mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-11-26 01:22:04 +00:00
Improve quantileTDigest performance
This commit is contained in:
parent
70db44f408
commit
f6f4285348
@ -36,7 +36,7 @@ namespace ErrorCodes
|
||||
* uses asin, which slows down the algorithm a bit.
|
||||
*/
|
||||
template <typename T>
|
||||
class QuantileTDigest
|
||||
class TDigest
|
||||
{
|
||||
using Value = Float32;
|
||||
using Count = Float32;
|
||||
@ -86,20 +86,12 @@ class QuantileTDigest
|
||||
|
||||
/// The memory will be allocated to several elements at once, so that the state occupies 64 bytes.
|
||||
static constexpr size_t bytes_in_arena = 128 - sizeof(PODArray<Centroid>) - sizeof(Count) - sizeof(UInt32);
|
||||
using Summary = PODArrayWithStackMemory<Centroid, bytes_in_arena>;
|
||||
using Centroids = PODArrayWithStackMemory<Centroid, bytes_in_arena>;
|
||||
|
||||
Summary summary;
|
||||
Centroids centroids;
|
||||
Count count = 0;
|
||||
UInt32 unmerged = 0;
|
||||
|
||||
/** Linear interpolation at the point x on the line (x1, y1)..(x2, y2)
|
||||
*/
|
||||
static Value interpolate(Value x, Value x1, Value y1, Value x2, Value y2)
|
||||
{
|
||||
double k = (x - x1) / (x2 - x1);
|
||||
return y1 + k * (y2 - y1);
|
||||
}
|
||||
|
||||
struct RadixSortTraits
|
||||
{
|
||||
using Element = Centroid;
|
||||
@ -122,13 +114,14 @@ class QuantileTDigest
|
||||
*/
|
||||
void addCentroid(const Centroid & c)
|
||||
{
|
||||
summary.push_back(c);
|
||||
centroids.push_back(c);
|
||||
count += c.count;
|
||||
++unmerged;
|
||||
if (unmerged >= params.max_unmerged)
|
||||
compress();
|
||||
}
|
||||
|
||||
public:
|
||||
/** Performs compression of accumulated centroids
|
||||
* When merging, the invariant is retained to the maximum size of each
|
||||
* centroid that does not exceed `4 q (1 - q) \ delta N`.
|
||||
@ -137,16 +130,16 @@ class QuantileTDigest
|
||||
{
|
||||
if (unmerged > 0)
|
||||
{
|
||||
RadixSort<RadixSortTraits>::executeLSD(summary.data(), summary.size());
|
||||
RadixSort<RadixSortTraits>::executeLSD(centroids.data(), centroids.size());
|
||||
|
||||
if (summary.size() > 3)
|
||||
if (centroids.size() > 3)
|
||||
{
|
||||
/// A pair of consecutive bars of the histogram.
|
||||
auto l = summary.begin();
|
||||
auto l = centroids.begin();
|
||||
auto r = std::next(l);
|
||||
|
||||
Count sum = 0;
|
||||
while (r != summary.end())
|
||||
while (r != centroids.end())
|
||||
{
|
||||
// we use quantile which gives us the smallest error
|
||||
|
||||
@ -188,14 +181,13 @@ class QuantileTDigest
|
||||
}
|
||||
|
||||
/// At the end of the loop, all values to the right of l were "eaten".
|
||||
summary.resize(l - summary.begin() + 1);
|
||||
centroids.resize(l - centroids.begin() + 1);
|
||||
}
|
||||
|
||||
unmerged = 0;
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
/** Adds to the digest a change in `x` with a weight of `cnt` (default 1)
|
||||
*/
|
||||
void add(T x, UInt64 cnt = 1)
|
||||
@ -203,17 +195,17 @@ public:
|
||||
addCentroid(Centroid(Value(x), Count(cnt)));
|
||||
}
|
||||
|
||||
void merge(const QuantileTDigest & other)
|
||||
void merge(const TDigest & other)
|
||||
{
|
||||
for (const auto & c : other.summary)
|
||||
for (const auto & c : other.centroids)
|
||||
addCentroid(c);
|
||||
}
|
||||
|
||||
void serialize(WriteBuffer & buf)
|
||||
{
|
||||
compress();
|
||||
writeVarUInt(summary.size(), buf);
|
||||
buf.write(reinterpret_cast<const char *>(summary.data()), summary.size() * sizeof(summary[0]));
|
||||
writeVarUInt(centroids.size(), buf);
|
||||
buf.write(reinterpret_cast<const char *>(centroids.data()), centroids.size() * sizeof(centroids[0]));
|
||||
}
|
||||
|
||||
void deserialize(ReadBuffer & buf)
|
||||
@ -222,36 +214,112 @@ public:
|
||||
readVarUInt(size, buf);
|
||||
|
||||
if (size > params.max_unmerged)
|
||||
throw Exception("Too large t-digest summary size", ErrorCodes::TOO_LARGE_ARRAY_SIZE);
|
||||
throw Exception("Too large t-digest centroids size", ErrorCodes::TOO_LARGE_ARRAY_SIZE);
|
||||
|
||||
summary.resize(size);
|
||||
buf.read(reinterpret_cast<char *>(summary.data()), size * sizeof(summary[0]));
|
||||
centroids.resize(size);
|
||||
buf.read(reinterpret_cast<char *>(centroids.data()), size * sizeof(centroids[0]));
|
||||
|
||||
count = 0;
|
||||
for (const auto & c : summary)
|
||||
for (const auto & c : centroids)
|
||||
count += c.count;
|
||||
}
|
||||
|
||||
Count getCount()
|
||||
{
|
||||
return count;
|
||||
}
|
||||
|
||||
const Centroids & getCentroids() const
|
||||
{
|
||||
return centroids;
|
||||
}
|
||||
|
||||
void reset()
|
||||
{
|
||||
centroids.resize(0);
|
||||
count = 0;
|
||||
unmerged = 0;
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
class QuantileTDigest {
|
||||
using Value = Float32;
|
||||
using Count = Float32;
|
||||
|
||||
/** We store two t-digests. When an amount of elements in sub_tdigest become more than merge_threshold
|
||||
* we merge sub_tdigest in main_tdigest and reset sub_tdigest. This method is needed to decrease an amount of
|
||||
* centroids in t-digest (experiments show that after merge_threshold the size of t-digest significantly grows,
|
||||
* but merging two big t-digest decreases it).
|
||||
*/
|
||||
TDigest<T> main_tdigest;
|
||||
TDigest<T> sub_tdigest;
|
||||
size_t merge_threshold = 1e7;
|
||||
|
||||
/** Linear interpolation at the point x on the line (x1, y1)..(x2, y2)
|
||||
*/
|
||||
static Value interpolate(Value x, Value x1, Value y1, Value x2, Value y2)
|
||||
{
|
||||
double k = (x - x1) / (x2 - x1);
|
||||
return y1 + k * (y2 - y1);
|
||||
}
|
||||
|
||||
void mergeTDigests()
|
||||
{
|
||||
main_tdigest.merge(sub_tdigest);
|
||||
sub_tdigest.reset();
|
||||
}
|
||||
|
||||
public:
|
||||
void add(T x, UInt64 cnt = 1)
|
||||
{
|
||||
if (sub_tdigest.getCount() >= merge_threshold)
|
||||
mergeTDigests();
|
||||
sub_tdigest.add(x, cnt);
|
||||
}
|
||||
|
||||
void merge(const QuantileTDigest & other)
|
||||
{
|
||||
mergeTDigests();
|
||||
main_tdigest.merge(other.main_tdigest);
|
||||
main_tdigest.merge(other.sub_tdigest);
|
||||
}
|
||||
|
||||
void serialize(WriteBuffer & buf)
|
||||
{
|
||||
mergeTDigests();
|
||||
main_tdigest.serialize(buf);
|
||||
}
|
||||
|
||||
void deserialize(ReadBuffer & buf)
|
||||
{
|
||||
sub_tdigest.reset();
|
||||
main_tdigest.deserialize(buf);
|
||||
}
|
||||
|
||||
/** Calculates the quantile q [0, 1] based on the digest.
|
||||
* For an empty digest returns NaN.
|
||||
*/
|
||||
template <typename ResultType>
|
||||
ResultType getImpl(Float64 level)
|
||||
{
|
||||
if (summary.empty())
|
||||
mergeTDigests();
|
||||
|
||||
auto & centroids = main_tdigest.getCentroids();
|
||||
if (centroids.empty())
|
||||
return std::is_floating_point_v<ResultType> ? NAN : 0;
|
||||
|
||||
compress();
|
||||
main_tdigest.compress();
|
||||
|
||||
if (summary.size() == 1)
|
||||
return summary.front().mean;
|
||||
if (centroids.size() == 1)
|
||||
return centroids.front().mean;
|
||||
|
||||
Float64 x = level * count;
|
||||
Float64 x = level * main_tdigest.getCount();
|
||||
Float64 prev_x = 0;
|
||||
Count sum = 0;
|
||||
Value prev_mean = summary.front().mean;
|
||||
Value prev_mean = centroids.front().mean;
|
||||
|
||||
for (const auto & c : summary)
|
||||
for (const auto & c : centroids)
|
||||
{
|
||||
Float64 current_x = sum + c.count * 0.5;
|
||||
|
||||
@ -263,7 +331,7 @@ public:
|
||||
prev_x = current_x;
|
||||
}
|
||||
|
||||
return summary.back().mean;
|
||||
return centroids.back().mean;
|
||||
}
|
||||
|
||||
/** Get multiple quantiles (`size` parts).
|
||||
@ -274,29 +342,32 @@ public:
|
||||
template <typename ResultType>
|
||||
void getManyImpl(const Float64 * levels, const size_t * levels_permutation, size_t size, ResultType * result)
|
||||
{
|
||||
if (summary.empty())
|
||||
mergeTDigests();
|
||||
|
||||
auto & centroids = main_tdigest.getCentroids();
|
||||
if (centroids.empty())
|
||||
{
|
||||
for (size_t result_num = 0; result_num < size; ++result_num)
|
||||
result[result_num] = std::is_floating_point_v<ResultType> ? NAN : 0;
|
||||
return;
|
||||
}
|
||||
|
||||
compress();
|
||||
main_tdigest.compress();
|
||||
|
||||
if (summary.size() == 1)
|
||||
if (centroids.size() == 1)
|
||||
{
|
||||
for (size_t result_num = 0; result_num < size; ++result_num)
|
||||
result[result_num] = summary.front().mean;
|
||||
result[result_num] = centroids.front().mean;
|
||||
return;
|
||||
}
|
||||
|
||||
Float64 x = levels[levels_permutation[0]] * count;
|
||||
Float64 x = levels[levels_permutation[0]] * main_tdigest.getCount();
|
||||
Float64 prev_x = 0;
|
||||
Count sum = 0;
|
||||
Value prev_mean = summary.front().mean;
|
||||
Value prev_mean = centroids.front().mean;
|
||||
|
||||
size_t result_num = 0;
|
||||
for (const auto & c : summary)
|
||||
for (const auto & c : centroids)
|
||||
{
|
||||
Float64 current_x = sum + c.count * 0.5;
|
||||
|
||||
@ -308,7 +379,7 @@ public:
|
||||
if (result_num >= size)
|
||||
return;
|
||||
|
||||
x = levels[levels_permutation[result_num]] * count;
|
||||
x = levels[levels_permutation[result_num]] * main_tdigest.getCount();
|
||||
}
|
||||
|
||||
sum += c.count;
|
||||
@ -316,7 +387,7 @@ public:
|
||||
prev_x = current_x;
|
||||
}
|
||||
|
||||
auto rest_of_results = summary.back().mean;
|
||||
auto rest_of_results = centroids.back().mean;
|
||||
for (; result_num < size; ++result_num)
|
||||
result[levels_permutation[result_num]] = rest_of_results;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user