Merge pull request #55682 from ClickHouse/revert-35961-decimal-column-improve-get-permutation

Revert "Improve ColumnDecimal, ColumnVector getPermutation performance using pdqsort with RadixSort"
This commit is contained in:
Alexey Milovidov 2023-10-16 18:07:46 +02:00 committed by GitHub
commit f6dee5fe3c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 68 additions and 435 deletions

View File

@ -131,29 +131,3 @@ void sort(RandomIt first, RandomIt last)
using comparator = std::less<value_type>; using comparator = std::less<value_type>;
::sort(first, last, comparator()); ::sort(first, last, comparator());
} }
/** Try to fast sort elements for common sorting patterns:
* 1. If elements are already sorted.
* 2. If elements are already almost sorted.
* 3. If elements are already sorted in reverse order.
*
* Returns true if fast sort was performed or elements were already sorted, false otherwise.
*/
template <typename RandomIt, typename Compare>
bool trySort(RandomIt first, RandomIt last, Compare compare)
{
#ifndef NDEBUG
::shuffle(first, last);
#endif
ComparatorWrapper<Compare> compare_wrapper = compare;
return ::pdqsort_try_sort(first, last, compare_wrapper);
}
template <typename RandomIt>
bool trySort(RandomIt first, RandomIt last)
{
using value_type = typename std::iterator_traits<RandomIt>::value_type;
using comparator = std::less<value_type>;
return ::trySort(first, last, comparator());
}

View File

@ -54,10 +54,8 @@ namespace pdqsort_detail {
block_size = 64, block_size = 64,
// Cacheline size, assumes power of two. // Cacheline size, assumes power of two.
cacheline_size = 64, cacheline_size = 64
/// Try sort allowed iterations
try_sort_iterations = 3,
}; };
#if __cplusplus >= 201103L #if __cplusplus >= 201103L
@ -503,167 +501,6 @@ namespace pdqsort_detail {
leftmost = false; leftmost = false;
} }
} }
template<class Iter, class Compare, bool Branchless>
inline bool pdqsort_try_sort_loop(Iter begin,
Iter end,
Compare comp,
size_t bad_allowed,
size_t iterations_allowed,
bool force_sort = false,
bool leftmost = true) {
typedef typename std::iterator_traits<Iter>::difference_type diff_t;
// Use a while loop for tail recursion elimination.
while (true) {
if (!force_sort && iterations_allowed == 0) {
return false;
}
diff_t size = end - begin;
// Insertion sort is faster for small arrays.
if (size < insertion_sort_threshold) {
if (leftmost) insertion_sort(begin, end, comp);
else unguarded_insertion_sort(begin, end, comp);
return true;
}
// Choose pivot as median of 3 or pseudomedian of 9.
diff_t s2 = size / 2;
if (size > ninther_threshold) {
sort3(begin, begin + s2, end - 1, comp);
sort3(begin + 1, begin + (s2 - 1), end - 2, comp);
sort3(begin + 2, begin + (s2 + 1), end - 3, comp);
sort3(begin + (s2 - 1), begin + s2, begin + (s2 + 1), comp);
std::iter_swap(begin, begin + s2);
} else sort3(begin + s2, begin, end - 1, comp);
// If *(begin - 1) is the end of the right partition of a previous partition operation
// there is no element in [begin, end) that is smaller than *(begin - 1). Then if our
// pivot compares equal to *(begin - 1) we change strategy, putting equal elements in
// the left partition, greater elements in the right partition. We do not have to
// recurse on the left partition, since it's sorted (all equal).
if (!leftmost && !comp(*(begin - 1), *begin)) {
begin = partition_left(begin, end, comp) + 1;
continue;
}
// Partition and get results.
std::pair<Iter, bool> part_result =
Branchless ? partition_right_branchless(begin, end, comp)
: partition_right(begin, end, comp);
Iter pivot_pos = part_result.first;
bool already_partitioned = part_result.second;
// Check for a highly unbalanced partition.
diff_t l_size = pivot_pos - begin;
diff_t r_size = end - (pivot_pos + 1);
bool highly_unbalanced = l_size < size / 8 || r_size < size / 8;
// If we got a highly unbalanced partition we shuffle elements to break many patterns.
if (highly_unbalanced) {
if (!force_sort) {
return false;
}
// If we had too many bad partitions, switch to heapsort to guarantee O(n log n).
if (--bad_allowed == 0) {
std::make_heap(begin, end, comp);
std::sort_heap(begin, end, comp);
return true;
}
if (l_size >= insertion_sort_threshold) {
std::iter_swap(begin, begin + l_size / 4);
std::iter_swap(pivot_pos - 1, pivot_pos - l_size / 4);
if (l_size > ninther_threshold) {
std::iter_swap(begin + 1, begin + (l_size / 4 + 1));
std::iter_swap(begin + 2, begin + (l_size / 4 + 2));
std::iter_swap(pivot_pos - 2, pivot_pos - (l_size / 4 + 1));
std::iter_swap(pivot_pos - 3, pivot_pos - (l_size / 4 + 2));
}
}
if (r_size >= insertion_sort_threshold) {
std::iter_swap(pivot_pos + 1, pivot_pos + (1 + r_size / 4));
std::iter_swap(end - 1, end - r_size / 4);
if (r_size > ninther_threshold) {
std::iter_swap(pivot_pos + 2, pivot_pos + (2 + r_size / 4));
std::iter_swap(pivot_pos + 3, pivot_pos + (3 + r_size / 4));
std::iter_swap(end - 2, end - (1 + r_size / 4));
std::iter_swap(end - 3, end - (2 + r_size / 4));
}
}
} else {
// If we were decently balanced and we tried to sort an already partitioned
// sequence try to use insertion sort.
if (already_partitioned && partial_insertion_sort(begin, pivot_pos, comp)
&& partial_insertion_sort(pivot_pos + 1, end, comp)) {
return true;
}
}
// Sort the left partition first using recursion and do tail recursion elimination for
// the right-hand partition.
if (pdqsort_try_sort_loop<Iter, Compare, Branchless>(begin,
pivot_pos,
comp,
bad_allowed,
iterations_allowed - 1,
force_sort,
leftmost)) {
force_sort = true;
} else {
return false;
}
--iterations_allowed;
begin = pivot_pos + 1;
leftmost = false;
}
return false;
}
template<class Iter, class Compare, bool Branchless>
inline bool pdqsort_try_sort_impl(Iter begin, Iter end, Compare comp, size_t bad_allowed)
{
typedef typename std::iterator_traits<Iter>::difference_type diff_t;
static constexpr size_t iterations_allowed = pdqsort_detail::try_sort_iterations;
static constexpr size_t num_to_try = 16;
diff_t size = end - begin;
if (size > num_to_try * 10)
{
size_t out_of_order_elements = 0;
for (size_t i = 1; i < num_to_try; ++i)
{
diff_t offset = size / num_to_try;
diff_t prev_position = offset * (i - 1);
diff_t curr_position = offset * i;
diff_t next_position = offset * (i + 1) - 1;
bool prev_less_than_curr = comp(*(begin + prev_position), *(begin + curr_position));
bool curr_less_than_next = comp(*(begin + curr_position), *(begin + next_position));
if ((prev_less_than_curr && curr_less_than_next) || (!prev_less_than_curr && !curr_less_than_next))
continue;
++out_of_order_elements;
if (out_of_order_elements > iterations_allowed)
return false;
}
}
return pdqsort_try_sort_loop<Iter, Compare, Branchless>(begin, end, comp, bad_allowed, iterations_allowed);
}
} }
@ -701,41 +538,6 @@ inline void pdqsort_branchless(Iter begin, Iter end) {
pdqsort_branchless(begin, end, std::less<T>()); pdqsort_branchless(begin, end, std::less<T>());
} }
template<class Iter, class Compare>
inline bool pdqsort_try_sort(Iter begin, Iter end, Compare comp) {
if (begin == end) return true;
#if __cplusplus >= 201103L
return pdqsort_detail::pdqsort_try_sort_impl<Iter, Compare,
pdqsort_detail::is_default_compare<typename std::decay<Compare>::type>::value &&
std::is_arithmetic<typename std::iterator_traits<Iter>::value_type>::value>(
begin, end, comp, pdqsort_detail::log2(end - begin));
#else
return pdqsort_detail::pdqsort_try_sort_impl<Iter, Compare, false>(
begin, end, comp, pdqsort_detail::log2(end - begin));
#endif
}
template<class Iter>
inline bool pdqsort_try_sort(Iter begin, Iter end) {
typedef typename std::iterator_traits<Iter>::value_type T;
return pdqsort_try_sort(begin, end, std::less<T>());
}
template<class Iter, class Compare>
inline bool pdqsort_try_sort_branchless(Iter begin, Iter end, Compare comp) {
if (begin == end) return true;
return pdqsort_detail::pdqsort_try_sort_impl<Iter, Compare, true>(
begin, end, comp, pdqsort_detail::log2(end - begin));
}
template<class Iter>
inline bool pdqsort_try_sort_branchless(Iter begin, Iter end) {
typedef typename std::iterator_traits<Iter>::value_type T;
return pdqsort_try_sort_branchless(begin, end, std::less<T>());
}
#undef PDQSORT_PREFER_MOVE #undef PDQSORT_PREFER_MOVE

View File

@ -4,7 +4,6 @@
#include <Common/assert_cast.h> #include <Common/assert_cast.h>
#include <Common/WeakHash.h> #include <Common/WeakHash.h>
#include <Common/HashTable/Hash.h> #include <Common/HashTable/Hash.h>
#include <Common/RadixSort.h>
#include <base/unaligned.h> #include <base/unaligned.h>
#include <base/sort.h> #include <base/sort.h>
@ -16,7 +15,6 @@
#include <Columns/ColumnDecimal.h> #include <Columns/ColumnDecimal.h>
#include <Columns/ColumnCompressed.h> #include <Columns/ColumnCompressed.h>
#include <Columns/MaskOperations.h> #include <Columns/MaskOperations.h>
#include <Columns/RadixSortHelper.h>
#include <Processors/Transforms/ColumnGathererTransform.h> #include <Processors/Transforms/ColumnGathererTransform.h>
@ -161,59 +159,6 @@ void ColumnDecimal<T>::getPermutation(IColumn::PermutationSortDirection directio
return data[lhs] > data[rhs]; return data[lhs] > data[rhs];
}; };
size_t data_size = data.size();
res.resize(data_size);
if (limit >= data_size)
limit = 0;
for (size_t i = 0; i < data_size; ++i)
res[i] = i;
if constexpr (is_arithmetic_v<NativeT> && !is_big_int_v<NativeT>)
{
if (!limit)
{
/// A case for radix sort
/// LSD RadixSort is stable
bool reverse = direction == IColumn::PermutationSortDirection::Descending;
bool ascending = direction == IColumn::PermutationSortDirection::Ascending;
bool sort_is_stable = stability == IColumn::PermutationSortStability::Stable;
/// TODO: LSD RadixSort is currently not stable if direction is descending
bool use_radix_sort = (sort_is_stable && ascending) || !sort_is_stable;
/// Thresholds on size. Lower threshold is arbitrary. Upper threshold is chosen by the type for histogram counters.
if (data_size >= 256 && data_size <= std::numeric_limits<UInt32>::max() && use_radix_sort)
{
for (size_t i = 0; i < data_size; ++i)
res[i] = i;
bool try_sort = false;
if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Unstable)
try_sort = trySort(res.begin(), res.end(), comparator_ascending);
else if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Stable)
try_sort = trySort(res.begin(), res.end(), comparator_ascending_stable);
else if (direction == IColumn::PermutationSortDirection::Descending && stability == IColumn::PermutationSortStability::Unstable)
try_sort = trySort(res.begin(), res.end(), comparator_descending);
else
try_sort = trySort(res.begin(), res.end(), comparator_descending_stable);
if (try_sort)
return;
PaddedPODArray<ValueWithIndex<NativeT>> pairs(data_size);
for (UInt32 i = 0; i < static_cast<UInt32>(data_size); ++i)
pairs[i] = {data[i].value, i};
RadixSort<RadixSortTraits<NativeT>>::executeLSD(pairs.data(), data_size, reverse, res.data());
return;
}
}
}
if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Unstable) if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Unstable)
this->getPermutationImpl(limit, res, comparator_ascending, DefaultSort(), DefaultPartialSort()); this->getPermutationImpl(limit, res, comparator_ascending, DefaultSort(), DefaultPartialSort());
else if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Stable) else if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Stable)
@ -246,37 +191,7 @@ void ColumnDecimal<T>::updatePermutation(IColumn::PermutationSortDirection direc
return data[lhs] < data[rhs]; return data[lhs] < data[rhs];
}; };
auto equals_comparator = [this](size_t lhs, size_t rhs) { return data[lhs] == data[rhs]; }; auto equals_comparator = [this](size_t lhs, size_t rhs) { return data[lhs] == data[rhs]; };
auto sort = [&](auto begin, auto end, auto pred) auto sort = [](auto begin, auto end, auto pred) { ::sort(begin, end, pred); };
{
bool reverse = direction == IColumn::PermutationSortDirection::Descending;
bool ascending = direction == IColumn::PermutationSortDirection::Ascending;
bool sort_is_stable = stability == IColumn::PermutationSortStability::Stable;
/// TODO: LSD RadixSort is currently not stable if direction is descending
bool use_radix_sort = (sort_is_stable && ascending) || !sort_is_stable;
size_t size = end - begin;
if (size >= 256 && size <= std::numeric_limits<UInt32>::max() && use_radix_sort)
{
bool try_sort = trySort(begin, end, pred);
if (try_sort)
return;
PaddedPODArray<ValueWithIndex<NativeT>> pairs(size);
size_t index = 0;
for (auto * it = begin; it != end; ++it)
{
pairs[index] = {data[*it].value, static_cast<UInt32>(*it)};
++index;
}
RadixSort<RadixSortTraits<NativeT>>::executeLSD(pairs.data(), size, reverse, res.data());
return;
}
::sort(begin, end, pred);
};
auto partial_sort = [](auto begin, auto mid, auto end, auto pred) { ::partial_sort(begin, mid, end, pred); }; auto partial_sort = [](auto begin, auto mid, auto end, auto pred) { ::partial_sort(begin, mid, end, pred); };
if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Unstable) if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Unstable)

View File

@ -3,7 +3,6 @@
#include <Columns/ColumnsCommon.h> #include <Columns/ColumnsCommon.h>
#include <Columns/ColumnCompressed.h> #include <Columns/ColumnCompressed.h>
#include <Columns/MaskOperations.h> #include <Columns/MaskOperations.h>
#include <Columns/RadixSortHelper.h>
#include <Processors/Transforms/ColumnGathererTransform.h> #include <Processors/Transforms/ColumnGathererTransform.h>
#include <IO/WriteHelpers.h> #include <IO/WriteHelpers.h>
#include <Common/Arena.h> #include <Common/Arena.h>
@ -193,6 +192,26 @@ struct ColumnVector<T>::equals
bool operator()(size_t lhs, size_t rhs) const { return CompareHelper<T>::equals(parent.data[lhs], parent.data[rhs], nan_direction_hint); } bool operator()(size_t lhs, size_t rhs) const { return CompareHelper<T>::equals(parent.data[lhs], parent.data[rhs], nan_direction_hint); }
}; };
namespace
{
template <typename T>
struct ValueWithIndex
{
T value;
UInt32 index;
};
template <typename T>
struct RadixSortTraits : RadixSortNumTraits<T>
{
using Element = ValueWithIndex<T>;
using Result = size_t;
static T & extractKey(Element & elem) { return elem.value; }
static size_t extractResult(Element & elem) { return elem.index; }
};
}
#if USE_EMBEDDED_COMPILER #if USE_EMBEDDED_COMPILER
template <typename T> template <typename T>
@ -235,25 +254,35 @@ template <typename T>
void ColumnVector<T>::getPermutation(IColumn::PermutationSortDirection direction, IColumn::PermutationSortStability stability, void ColumnVector<T>::getPermutation(IColumn::PermutationSortDirection direction, IColumn::PermutationSortStability stability,
size_t limit, int nan_direction_hint, IColumn::Permutation & res) const size_t limit, int nan_direction_hint, IColumn::Permutation & res) const
{ {
size_t data_size = data.size(); size_t s = data.size();
res.resize(data_size); res.resize(s);
if (data_size == 0) if (s == 0)
return; return;
if (limit >= data_size) if (limit >= s)
limit = 0; limit = 0;
for (size_t i = 0; i < data_size; ++i) if (limit)
res[i] = i;
if constexpr (is_arithmetic_v<T> && !is_big_int_v<T>)
{ {
if (!limit) for (size_t i = 0; i < s; ++i)
{ res[i] = i;
/// A case for radix sort
/// LSD RadixSort is stable
if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Unstable)
::partial_sort(res.begin(), res.begin() + limit, res.end(), less(*this, nan_direction_hint));
else if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Stable)
::partial_sort(res.begin(), res.begin() + limit, res.end(), less_stable(*this, nan_direction_hint));
else if (direction == IColumn::PermutationSortDirection::Descending && stability == IColumn::PermutationSortStability::Unstable)
::partial_sort(res.begin(), res.begin() + limit, res.end(), greater(*this, nan_direction_hint));
else if (direction == IColumn::PermutationSortDirection::Descending && stability == IColumn::PermutationSortStability::Stable)
::partial_sort(res.begin(), res.begin() + limit, res.end(), greater_stable(*this, nan_direction_hint));
}
else
{
/// A case for radix sort
/// LSD RadixSort is stable
if constexpr (is_arithmetic_v<T> && !is_big_int_v<T>)
{
bool reverse = direction == IColumn::PermutationSortDirection::Descending; bool reverse = direction == IColumn::PermutationSortDirection::Descending;
bool ascending = direction == IColumn::PermutationSortDirection::Ascending; bool ascending = direction == IColumn::PermutationSortDirection::Ascending;
bool sort_is_stable = stability == IColumn::PermutationSortStability::Stable; bool sort_is_stable = stability == IColumn::PermutationSortStability::Stable;
@ -262,27 +291,13 @@ void ColumnVector<T>::getPermutation(IColumn::PermutationSortDirection direction
bool use_radix_sort = (sort_is_stable && ascending && !std::is_floating_point_v<T>) || !sort_is_stable; bool use_radix_sort = (sort_is_stable && ascending && !std::is_floating_point_v<T>) || !sort_is_stable;
/// Thresholds on size. Lower threshold is arbitrary. Upper threshold is chosen by the type for histogram counters. /// Thresholds on size. Lower threshold is arbitrary. Upper threshold is chosen by the type for histogram counters.
if (data_size >= 256 && data_size <= std::numeric_limits<UInt32>::max() && use_radix_sort) if (s >= 256 && s <= std::numeric_limits<UInt32>::max() && use_radix_sort)
{ {
bool try_sort = false; PaddedPODArray<ValueWithIndex<T>> pairs(s);
for (UInt32 i = 0; i < static_cast<UInt32>(s); ++i)
if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Unstable)
try_sort = trySort(res.begin(), res.end(), less(*this, nan_direction_hint));
else if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Stable)
try_sort = trySort(res.begin(), res.end(), less_stable(*this, nan_direction_hint));
else if (direction == IColumn::PermutationSortDirection::Descending && stability == IColumn::PermutationSortStability::Unstable)
try_sort = trySort(res.begin(), res.end(), greater(*this, nan_direction_hint));
else
try_sort = trySort(res.begin(), res.end(), greater_stable(*this, nan_direction_hint));
if (try_sort)
return;
PaddedPODArray<ValueWithIndex<T>> pairs(data_size);
for (UInt32 i = 0; i < static_cast<UInt32>(data_size); ++i)
pairs[i] = {data[i], i}; pairs[i] = {data[i], i};
RadixSort<RadixSortTraits<T>>::executeLSD(pairs.data(), data_size, reverse, res.data()); RadixSort<RadixSortTraits<T>>::executeLSD(pairs.data(), s, reverse, res.data());
/// Radix sort treats all NaNs to be greater than all numbers. /// Radix sort treats all NaNs to be greater than all numbers.
/// If the user needs the opposite, we must move them accordingly. /// If the user needs the opposite, we must move them accordingly.
@ -290,9 +305,9 @@ void ColumnVector<T>::getPermutation(IColumn::PermutationSortDirection direction
{ {
size_t nans_to_move = 0; size_t nans_to_move = 0;
for (size_t i = 0; i < data_size; ++i) for (size_t i = 0; i < s; ++i)
{ {
if (isNaN(data[res[reverse ? i : data_size - 1 - i]])) if (isNaN(data[res[reverse ? i : s - 1 - i]]))
++nans_to_move; ++nans_to_move;
else else
break; break;
@ -300,35 +315,38 @@ void ColumnVector<T>::getPermutation(IColumn::PermutationSortDirection direction
if (nans_to_move) if (nans_to_move)
{ {
std::rotate(std::begin(res), std::begin(res) + (reverse ? nans_to_move : data_size - nans_to_move), std::end(res)); std::rotate(std::begin(res), std::begin(res) + (reverse ? nans_to_move : s - nans_to_move), std::end(res));
} }
} }
return; return;
} }
} }
}
if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Unstable) /// Default sorting algorithm.
this->getPermutationImpl(limit, res, less(*this, nan_direction_hint), DefaultSort(), DefaultPartialSort()); for (size_t i = 0; i < s; ++i)
else if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Stable) res[i] = i;
this->getPermutationImpl(limit, res, less_stable(*this, nan_direction_hint), DefaultSort(), DefaultPartialSort());
else if (direction == IColumn::PermutationSortDirection::Descending && stability == IColumn::PermutationSortStability::Unstable) if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Unstable)
this->getPermutationImpl(limit, res, greater(*this, nan_direction_hint), DefaultSort(), DefaultPartialSort()); ::sort(res.begin(), res.end(), less(*this, nan_direction_hint));
else else if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Stable)
this->getPermutationImpl(limit, res, greater_stable(*this, nan_direction_hint), DefaultSort(), DefaultPartialSort()); ::sort(res.begin(), res.end(), less_stable(*this, nan_direction_hint));
else if (direction == IColumn::PermutationSortDirection::Descending && stability == IColumn::PermutationSortStability::Unstable)
::sort(res.begin(), res.end(), greater(*this, nan_direction_hint));
else if (direction == IColumn::PermutationSortDirection::Descending && stability == IColumn::PermutationSortStability::Stable)
::sort(res.begin(), res.end(), greater_stable(*this, nan_direction_hint));
}
} }
template <typename T> template <typename T>
void ColumnVector<T>::updatePermutation(IColumn::PermutationSortDirection direction, IColumn::PermutationSortStability stability, void ColumnVector<T>::updatePermutation(IColumn::PermutationSortDirection direction, IColumn::PermutationSortStability stability,
size_t limit, int nan_direction_hint, IColumn::Permutation & res, EqualRanges & equal_ranges) const size_t limit, int nan_direction_hint, IColumn::Permutation & res, EqualRanges & equal_ranges) const
{ {
bool reverse = direction == IColumn::PermutationSortDirection::Descending;
bool ascending = direction == IColumn::PermutationSortDirection::Ascending;
bool sort_is_stable = stability == IColumn::PermutationSortStability::Stable;
auto sort = [&](auto begin, auto end, auto pred) auto sort = [&](auto begin, auto end, auto pred)
{ {
bool reverse = direction == IColumn::PermutationSortDirection::Descending;
bool ascending = direction == IColumn::PermutationSortDirection::Ascending;
bool sort_is_stable = stability == IColumn::PermutationSortStability::Stable;
/// A case for radix sort /// A case for radix sort
if constexpr (is_arithmetic_v<T> && !is_big_int_v<T>) if constexpr (is_arithmetic_v<T> && !is_big_int_v<T>)
{ {
@ -339,10 +357,6 @@ void ColumnVector<T>::updatePermutation(IColumn::PermutationSortDirection direct
/// Thresholds on size. Lower threshold is arbitrary. Upper threshold is chosen by the type for histogram counters. /// Thresholds on size. Lower threshold is arbitrary. Upper threshold is chosen by the type for histogram counters.
if (size >= 256 && size <= std::numeric_limits<UInt32>::max() && use_radix_sort) if (size >= 256 && size <= std::numeric_limits<UInt32>::max() && use_radix_sort)
{ {
bool try_sort = trySort(begin, end, pred);
if (try_sort)
return;
PaddedPODArray<ValueWithIndex<T>> pairs(size); PaddedPODArray<ValueWithIndex<T>> pairs(size);
size_t index = 0; size_t index = 0;

View File

@ -1,25 +0,0 @@
#pragma once
#include <Common/RadixSort.h>
namespace DB
{
template <typename T>
struct ValueWithIndex
{
T value;
UInt32 index;
};
template <typename T>
struct RadixSortTraits : RadixSortNumTraits<T>
{
using Element = ValueWithIndex<T>;
using Result = size_t;
static T & extractKey(Element & elem) { return elem.value; }
static size_t extractResult(Element & elem) { return elem.index; }
};
}

View File

@ -18,29 +18,15 @@
<value>merge_tree_insert_6</value> <value>merge_tree_insert_6</value>
</values> </values>
</substitution> </substitution>
<substitution>
<name>decimal_primary_key_table_name</name>
<values>
<value>merge_tree_insert_7</value>
<value>merge_tree_insert_8</value>
<value>merge_tree_insert_9</value>
</values>
</substitution>
</substitutions> </substitutions>
<create_query>CREATE TABLE merge_tree_insert_1 (value_1 UInt64, value_2 UInt64, value_3 UInt64) ENGINE = MergeTree ORDER BY (value_1)</create_query> <create_query>CREATE TABLE merge_tree_insert_1 (value_1 UInt64, value_2 UInt64, value_3 UInt64) ENGINE = MergeTree ORDER BY (value_1)</create_query>
<create_query>CREATE TABLE merge_tree_insert_2 (value_1 UInt64, value_2 UInt64, value_3 UInt64) ENGINE = MergeTree ORDER BY (value_1, value_2)</create_query> <create_query>CREATE TABLE merge_tree_insert_2 (value_1 UInt64, value_2 UInt64, value_3 UInt64) ENGINE = MergeTree ORDER BY (value_1, value_2)</create_query>
<create_query>CREATE TABLE merge_tree_insert_3 (value_1 UInt64, value_2 UInt64, value_3 UInt64) ENGINE = MergeTree ORDER BY (value_1, value_2, value_3)</create_query> <create_query>CREATE TABLE merge_tree_insert_3 (value_1 UInt64, value_2 UInt64, value_3 UInt64) ENGINE = MergeTree ORDER BY (value_1, value_2, value_3)</create_query>
<create_query>CREATE TABLE merge_tree_insert_4 (value_1 String, value_2 String, value_3 String) ENGINE = MergeTree ORDER BY (value_1)</create_query> <create_query>CREATE TABLE merge_tree_insert_4 (value_1 String, value_2 String, value_3 String) ENGINE = MergeTree ORDER BY (value_1)</create_query>
<create_query>CREATE TABLE merge_tree_insert_5 (value_1 String, value_2 String, value_3 String) ENGINE = MergeTree ORDER BY (value_1, value_2)</create_query> <create_query>CREATE TABLE merge_tree_insert_5 (value_1 String, value_2 String, value_3 String) ENGINE = MergeTree ORDER BY (value_1, value_2)</create_query>
<create_query>CREATE TABLE merge_tree_insert_6 (value_1 String, value_2 String, value_3 String) ENGINE = MergeTree ORDER BY (value_1, value_2, value_3)</create_query> <create_query>CREATE TABLE merge_tree_insert_6 (value_1 String, value_2 String, value_3 String) ENGINE = MergeTree ORDER BY (value_1, value_2, value_3)</create_query>
<create_query>CREATE TABLE merge_tree_insert_7 (value_1 Decimal64(8), value_2 Decimal64(8), value_3 Decimal64(8)) ENGINE = MergeTree ORDER BY (value_1)</create_query>
<create_query>CREATE TABLE merge_tree_insert_8 (value_1 Decimal64(8), value_2 Decimal64(8), value_3 Decimal64(8)) ENGINE = MergeTree ORDER BY (value_1, value_2)</create_query>
<create_query>CREATE TABLE merge_tree_insert_9 (value_1 Decimal64(8), value_2 Decimal64(8), value_3 Decimal64(8)) ENGINE = MergeTree ORDER BY (value_1, value_2, value_3)</create_query>
<query>INSERT INTO {integer_primary_key_table_name} SELECT rand64(0), rand64(1), rand64(2) FROM system.numbers LIMIT 500000</query> <query>INSERT INTO {integer_primary_key_table_name} SELECT rand64(0), rand64(1), rand64(2) FROM system.numbers LIMIT 500000</query>
<query>INSERT INTO {integer_primary_key_table_name} SELECT rand64(0), rand64(1), rand64(2) FROM system.numbers LIMIT 1000000</query> <query>INSERT INTO {integer_primary_key_table_name} SELECT rand64(0), rand64(1), rand64(2) FROM system.numbers LIMIT 1000000</query>
<query>INSERT INTO {integer_primary_key_table_name} SELECT rand64(0), rand64(1), rand64(2) FROM system.numbers LIMIT 1500000</query> <query>INSERT INTO {integer_primary_key_table_name} SELECT rand64(0), rand64(1), rand64(2) FROM system.numbers LIMIT 1500000</query>
@ -49,12 +35,7 @@
<query>INSERT INTO {string_primary_key_table_name} SELECT toString(rand64(0)), toString(rand64(1)), toString(rand64(2)) FROM system.numbers LIMIT 1000000</query> <query>INSERT INTO {string_primary_key_table_name} SELECT toString(rand64(0)), toString(rand64(1)), toString(rand64(2)) FROM system.numbers LIMIT 1000000</query>
<query>INSERT INTO {string_primary_key_table_name} SELECT toString(rand64(0)), toString(rand64(1)), toString(rand64(2)) FROM system.numbers LIMIT 1500000</query> <query>INSERT INTO {string_primary_key_table_name} SELECT toString(rand64(0)), toString(rand64(1)), toString(rand64(2)) FROM system.numbers LIMIT 1500000</query>
<query>INSERT INTO {decimal_primary_key_table_name} SELECT rand64(0) % 1000000, rand64(1) % 1500000, rand64(2) % 2000000 FROM system.numbers LIMIT 500000</query>
<query>INSERT INTO {decimal_primary_key_table_name} SELECT rand64(0) % 1000000, rand64(1) % 1500000, rand64(2) % 2000000 FROM system.numbers LIMIT 1000000</query>
<query>INSERT INTO {decimal_primary_key_table_name} SELECT rand64(0) % 1000000, rand64(1) % 1500000, rand64(2) % 2000000 FROM system.numbers LIMIT 1500000</query>
<drop_query>DROP TABLE IF EXISTS {integer_primary_key_table_name}</drop_query> <drop_query>DROP TABLE IF EXISTS {integer_primary_key_table_name}</drop_query>
<drop_query>DROP TABLE IF EXISTS {string_primary_key_table_name}</drop_query> <drop_query>DROP TABLE IF EXISTS {string_primary_key_table_name}</drop_query>
<drop_query>DROP TABLE IF EXISTS {decimal_primary_key_table_name}</drop_query>
</test> </test>

View File

@ -1,28 +0,0 @@
<test>
<substitutions>
<substitution>
<name>integer_type</name>
<values>
<value>UInt32</value>
<value>UInt64</value>
</values>
</substitution>
<substitution>
<name>sort_expression</name>
<values>
<value>key</value>
<value>key, value</value>
<value>key DESC</value>
<value>key DESC, value DESC</value>
</values>
</substitution>
</substitutions>
<create_query>CREATE TABLE sequential_{integer_type} (key {integer_type}, value {integer_type}) Engine = Memory</create_query>
<fill_query>INSERT INTO sequential_{integer_type} SELECT number, number FROM numbers(500000000)</fill_query>
<query>SELECT key, value FROM sequential_{integer_type} ORDER BY {sort_expression} FORMAT Null</query>
<drop_query>DROP TABLE IF EXISTS sequential_{integer_type}</drop_query>
</test>