint64_t *)buf); - buf += sizeof(uint64_t); - for (uint64_t lcv = 0; lcv < map_size; lcv++) { - // get map key - uint32_t key; - memcpy(&key, buf, sizeof(uint32_t)); // this is undefined: uint32_t - // key = *((uint32_t*)buf); - buf += sizeof(uint32_t); - // read map value Roaring - Roaring read = Roaring::read(buf, portable); - result.emplaceOrInsert(key, read); - // forward buffer past the last Roaring Bitmap - buf += read.getSizeInBytes(portable); - } - return result; - } - - /** - * read a bitmap from a serialized version, reading no more than maxbytes bytes. - * This is meant to be compatible with the Java and Go versions. - * - * Setting the portable flag to false enable a custom format that - * can save space compared to the portable format (e.g., for very - * sparse bitmaps). - */ - static Roaring64Map readSafe(const char *buf, size_t maxbytes) { - Roaring64Map result; - // get map size - uint64_t map_size = *((uint64_t *)buf); - buf += sizeof(uint64_t); - for (uint64_t lcv = 0; lcv < map_size; lcv++) { - // get map key - if(maxbytes < sizeof(uint32_t)) { - throw std::runtime_error("ran out of bytes"); - } - uint32_t key; - memcpy(&key, buf, sizeof(uint32_t)); // this is undefined: uint32_t - // key = *((uint32_t*)buf); - buf += sizeof(uint32_t); - maxbytes -= sizeof(uint32_t); - // read map value Roaring - Roaring read = Roaring::readSafe(buf, maxbytes); - result.emplaceOrInsert(key, read); - // forward buffer past the last Roaring Bitmap - size_t tz = read.getSizeInBytes(true); - buf += tz; - maxbytes -= tz; - } - return result; - } - - /** - * How many bytes are required to serialize this bitmap (meant to be - * compatible - * with Java and Go versions) - * - * Setting the portable flag to false enable a custom format that - * can save space compared to the portable format (e.g., for very - * sparse bitmaps). - */ - size_t getSizeInBytes(bool portable = true) const { - // start with, respectively, map size and size of keys for each map - // entry - return std::accumulate( - roarings.cbegin(), roarings.cend(), - sizeof(uint64_t) + roarings.size() * sizeof(uint32_t), - [=](size_t previous, - const std::pair &map_entry) { - // add in bytes used by each Roaring - return previous + map_entry.second.getSizeInBytes(portable); - }); - } - - /** - * Computes the intersection between two bitmaps and returns new bitmap. - * The current bitmap and the provided bitmap are unchanged. - */ - Roaring64Map operator&(const Roaring64Map &o) const { - return Roaring64Map(*this) &= o; - } - - /** - * Computes the difference between two bitmaps and returns new bitmap. - * The current bitmap and the provided bitmap are unchanged. - */ - Roaring64Map operator-(const Roaring64Map &o) const { - return Roaring64Map(*this) -= o; - } - - /** - * Computes the union between two bitmaps and returns new bitmap. - * The current bitmap and the provided bitmap are unchanged. - */ - Roaring64Map operator|(const Roaring64Map &o) const { - return Roaring64Map(*this) |= o; - } - - /** - * Computes the symmetric union between two bitmaps and returns new bitmap. - * The current bitmap and the provided bitmap are unchanged. - */ - Roaring64Map operator^(const Roaring64Map &o) const { - return Roaring64Map(*this) ^= o; - } - - /** - * Whether or not we apply copy and write. - */ - void setCopyOnWrite(bool val) { - if (copyOnWrite == val) return; - copyOnWrite = val; - std::for_each(roarings.begin(), roarings.end(), - [=](std::pair &map_entry) { - map_entry.second.setCopyOnWrite(val); - }); - } - - /** - * Print the content of the bitmap - */ - void printf() const { - if (!isEmpty()) { - auto map_iter = roarings.cbegin(); - while (map_iter->second.isEmpty()) ++map_iter; - struct iter_data { - uint32_t high_bits; - char first_char = '{'; - } outer_iter_data; - outer_iter_data.high_bits = roarings.begin()->first; - map_iter->second.iterate( - [](uint32_t low_bits, void *inner_iter_data) -> bool { - std::printf("%c%llu", - ((iter_data *)inner_iter_data)->first_char, - (long long unsigned)uniteBytes( - ((iter_data *)inner_iter_data)->high_bits, - low_bits)); - ((iter_data *)inner_iter_data)->first_char = ','; - return true; - }, - (void *)&outer_iter_data); - std::for_each( - ++map_iter, roarings.cend(), - [](const std::pair &map_entry) { - map_entry.second.iterate( - [](uint32_t low_bits, void *high_bits) -> bool { - std::printf(",%llu", - (long long unsigned)uniteBytes( - *(uint32_t *)high_bits, low_bits)); - return true; - }, - (void *)&map_entry.first); - }); - } else - std::printf("{"); - std::printf("}\n"); - } - - /** - * Print the content of the bitmap into a string - */ - std::string toString() const { - struct iter_data { - std::string str; - uint32_t high_bits; - char first_char = '{'; - } outer_iter_data; - if (!isEmpty()) { - auto map_iter = roarings.cbegin(); - while (map_iter->second.isEmpty()) ++map_iter; - outer_iter_data.high_bits = roarings.begin()->first; - map_iter->second.iterate( - [](uint32_t low_bits, void *inner_iter_data) -> bool { - ((iter_data *)inner_iter_data)->str += - ((iter_data *)inner_iter_data)->first_char; - ((iter_data *)inner_iter_data)->str += std::to_string( - uniteBytes(((iter_data *)inner_iter_data)->high_bits, - low_bits)); - ((iter_data *)inner_iter_data)->first_char = ','; - return true; - }, - (void *)&outer_iter_data); - std::for_each( - ++map_iter, roarings.cend(), - [&outer_iter_data]( - const std::pair &map_entry) { - outer_iter_data.high_bits = map_entry.first; - map_entry.second.iterate( - [](uint32_t low_bits, void *inner_iter_data) -> bool { - ((iter_data *)inner_iter_data)->str += - ((iter_data *)inner_iter_data)->first_char; - ((iter_data *)inner_iter_data)->str += - std::to_string(uniteBytes( - ((iter_data *)inner_iter_data)->high_bits, - low_bits)); - return true; - }, - (void *)&outer_iter_data); - }); - } else - outer_iter_data.str = '{'; - outer_iter_data.str += '}'; - return outer_iter_data.str; - } - - /** - * Whether or not copy and write is active. - */ - bool getCopyOnWrite() const { return copyOnWrite; } - - /** - * computes the logical or (union) between "n" bitmaps (referenced by a - * pointer). - */ - static Roaring64Map fastunion(size_t n, const Roaring64Map **inputs) { - Roaring64Map ans; - // not particularly fast - for (size_t lcv = 0; lcv < n; ++lcv) { - ans |= *(inputs[lcv]); - } - return ans; - } - - friend class Roaring64MapSetBitForwardIterator; - typedef Roaring64MapSetBitForwardIterator const_iterator; - - /** - * Returns an iterator that can be used to access the position of the - * set bits. The running time complexity of a full scan is proportional to - * the - * number - * of set bits: be aware that if you have long strings of 1s, this can be - * very inefficient. - * - * It can be much faster to use the toArray method if you want to - * retrieve the set bits. - */ - const_iterator begin() const; - - /** - * A bogus iterator that can be used together with begin() - * for constructions such as for(auto i = b.begin(); - * i!=b.end(); ++i) {} - */ - const_iterator end() const; - - private: - std::map roarings; - bool copyOnWrite = false; - static uint32_t highBytes(const uint64_t in) { return uint32_t(in >> 32); } - static uint32_t lowBytes(const uint64_t in) { return uint32_t(in); } - static uint64_t uniteBytes(const uint32_t highBytes, - const uint32_t lowBytes) { - return (uint64_t(highBytes) << 32) | uint64_t(lowBytes); - } - // this is needed to tolerate gcc's C++11 libstdc++ lacking emplace - // prior to version 4.8 - void emplaceOrInsert(const uint32_t key, const Roaring &value) { -#if defined(__GLIBCXX__) && __GLIBCXX__ < 20130322 - roarings.insert(std::make_pair(key, value)); -#else - roarings.emplace(std::make_pair(key, value)); -#endif - } -}; - -/** - * Used to go through the set bits. Not optimally fast, but convenient. - */ -class Roaring64MapSetBitForwardIterator final { - public: - typedef std::forward_iterator_tag iterator_category; - typedef uint64_t *pointer; - typedef uint64_t &reference_type; - typedef uint64_t value_type; - typedef int64_t difference_type; - typedef Roaring64MapSetBitForwardIterator type_of_iterator; - - /** - * Provides the location of the set bit. - */ - value_type operator*() const { - return Roaring64Map::uniteBytes(map_iter->first, i.current_value); - } - - bool operator<(const type_of_iterator &o) { - if (map_iter == map_end) return false; - if (o.map_iter == o.map_end) return true; - return **this < *o; - } - - bool operator<=(const type_of_iterator &o) { - if (o.map_iter == o.map_end) return true; - if (map_iter == map_end) return false; - return **this <= *o; - } - - bool operator>(const type_of_iterator &o) { - if (o.map_iter == o.map_end) return false; - if (map_iter == map_end) return true; - return **this > *o; - } - - bool operator>=(const type_of_iterator &o) { - if (map_iter == map_end) return true; - if (o.map_iter == o.map_end) return false; - return **this >= *o; - } - - type_of_iterator &operator++() { // ++i, must returned inc. value - if (i.has_value == true) roaring_advance_uint32_iterator(&i); - while (!i.has_value) { - map_iter++; - if (map_iter == map_end) return *this; - roaring_init_iterator(&map_iter->second.roaring, &i); - } - return *this; - } - - type_of_iterator operator++(int) { // i++, must return orig. value - Roaring64MapSetBitForwardIterator orig(*this); - roaring_advance_uint32_iterator(&i); - while (!i.has_value) { - map_iter++; - if (map_iter == map_end) return orig; - roaring_init_iterator(&map_iter->second.roaring, &i); - } - return orig; - } - - bool operator==(const Roaring64MapSetBitForwardIterator &o) { - if (map_iter == map_end && o.map_iter == o.map_end) return true; - if (o.map_iter == o.map_end) return false; - return **this == *o; - } - - bool operator!=(const Roaring64MapSetBitForwardIterator &o) { - if (map_iter == map_end && o.map_iter == o.map_end) return false; - if (o.map_iter == o.map_end) return true; - return **this != *o; - } - - Roaring64MapSetBitForwardIterator(const Roaring64Map &parent, - bool exhausted = false) - : map_end(parent.roarings.cend()) { - if (exhausted || parent.roarings.empty()) { - map_iter = parent.roarings.cend(); - } else { - map_iter = parent.roarings.cbegin(); - roaring_init_iterator(&map_iter->second.roaring, &i); - while (!i.has_value) { - map_iter++; - if (map_iter == map_end) return; - roaring_init_iterator(&map_iter->second.roaring, &i); - } - } - } - - ~Roaring64MapSetBitForwardIterator() = default; - - Roaring64MapSetBitForwardIterator( - const Roaring64MapSetBitForwardIterator &o) = default; - - private: - std::map::const_iterator map_iter; - std::map::const_iterator map_end; - roaring_uint32_iterator_t i; -}; - -inline Roaring64MapSetBitForwardIterator Roaring64Map::begin() const { - return Roaring64MapSetBitForwardIterator(*this); -} - -inline Roaring64MapSetBitForwardIterator Roaring64Map::end() const { - return Roaring64MapSetBitForwardIterator(*this, true); -} - -#endif /* INCLUDE_ROARING_64_MAP_HH_ */ -/* end file /opt/bitmap/CRoaring-0.2.57/cpp/roaring64map.hh */ diff --git a/docker/test/fasttest/run.sh b/docker/test/fasttest/run.sh index ed1346043bc..c8bbfcf870f 100755 --- a/docker/test/fasttest/run.sh +++ b/docker/test/fasttest/run.sh @@ -125,7 +125,7 @@ function clone_submodules ( cd "$FASTTEST_SOURCE" -SUBMODULES_TO_UPDATE=(contrib/boost contrib/zlib-ng contrib/libxml2 contrib/poco contrib/libunwind contrib/ryu contrib/fmtlib contrib/base64 contrib/cctz contrib/libcpuid contrib/double-conversion contrib/libcxx contrib/libcxxabi contrib/libc-headers contrib/lz4 contrib/zstd contrib/fastops contrib/rapidjson contrib/re2 contrib/sparsehash-c11) +SUBMODULES_TO_UPDATE=(contrib/boost contrib/zlib-ng contrib/libxml2 contrib/poco contrib/libunwind contrib/ryu contrib/fmtlib contrib/base64 contrib/cctz contrib/libcpuid contrib/double-conversion contrib/libcxx contrib/libcxxabi contrib/libc-headers contrib/lz4 contrib/zstd contrib/fastops contrib/rapidjson contrib/re2 contrib/sparsehash-c11 contrib/croaring) git submodule sync git submodule update --init --recursive "${SUBMODULES_TO_UPDATE[@]}" diff --git a/src/AggregateFunctions/AggregateFunctionGroupBitmapData.h b/src/AggregateFunctions/AggregateFunctionGroupBitmapData.h index d457d01f523..20788318b3d 100644 --- a/src/AggregateFunctions/AggregateFunctionGroupBitmapData.h +++ b/src/AggregateFunctions/AggregateFunctionGroupBitmapData.h @@ -12,7 +12,7 @@ // TODO: find out what it is. On github, they have proper interface headers like // this one: https://github.com/RoaringBitmap/CRoaring/blob/master/include/roaring/roaring.h #include - +void * containerptr_roaring_bitmap_add(roaring_bitmap_t * r, uint32_t val, uint8_t * typecode, int * index); namespace DB { @@ -600,6 +600,7 @@ public: } private: + /// To read and write the DB Buffer directly, migrate code from CRoaring void db_roaring_bitmap_add_many(DB::ReadBuffer & db_buf, roaring_bitmap_t * r, size_t n_args) {