mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-11-21 23:21:59 +00:00
Fixes
This commit is contained in:
parent
7db76a50f1
commit
f9dc1361d1
@ -1087,38 +1087,39 @@ stochasticLinearRegression(1.0, 1.0, 10, 'SGD')
|
||||
Для прогнозирования мы используем функцию [evalMLMethod](../functions/machine_learning_functions.md#machine_learning_methods-evalmlmethod), которая принимает в качестве аргументов состояние и свойства для прогнозирования.
|
||||
|
||||
<a name="stochasticlinearregression-usage-fitting"></a>
|
||||
1. Построение модели
|
||||
|
||||
Пример запроса:
|
||||
**1.** Построение модели
|
||||
|
||||
```sql
|
||||
CREATE TABLE IF NOT EXISTS train_data
|
||||
(
|
||||
param1 Float64,
|
||||
param2 Float64,
|
||||
target Float64
|
||||
) ENGINE = Memory;
|
||||
Пример запроса:
|
||||
|
||||
CREATE TABLE your_model ENGINE = Memory AS SELECT
|
||||
stochasticLinearRegressionState(0.1, 0.0, 5, 'SGD')(target, param1, param2)
|
||||
AS state FROM train_data;
|
||||
```
|
||||
```sql
|
||||
CREATE TABLE IF NOT EXISTS train_data
|
||||
(
|
||||
param1 Float64,
|
||||
param2 Float64,
|
||||
target Float64
|
||||
) ENGINE = Memory;
|
||||
|
||||
Здесь нам также нужно вставить данные в таблицу `train_data`. Количество параметров не фиксировано, оно зависит только от количества аргументов, перешедших в `linearRegressionState`. Все они должны быть числовыми значениями.
|
||||
CREATE TABLE your_model ENGINE = Memory AS SELECT
|
||||
stochasticLinearRegressionState(0.1, 0.0, 5, 'SGD')(target, param1, param2)
|
||||
AS state FROM train_data;
|
||||
```
|
||||
|
||||
Здесь нам также нужно вставить данные в таблицу `train_data`. Количество параметров не фиксировано, оно зависит только от количества аргументов, перешедших в `linearRegressionState`. Все они должны быть числовыми значениями.
|
||||
Обратите внимание, что столбец с целевым значением (которое мы хотели бы научиться предсказывать) вставляется в качестве первого аргумента.
|
||||
|
||||
2. Прогнозирование
|
||||
**2.** Прогнозирование
|
||||
|
||||
После сохранения состояния в таблице мы можем использовать его несколько раз для прогнозирования или смёржить с другими состояниями и создать новые, улучшенные модели.
|
||||
После сохранения состояния в таблице мы можем использовать его несколько раз для прогнозирования или смёржить с другими состояниями и создать новые, улучшенные модели.
|
||||
|
||||
```sql
|
||||
WITH (SELECT state FROM your_model) AS model SELECT
|
||||
evalMLMethod(model, param1, param2) FROM test_data
|
||||
```
|
||||
```sql
|
||||
WITH (SELECT state FROM your_model) AS model SELECT
|
||||
evalMLMethod(model, param1, param2) FROM test_data
|
||||
```
|
||||
|
||||
Запрос возвращает столбец прогнозируемых значений. Обратите внимание, что первый аргумент `evalMLMethod` это объект `AggregateFunctionState`, далее идут столбцы свойств.
|
||||
Запрос возвращает столбец прогнозируемых значений. Обратите внимание, что первый аргумент `evalMLMethod` это объект `AggregateFunctionState`, далее идут столбцы свойств.
|
||||
|
||||
`test_data` — это таблица, подобная `train_data`, но при этом может не содержать целевое значение.
|
||||
`test_data` — это таблица, подобная `train_data`, но при этом может не содержать целевое значение.
|
||||
|
||||
### Примечания {#agg_functions-stochasticlinearregression-notes}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user