zstd, lz4 as submodule (#1214)

* Contrib: use zstd, lz4 as submodule

* fix shared build

* re-test me.

* wip

* Update CHANGELOG_RU.md

* Update CHANGELOG.md

* Update CHANGELOG_RU.md

* Whitespaces [#CLICKHOUSE-2].

* Implemented TODO [#CLICKHOUSE-2].

* Whitespaces [#CLICKHOUSE-2].

* Remove wrong test

* Implemented TODO [#CLICKHOUSE-2].

* Moved chown to correct place [#CLICKHOUSE-2].

* Resolves #1273. Exception safe users update. [#CLICKHOUSE-3]

* Less noisy logging. [#CLICKHOSUE-2]

* Add metrics for RWLockFIFO. [#CLICKHOUSE-3246]

* Executable dictionaries: fail if program returns non zero exit code (#CLICKHOUSE-3171)

* Add better logging if OPTIMIZE cannot be executed. [#CLICKHOUSE-2]

* test me

* Fixing documentation fragment about "default" user. It is not mandatory anymore.

* append yurial/clickhouse-client to docs/interfaces

* Fixed FREEZE PARTITION: using only active data parts; acquire snapshot of parts [#CLICKHOUSE-3369].

* Removed tcp_ssl_port by default [#CLICKHOUSE-2].

* Update MergeTreeDataMerger.cpp

* Update ShellCommand.cpp

* Disable part sendings and fetches before ALTER. [#CLICKHOUSE-3343]

* Update ExecutableDictionarySource.cpp

* Update ExecutableDictionarySource.cpp

* Miscellaneous changes after merge [#CLICKHOUSE-2].

* Improve tests: allow redefine some values (clickhouse path, ports, ...)

* Received signal Segmentation fault (#1300) (#1302)

* Received signal Segmentation fault (#1300)

* Add test

* Tests: Use new possibly redefined values from env (in 2 tests)

* Proper fix for the issue: better exception message [#CLICKHOUSE-2].

* Split GatherUtils.cpp for faster compile (#1312)

* Split GatherUtils.cpp for faster compile

* remove GatherUtils.cpp

* Fix array writing (#1314)

* changed MergedBlockOutputStream [#CLICKHOUSE-3341]

* fix build [#CLICKHOUSE-3341]

* fix build [#CLICKHOUSE-3341]

* fix build [#CLICKHOUSE-3341]

* fix build [#CLICKHOUSE-3341]

* fix build [#CLICKHOUSE-3341]

* fix build [#CLICKHOUSE-3341]

* fix build [#CLICKHOUSE-3341]

* fix build [#CLICKHOUSE-3341]

* fix build [#CLICKHOUSE-3341]

* disabled checkNoMultidimensionalArrays [#CLICKHOUSE-3341]

* fix IMergedBlockOutputStream::writeDataImpl [#CLICKHOUSE-3341]

* fix IMergedBlockOutputStream::writeDataImpl [#CLICKHOUSE-3341]

* fix IMergedBlockOutputStream::writeDataImpl [#CLICKHOUSE-3341]

* fix IMergedBlockOutputStream::writeDataImpl [#CLICKHOUSE-3341]

* added test [#CLICKHOUSE-3341]

* fixed test [#CLICKHOUSE-3341]

* refactoring and comments [#CLICKHOUSE-3341]

* fix build [#CLICKHOUSE-3341]

* Update ColumnArray.h

* Update ActionBlocker.h

* Fix section tabulation

* Fixed infinite recursion in expression analyzer. [#CLICKHOUSE-3125]

* Update ActionBlocker.h

* Improvement [#CLICKHOUSE-2].

* Try fix strange terminate (#1329)

* Tests: External: rename --use_http  => --no_http and fix

* Try fix strange terminate

* Misc [#CLICKHOUSE-2].

*  Fix compile CallPointInPolygon on clang4 (Thanks to @vavrusa) (#1333)

* Fix compile with boost 1.65.1+ and clang 3.8 ( https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=222439 )

* Fix compile CallPointInPolygon on clang4 (Thanks to @vavrusa)

* Fix complex queries with GLOBAL IN and UNION ALL  (#CLICKHOUSE-3356) (#1339)

* TEST only: why initQueryAnalyzer ?

* Better tests

* missing file

* Missing file

* Add test

* Test fixes

* Fixed FREEZE PARTITION: using only active data parts; acquire snapshot of parts [#CLICKHOUSE-3369].

* Removed tcp_ssl_port by default [#CLICKHOUSE-2].

* Better tests

* comment

* clean

* REmove wrong code

* clean

* dbms: Added compression level for ZSTD. [#METR-26742]

* dbms: CompressionSettingsSelector. [#METR-21516]

* dbms: Minor fix. [#METR-21516]

* Fix SummingMergeTree argument checking logic.

This patch fixes the Nested Column Name checking logic, which allows nested
columns be explicitly specified in SummingMergeTree engine.
This commit is contained in:
proller 2017-10-13 21:52:23 +03:00 committed by alexey-milovidov
parent 41b0bea84c
commit fd072b58bb
70 changed files with 42 additions and 52036 deletions

6
.gitmodules vendored
View File

@ -0,0 +1,6 @@
[submodule "contrib/zstd"]
path = contrib/zstd
url = https://github.com/facebook/zstd.git
[submodule "contrib/lz4"]
path = contrib/lz4
url = https://github.com/lz4/lz4.git

View File

@ -1,12 +1,16 @@
option (USE_INTERNAL_LZ4_LIBRARY "Set to FALSE to use system lz4 library instead of bundled" ${NOT_UNBUNDLED})
if (NOT EXISTS "${ClickHouse_SOURCE_DIR}/contrib/lz4/lib/lz4.h")
message (WARNING "submodule contrib/lz4 is missing. to fix try run: \n git submodule update --init --recursive")
set (USE_INTERNAL_LZ4_LIBRARY 0)
endif ()
if (NOT USE_INTERNAL_LZ4_LIBRARY)
find_library (LZ4_LIBRARY lz4)
find_path (LZ4_INCLUDE_DIR NAMES lz4.h PATHS ${LZ4_INCLUDE_PATHS})
endif ()
if (LZ4_LIBRARY AND LZ4_INCLUDE_DIR)
include_directories (${LZ4_INCLUDE_DIR})
else ()
set (USE_INTERNAL_LZ4_LIBRARY 1)
set (LZ4_LIBRARY lz4)

View File

@ -7,11 +7,7 @@ endif ()
if (NOT ZLIB_FOUND)
set (USE_INTERNAL_ZLIB_LIBRARY 1)
set (ZLIB_INCLUDE_DIR "${ClickHouse_SOURCE_DIR}/contrib/libzlib-ng")
if (USE_STATIC_LIBRARIES)
set (ZLIB_LIBRARIES zlibstatic)
else ()
set (ZLIB_LIBRARIES zlib)
endif ()
set (ZLIB_LIBRARIES zlibstatic)
endif ()
message (STATUS "Using zlib: ${ZLIB_INCLUDE_DIR} : ${ZLIB_LIBRARIES}")

View File

@ -1,12 +1,16 @@
option (USE_INTERNAL_ZSTD_LIBRARY "Set to FALSE to use system zstd library instead of bundled" ${NOT_UNBUNDLED})
if (NOT EXISTS "${ClickHouse_SOURCE_DIR}/contrib/zstd/lib/zstd.h")
message (WARNING "submodule contrib/zstd is missing. to fix try run: \n git submodule update --init --recursive")
set (USE_INTERNAL_ZSTD_LIBRARY 0)
endif ()
if (NOT USE_INTERNAL_ZSTD_LIBRARY)
find_library (ZSTD_LIBRARY zstd)
find_path (ZSTD_INCLUDE_DIR NAMES zstd.h PATHS ${ZSTD_INCLUDE_PATHS})
endif ()
if (ZSTD_LIBRARY AND ZSTD_INCLUDE_DIR)
include_directories (${ZSTD_INCLUDE_DIR})
else ()
set (USE_INTERNAL_ZSTD_LIBRARY 1)
set (ZSTD_LIBRARY zstd)

View File

@ -9,11 +9,11 @@ if (USE_INTERNAL_POCO_LIBRARY)
endif ()
if (USE_INTERNAL_LZ4_LIBRARY)
add_subdirectory (liblz4)
add_subdirectory (lz4-cmake)
endif ()
if (USE_INTERNAL_ZSTD_LIBRARY)
add_subdirectory (libzstd)
add_subdirectory (zstd-cmake)
endif ()
if (USE_INTERNAL_RE2_LIBRARY)

View File

@ -1,9 +0,0 @@
add_library (lz4
src/lz4.c
src/lz4hc.c
include/lz4/lz4.h
include/lz4/lz4hc.h
include/lz4/lz4opt.h)
target_include_directories(lz4 PUBLIC include/lz4)

View File

@ -1,24 +0,0 @@
LZ4 Library
Copyright (c) 2011-2014, Yann Collet
All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@ -1,463 +0,0 @@
/*
* LZ4 - Fast LZ compression algorithm
* Header File
* Copyright (C) 2011-2016, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- LZ4 homepage : http://www.lz4.org
- LZ4 source repository : https://github.com/lz4/lz4
*/
#ifndef LZ4_H_2983827168210
#define LZ4_H_2983827168210
#if defined (__cplusplus)
extern "C" {
#endif
/* --- Dependency --- */
#include <stddef.h> /* size_t */
/**
Introduction
LZ4 is lossless compression algorithm, providing compression speed at 400 MB/s per core,
scalable with multi-cores CPU. It features an extremely fast decoder, with speed in
multiple GB/s per core, typically reaching RAM speed limits on multi-core systems.
The LZ4 compression library provides in-memory compression and decompression functions.
Compression can be done in:
- a single step (described as Simple Functions)
- a single step, reusing a context (described in Advanced Functions)
- unbounded multiple steps (described as Streaming compression)
lz4.h provides block compression functions. It gives full buffer control to user.
Decompressing an lz4-compressed block also requires metadata (such as compressed size).
Each application is free to encode such metadata in whichever way it wants.
An additional format, called LZ4 frame specification (doc/lz4_Frame_format.md),
take care of encoding standard metadata alongside LZ4-compressed blocks.
If your application requires interoperability, it's recommended to use it.
A library is provided to take care of it, see lz4frame.h.
*/
/*^***************************************************************
* Export parameters
*****************************************************************/
/*
* LZ4_DLL_EXPORT :
* Enable exporting of functions when building a Windows DLL
*/
#if defined(LZ4_DLL_EXPORT) && (LZ4_DLL_EXPORT==1)
# define LZ4LIB_API __declspec(dllexport)
#elif defined(LZ4_DLL_IMPORT) && (LZ4_DLL_IMPORT==1)
# define LZ4LIB_API __declspec(dllimport) /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/
#else
# define LZ4LIB_API
#endif
/*========== Version =========== */
#define LZ4_VERSION_MAJOR 1 /* for breaking interface changes */
#define LZ4_VERSION_MINOR 7 /* for new (non-breaking) interface capabilities */
#define LZ4_VERSION_RELEASE 5 /* for tweaks, bug-fixes, or development */
#define LZ4_VERSION_NUMBER (LZ4_VERSION_MAJOR *100*100 + LZ4_VERSION_MINOR *100 + LZ4_VERSION_RELEASE)
#define LZ4_LIB_VERSION LZ4_VERSION_MAJOR.LZ4_VERSION_MINOR.LZ4_VERSION_RELEASE
#define LZ4_QUOTE(str) #str
#define LZ4_EXPAND_AND_QUOTE(str) LZ4_QUOTE(str)
#define LZ4_VERSION_STRING LZ4_EXPAND_AND_QUOTE(LZ4_LIB_VERSION)
LZ4LIB_API int LZ4_versionNumber (void);
LZ4LIB_API const char* LZ4_versionString (void);
/*-************************************
* Tuning parameter
**************************************/
/*!
* LZ4_MEMORY_USAGE :
* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
* Increasing memory usage improves compression ratio
* Reduced memory usage can improve speed, due to cache effect
* Default value is 14, for 16KB, which nicely fits into Intel x86 L1 cache
*/
#define LZ4_MEMORY_USAGE 14
/*-************************************
* Simple Functions
**************************************/
/*! LZ4_compress_default() :
Compresses 'sourceSize' bytes from buffer 'source'
into already allocated 'dest' buffer of size 'maxDestSize'.
Compression is guaranteed to succeed if 'maxDestSize' >= LZ4_compressBound(sourceSize).
It also runs faster, so it's a recommended setting.
If the function cannot compress 'source' into a more limited 'dest' budget,
compression stops *immediately*, and the function result is zero.
As a consequence, 'dest' content is not valid.
This function never writes outside 'dest' buffer, nor read outside 'source' buffer.
sourceSize : Max supported value is LZ4_MAX_INPUT_VALUE
maxDestSize : full or partial size of buffer 'dest' (which must be already allocated)
return : the number of bytes written into buffer 'dest' (necessarily <= maxOutputSize)
or 0 if compression fails */
LZ4LIB_API int LZ4_compress_default(const char* source, char* dest, int sourceSize, int maxDestSize);
/*! LZ4_decompress_safe() :
compressedSize : is the precise full size of the compressed block.
maxDecompressedSize : is the size of destination buffer, which must be already allocated.
return : the number of bytes decompressed into destination buffer (necessarily <= maxDecompressedSize)
If destination buffer is not large enough, decoding will stop and output an error code (<0).
If the source stream is detected malformed, the function will stop decoding and return a negative result.
This function is protected against buffer overflow exploits, including malicious data packets.
It never writes outside output buffer, nor reads outside input buffer.
*/
LZ4LIB_API int LZ4_decompress_safe (const char* source, char* dest, int compressedSize, int maxDecompressedSize);
/*-************************************
* Advanced Functions
**************************************/
#define LZ4_MAX_INPUT_SIZE 0x7E000000 /* 2 113 929 216 bytes */
#define LZ4_COMPRESSBOUND(isize) ((unsigned)(isize) > (unsigned)LZ4_MAX_INPUT_SIZE ? 0 : (isize) + ((isize)/255) + 16)
/*!
LZ4_compressBound() :
Provides the maximum size that LZ4 compression may output in a "worst case" scenario (input data not compressible)
This function is primarily useful for memory allocation purposes (destination buffer size).
Macro LZ4_COMPRESSBOUND() is also provided for compilation-time evaluation (stack memory allocation for example).
Note that LZ4_compress_default() compress faster when dest buffer size is >= LZ4_compressBound(srcSize)
inputSize : max supported value is LZ4_MAX_INPUT_SIZE
return : maximum output size in a "worst case" scenario
or 0, if input size is too large ( > LZ4_MAX_INPUT_SIZE)
*/
LZ4LIB_API int LZ4_compressBound(int inputSize);
/*!
LZ4_compress_fast() :
Same as LZ4_compress_default(), but allows to select an "acceleration" factor.
The larger the acceleration value, the faster the algorithm, but also the lesser the compression.
It's a trade-off. It can be fine tuned, with each successive value providing roughly +~3% to speed.
An acceleration value of "1" is the same as regular LZ4_compress_default()
Values <= 0 will be replaced by ACCELERATION_DEFAULT (see lz4.c), which is 1.
*/
LZ4LIB_API int LZ4_compress_fast (const char* source, char* dest, int sourceSize, int maxDestSize, int acceleration);
/*!
LZ4_compress_fast_extState() :
Same compression function, just using an externally allocated memory space to store compression state.
Use LZ4_sizeofState() to know how much memory must be allocated,
and allocate it on 8-bytes boundaries (using malloc() typically).
Then, provide it as 'void* state' to compression function.
*/
LZ4LIB_API int LZ4_sizeofState(void);
LZ4LIB_API int LZ4_compress_fast_extState (void* state, const char* source, char* dest, int inputSize, int maxDestSize, int acceleration);
/*!
LZ4_compress_destSize() :
Reverse the logic, by compressing as much data as possible from 'source' buffer
into already allocated buffer 'dest' of size 'targetDestSize'.
This function either compresses the entire 'source' content into 'dest' if it's large enough,
or fill 'dest' buffer completely with as much data as possible from 'source'.
*sourceSizePtr : will be modified to indicate how many bytes where read from 'source' to fill 'dest'.
New value is necessarily <= old value.
return : Nb bytes written into 'dest' (necessarily <= targetDestSize)
or 0 if compression fails
*/
LZ4LIB_API int LZ4_compress_destSize (const char* source, char* dest, int* sourceSizePtr, int targetDestSize);
/*!
LZ4_decompress_fast() :
originalSize : is the original and therefore uncompressed size
return : the number of bytes read from the source buffer (in other words, the compressed size)
If the source stream is detected malformed, the function will stop decoding and return a negative result.
Destination buffer must be already allocated. Its size must be a minimum of 'originalSize' bytes.
note : This function fully respect memory boundaries for properly formed compressed data.
It is a bit faster than LZ4_decompress_safe().
However, it does not provide any protection against intentionally modified data stream (malicious input).
Use this function in trusted environment only (data to decode comes from a trusted source).
*/
LZ4LIB_API int LZ4_decompress_fast (const char* source, char* dest, int originalSize);
/*!
LZ4_decompress_safe_partial() :
This function decompress a compressed block of size 'compressedSize' at position 'source'
into destination buffer 'dest' of size 'maxDecompressedSize'.
The function tries to stop decompressing operation as soon as 'targetOutputSize' has been reached,
reducing decompression time.
return : the number of bytes decoded in the destination buffer (necessarily <= maxDecompressedSize)
Note : this number can be < 'targetOutputSize' should the compressed block to decode be smaller.
Always control how many bytes were decoded.
If the source stream is detected malformed, the function will stop decoding and return a negative result.
This function never writes outside of output buffer, and never reads outside of input buffer. It is therefore protected against malicious data packets
*/
LZ4LIB_API int LZ4_decompress_safe_partial (const char* source, char* dest, int compressedSize, int targetOutputSize, int maxDecompressedSize);
/*-*********************************************
* Streaming Compression Functions
***********************************************/
typedef union LZ4_stream_u LZ4_stream_t; /* incomplete type (defined later) */
/*! LZ4_createStream() and LZ4_freeStream() :
* LZ4_createStream() will allocate and initialize an `LZ4_stream_t` structure.
* LZ4_freeStream() releases its memory.
*/
LZ4LIB_API LZ4_stream_t* LZ4_createStream(void);
LZ4LIB_API int LZ4_freeStream (LZ4_stream_t* streamPtr);
/*! LZ4_resetStream() :
* An LZ4_stream_t structure can be allocated once and re-used multiple times.
* Use this function to init an allocated `LZ4_stream_t` structure and start a new compression.
*/
LZ4LIB_API void LZ4_resetStream (LZ4_stream_t* streamPtr);
/*! LZ4_loadDict() :
* Use this function to load a static dictionary into LZ4_stream.
* Any previous data will be forgotten, only 'dictionary' will remain in memory.
* Loading a size of 0 is allowed.
* Return : dictionary size, in bytes (necessarily <= 64 KB)
*/
LZ4LIB_API int LZ4_loadDict (LZ4_stream_t* streamPtr, const char* dictionary, int dictSize);
/*! LZ4_compress_fast_continue() :
* Compress buffer content 'src', using data from previously compressed blocks as dictionary to improve compression ratio.
* Important : Previous data blocks are assumed to still be present and unmodified !
* 'dst' buffer must be already allocated.
* If maxDstSize >= LZ4_compressBound(srcSize), compression is guaranteed to succeed, and runs faster.
* If not, and if compressed data cannot fit into 'dst' buffer size, compression stops, and function returns a zero.
*/
LZ4LIB_API int LZ4_compress_fast_continue (LZ4_stream_t* streamPtr, const char* src, char* dst, int srcSize, int maxDstSize, int acceleration);
/*! LZ4_saveDict() :
* If previously compressed data block is not guaranteed to remain available at its memory location,
* save it into a safer place (char* safeBuffer).
* Note : you don't need to call LZ4_loadDict() afterwards,
* dictionary is immediately usable, you can therefore call LZ4_compress_fast_continue().
* Return : saved dictionary size in bytes (necessarily <= dictSize), or 0 if error.
*/
LZ4LIB_API int LZ4_saveDict (LZ4_stream_t* streamPtr, char* safeBuffer, int dictSize);
/*-**********************************************
* Streaming Decompression Functions
* Bufferless synchronous API
************************************************/
typedef union LZ4_streamDecode_u LZ4_streamDecode_t; /* incomplete type (defined later) */
/* creation / destruction of streaming decompression tracking structure */
LZ4LIB_API LZ4_streamDecode_t* LZ4_createStreamDecode(void);
LZ4LIB_API int LZ4_freeStreamDecode (LZ4_streamDecode_t* LZ4_stream);
/*! LZ4_setStreamDecode() :
* Use this function to instruct where to find the dictionary.
* Setting a size of 0 is allowed (same effect as reset).
* @return : 1 if OK, 0 if error
*/
LZ4LIB_API int LZ4_setStreamDecode (LZ4_streamDecode_t* LZ4_streamDecode, const char* dictionary, int dictSize);
/*!
LZ4_decompress_*_continue() :
These decoding functions allow decompression of multiple blocks in "streaming" mode.
Previously decoded blocks *must* remain available at the memory position where they were decoded (up to 64 KB)
In the case of a ring buffers, decoding buffer must be either :
- Exactly same size as encoding buffer, with same update rule (block boundaries at same positions)
In which case, the decoding & encoding ring buffer can have any size, including very small ones ( < 64 KB).
- Larger than encoding buffer, by a minimum of maxBlockSize more bytes.
maxBlockSize is implementation dependent. It's the maximum size you intend to compress into a single block.
In which case, encoding and decoding buffers do not need to be synchronized,
and encoding ring buffer can have any size, including small ones ( < 64 KB).
- _At least_ 64 KB + 8 bytes + maxBlockSize.
In which case, encoding and decoding buffers do not need to be synchronized,
and encoding ring buffer can have any size, including larger than decoding buffer.
Whenever these conditions are not possible, save the last 64KB of decoded data into a safe buffer,
and indicate where it is saved using LZ4_setStreamDecode()
*/
LZ4LIB_API int LZ4_decompress_safe_continue (LZ4_streamDecode_t* LZ4_streamDecode, const char* source, char* dest, int compressedSize, int maxDecompressedSize);
LZ4LIB_API int LZ4_decompress_fast_continue (LZ4_streamDecode_t* LZ4_streamDecode, const char* source, char* dest, int originalSize);
/*! LZ4_decompress_*_usingDict() :
* These decoding functions work the same as
* a combination of LZ4_setStreamDecode() followed by LZ4_decompress_*_continue()
* They are stand-alone, and don't need an LZ4_streamDecode_t structure.
*/
LZ4LIB_API int LZ4_decompress_safe_usingDict (const char* source, char* dest, int compressedSize, int maxDecompressedSize, const char* dictStart, int dictSize);
LZ4LIB_API int LZ4_decompress_fast_usingDict (const char* source, char* dest, int originalSize, const char* dictStart, int dictSize);
/*^**********************************************
* !!!!!! STATIC LINKING ONLY !!!!!!
***********************************************/
/*-************************************
* Private definitions
**************************************
* Do not use these definitions.
* They are exposed to allow static allocation of `LZ4_stream_t` and `LZ4_streamDecode_t`.
* Using these definitions will expose code to API and/or ABI break in future versions of the library.
**************************************/
#define LZ4_HASHLOG (LZ4_MEMORY_USAGE-2)
#define LZ4_HASHTABLESIZE (1 << LZ4_MEMORY_USAGE)
#define LZ4_HASH_SIZE_U32 (1 << LZ4_HASHLOG) /* required as macro for static allocation */
#if defined(__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
#include <stdint.h>
typedef struct {
uint32_t hashTable[LZ4_HASH_SIZE_U32];
uint32_t currentOffset;
uint32_t initCheck;
const uint8_t* dictionary;
uint8_t* bufferStart; /* obsolete, used for slideInputBuffer */
uint32_t dictSize;
} LZ4_stream_t_internal;
typedef struct {
const uint8_t* externalDict;
size_t extDictSize;
const uint8_t* prefixEnd;
size_t prefixSize;
} LZ4_streamDecode_t_internal;
#else
typedef struct {
unsigned int hashTable[LZ4_HASH_SIZE_U32];
unsigned int currentOffset;
unsigned int initCheck;
const unsigned char* dictionary;
unsigned char* bufferStart; /* obsolete, used for slideInputBuffer */
unsigned int dictSize;
} LZ4_stream_t_internal;
typedef struct {
const unsigned char* externalDict;
size_t extDictSize;
const unsigned char* prefixEnd;
size_t prefixSize;
} LZ4_streamDecode_t_internal;
#endif
/*!
* LZ4_stream_t :
* information structure to track an LZ4 stream.
* init this structure before first use.
* note : only use in association with static linking !
* this definition is not API/ABI safe,
* and may change in a future version !
*/
#define LZ4_STREAMSIZE_U64 ((1 << (LZ4_MEMORY_USAGE-3)) + 4)
#define LZ4_STREAMSIZE (LZ4_STREAMSIZE_U64 * sizeof(unsigned long long))
union LZ4_stream_u {
unsigned long long table[LZ4_STREAMSIZE_U64];
LZ4_stream_t_internal internal_donotuse;
} ; /* previously typedef'd to LZ4_stream_t */
/*!
* LZ4_streamDecode_t :
* information structure to track an LZ4 stream during decompression.
* init this structure using LZ4_setStreamDecode (or memset()) before first use
* note : only use in association with static linking !
* this definition is not API/ABI safe,
* and may change in a future version !
*/
#define LZ4_STREAMDECODESIZE_U64 4
#define LZ4_STREAMDECODESIZE (LZ4_STREAMDECODESIZE_U64 * sizeof(unsigned long long))
union LZ4_streamDecode_u {
unsigned long long table[LZ4_STREAMDECODESIZE_U64];
LZ4_streamDecode_t_internal internal_donotuse;
} ; /* previously typedef'd to LZ4_streamDecode_t */
/*=************************************
* Obsolete Functions
**************************************/
/* Deprecation warnings */
/* Should these warnings be a problem,
it is generally possible to disable them,
typically with -Wno-deprecated-declarations for gcc
or _CRT_SECURE_NO_WARNINGS in Visual.
Otherwise, it's also possible to define LZ4_DISABLE_DEPRECATE_WARNINGS */
#ifdef LZ4_DISABLE_DEPRECATE_WARNINGS
# define LZ4_DEPRECATED(message) /* disable deprecation warnings */
#else
# define LZ4_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
# if defined (__cplusplus) && (__cplusplus >= 201402) /* C++14 or greater */
# define LZ4_DEPRECATED(message) [[deprecated(message)]]
# elif (LZ4_GCC_VERSION >= 405) || defined(__clang__)
# define LZ4_DEPRECATED(message) __attribute__((deprecated(message)))
# elif (LZ4_GCC_VERSION >= 301)
# define LZ4_DEPRECATED(message) __attribute__((deprecated))
# elif defined(_MSC_VER)
# define LZ4_DEPRECATED(message) __declspec(deprecated(message))
# else
# pragma message("WARNING: You need to implement LZ4_DEPRECATED for this compiler")
# define LZ4_DEPRECATED(message)
# endif
#endif /* LZ4_DISABLE_DEPRECATE_WARNINGS */
/* Obsolete compression functions */
LZ4_DEPRECATED("use LZ4_compress_default() instead") int LZ4_compress (const char* source, char* dest, int sourceSize);
LZ4_DEPRECATED("use LZ4_compress_default() instead") int LZ4_compress_limitedOutput (const char* source, char* dest, int sourceSize, int maxOutputSize);
LZ4_DEPRECATED("use LZ4_compress_fast_extState() instead") int LZ4_compress_withState (void* state, const char* source, char* dest, int inputSize);
LZ4_DEPRECATED("use LZ4_compress_fast_extState() instead") int LZ4_compress_limitedOutput_withState (void* state, const char* source, char* dest, int inputSize, int maxOutputSize);
LZ4_DEPRECATED("use LZ4_compress_fast_continue() instead") int LZ4_compress_continue (LZ4_stream_t* LZ4_streamPtr, const char* source, char* dest, int inputSize);
LZ4_DEPRECATED("use LZ4_compress_fast_continue() instead") int LZ4_compress_limitedOutput_continue (LZ4_stream_t* LZ4_streamPtr, const char* source, char* dest, int inputSize, int maxOutputSize);
/* Obsolete decompression functions */
/* These function names are completely deprecated and must no longer be used.
They are only provided in lz4.c for compatibility with older programs.
- LZ4_uncompress is the same as LZ4_decompress_fast
- LZ4_uncompress_unknownOutputSize is the same as LZ4_decompress_safe
These function prototypes are now disabled; uncomment them only if you really need them.
It is highly recommended to stop using these prototypes and migrate to maintained ones */
/* int LZ4_uncompress (const char* source, char* dest, int outputSize); */
/* int LZ4_uncompress_unknownOutputSize (const char* source, char* dest, int isize, int maxOutputSize); */
/* Obsolete streaming functions; use new streaming interface whenever possible */
LZ4_DEPRECATED("use LZ4_createStream() instead") void* LZ4_create (char* inputBuffer);
LZ4_DEPRECATED("use LZ4_createStream() instead") int LZ4_sizeofStreamState(void);
LZ4_DEPRECATED("use LZ4_resetStream() instead") int LZ4_resetStreamState(void* state, char* inputBuffer);
LZ4_DEPRECATED("use LZ4_saveDict() instead") char* LZ4_slideInputBuffer (void* state);
/* Obsolete streaming decoding functions */
LZ4_DEPRECATED("use LZ4_decompress_safe_usingDict() instead") int LZ4_decompress_safe_withPrefix64k (const char* src, char* dst, int compressedSize, int maxDstSize);
LZ4_DEPRECATED("use LZ4_decompress_fast_usingDict() instead") int LZ4_decompress_fast_withPrefix64k (const char* src, char* dst, int originalSize);
#if defined (__cplusplus)
}
#endif
#endif /* LZ4_H_2983827168210 */

View File

@ -1,228 +0,0 @@
/*
LZ4 HC - High Compression Mode of LZ4
Header File
Copyright (C) 2011-2016, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- LZ4 source repository : https://github.com/lz4/lz4
- LZ4 public forum : https://groups.google.com/forum/#!forum/lz4c
*/
#ifndef LZ4_HC_H_19834876238432
#define LZ4_HC_H_19834876238432
#if defined (__cplusplus)
extern "C" {
#endif
/* --- Dependency --- */
/* note : lz4hc is not an independent module, it requires lz4.h/lz4.c for proper compilation */
#include "lz4.h" /* stddef, LZ4LIB_API, LZ4_DEPRECATED */
/* --- Useful constants --- */
#define LZ4HC_CLEVEL_MIN 3
#define LZ4HC_CLEVEL_DEFAULT 9
#define LZ4HC_CLEVEL_OPT_MIN 11
#define LZ4HC_CLEVEL_MAX 12
/*-************************************
* Block Compression
**************************************/
/*! LZ4_compress_HC() :
* Compress data from `src` into `dst`, using the more powerful but slower "HC" algorithm.
* `dst` must be already allocated.
* Compression is guaranteed to succeed if `dstCapacity >= LZ4_compressBound(srcSize)` (see "lz4.h")
* Max supported `srcSize` value is LZ4_MAX_INPUT_SIZE (see "lz4.h")
* `compressionLevel` : Recommended values are between 4 and 9, although any value between 1 and LZ4HC_MAX_CLEVEL will work.
* Values >LZ4HC_MAX_CLEVEL behave the same as LZ4HC_MAX_CLEVEL.
* @return : the number of bytes written into 'dst'
* or 0 if compression fails.
*/
LZ4LIB_API int LZ4_compress_HC (const char* src, char* dst, int srcSize, int dstCapacity, int compressionLevel);
/* Note :
* Decompression functions are provided within "lz4.h" (BSD license)
*/
/*! LZ4_compress_HC_extStateHC() :
* Same as LZ4_compress_HC(), but using an externally allocated memory segment for `state`.
* `state` size is provided by LZ4_sizeofStateHC().
* Memory segment must be aligned on 8-bytes boundaries (which a normal malloc() will do properly).
*/
LZ4LIB_API int LZ4_compress_HC_extStateHC(void* state, const char* src, char* dst, int srcSize, int maxDstSize, int compressionLevel);
LZ4LIB_API int LZ4_sizeofStateHC(void);
/*-************************************
* Streaming Compression
* Bufferless synchronous API
**************************************/
typedef union LZ4_streamHC_u LZ4_streamHC_t; /* incomplete type (defined later) */
/*! LZ4_createStreamHC() and LZ4_freeStreamHC() :
* These functions create and release memory for LZ4 HC streaming state.
* Newly created states are automatically initialized.
* Existing states can be re-used several times, using LZ4_resetStreamHC().
* These methods are API and ABI stable, they can be used in combination with a DLL.
*/
LZ4LIB_API LZ4_streamHC_t* LZ4_createStreamHC(void);
LZ4LIB_API int LZ4_freeStreamHC (LZ4_streamHC_t* streamHCPtr);
LZ4LIB_API void LZ4_resetStreamHC (LZ4_streamHC_t* streamHCPtr, int compressionLevel);
LZ4LIB_API int LZ4_loadDictHC (LZ4_streamHC_t* streamHCPtr, const char* dictionary, int dictSize);
LZ4LIB_API int LZ4_compress_HC_continue (LZ4_streamHC_t* streamHCPtr, const char* src, char* dst, int srcSize, int maxDstSize);
LZ4LIB_API int LZ4_saveDictHC (LZ4_streamHC_t* streamHCPtr, char* safeBuffer, int maxDictSize);
/*
These functions compress data in successive blocks of any size, using previous blocks as dictionary.
One key assumption is that previous blocks (up to 64 KB) remain read-accessible while compressing next blocks.
There is an exception for ring buffers, which can be smaller than 64 KB.
Ring buffers scenario is automatically detected and handled by LZ4_compress_HC_continue().
Before starting compression, state must be properly initialized, using LZ4_resetStreamHC().
A first "fictional block" can then be designated as initial dictionary, using LZ4_loadDictHC() (Optional).
Then, use LZ4_compress_HC_continue() to compress each successive block.
Previous memory blocks (including initial dictionary when present) must remain accessible and unmodified during compression.
'dst' buffer should be sized to handle worst case scenarios, using LZ4_compressBound(), to ensure operation success.
If, for any reason, previous data blocks can't be preserved unmodified in memory during next compression block,
you must save it to a safer memory space, using LZ4_saveDictHC().
Return value of LZ4_saveDictHC() is the size of dictionary effectively saved into 'safeBuffer'.
*/
/*-******************************************
* !!!!! STATIC LINKING ONLY !!!!!
*******************************************/
/*-*************************************
* PRIVATE DEFINITIONS :
* Do not use these definitions.
* They are exposed to allow static allocation of `LZ4_streamHC_t`.
* Using these definitions makes the code vulnerable to potential API break when upgrading LZ4
**************************************/
#define LZ4HC_DICTIONARY_LOGSIZE 17
#define LZ4HC_MAXD (1<<LZ4HC_DICTIONARY_LOGSIZE)
#define LZ4HC_MAXD_MASK (LZ4HC_MAXD - 1)
#define LZ4HC_HASH_LOG 15
#define LZ4HC_HASHTABLESIZE (1 << LZ4HC_HASH_LOG)
#define LZ4HC_HASH_MASK (LZ4HC_HASHTABLESIZE - 1)
#if defined(__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
#include <stdint.h>
typedef struct
{
uint32_t hashTable[LZ4HC_HASHTABLESIZE];
uint16_t chainTable[LZ4HC_MAXD];
const uint8_t* end; /* next block here to continue on current prefix */
const uint8_t* base; /* All index relative to this position */
const uint8_t* dictBase; /* alternate base for extDict */
uint8_t* inputBuffer; /* deprecated */
uint32_t dictLimit; /* below that point, need extDict */
uint32_t lowLimit; /* below that point, no more dict */
uint32_t nextToUpdate; /* index from which to continue dictionary update */
uint32_t searchNum; /* only for optimal parser */
uint32_t compressionLevel;
} LZ4HC_CCtx_internal;
#else
typedef struct
{
unsigned int hashTable[LZ4HC_HASHTABLESIZE];
unsigned short chainTable[LZ4HC_MAXD];
const unsigned char* end; /* next block here to continue on current prefix */
const unsigned char* base; /* All index relative to this position */
const unsigned char* dictBase; /* alternate base for extDict */
unsigned char* inputBuffer; /* deprecated */
unsigned int dictLimit; /* below that point, need extDict */
unsigned int lowLimit; /* below that point, no more dict */
unsigned int nextToUpdate; /* index from which to continue dictionary update */
unsigned int searchNum; /* only for optimal parser */
unsigned int compressionLevel;
} LZ4HC_CCtx_internal;
#endif
#define LZ4_STREAMHCSIZE (4*LZ4HC_HASHTABLESIZE + 2*LZ4HC_MAXD + 56) /* 393268 */
#define LZ4_STREAMHCSIZE_SIZET (LZ4_STREAMHCSIZE / sizeof(size_t))
union LZ4_streamHC_u {
size_t table[LZ4_STREAMHCSIZE_SIZET];
LZ4HC_CCtx_internal internal_donotuse;
}; /* previously typedef'd to LZ4_streamHC_t */
/*
LZ4_streamHC_t :
This structure allows static allocation of LZ4 HC streaming state.
State must be initialized using LZ4_resetStreamHC() before first use.
Static allocation shall only be used in combination with static linking.
When invoking LZ4 from a DLL, use create/free functions instead, which are API and ABI stable.
*/
/*-************************************
* Deprecated Functions
**************************************/
/* see lz4.h LZ4_DISABLE_DEPRECATE_WARNINGS to turn off deprecation warnings */
/* deprecated compression functions */
/* these functions will trigger warning messages in future releases */
LZ4_DEPRECATED("use LZ4_compress_HC() instead") int LZ4_compressHC (const char* source, char* dest, int inputSize);
LZ4_DEPRECATED("use LZ4_compress_HC() instead") int LZ4_compressHC_limitedOutput (const char* source, char* dest, int inputSize, int maxOutputSize);
LZ4_DEPRECATED("use LZ4_compress_HC() instead") int LZ4_compressHC2 (const char* source, char* dest, int inputSize, int compressionLevel);
LZ4_DEPRECATED("use LZ4_compress_HC() instead") int LZ4_compressHC2_limitedOutput (const char* source, char* dest, int inputSize, int maxOutputSize, int compressionLevel);
LZ4_DEPRECATED("use LZ4_compress_HC_extStateHC() instead") int LZ4_compressHC_withStateHC (void* state, const char* source, char* dest, int inputSize);
LZ4_DEPRECATED("use LZ4_compress_HC_extStateHC() instead") int LZ4_compressHC_limitedOutput_withStateHC (void* state, const char* source, char* dest, int inputSize, int maxOutputSize);
LZ4_DEPRECATED("use LZ4_compress_HC_extStateHC() instead") int LZ4_compressHC2_withStateHC (void* state, const char* source, char* dest, int inputSize, int compressionLevel);
LZ4_DEPRECATED("use LZ4_compress_HC_extStateHC() instead") int LZ4_compressHC2_limitedOutput_withStateHC(void* state, const char* source, char* dest, int inputSize, int maxOutputSize, int compressionLevel);
LZ4_DEPRECATED("use LZ4_compress_HC_continue() instead") int LZ4_compressHC_continue (LZ4_streamHC_t* LZ4_streamHCPtr, const char* source, char* dest, int inputSize);
LZ4_DEPRECATED("use LZ4_compress_HC_continue() instead") int LZ4_compressHC_limitedOutput_continue (LZ4_streamHC_t* LZ4_streamHCPtr, const char* source, char* dest, int inputSize, int maxOutputSize);
/* Deprecated Streaming functions using older model; should no longer be used */
LZ4_DEPRECATED("use LZ4_createStreamHC() instead") void* LZ4_createHC (char* inputBuffer);
LZ4_DEPRECATED("use LZ4_saveDictHC() instead") char* LZ4_slideInputBufferHC (void* LZ4HC_Data);
LZ4_DEPRECATED("use LZ4_freeStreamHC() instead") int LZ4_freeHC (void* LZ4HC_Data);
LZ4_DEPRECATED("use LZ4_compress_HC_continue() instead") int LZ4_compressHC2_continue (void* LZ4HC_Data, const char* source, char* dest, int inputSize, int compressionLevel);
LZ4_DEPRECATED("use LZ4_compress_HC_continue() instead") int LZ4_compressHC2_limitedOutput_continue (void* LZ4HC_Data, const char* source, char* dest, int inputSize, int maxOutputSize, int compressionLevel);
LZ4_DEPRECATED("use LZ4_createStreamHC() instead") int LZ4_sizeofStreamStateHC(void);
LZ4_DEPRECATED("use LZ4_resetStreamHC() instead") int LZ4_resetStreamStateHC(void* state, char* inputBuffer);
#if defined (__cplusplus)
}
#endif
#endif /* LZ4_HC_H_19834876238432 */

View File

@ -1,361 +0,0 @@
/*
lz4opt.h - Optimal Mode of LZ4
Copyright (C) 2015-2017, Przemyslaw Skibinski <inikep@gmail.com>
Note : this file is intended to be included within lz4hc.c
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- LZ4 source repository : https://github.com/lz4/lz4
- LZ4 public forum : https://groups.google.com/forum/#!forum/lz4c
*/
#define LZ4_OPT_NUM (1<<12)
typedef struct {
int off;
int len;
} LZ4HC_match_t;
typedef struct {
int price;
int off;
int mlen;
int litlen;
} LZ4HC_optimal_t;
/* price in bytes */
FORCE_INLINE size_t LZ4HC_literalsPrice(size_t litlen)
{
size_t price = litlen;
if (litlen >= (size_t)RUN_MASK)
price += 1 + (litlen-RUN_MASK)/255;
return price;
}
/* requires mlen >= MINMATCH */
FORCE_INLINE size_t LZ4HC_sequencePrice(size_t litlen, size_t mlen)
{
size_t price = 2 + 1; /* 16-bit offset + token */
price += LZ4HC_literalsPrice(litlen);
if (mlen >= (size_t)(ML_MASK+MINMATCH))
price+= 1 + (mlen-(ML_MASK+MINMATCH))/255;
return price;
}
/*-*************************************
* Binary Tree search
***************************************/
FORCE_INLINE int LZ4HC_BinTree_InsertAndGetAllMatches (
LZ4HC_CCtx_internal* ctx,
const BYTE* const ip,
const BYTE* const iHighLimit,
size_t best_mlen,
LZ4HC_match_t* matches,
int* matchNum)
{
U16* const chainTable = ctx->chainTable;
U32* const HashTable = ctx->hashTable;
const BYTE* const base = ctx->base;
const U32 dictLimit = ctx->dictLimit;
const U32 current = (U32)(ip - base);
const U32 lowLimit = (ctx->lowLimit + MAX_DISTANCE > current) ? ctx->lowLimit : current - (MAX_DISTANCE - 1);
const BYTE* const dictBase = ctx->dictBase;
const BYTE* match;
int nbAttempts = ctx->searchNum;
int mnum = 0;
U16 *ptr0, *ptr1, delta0, delta1;
U32 matchIndex;
size_t matchLength = 0;
U32* HashPos;
if (ip + MINMATCH > iHighLimit) return 1;
/* HC4 match finder */
HashPos = &HashTable[LZ4HC_hashPtr(ip)];
matchIndex = *HashPos;
*HashPos = current;
ptr0 = &DELTANEXTMAXD(current*2+1);
ptr1 = &DELTANEXTMAXD(current*2);
delta0 = delta1 = (U16)(current - matchIndex);
while ((matchIndex < current) && (matchIndex>=lowLimit) && (nbAttempts)) {
nbAttempts--;
if (matchIndex >= dictLimit) {
match = base + matchIndex;
matchLength = LZ4_count(ip, match, iHighLimit);
} else {
const BYTE* vLimit = ip + (dictLimit - matchIndex);
match = dictBase + matchIndex;
if (vLimit > iHighLimit) vLimit = iHighLimit;
matchLength = LZ4_count(ip, match, vLimit);
if ((ip+matchLength == vLimit) && (vLimit < iHighLimit))
matchLength += LZ4_count(ip+matchLength, base+dictLimit, iHighLimit);
}
if (matchLength > best_mlen) {
best_mlen = matchLength;
if (matches) {
if (matchIndex >= dictLimit)
matches[mnum].off = (int)(ip - match);
else
matches[mnum].off = (int)(ip - (base + matchIndex)); /* virtual matchpos */
matches[mnum].len = (int)matchLength;
mnum++;
}
if (best_mlen > LZ4_OPT_NUM) break;
}
if (ip+matchLength >= iHighLimit) /* equal : no way to know if inf or sup */
break; /* drop , to guarantee consistency ; miss a bit of compression, but other solutions can corrupt the tree */
if (*(ip+matchLength) < *(match+matchLength)) {
*ptr0 = delta0;
ptr0 = &DELTANEXTMAXD(matchIndex*2);
if (*ptr0 == (U16)-1) break;
delta0 = *ptr0;
delta1 += delta0;
matchIndex -= delta0;
} else {
*ptr1 = delta1;
ptr1 = &DELTANEXTMAXD(matchIndex*2+1);
if (*ptr1 == (U16)-1) break;
delta1 = *ptr1;
delta0 += delta1;
matchIndex -= delta1;
}
}
*ptr0 = (U16)-1;
*ptr1 = (U16)-1;
if (matchNum) *matchNum = mnum;
/* if (best_mlen > 8) return best_mlen-8; */
if (!matchNum) return 1;
return 1;
}
FORCE_INLINE void LZ4HC_updateBinTree(LZ4HC_CCtx_internal* ctx, const BYTE* const ip, const BYTE* const iHighLimit)
{
const BYTE* const base = ctx->base;
const U32 target = (U32)(ip - base);
U32 idx = ctx->nextToUpdate;
while(idx < target)
idx += LZ4HC_BinTree_InsertAndGetAllMatches(ctx, base+idx, iHighLimit, 8, NULL, NULL);
}
/** Tree updater, providing best match */
FORCE_INLINE int LZ4HC_BinTree_GetAllMatches (
LZ4HC_CCtx_internal* ctx,
const BYTE* const ip, const BYTE* const iHighLimit,
size_t best_mlen, LZ4HC_match_t* matches, const int fullUpdate)
{
int mnum = 0;
if (ip < ctx->base + ctx->nextToUpdate) return 0; /* skipped area */
if (fullUpdate) LZ4HC_updateBinTree(ctx, ip, iHighLimit);
best_mlen = LZ4HC_BinTree_InsertAndGetAllMatches(ctx, ip, iHighLimit, best_mlen, matches, &mnum);
ctx->nextToUpdate = (U32)(ip - ctx->base + best_mlen);
return mnum;
}
#define SET_PRICE(pos, ml, offset, ll, cost) \
{ \
while (last_pos < pos) { opt[last_pos+1].price = 1<<30; last_pos++; } \
opt[pos].mlen = (int)ml; \
opt[pos].off = (int)offset; \
opt[pos].litlen = (int)ll; \
opt[pos].price = (int)cost; \
}
static int LZ4HC_compress_optimal (
LZ4HC_CCtx_internal* ctx,
const char* const source,
char* dest,
int inputSize,
int maxOutputSize,
limitedOutput_directive limit,
size_t sufficient_len,
const int fullUpdate
)
{
LZ4HC_optimal_t opt[LZ4_OPT_NUM + 1]; /* this uses a bit too much stack memory to my taste ... */
LZ4HC_match_t matches[LZ4_OPT_NUM + 1];
const BYTE* ip = (const BYTE*) source;
const BYTE* anchor = ip;
const BYTE* const iend = ip + inputSize;
const BYTE* const mflimit = iend - MFLIMIT;
const BYTE* const matchlimit = (iend - LASTLITERALS);
BYTE* op = (BYTE*) dest;
BYTE* const oend = op + maxOutputSize;
/* init */
if (sufficient_len >= LZ4_OPT_NUM) sufficient_len = LZ4_OPT_NUM-1;
ctx->end += inputSize;
ip++;
/* Main Loop */
while (ip < mflimit) {
size_t const llen = ip - anchor;
size_t last_pos = 0;
size_t match_num, cur, best_mlen, best_off;
memset(opt, 0, sizeof(LZ4HC_optimal_t)); /* memset only the first one */
match_num = LZ4HC_BinTree_GetAllMatches(ctx, ip, matchlimit, MINMATCH-1, matches, fullUpdate);
if (!match_num) { ip++; continue; }
if ((size_t)matches[match_num-1].len > sufficient_len) {
/* good enough solution : immediate encoding */
best_mlen = matches[match_num-1].len;
best_off = matches[match_num-1].off;
cur = 0;
last_pos = 1;
goto encode;
}
/* set prices using matches at position = 0 */
{ size_t matchNb;
for (matchNb = 0; matchNb < match_num; matchNb++) {
size_t mlen = (matchNb>0) ? (size_t)matches[matchNb-1].len+1 : MINMATCH;
best_mlen = matches[matchNb].len; /* necessarily < sufficient_len < LZ4_OPT_NUM */
for ( ; mlen <= best_mlen ; mlen++) {
size_t const cost = LZ4HC_sequencePrice(llen, mlen) - LZ4HC_literalsPrice(llen);
SET_PRICE(mlen, mlen, matches[matchNb].off, 0, cost); /* updates last_pos and opt[pos] */
} } }
if (last_pos < MINMATCH) { ip++; continue; } /* note : on clang at least, this test improves performance */
/* check further positions */
opt[0].mlen = opt[1].mlen = 1;
for (cur = 1; cur <= last_pos; cur++) {
const BYTE* const curPtr = ip + cur;
/* establish baseline price if cur is literal */
{ size_t price, litlen;
if (opt[cur-1].mlen == 1) {
/* no match at previous position */
litlen = opt[cur-1].litlen + 1;
if (cur > litlen) {
price = opt[cur - litlen].price + LZ4HC_literalsPrice(litlen);
} else {
price = LZ4HC_literalsPrice(llen + litlen) - LZ4HC_literalsPrice(llen);
}
} else {
litlen = 1;
price = opt[cur - 1].price + LZ4HC_literalsPrice(1);
}
if (price < (size_t)opt[cur].price)
SET_PRICE(cur, 1 /*mlen*/, 0 /*off*/, litlen, price); /* note : increases last_pos */
}
if (cur == last_pos || curPtr >= mflimit) break;
match_num = LZ4HC_BinTree_GetAllMatches(ctx, curPtr, matchlimit, MINMATCH-1, matches, fullUpdate);
if ((match_num > 0) && (size_t)matches[match_num-1].len > sufficient_len) {
/* immediate encoding */
best_mlen = matches[match_num-1].len;
best_off = matches[match_num-1].off;
last_pos = cur + 1;
goto encode;
}
/* set prices using matches at position = cur */
{ size_t matchNb;
for (matchNb = 0; matchNb < match_num; matchNb++) {
size_t ml = (matchNb>0) ? (size_t)matches[matchNb-1].len+1 : MINMATCH;
best_mlen = (cur + matches[matchNb].len < LZ4_OPT_NUM) ?
(size_t)matches[matchNb].len : LZ4_OPT_NUM - cur;
for ( ; ml <= best_mlen ; ml++) {
size_t ll, price;
if (opt[cur].mlen == 1) {
ll = opt[cur].litlen;
if (cur > ll)
price = opt[cur - ll].price + LZ4HC_sequencePrice(ll, ml);
else
price = LZ4HC_sequencePrice(llen + ll, ml) - LZ4HC_literalsPrice(llen);
} else {
ll = 0;
price = opt[cur].price + LZ4HC_sequencePrice(0, ml);
}
if (cur + ml > last_pos || price < (size_t)opt[cur + ml].price) {
SET_PRICE(cur + ml, ml, matches[matchNb].off, ll, price);
} } } }
} /* for (cur = 1; cur <= last_pos; cur++) */
best_mlen = opt[last_pos].mlen;
best_off = opt[last_pos].off;
cur = last_pos - best_mlen;
encode: /* cur, last_pos, best_mlen, best_off must be set */
opt[0].mlen = 1;
while (1) { /* from end to beginning */
size_t const ml = opt[cur].mlen;
int const offset = opt[cur].off;
opt[cur].mlen = (int)best_mlen;
opt[cur].off = (int)best_off;
best_mlen = ml;
best_off = offset;
if (ml > cur) break; /* can this happen ? */
cur -= ml;
}
/* encode all recorded sequences */
cur = 0;
while (cur < last_pos) {
int const ml = opt[cur].mlen;
int const offset = opt[cur].off;
if (ml == 1) { ip++; cur++; continue; }
cur += ml;
if ( LZ4HC_encodeSequence(&ip, &op, &anchor, ml, ip - offset, limit, oend) ) return 0;
}
} /* while (ip < mflimit) */
/* Encode Last Literals */
{ int lastRun = (int)(iend - anchor);
if ((limit) && (((char*)op - dest) + lastRun + 1 + ((lastRun+255-RUN_MASK)/255) > (U32)maxOutputSize)) return 0; /* Check output limit */
if (lastRun>=(int)RUN_MASK) { *op++=(RUN_MASK<<ML_BITS); lastRun-=RUN_MASK; for(; lastRun > 254 ; lastRun-=255) *op++ = 255; *op++ = (BYTE) lastRun; }
else *op++ = (BYTE)(lastRun<<ML_BITS);
memcpy(op, anchor, iend - anchor);
op += iend-anchor;
}
/* End */
return (int) ((char*)op-dest);
}

File diff suppressed because it is too large Load Diff

View File

@ -1,720 +0,0 @@
/*
LZ4 HC - High Compression Mode of LZ4
Copyright (C) 2011-2016, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- LZ4 source repository : https://github.com/lz4/lz4
- LZ4 public forum : https://groups.google.com/forum/#!forum/lz4c
*/
/* note : lz4hc is not an independent module, it requires lz4.h/lz4.c for proper compilation */
/* *************************************
* Tuning Parameter
***************************************/
/*!
* HEAPMODE :
* Select how default compression function will allocate workplace memory,
* in stack (0:fastest), or in heap (1:requires malloc()).
* Since workplace is rather large, heap mode is recommended.
*/
#ifndef LZ4HC_HEAPMODE
# define LZ4HC_HEAPMODE 1
#endif
/* *************************************
* Dependency
***************************************/
#include "lz4hc.h"
/* *************************************
* Local Compiler Options
***************************************/
#if defined(__GNUC__)
# pragma GCC diagnostic ignored "-Wunused-function"
#endif
#if defined (__clang__)
# pragma clang diagnostic ignored "-Wunused-function"
#endif
/* *************************************
* Common LZ4 definition
***************************************/
#define LZ4_COMMONDEFS_ONLY
#include "lz4.c"
/* *************************************
* Local Constants
***************************************/
#define OPTIMAL_ML (int)((ML_MASK-1)+MINMATCH)
/**************************************
* Local Macros
**************************************/
#define HASH_FUNCTION(i) (((i) * 2654435761U) >> ((MINMATCH*8)-LZ4HC_HASH_LOG))
#define DELTANEXTMAXD(p) chainTable[(p) & LZ4HC_MAXD_MASK] /* flexible, LZ4HC_MAXD dependent */
#define DELTANEXTU16(p) chainTable[(U16)(p)] /* faster */
static U32 LZ4HC_hashPtr(const void* ptr) { return HASH_FUNCTION(LZ4_read32(ptr)); }
/**************************************
* HC Compression
**************************************/
static void LZ4HC_init (LZ4HC_CCtx_internal* hc4, const BYTE* start)
{
MEM_INIT((void*)hc4->hashTable, 0, sizeof(hc4->hashTable));
MEM_INIT(hc4->chainTable, 0xFF, sizeof(hc4->chainTable));
hc4->nextToUpdate = 64 KB;
hc4->base = start - 64 KB;
hc4->end = start;
hc4->dictBase = start - 64 KB;
hc4->dictLimit = 64 KB;
hc4->lowLimit = 64 KB;
}
/* Update chains up to ip (excluded) */
FORCE_INLINE void LZ4HC_Insert (LZ4HC_CCtx_internal* hc4, const BYTE* ip)
{
U16* const chainTable = hc4->chainTable;
U32* const hashTable = hc4->hashTable;
const BYTE* const base = hc4->base;
U32 const target = (U32)(ip - base);
U32 idx = hc4->nextToUpdate;
while (idx < target) {
U32 const h = LZ4HC_hashPtr(base+idx);
size_t delta = idx - hashTable[h];
if (delta>MAX_DISTANCE) delta = MAX_DISTANCE;
DELTANEXTU16(idx) = (U16)delta;
hashTable[h] = idx;
idx++;
}
hc4->nextToUpdate = target;
}
FORCE_INLINE int LZ4HC_InsertAndFindBestMatch (LZ4HC_CCtx_internal* hc4, /* Index table will be updated */
const BYTE* ip, const BYTE* const iLimit,
const BYTE** matchpos,
const int maxNbAttempts)
{
U16* const chainTable = hc4->chainTable;
U32* const HashTable = hc4->hashTable;
const BYTE* const base = hc4->base;
const BYTE* const dictBase = hc4->dictBase;
const U32 dictLimit = hc4->dictLimit;
const U32 lowLimit = (hc4->lowLimit + 64 KB > (U32)(ip-base)) ? hc4->lowLimit : (U32)(ip - base) - (64 KB - 1);
U32 matchIndex;
int nbAttempts=maxNbAttempts;
size_t ml=0;
/* HC4 match finder */
LZ4HC_Insert(hc4, ip);
matchIndex = HashTable[LZ4HC_hashPtr(ip)];
while ((matchIndex>=lowLimit) && (nbAttempts)) {
nbAttempts--;
if (matchIndex >= dictLimit) {
const BYTE* const match = base + matchIndex;
if (*(match+ml) == *(ip+ml)
&& (LZ4_read32(match) == LZ4_read32(ip)))
{
size_t const mlt = LZ4_count(ip+MINMATCH, match+MINMATCH, iLimit) + MINMATCH;
if (mlt > ml) { ml = mlt; *matchpos = match; }
}
} else {
const BYTE* const match = dictBase + matchIndex;
if (LZ4_read32(match) == LZ4_read32(ip)) {
size_t mlt;
const BYTE* vLimit = ip + (dictLimit - matchIndex);
if (vLimit > iLimit) vLimit = iLimit;
mlt = LZ4_count(ip+MINMATCH, match+MINMATCH, vLimit) + MINMATCH;
if ((ip+mlt == vLimit) && (vLimit < iLimit))
mlt += LZ4_count(ip+mlt, base+dictLimit, iLimit);
if (mlt > ml) { ml = mlt; *matchpos = base + matchIndex; } /* virtual matchpos */
}
}
matchIndex -= DELTANEXTU16(matchIndex);
}
return (int)ml;
}
FORCE_INLINE int LZ4HC_InsertAndGetWiderMatch (
LZ4HC_CCtx_internal* hc4,
const BYTE* const ip,
const BYTE* const iLowLimit,
const BYTE* const iHighLimit,
int longest,
const BYTE** matchpos,
const BYTE** startpos,
const int maxNbAttempts)
{
U16* const chainTable = hc4->chainTable;
U32* const HashTable = hc4->hashTable;
const BYTE* const base = hc4->base;
const U32 dictLimit = hc4->dictLimit;
const BYTE* const lowPrefixPtr = base + dictLimit;
const U32 lowLimit = (hc4->lowLimit + 64 KB > (U32)(ip-base)) ? hc4->lowLimit : (U32)(ip - base) - (64 KB - 1);
const BYTE* const dictBase = hc4->dictBase;
U32 matchIndex;
int nbAttempts = maxNbAttempts;
int delta = (int)(ip-iLowLimit);
/* First Match */
LZ4HC_Insert(hc4, ip);
matchIndex = HashTable[LZ4HC_hashPtr(ip)];
while ((matchIndex>=lowLimit) && (nbAttempts)) {
nbAttempts--;
if (matchIndex >= dictLimit) {
const BYTE* matchPtr = base + matchIndex;
if (*(iLowLimit + longest) == *(matchPtr - delta + longest)) {
if (LZ4_read32(matchPtr) == LZ4_read32(ip)) {
int mlt = MINMATCH + LZ4_count(ip+MINMATCH, matchPtr+MINMATCH, iHighLimit);
int back = 0;
while ((ip+back > iLowLimit)
&& (matchPtr+back > lowPrefixPtr)
&& (ip[back-1] == matchPtr[back-1]))
back--;
mlt -= back;
if (mlt > longest) {
longest = (int)mlt;
*matchpos = matchPtr+back;
*startpos = ip+back;
}
}
}
} else {
const BYTE* const matchPtr = dictBase + matchIndex;
if (LZ4_read32(matchPtr) == LZ4_read32(ip)) {
size_t mlt;
int back=0;
const BYTE* vLimit = ip + (dictLimit - matchIndex);
if (vLimit > iHighLimit) vLimit = iHighLimit;
mlt = LZ4_count(ip+MINMATCH, matchPtr+MINMATCH, vLimit) + MINMATCH;
if ((ip+mlt == vLimit) && (vLimit < iHighLimit))
mlt += LZ4_count(ip+mlt, base+dictLimit, iHighLimit);
while ((ip+back > iLowLimit) && (matchIndex+back > lowLimit) && (ip[back-1] == matchPtr[back-1])) back--;
mlt -= back;
if ((int)mlt > longest) { longest = (int)mlt; *matchpos = base + matchIndex + back; *startpos = ip+back; }
}
}
matchIndex -= DELTANEXTU16(matchIndex);
}
return longest;
}
typedef enum { noLimit = 0, limitedOutput = 1 } limitedOutput_directive;
#define LZ4HC_DEBUG 0
#if LZ4HC_DEBUG
static unsigned debug = 0;
#endif
FORCE_INLINE int LZ4HC_encodeSequence (
const BYTE** ip,
BYTE** op,
const BYTE** anchor,
int matchLength,
const BYTE* const match,
limitedOutput_directive limitedOutputBuffer,
BYTE* oend)
{
int length;
BYTE* token;
#if LZ4HC_DEBUG
if (debug) printf("literal : %u -- match : %u -- offset : %u\n", (U32)(*ip - *anchor), (U32)matchLength, (U32)(*ip-match));
#endif
/* Encode Literal length */
length = (int)(*ip - *anchor);
token = (*op)++;
if ((limitedOutputBuffer) && ((*op + (length>>8) + length + (2 + 1 + LASTLITERALS)) > oend)) return 1; /* Check output limit */
if (length>=(int)RUN_MASK) { int len; *token=(RUN_MASK<<ML_BITS); len = length-RUN_MASK; for(; len > 254 ; len-=255) *(*op)++ = 255; *(*op)++ = (BYTE)len; }
else *token = (BYTE)(length<<ML_BITS);
/* Copy Literals */
LZ4_wildCopy(*op, *anchor, (*op) + length);
*op += length;
/* Encode Offset */
LZ4_writeLE16(*op, (U16)(*ip-match)); *op += 2;
/* Encode MatchLength */
length = (int)(matchLength-MINMATCH);
if ((limitedOutputBuffer) && (*op + (length>>8) + (1 + LASTLITERALS) > oend)) return 1; /* Check output limit */
if (length>=(int)ML_MASK) {
*token += ML_MASK;
length -= ML_MASK;
for(; length > 509 ; length-=510) { *(*op)++ = 255; *(*op)++ = 255; }
if (length > 254) { length-=255; *(*op)++ = 255; }
*(*op)++ = (BYTE)length;
} else {
*token += (BYTE)(length);
}
/* Prepare next loop */
*ip += matchLength;
*anchor = *ip;
return 0;
}
#include "lz4opt.h"
static int LZ4HC_compress_hashChain (
LZ4HC_CCtx_internal* const ctx,
const char* const source,
char* const dest,
int const inputSize,
int const maxOutputSize,
unsigned maxNbAttempts,
limitedOutput_directive limit
)
{
const BYTE* ip = (const BYTE*) source;
const BYTE* anchor = ip;
const BYTE* const iend = ip + inputSize;
const BYTE* const mflimit = iend - MFLIMIT;
const BYTE* const matchlimit = (iend - LASTLITERALS);
BYTE* op = (BYTE*) dest;
BYTE* const oend = op + maxOutputSize;
int ml, ml2, ml3, ml0;
const BYTE* ref = NULL;
const BYTE* start2 = NULL;
const BYTE* ref2 = NULL;
const BYTE* start3 = NULL;
const BYTE* ref3 = NULL;
const BYTE* start0;
const BYTE* ref0;
/* init */
ctx->end += inputSize;
ip++;
/* Main Loop */
while (ip < mflimit) {
ml = LZ4HC_InsertAndFindBestMatch (ctx, ip, matchlimit, (&ref), maxNbAttempts);
if (!ml) { ip++; continue; }
/* saved, in case we would skip too much */
start0 = ip;
ref0 = ref;
ml0 = ml;
_Search2:
if (ip+ml < mflimit)
ml2 = LZ4HC_InsertAndGetWiderMatch(ctx, ip + ml - 2, ip + 0, matchlimit, ml, &ref2, &start2, maxNbAttempts);
else ml2 = ml;
if (ml2 == ml) { /* No better match */
if (LZ4HC_encodeSequence(&ip, &op, &anchor, ml, ref, limit, oend)) return 0;
continue;
}
if (start0 < ip) {
if (start2 < ip + ml0) { /* empirical */
ip = start0;
ref = ref0;
ml = ml0;
}
}
/* Here, start0==ip */
if ((start2 - ip) < 3) { /* First Match too small : removed */
ml = ml2;
ip = start2;
ref =ref2;
goto _Search2;
}
_Search3:
/*
* Currently we have :
* ml2 > ml1, and
* ip1+3 <= ip2 (usually < ip1+ml1)
*/
if ((start2 - ip) < OPTIMAL_ML) {
int correction;
int new_ml = ml;
if (new_ml > OPTIMAL_ML) new_ml = OPTIMAL_ML;
if (ip+new_ml > start2 + ml2 - MINMATCH) new_ml = (int)(start2 - ip) + ml2 - MINMATCH;
correction = new_ml - (int)(start2 - ip);
if (correction > 0) {
start2 += correction;
ref2 += correction;
ml2 -= correction;
}
}
/* Now, we have start2 = ip+new_ml, with new_ml = min(ml, OPTIMAL_ML=18) */
if (start2 + ml2 < mflimit)
ml3 = LZ4HC_InsertAndGetWiderMatch(ctx, start2 + ml2 - 3, start2, matchlimit, ml2, &ref3, &start3, maxNbAttempts);
else ml3 = ml2;
if (ml3 == ml2) { /* No better match : 2 sequences to encode */
/* ip & ref are known; Now for ml */
if (start2 < ip+ml) ml = (int)(start2 - ip);
/* Now, encode 2 sequences */
if (LZ4HC_encodeSequence(&ip, &op, &anchor, ml, ref, limit, oend)) return 0;
ip = start2;
if (LZ4HC_encodeSequence(&ip, &op, &anchor, ml2, ref2, limit, oend)) return 0;
continue;
}
if (start3 < ip+ml+3) { /* Not enough space for match 2 : remove it */
if (start3 >= (ip+ml)) { /* can write Seq1 immediately ==> Seq2 is removed, so Seq3 becomes Seq1 */
if (start2 < ip+ml) {
int correction = (int)(ip+ml - start2);
start2 += correction;
ref2 += correction;
ml2 -= correction;
if (ml2 < MINMATCH) {
start2 = start3;
ref2 = ref3;
ml2 = ml3;
}
}
if (LZ4HC_encodeSequence(&ip, &op, &anchor, ml, ref, limit, oend)) return 0;
ip = start3;
ref = ref3;
ml = ml3;
start0 = start2;
ref0 = ref2;
ml0 = ml2;
goto _Search2;
}
start2 = start3;
ref2 = ref3;
ml2 = ml3;
goto _Search3;
}
/*
* OK, now we have 3 ascending matches; let's write at least the first one
* ip & ref are known; Now for ml
*/
if (start2 < ip+ml) {
if ((start2 - ip) < (int)ML_MASK) {
int correction;
if (ml > OPTIMAL_ML) ml = OPTIMAL_ML;
if (ip + ml > start2 + ml2 - MINMATCH) ml = (int)(start2 - ip) + ml2 - MINMATCH;
correction = ml - (int)(start2 - ip);
if (correction > 0) {
start2 += correction;
ref2 += correction;
ml2 -= correction;
}
} else {
ml = (int)(start2 - ip);
}
}
if (LZ4HC_encodeSequence(&ip, &op, &anchor, ml, ref, limit, oend)) return 0;
ip = start2;
ref = ref2;
ml = ml2;
start2 = start3;
ref2 = ref3;
ml2 = ml3;
goto _Search3;
}
/* Encode Last Literals */
{ int lastRun = (int)(iend - anchor);
if ((limit) && (((char*)op - dest) + lastRun + 1 + ((lastRun+255-RUN_MASK)/255) > (U32)maxOutputSize)) return 0; /* Check output limit */
if (lastRun>=(int)RUN_MASK) { *op++=(RUN_MASK<<ML_BITS); lastRun-=RUN_MASK; for(; lastRun > 254 ; lastRun-=255) *op++ = 255; *op++ = (BYTE) lastRun; }
else *op++ = (BYTE)(lastRun<<ML_BITS);
memcpy(op, anchor, iend - anchor);
op += iend-anchor;
}
/* End */
return (int) (((char*)op)-dest);
}
static int LZ4HC_getSearchNum(int compressionLevel)
{
switch (compressionLevel) {
default: return 0; /* unused */
case 11: return 128;
case 12: return 1<<10;
}
}
static int LZ4HC_compress_generic (
LZ4HC_CCtx_internal* const ctx,
const char* const source,
char* const dest,
int const inputSize,
int const maxOutputSize,
int compressionLevel,
limitedOutput_directive limit
)
{
if (compressionLevel < 1) compressionLevel = LZ4HC_CLEVEL_DEFAULT;
if (compressionLevel > 9) {
switch (compressionLevel) {
case 10: return LZ4HC_compress_hashChain(ctx, source, dest, inputSize, maxOutputSize, 1 << (16-1), limit);
case 11: ctx->searchNum = LZ4HC_getSearchNum(compressionLevel); return LZ4HC_compress_optimal(ctx, source, dest, inputSize, maxOutputSize, limit, 128, 0);
default:
case 12: ctx->searchNum = LZ4HC_getSearchNum(compressionLevel); return LZ4HC_compress_optimal(ctx, source, dest, inputSize, maxOutputSize, limit, LZ4_OPT_NUM, 1);
}
}
return LZ4HC_compress_hashChain(ctx, source, dest, inputSize, maxOutputSize, 1 << (compressionLevel-1), limit);
}
int LZ4_sizeofStateHC(void) { return sizeof(LZ4_streamHC_t); }
int LZ4_compress_HC_extStateHC (void* state, const char* src, char* dst, int srcSize, int maxDstSize, int compressionLevel)
{
LZ4HC_CCtx_internal* ctx = &((LZ4_streamHC_t*)state)->internal_donotuse;
if (((size_t)(state)&(sizeof(void*)-1)) != 0) return 0; /* Error : state is not aligned for pointers (32 or 64 bits) */
LZ4HC_init (ctx, (const BYTE*)src);
if (maxDstSize < LZ4_compressBound(srcSize))
return LZ4HC_compress_generic (ctx, src, dst, srcSize, maxDstSize, compressionLevel, limitedOutput);
else
return LZ4HC_compress_generic (ctx, src, dst, srcSize, maxDstSize, compressionLevel, noLimit);
}
int LZ4_compress_HC(const char* src, char* dst, int srcSize, int maxDstSize, int compressionLevel)
{
#if defined(LZ4HC_HEAPMODE) && LZ4HC_HEAPMODE==1
LZ4_streamHC_t* const statePtr = (LZ4_streamHC_t*)malloc(sizeof(LZ4_streamHC_t));
#else
LZ4_streamHC_t state;
LZ4_streamHC_t* const statePtr = &state;
#endif
int const cSize = LZ4_compress_HC_extStateHC(statePtr, src, dst, srcSize, maxDstSize, compressionLevel);
#if defined(LZ4HC_HEAPMODE) && LZ4HC_HEAPMODE==1
free(statePtr);
#endif
return cSize;
}
/**************************************
* Streaming Functions
**************************************/
/* allocation */
LZ4_streamHC_t* LZ4_createStreamHC(void) { return (LZ4_streamHC_t*)malloc(sizeof(LZ4_streamHC_t)); }
int LZ4_freeStreamHC (LZ4_streamHC_t* LZ4_streamHCPtr) { free(LZ4_streamHCPtr); return 0; }
/* initialization */
void LZ4_resetStreamHC (LZ4_streamHC_t* LZ4_streamHCPtr, int compressionLevel)
{
LZ4_STATIC_ASSERT(sizeof(LZ4HC_CCtx_internal) <= sizeof(size_t) * LZ4_STREAMHCSIZE_SIZET); /* if compilation fails here, LZ4_STREAMHCSIZE must be increased */
LZ4_streamHCPtr->internal_donotuse.base = NULL;
LZ4_streamHCPtr->internal_donotuse.compressionLevel = (unsigned)compressionLevel;
LZ4_streamHCPtr->internal_donotuse.searchNum = LZ4HC_getSearchNum(compressionLevel);
}
int LZ4_loadDictHC (LZ4_streamHC_t* LZ4_streamHCPtr, const char* dictionary, int dictSize)
{
LZ4HC_CCtx_internal* ctxPtr = &LZ4_streamHCPtr->internal_donotuse;
if (dictSize > 64 KB) {
dictionary += dictSize - 64 KB;
dictSize = 64 KB;
}
LZ4HC_init (ctxPtr, (const BYTE*)dictionary);
ctxPtr->end = (const BYTE*)dictionary + dictSize;
if (ctxPtr->compressionLevel >= LZ4HC_CLEVEL_OPT_MIN)
LZ4HC_updateBinTree(ctxPtr, ctxPtr->end - MFLIMIT, ctxPtr->end - LASTLITERALS);
else
if (dictSize >= 4) LZ4HC_Insert (ctxPtr, ctxPtr->end-3);
return dictSize;
}
/* compression */
static void LZ4HC_setExternalDict(LZ4HC_CCtx_internal* ctxPtr, const BYTE* newBlock)
{
if (ctxPtr->compressionLevel >= LZ4HC_CLEVEL_OPT_MIN)
LZ4HC_updateBinTree(ctxPtr, ctxPtr->end - MFLIMIT, ctxPtr->end - LASTLITERALS);
else
if (ctxPtr->end >= ctxPtr->base + 4) LZ4HC_Insert (ctxPtr, ctxPtr->end-3); /* Referencing remaining dictionary content */
/* Only one memory segment for extDict, so any previous extDict is lost at this stage */
ctxPtr->lowLimit = ctxPtr->dictLimit;
ctxPtr->dictLimit = (U32)(ctxPtr->end - ctxPtr->base);
ctxPtr->dictBase = ctxPtr->base;
ctxPtr->base = newBlock - ctxPtr->dictLimit;
ctxPtr->end = newBlock;
ctxPtr->nextToUpdate = ctxPtr->dictLimit; /* match referencing will resume from there */
}
static int LZ4_compressHC_continue_generic (LZ4_streamHC_t* LZ4_streamHCPtr,
const char* source, char* dest,
int inputSize, int maxOutputSize, limitedOutput_directive limit)
{
LZ4HC_CCtx_internal* ctxPtr = &LZ4_streamHCPtr->internal_donotuse;
/* auto-init if forgotten */
if (ctxPtr->base == NULL) LZ4HC_init (ctxPtr, (const BYTE*) source);
/* Check overflow */
if ((size_t)(ctxPtr->end - ctxPtr->base) > 2 GB) {
size_t dictSize = (size_t)(ctxPtr->end - ctxPtr->base) - ctxPtr->dictLimit;
if (dictSize > 64 KB) dictSize = 64 KB;
LZ4_loadDictHC(LZ4_streamHCPtr, (const char*)(ctxPtr->end) - dictSize, (int)dictSize);
}
/* Check if blocks follow each other */
if ((const BYTE*)source != ctxPtr->end) LZ4HC_setExternalDict(ctxPtr, (const BYTE*)source);
/* Check overlapping input/dictionary space */
{ const BYTE* sourceEnd = (const BYTE*) source + inputSize;
const BYTE* const dictBegin = ctxPtr->dictBase + ctxPtr->lowLimit;
const BYTE* const dictEnd = ctxPtr->dictBase + ctxPtr->dictLimit;
if ((sourceEnd > dictBegin) && ((const BYTE*)source < dictEnd)) {
if (sourceEnd > dictEnd) sourceEnd = dictEnd;
ctxPtr->lowLimit = (U32)(sourceEnd - ctxPtr->dictBase);
if (ctxPtr->dictLimit - ctxPtr->lowLimit < 4) ctxPtr->lowLimit = ctxPtr->dictLimit;
}
}
return LZ4HC_compress_generic (ctxPtr, source, dest, inputSize, maxOutputSize, ctxPtr->compressionLevel, limit);
}
int LZ4_compress_HC_continue (LZ4_streamHC_t* LZ4_streamHCPtr, const char* source, char* dest, int inputSize, int maxOutputSize)
{
if (maxOutputSize < LZ4_compressBound(inputSize))
return LZ4_compressHC_continue_generic (LZ4_streamHCPtr, source, dest, inputSize, maxOutputSize, limitedOutput);
else
return LZ4_compressHC_continue_generic (LZ4_streamHCPtr, source, dest, inputSize, maxOutputSize, noLimit);
}
/* dictionary saving */
int LZ4_saveDictHC (LZ4_streamHC_t* LZ4_streamHCPtr, char* safeBuffer, int dictSize)
{
LZ4HC_CCtx_internal* const streamPtr = &LZ4_streamHCPtr->internal_donotuse;
int const prefixSize = (int)(streamPtr->end - (streamPtr->base + streamPtr->dictLimit));
if (dictSize > 64 KB) dictSize = 64 KB;
if (dictSize < 4) dictSize = 0;
if (dictSize > prefixSize) dictSize = prefixSize;
memmove(safeBuffer, streamPtr->end - dictSize, dictSize);
{ U32 const endIndex = (U32)(streamPtr->end - streamPtr->base);
streamPtr->end = (const BYTE*)safeBuffer + dictSize;
streamPtr->base = streamPtr->end - endIndex;
streamPtr->dictLimit = endIndex - dictSize;
streamPtr->lowLimit = endIndex - dictSize;
if (streamPtr->nextToUpdate < streamPtr->dictLimit) streamPtr->nextToUpdate = streamPtr->dictLimit;
}
return dictSize;
}
/***********************************
* Deprecated Functions
***********************************/
/* These functions currently generate deprecation warnings */
/* Deprecated compression functions */
int LZ4_compressHC(const char* src, char* dst, int srcSize) { return LZ4_compress_HC (src, dst, srcSize, LZ4_compressBound(srcSize), 0); }
int LZ4_compressHC_limitedOutput(const char* src, char* dst, int srcSize, int maxDstSize) { return LZ4_compress_HC(src, dst, srcSize, maxDstSize, 0); }
int LZ4_compressHC2(const char* src, char* dst, int srcSize, int cLevel) { return LZ4_compress_HC (src, dst, srcSize, LZ4_compressBound(srcSize), cLevel); }
int LZ4_compressHC2_limitedOutput(const char* src, char* dst, int srcSize, int maxDstSize, int cLevel) { return LZ4_compress_HC(src, dst, srcSize, maxDstSize, cLevel); }
int LZ4_compressHC_withStateHC (void* state, const char* src, char* dst, int srcSize) { return LZ4_compress_HC_extStateHC (state, src, dst, srcSize, LZ4_compressBound(srcSize), 0); }
int LZ4_compressHC_limitedOutput_withStateHC (void* state, const char* src, char* dst, int srcSize, int maxDstSize) { return LZ4_compress_HC_extStateHC (state, src, dst, srcSize, maxDstSize, 0); }
int LZ4_compressHC2_withStateHC (void* state, const char* src, char* dst, int srcSize, int cLevel) { return LZ4_compress_HC_extStateHC(state, src, dst, srcSize, LZ4_compressBound(srcSize), cLevel); }
int LZ4_compressHC2_limitedOutput_withStateHC (void* state, const char* src, char* dst, int srcSize, int maxDstSize, int cLevel) { return LZ4_compress_HC_extStateHC(state, src, dst, srcSize, maxDstSize, cLevel); }
int LZ4_compressHC_continue (LZ4_streamHC_t* ctx, const char* src, char* dst, int srcSize) { return LZ4_compress_HC_continue (ctx, src, dst, srcSize, LZ4_compressBound(srcSize)); }
int LZ4_compressHC_limitedOutput_continue (LZ4_streamHC_t* ctx, const char* src, char* dst, int srcSize, int maxDstSize) { return LZ4_compress_HC_continue (ctx, src, dst, srcSize, maxDstSize); }
/* Deprecated streaming functions */
int LZ4_sizeofStreamStateHC(void) { return LZ4_STREAMHCSIZE; }
int LZ4_resetStreamStateHC(void* state, char* inputBuffer)
{
LZ4HC_CCtx_internal *ctx = &((LZ4_streamHC_t*)state)->internal_donotuse;
if ((((size_t)state) & (sizeof(void*)-1)) != 0) return 1; /* Error : pointer is not aligned for pointer (32 or 64 bits) */
LZ4HC_init(ctx, (const BYTE*)inputBuffer);
ctx->inputBuffer = (BYTE*)inputBuffer;
return 0;
}
void* LZ4_createHC (char* inputBuffer)
{
LZ4_streamHC_t* hc4 = (LZ4_streamHC_t*)ALLOCATOR(1, sizeof(LZ4_streamHC_t));
if (hc4 == NULL) return NULL; /* not enough memory */
LZ4HC_init (&hc4->internal_donotuse, (const BYTE*)inputBuffer);
hc4->internal_donotuse.inputBuffer = (BYTE*)inputBuffer;
return hc4;
}
int LZ4_freeHC (void* LZ4HC_Data) { FREEMEM(LZ4HC_Data); return 0; }
int LZ4_compressHC2_continue (void* LZ4HC_Data, const char* source, char* dest, int inputSize, int compressionLevel)
{
return LZ4HC_compress_generic (&((LZ4_streamHC_t*)LZ4HC_Data)->internal_donotuse, source, dest, inputSize, 0, compressionLevel, noLimit);
}
int LZ4_compressHC2_limitedOutput_continue (void* LZ4HC_Data, const char* source, char* dest, int inputSize, int maxOutputSize, int compressionLevel)
{
return LZ4HC_compress_generic (&((LZ4_streamHC_t*)LZ4HC_Data)->internal_donotuse, source, dest, inputSize, maxOutputSize, compressionLevel, limitedOutput);
}
char* LZ4_slideInputBufferHC(void* LZ4HC_Data)
{
LZ4HC_CCtx_internal* const hc4 = &((LZ4_streamHC_t*)LZ4HC_Data)->internal_donotuse;
int const dictSize = LZ4_saveDictHC((LZ4_streamHC_t*)LZ4HC_Data, (char*)(hc4->inputBuffer), 64 KB);
return (char*)(hc4->inputBuffer + dictSize);
}

View File

@ -1,30 +0,0 @@
BSD License
For Zstandard software
Copyright (c) 2016-present, Facebook, Inc. All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name Facebook nor the names of its contributors may be used to
endorse or promote products derived from this software without specific
prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@ -1 +0,0 @@
https://github.com/facebook/zstd/tree/v1.3.1

View File

@ -1,459 +0,0 @@
/* ******************************************************************
bitstream
Part of FSE library
header file (to include)
Copyright (C) 2013-2017, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
****************************************************************** */
#ifndef BITSTREAM_H_MODULE
#define BITSTREAM_H_MODULE
#if defined (__cplusplus)
extern "C" {
#endif
/*
* This API consists of small unitary functions, which must be inlined for best performance.
* Since link-time-optimization is not available for all compilers,
* these functions are defined into a .h to be included.
*/
/*-****************************************
* Dependencies
******************************************/
#include "mem.h" /* unaligned access routines */
#include "error_private.h" /* error codes and messages */
/*-*************************************
* Debug
***************************************/
#if defined(BIT_DEBUG) && (BIT_DEBUG>=1)
# include <assert.h>
#else
# ifndef assert
# define assert(condition) ((void)0)
# endif
#endif
/*=========================================
* Target specific
=========================================*/
#if defined(__BMI__) && defined(__GNUC__)
# include <immintrin.h> /* support for bextr (experimental) */
#endif
#define STREAM_ACCUMULATOR_MIN_32 25
#define STREAM_ACCUMULATOR_MIN_64 57
#define STREAM_ACCUMULATOR_MIN ((U32)(MEM_32bits() ? STREAM_ACCUMULATOR_MIN_32 : STREAM_ACCUMULATOR_MIN_64))
/*-******************************************
* bitStream encoding API (write forward)
********************************************/
/* bitStream can mix input from multiple sources.
* A critical property of these streams is that they encode and decode in **reverse** direction.
* So the first bit sequence you add will be the last to be read, like a LIFO stack.
*/
typedef struct
{
size_t bitContainer;
unsigned bitPos;
char* startPtr;
char* ptr;
char* endPtr;
} BIT_CStream_t;
MEM_STATIC size_t BIT_initCStream(BIT_CStream_t* bitC, void* dstBuffer, size_t dstCapacity);
MEM_STATIC void BIT_addBits(BIT_CStream_t* bitC, size_t value, unsigned nbBits);
MEM_STATIC void BIT_flushBits(BIT_CStream_t* bitC);
MEM_STATIC size_t BIT_closeCStream(BIT_CStream_t* bitC);
/* Start with initCStream, providing the size of buffer to write into.
* bitStream will never write outside of this buffer.
* `dstCapacity` must be >= sizeof(bitD->bitContainer), otherwise @return will be an error code.
*
* bits are first added to a local register.
* Local register is size_t, hence 64-bits on 64-bits systems, or 32-bits on 32-bits systems.
* Writing data into memory is an explicit operation, performed by the flushBits function.
* Hence keep track how many bits are potentially stored into local register to avoid register overflow.
* After a flushBits, a maximum of 7 bits might still be stored into local register.
*
* Avoid storing elements of more than 24 bits if you want compatibility with 32-bits bitstream readers.
*
* Last operation is to close the bitStream.
* The function returns the final size of CStream in bytes.
* If data couldn't fit into `dstBuffer`, it will return a 0 ( == not storable)
*/
/*-********************************************
* bitStream decoding API (read backward)
**********************************************/
typedef struct
{
size_t bitContainer;
unsigned bitsConsumed;
const char* ptr;
const char* start;
const char* limitPtr;
} BIT_DStream_t;
typedef enum { BIT_DStream_unfinished = 0,
BIT_DStream_endOfBuffer = 1,
BIT_DStream_completed = 2,
BIT_DStream_overflow = 3 } BIT_DStream_status; /* result of BIT_reloadDStream() */
/* 1,2,4,8 would be better for bitmap combinations, but slows down performance a bit ... :( */
MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize);
MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits);
MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD);
MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* bitD);
/* Start by invoking BIT_initDStream().
* A chunk of the bitStream is then stored into a local register.
* Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
* You can then retrieve bitFields stored into the local register, **in reverse order**.
* Local register is explicitly reloaded from memory by the BIT_reloadDStream() method.
* A reload guarantee a minimum of ((8*sizeof(bitD->bitContainer))-7) bits when its result is BIT_DStream_unfinished.
* Otherwise, it can be less than that, so proceed accordingly.
* Checking if DStream has reached its end can be performed with BIT_endOfDStream().
*/
/*-****************************************
* unsafe API
******************************************/
MEM_STATIC void BIT_addBitsFast(BIT_CStream_t* bitC, size_t value, unsigned nbBits);
/* faster, but works only if value is "clean", meaning all high bits above nbBits are 0 */
MEM_STATIC void BIT_flushBitsFast(BIT_CStream_t* bitC);
/* unsafe version; does not check buffer overflow */
MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits);
/* faster, but works only if nbBits >= 1 */
/*-**************************************************************
* Internal functions
****************************************************************/
MEM_STATIC unsigned BIT_highbit32 (register U32 val)
{
# if defined(_MSC_VER) /* Visual */
unsigned long r=0;
_BitScanReverse ( &r, val );
return (unsigned) r;
# elif defined(__GNUC__) && (__GNUC__ >= 3) /* Use GCC Intrinsic */
return 31 - __builtin_clz (val);
# else /* Software version */
static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29,
11, 14, 16, 18, 22, 25, 3, 30,
8, 12, 20, 28, 15, 17, 24, 7,
19, 27, 23, 6, 26, 5, 4, 31 };
U32 v = val;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
return DeBruijnClz[ (U32) (v * 0x07C4ACDDU) >> 27];
# endif
}
/*===== Local Constants =====*/
static const unsigned BIT_mask[] = { 0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F,
0xFF, 0x1FF, 0x3FF, 0x7FF, 0xFFF, 0x1FFF, 0x3FFF, 0x7FFF,
0xFFFF, 0x1FFFF, 0x3FFFF, 0x7FFFF, 0xFFFFF, 0x1FFFFF, 0x3FFFFF, 0x7FFFFF,
0xFFFFFF, 0x1FFFFFF, 0x3FFFFFF }; /* up to 26 bits */
/*-**************************************************************
* bitStream encoding
****************************************************************/
/*! BIT_initCStream() :
* `dstCapacity` must be > sizeof(size_t)
* @return : 0 if success,
* otherwise an error code (can be tested using ERR_isError()) */
MEM_STATIC size_t BIT_initCStream(BIT_CStream_t* bitC,
void* startPtr, size_t dstCapacity)
{
bitC->bitContainer = 0;
bitC->bitPos = 0;
bitC->startPtr = (char*)startPtr;
bitC->ptr = bitC->startPtr;
bitC->endPtr = bitC->startPtr + dstCapacity - sizeof(bitC->bitContainer);
if (dstCapacity <= sizeof(bitC->bitContainer)) return ERROR(dstSize_tooSmall);
return 0;
}
/*! BIT_addBits() :
* can add up to 26 bits into `bitC`.
* Note : does not check for register overflow ! */
MEM_STATIC void BIT_addBits(BIT_CStream_t* bitC,
size_t value, unsigned nbBits)
{
bitC->bitContainer |= (value & BIT_mask[nbBits]) << bitC->bitPos;
bitC->bitPos += nbBits;
}
/*! BIT_addBitsFast() :
* works only if `value` is _clean_, meaning all high bits above nbBits are 0 */
MEM_STATIC void BIT_addBitsFast(BIT_CStream_t* bitC,
size_t value, unsigned nbBits)
{
assert((value>>nbBits) == 0);
bitC->bitContainer |= value << bitC->bitPos;
bitC->bitPos += nbBits;
}
/*! BIT_flushBitsFast() :
* assumption : bitContainer has not overflowed
* unsafe version; does not check buffer overflow */
MEM_STATIC void BIT_flushBitsFast(BIT_CStream_t* bitC)
{
size_t const nbBytes = bitC->bitPos >> 3;
assert( bitC->bitPos <= (sizeof(bitC->bitContainer)*8) );
MEM_writeLEST(bitC->ptr, bitC->bitContainer);
bitC->ptr += nbBytes;
assert(bitC->ptr <= bitC->endPtr);
bitC->bitPos &= 7;
bitC->bitContainer >>= nbBytes*8;
}
/*! BIT_flushBits() :
* assumption : bitContainer has not overflowed
* safe version; check for buffer overflow, and prevents it.
* note : does not signal buffer overflow.
* overflow will be revealed later on using BIT_closeCStream() */
MEM_STATIC void BIT_flushBits(BIT_CStream_t* bitC)
{
size_t const nbBytes = bitC->bitPos >> 3;
assert( bitC->bitPos <= (sizeof(bitC->bitContainer)*8) );
MEM_writeLEST(bitC->ptr, bitC->bitContainer);
bitC->ptr += nbBytes;
if (bitC->ptr > bitC->endPtr) bitC->ptr = bitC->endPtr;
bitC->bitPos &= 7;
bitC->bitContainer >>= nbBytes*8;
}
/*! BIT_closeCStream() :
* @return : size of CStream, in bytes,
* or 0 if it could not fit into dstBuffer */
MEM_STATIC size_t BIT_closeCStream(BIT_CStream_t* bitC)
{
BIT_addBitsFast(bitC, 1, 1); /* endMark */
BIT_flushBits(bitC);
if (bitC->ptr >= bitC->endPtr) return 0; /* overflow detected */
return (bitC->ptr - bitC->startPtr) + (bitC->bitPos > 0);
}
/*-********************************************************
* bitStream decoding
**********************************************************/
/*! BIT_initDStream() :
* Initialize a BIT_DStream_t.
* `bitD` : a pointer to an already allocated BIT_DStream_t structure.
* `srcSize` must be the *exact* size of the bitStream, in bytes.
* @return : size of stream (== srcSize), or an errorCode if a problem is detected
*/
MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize)
{
if (srcSize < 1) { memset(bitD, 0, sizeof(*bitD)); return ERROR(srcSize_wrong); }
bitD->start = (const char*)srcBuffer;
bitD->limitPtr = bitD->start + sizeof(bitD->bitContainer);
if (srcSize >= sizeof(bitD->bitContainer)) { /* normal case */
bitD->ptr = (const char*)srcBuffer + srcSize - sizeof(bitD->bitContainer);
bitD->bitContainer = MEM_readLEST(bitD->ptr);
{ BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1];
bitD->bitsConsumed = lastByte ? 8 - BIT_highbit32(lastByte) : 0; /* ensures bitsConsumed is always set */
if (lastByte == 0) return ERROR(GENERIC); /* endMark not present */ }
} else {
bitD->ptr = bitD->start;
bitD->bitContainer = *(const BYTE*)(bitD->start);
switch(srcSize)
{
case 7: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[6]) << (sizeof(bitD->bitContainer)*8 - 16);
/* fall-through */
case 6: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[5]) << (sizeof(bitD->bitContainer)*8 - 24);
/* fall-through */
case 5: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[4]) << (sizeof(bitD->bitContainer)*8 - 32);
/* fall-through */
case 4: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[3]) << 24;
/* fall-through */
case 3: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[2]) << 16;
/* fall-through */
case 2: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[1]) << 8;
/* fall-through */
default: break;
}
{ BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1];
bitD->bitsConsumed = lastByte ? 8 - BIT_highbit32(lastByte) : 0;
if (lastByte == 0) return ERROR(corruption_detected); /* endMark not present */
}
bitD->bitsConsumed += (U32)(sizeof(bitD->bitContainer) - srcSize)*8;
}
return srcSize;
}
MEM_STATIC size_t BIT_getUpperBits(size_t bitContainer, U32 const start)
{
return bitContainer >> start;
}
MEM_STATIC size_t BIT_getMiddleBits(size_t bitContainer, U32 const start, U32 const nbBits)
{
#if defined(__BMI__) && defined(__GNUC__) && __GNUC__*1000+__GNUC_MINOR__ >= 4008 /* experimental */
# if defined(__x86_64__)
if (sizeof(bitContainer)==8)
return _bextr_u64(bitContainer, start, nbBits);
else
# endif
return _bextr_u32(bitContainer, start, nbBits);
#else
return (bitContainer >> start) & BIT_mask[nbBits];
#endif
}
MEM_STATIC size_t BIT_getLowerBits(size_t bitContainer, U32 const nbBits)
{
return bitContainer & BIT_mask[nbBits];
}
/*! BIT_lookBits() :
* Provides next n bits from local register.
* local register is not modified.
* On 32-bits, maxNbBits==24.
* On 64-bits, maxNbBits==56.
* @return : value extracted */
MEM_STATIC size_t BIT_lookBits(const BIT_DStream_t* bitD, U32 nbBits)
{
#if defined(__BMI__) && defined(__GNUC__) /* experimental; fails if bitD->bitsConsumed + nbBits > sizeof(bitD->bitContainer)*8 */
return BIT_getMiddleBits(bitD->bitContainer, (sizeof(bitD->bitContainer)*8) - bitD->bitsConsumed - nbBits, nbBits);
#else
U32 const regMask = sizeof(bitD->bitContainer)*8 - 1;
return ((bitD->bitContainer << (bitD->bitsConsumed & regMask)) >> 1) >> ((regMask-nbBits) & regMask);
#endif
}
/*! BIT_lookBitsFast() :
* unsafe version; only works if nbBits >= 1 */
MEM_STATIC size_t BIT_lookBitsFast(const BIT_DStream_t* bitD, U32 nbBits)
{
U32 const regMask = sizeof(bitD->bitContainer)*8 - 1;
assert(nbBits >= 1);
return (bitD->bitContainer << (bitD->bitsConsumed & regMask)) >> (((regMask+1)-nbBits) & regMask);
}
MEM_STATIC void BIT_skipBits(BIT_DStream_t* bitD, U32 nbBits)
{
bitD->bitsConsumed += nbBits;
}
/*! BIT_readBits() :
* Read (consume) next n bits from local register and update.
* Pay attention to not read more than nbBits contained into local register.
* @return : extracted value. */
MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, U32 nbBits)
{
size_t const value = BIT_lookBits(bitD, nbBits);
BIT_skipBits(bitD, nbBits);
return value;
}
/*! BIT_readBitsFast() :
* unsafe version; only works only if nbBits >= 1 */
MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, U32 nbBits)
{
size_t const value = BIT_lookBitsFast(bitD, nbBits);
assert(nbBits >= 1);
BIT_skipBits(bitD, nbBits);
return value;
}
/*! BIT_reloadDStream() :
* Refill `bitD` from buffer previously set in BIT_initDStream() .
* This function is safe, it guarantees it will not read beyond src buffer.
* @return : status of `BIT_DStream_t` internal register.
* when status == BIT_DStream_unfinished, internal register is filled with at least 25 or 57 bits */
MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD)
{
if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8)) /* overflow detected, like end of stream */
return BIT_DStream_overflow;
if (bitD->ptr >= bitD->limitPtr) {
bitD->ptr -= bitD->bitsConsumed >> 3;
bitD->bitsConsumed &= 7;
bitD->bitContainer = MEM_readLEST(bitD->ptr);
return BIT_DStream_unfinished;
}
if (bitD->ptr == bitD->start) {
if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return BIT_DStream_endOfBuffer;
return BIT_DStream_completed;
}
/* start < ptr < limitPtr */
{ U32 nbBytes = bitD->bitsConsumed >> 3;
BIT_DStream_status result = BIT_DStream_unfinished;
if (bitD->ptr - nbBytes < bitD->start) {
nbBytes = (U32)(bitD->ptr - bitD->start); /* ptr > start */
result = BIT_DStream_endOfBuffer;
}
bitD->ptr -= nbBytes;
bitD->bitsConsumed -= nbBytes*8;
bitD->bitContainer = MEM_readLEST(bitD->ptr); /* reminder : srcSize > sizeof(bitD->bitContainer), otherwise bitD->ptr == bitD->start */
return result;
}
}
/*! BIT_endOfDStream() :
* @return : 1 if DStream has _exactly_ reached its end (all bits consumed).
*/
MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* DStream)
{
return ((DStream->ptr == DStream->start) && (DStream->bitsConsumed == sizeof(DStream->bitContainer)*8));
}
#if defined (__cplusplus)
}
#endif
#endif /* BITSTREAM_H_MODULE */

View File

@ -1,85 +0,0 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
*/
#ifndef ZSTD_COMPILER_H
#define ZSTD_COMPILER_H
/*-*******************************************************
* Compiler specifics
*********************************************************/
/* force inlining */
#if defined (__GNUC__) || defined(__cplusplus) || defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
# define INLINE_KEYWORD inline
#else
# define INLINE_KEYWORD
#endif
#if defined(__GNUC__)
# define FORCE_INLINE_ATTR __attribute__((always_inline))
#elif defined(_MSC_VER)
# define FORCE_INLINE_ATTR __forceinline
#else
# define FORCE_INLINE_ATTR
#endif
/**
* FORCE_INLINE_TEMPLATE is used to define C "templates", which take constant
* parameters. They must be inlined for the compiler to elimininate the constant
* branches.
*/
#define FORCE_INLINE_TEMPLATE static INLINE_KEYWORD FORCE_INLINE_ATTR
/**
* HINT_INLINE is used to help the compiler generate better code. It is *not*
* used for "templates", so it can be tweaked based on the compilers
* performance.
*
* gcc-4.8 and gcc-4.9 have been shown to benefit from leaving off the
* always_inline attribute.
*
* clang up to 5.0.0 (trunk) benefit tremendously from the always_inline
* attribute.
*/
#if !defined(__clang__) && defined(__GNUC__) && __GNUC__ >= 4 && __GNUC_MINOR__ >= 8 && __GNUC__ < 5
# define HINT_INLINE static INLINE_KEYWORD
#else
# define HINT_INLINE static INLINE_KEYWORD FORCE_INLINE_ATTR
#endif
/* force no inlining */
#ifdef _MSC_VER
# define FORCE_NOINLINE static __declspec(noinline)
#else
# ifdef __GNUC__
# define FORCE_NOINLINE static __attribute__((__noinline__))
# else
# define FORCE_NOINLINE static
# endif
#endif
/* prefetch */
#if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_I86)) /* _mm_prefetch() is not defined outside of x86/x64 */
# include <mmintrin.h> /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */
# define PREFETCH(ptr) _mm_prefetch((const char*)ptr, _MM_HINT_T0)
#elif defined(__GNUC__)
# define PREFETCH(ptr) __builtin_prefetch(ptr, 0, 0)
#else
# define PREFETCH(ptr) /* disabled */
#endif
/* disable warnings */
#ifdef _MSC_VER /* Visual Studio */
# include <intrin.h> /* For Visual 2005 */
# pragma warning(disable : 4100) /* disable: C4100: unreferenced formal parameter */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
# pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */
# pragma warning(disable : 4214) /* disable: C4214: non-int bitfields */
# pragma warning(disable : 4324) /* disable: C4324: padded structure */
#endif
#endif /* ZSTD_COMPILER_H */

View File

@ -1,221 +0,0 @@
/*
Common functions of New Generation Entropy library
Copyright (C) 2016, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
*************************************************************************** */
/* *************************************
* Dependencies
***************************************/
#include "mem.h"
#include "error_private.h" /* ERR_*, ERROR */
#define FSE_STATIC_LINKING_ONLY /* FSE_MIN_TABLELOG */
#include "fse.h"
#define HUF_STATIC_LINKING_ONLY /* HUF_TABLELOG_ABSOLUTEMAX */
#include "huf.h"
/*=== Version ===*/
unsigned FSE_versionNumber(void) { return FSE_VERSION_NUMBER; }
/*=== Error Management ===*/
unsigned FSE_isError(size_t code) { return ERR_isError(code); }
const char* FSE_getErrorName(size_t code) { return ERR_getErrorName(code); }
unsigned HUF_isError(size_t code) { return ERR_isError(code); }
const char* HUF_getErrorName(size_t code) { return ERR_getErrorName(code); }
/*-**************************************************************
* FSE NCount encoding-decoding
****************************************************************/
size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
const void* headerBuffer, size_t hbSize)
{
const BYTE* const istart = (const BYTE*) headerBuffer;
const BYTE* const iend = istart + hbSize;
const BYTE* ip = istart;
int nbBits;
int remaining;
int threshold;
U32 bitStream;
int bitCount;
unsigned charnum = 0;
int previous0 = 0;
if (hbSize < 4) return ERROR(srcSize_wrong);
bitStream = MEM_readLE32(ip);
nbBits = (bitStream & 0xF) + FSE_MIN_TABLELOG; /* extract tableLog */
if (nbBits > FSE_TABLELOG_ABSOLUTE_MAX) return ERROR(tableLog_tooLarge);
bitStream >>= 4;
bitCount = 4;
*tableLogPtr = nbBits;
remaining = (1<<nbBits)+1;
threshold = 1<<nbBits;
nbBits++;
while ((remaining>1) & (charnum<=*maxSVPtr)) {
if (previous0) {
unsigned n0 = charnum;
while ((bitStream & 0xFFFF) == 0xFFFF) {
n0 += 24;
if (ip < iend-5) {
ip += 2;
bitStream = MEM_readLE32(ip) >> bitCount;
} else {
bitStream >>= 16;
bitCount += 16;
} }
while ((bitStream & 3) == 3) {
n0 += 3;
bitStream >>= 2;
bitCount += 2;
}
n0 += bitStream & 3;
bitCount += 2;
if (n0 > *maxSVPtr) return ERROR(maxSymbolValue_tooSmall);
while (charnum < n0) normalizedCounter[charnum++] = 0;
if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) {
ip += bitCount>>3;
bitCount &= 7;
bitStream = MEM_readLE32(ip) >> bitCount;
} else {
bitStream >>= 2;
} }
{ int const max = (2*threshold-1) - remaining;
int count;
if ((bitStream & (threshold-1)) < (U32)max) {
count = bitStream & (threshold-1);
bitCount += nbBits-1;
} else {
count = bitStream & (2*threshold-1);
if (count >= threshold) count -= max;
bitCount += nbBits;
}
count--; /* extra accuracy */
remaining -= count < 0 ? -count : count; /* -1 means +1 */
normalizedCounter[charnum++] = (short)count;
previous0 = !count;
while (remaining < threshold) {
nbBits--;
threshold >>= 1;
}
if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) {
ip += bitCount>>3;
bitCount &= 7;
} else {
bitCount -= (int)(8 * (iend - 4 - ip));
ip = iend - 4;
}
bitStream = MEM_readLE32(ip) >> (bitCount & 31);
} } /* while ((remaining>1) & (charnum<=*maxSVPtr)) */
if (remaining != 1) return ERROR(corruption_detected);
if (bitCount > 32) return ERROR(corruption_detected);
*maxSVPtr = charnum-1;
ip += (bitCount+7)>>3;
return ip-istart;
}
/*! HUF_readStats() :
Read compact Huffman tree, saved by HUF_writeCTable().
`huffWeight` is destination buffer.
`rankStats` is assumed to be a table of at least HUF_TABLELOG_MAX U32.
@return : size read from `src` , or an error Code .
Note : Needed by HUF_readCTable() and HUF_readDTableX?() .
*/
size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
U32* nbSymbolsPtr, U32* tableLogPtr,
const void* src, size_t srcSize)
{
U32 weightTotal;
const BYTE* ip = (const BYTE*) src;
size_t iSize;
size_t oSize;
if (!srcSize) return ERROR(srcSize_wrong);
iSize = ip[0];
/* memset(huffWeight, 0, hwSize); *//* is not necessary, even though some analyzer complain ... */
if (iSize >= 128) { /* special header */
oSize = iSize - 127;
iSize = ((oSize+1)/2);
if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
if (oSize >= hwSize) return ERROR(corruption_detected);
ip += 1;
{ U32 n;
for (n=0; n<oSize; n+=2) {
huffWeight[n] = ip[n/2] >> 4;
huffWeight[n+1] = ip[n/2] & 15;
} } }
else { /* header compressed with FSE (normal case) */
FSE_DTable fseWorkspace[FSE_DTABLE_SIZE_U32(6)]; /* 6 is max possible tableLog for HUF header (maybe even 5, to be tested) */
if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
oSize = FSE_decompress_wksp(huffWeight, hwSize-1, ip+1, iSize, fseWorkspace, 6); /* max (hwSize-1) values decoded, as last one is implied */
if (FSE_isError(oSize)) return oSize;
}
/* collect weight stats */
memset(rankStats, 0, (HUF_TABLELOG_MAX + 1) * sizeof(U32));
weightTotal = 0;
{ U32 n; for (n=0; n<oSize; n++) {
if (huffWeight[n] >= HUF_TABLELOG_MAX) return ERROR(corruption_detected);
rankStats[huffWeight[n]]++;
weightTotal += (1 << huffWeight[n]) >> 1;
} }
if (weightTotal == 0) return ERROR(corruption_detected);
/* get last non-null symbol weight (implied, total must be 2^n) */
{ U32 const tableLog = BIT_highbit32(weightTotal) + 1;
if (tableLog > HUF_TABLELOG_MAX) return ERROR(corruption_detected);
*tableLogPtr = tableLog;
/* determine last weight */
{ U32 const total = 1 << tableLog;
U32 const rest = total - weightTotal;
U32 const verif = 1 << BIT_highbit32(rest);
U32 const lastWeight = BIT_highbit32(rest) + 1;
if (verif != rest) return ERROR(corruption_detected); /* last value must be a clean power of 2 */
huffWeight[oSize] = (BYTE)lastWeight;
rankStats[lastWeight]++;
} }
/* check tree construction validity */
if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected); /* by construction : at least 2 elts of rank 1, must be even */
/* results */
*nbSymbolsPtr = (U32)(oSize+1);
return iSize+1;
}

View File

@ -1,45 +0,0 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
*/
/* The purpose of this file is to have a single list of error strings embedded in binary */
#include "error_private.h"
const char* ERR_getErrorString(ERR_enum code)
{
static const char* const notErrorCode = "Unspecified error code";
switch( code )
{
case PREFIX(no_error): return "No error detected";
case PREFIX(GENERIC): return "Error (generic)";
case PREFIX(prefix_unknown): return "Unknown frame descriptor";
case PREFIX(version_unsupported): return "Version not supported";
case PREFIX(frameParameter_unsupported): return "Unsupported frame parameter";
case PREFIX(frameParameter_windowTooLarge): return "Frame requires too much memory for decoding";
case PREFIX(corruption_detected): return "Corrupted block detected";
case PREFIX(checksum_wrong): return "Restored data doesn't match checksum";
case PREFIX(parameter_unsupported): return "Unsupported parameter";
case PREFIX(parameter_outOfBound): return "Parameter is out of bound";
case PREFIX(init_missing): return "Context should be init first";
case PREFIX(memory_allocation): return "Allocation error : not enough memory";
case PREFIX(stage_wrong): return "Operation not authorized at current processing stage";
case PREFIX(dstSize_tooSmall): return "Destination buffer is too small";
case PREFIX(srcSize_wrong): return "Src size is incorrect";
case PREFIX(tableLog_tooLarge): return "tableLog requires too much memory : unsupported";
case PREFIX(maxSymbolValue_tooLarge): return "Unsupported max Symbol Value : too large";
case PREFIX(maxSymbolValue_tooSmall): return "Specified maxSymbolValue is too small";
case PREFIX(dictionary_corrupted): return "Dictionary is corrupted";
case PREFIX(dictionary_wrong): return "Dictionary mismatch";
case PREFIX(dictionaryCreation_failed): return "Cannot create Dictionary from provided samples";
case PREFIX(frameIndex_tooLarge): return "Frame index is too large";
case PREFIX(seekableIO): return "An I/O error occurred when reading/seeking";
case PREFIX(maxCode):
default: return notErrorCode;
}
}

View File

@ -1,76 +0,0 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
*/
/* Note : this module is expected to remain private, do not expose it */
#ifndef ERROR_H_MODULE
#define ERROR_H_MODULE
#if defined (__cplusplus)
extern "C" {
#endif
/* ****************************************
* Dependencies
******************************************/
#include <stddef.h> /* size_t */
#include "zstd_errors.h" /* enum list */
/* ****************************************
* Compiler-specific
******************************************/
#if defined(__GNUC__)
# define ERR_STATIC static __attribute__((unused))
#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
# define ERR_STATIC static inline
#elif defined(_MSC_VER)
# define ERR_STATIC static __inline
#else
# define ERR_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
#endif
/*-****************************************
* Customization (error_public.h)
******************************************/
typedef ZSTD_ErrorCode ERR_enum;
#define PREFIX(name) ZSTD_error_##name
/*-****************************************
* Error codes handling
******************************************/
#ifdef ERROR
# undef ERROR /* reported already defined on VS 2015 (Rich Geldreich) */
#endif
#define ERROR(name) ((size_t)-PREFIX(name))
ERR_STATIC unsigned ERR_isError(size_t code) { return (code > ERROR(maxCode)); }
ERR_STATIC ERR_enum ERR_getErrorCode(size_t code) { if (!ERR_isError(code)) return (ERR_enum)0; return (ERR_enum) (0-code); }
/*-****************************************
* Error Strings
******************************************/
const char* ERR_getErrorString(ERR_enum code); /* error_private.c */
ERR_STATIC const char* ERR_getErrorName(size_t code)
{
return ERR_getErrorString(ERR_getErrorCode(code));
}
#if defined (__cplusplus)
}
#endif
#endif /* ERROR_H_MODULE */

View File

@ -1,704 +0,0 @@
/* ******************************************************************
FSE : Finite State Entropy codec
Public Prototypes declaration
Copyright (C) 2013-2016, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
****************************************************************** */
#if defined (__cplusplus)
extern "C" {
#endif
#ifndef FSE_H
#define FSE_H
/*-*****************************************
* Dependencies
******************************************/
#include <stddef.h> /* size_t, ptrdiff_t */
/*-*****************************************
* FSE_PUBLIC_API : control library symbols visibility
******************************************/
#if defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) && defined(__GNUC__) && (__GNUC__ >= 4)
# define FSE_PUBLIC_API __attribute__ ((visibility ("default")))
#elif defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) /* Visual expected */
# define FSE_PUBLIC_API __declspec(dllexport)
#elif defined(FSE_DLL_IMPORT) && (FSE_DLL_IMPORT==1)
# define FSE_PUBLIC_API __declspec(dllimport) /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/
#else
# define FSE_PUBLIC_API
#endif
/*------ Version ------*/
#define FSE_VERSION_MAJOR 0
#define FSE_VERSION_MINOR 9
#define FSE_VERSION_RELEASE 0
#define FSE_LIB_VERSION FSE_VERSION_MAJOR.FSE_VERSION_MINOR.FSE_VERSION_RELEASE
#define FSE_QUOTE(str) #str
#define FSE_EXPAND_AND_QUOTE(str) FSE_QUOTE(str)
#define FSE_VERSION_STRING FSE_EXPAND_AND_QUOTE(FSE_LIB_VERSION)
#define FSE_VERSION_NUMBER (FSE_VERSION_MAJOR *100*100 + FSE_VERSION_MINOR *100 + FSE_VERSION_RELEASE)
FSE_PUBLIC_API unsigned FSE_versionNumber(void); /**< library version number; to be used when checking dll version */
/*-****************************************
* FSE simple functions
******************************************/
/*! FSE_compress() :
Compress content of buffer 'src', of size 'srcSize', into destination buffer 'dst'.
'dst' buffer must be already allocated. Compression runs faster is dstCapacity >= FSE_compressBound(srcSize).
@return : size of compressed data (<= dstCapacity).
Special values : if return == 0, srcData is not compressible => Nothing is stored within dst !!!
if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression instead.
if FSE_isError(return), compression failed (more details using FSE_getErrorName())
*/
FSE_PUBLIC_API size_t FSE_compress(void* dst, size_t dstCapacity,
const void* src, size_t srcSize);
/*! FSE_decompress():
Decompress FSE data from buffer 'cSrc', of size 'cSrcSize',
into already allocated destination buffer 'dst', of size 'dstCapacity'.
@return : size of regenerated data (<= maxDstSize),
or an error code, which can be tested using FSE_isError() .
** Important ** : FSE_decompress() does not decompress non-compressible nor RLE data !!!
Why ? : making this distinction requires a header.
Header management is intentionally delegated to the user layer, which can better manage special cases.
*/
FSE_PUBLIC_API size_t FSE_decompress(void* dst, size_t dstCapacity,
const void* cSrc, size_t cSrcSize);
/*-*****************************************
* Tool functions
******************************************/
FSE_PUBLIC_API size_t FSE_compressBound(size_t size); /* maximum compressed size */
/* Error Management */
FSE_PUBLIC_API unsigned FSE_isError(size_t code); /* tells if a return value is an error code */
FSE_PUBLIC_API const char* FSE_getErrorName(size_t code); /* provides error code string (useful for debugging) */
/*-*****************************************
* FSE advanced functions
******************************************/
/*! FSE_compress2() :
Same as FSE_compress(), but allows the selection of 'maxSymbolValue' and 'tableLog'
Both parameters can be defined as '0' to mean : use default value
@return : size of compressed data
Special values : if return == 0, srcData is not compressible => Nothing is stored within cSrc !!!
if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression.
if FSE_isError(return), it's an error code.
*/
FSE_PUBLIC_API size_t FSE_compress2 (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog);
/*-*****************************************
* FSE detailed API
******************************************/
/*!
FSE_compress() does the following:
1. count symbol occurrence from source[] into table count[]
2. normalize counters so that sum(count[]) == Power_of_2 (2^tableLog)
3. save normalized counters to memory buffer using writeNCount()
4. build encoding table 'CTable' from normalized counters
5. encode the data stream using encoding table 'CTable'
FSE_decompress() does the following:
1. read normalized counters with readNCount()
2. build decoding table 'DTable' from normalized counters
3. decode the data stream using decoding table 'DTable'
The following API allows targeting specific sub-functions for advanced tasks.
For example, it's possible to compress several blocks using the same 'CTable',
or to save and provide normalized distribution using external method.
*/
/* *** COMPRESSION *** */
/*! FSE_count():
Provides the precise count of each byte within a table 'count'.
'count' is a table of unsigned int, of minimum size (*maxSymbolValuePtr+1).
*maxSymbolValuePtr will be updated if detected smaller than initial value.
@return : the count of the most frequent symbol (which is not identified).
if return == srcSize, there is only one symbol.
Can also return an error code, which can be tested with FSE_isError(). */
FSE_PUBLIC_API size_t FSE_count(unsigned* count, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize);
/*! FSE_optimalTableLog():
dynamically downsize 'tableLog' when conditions are met.
It saves CPU time, by using smaller tables, while preserving or even improving compression ratio.
@return : recommended tableLog (necessarily <= 'maxTableLog') */
FSE_PUBLIC_API unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue);
/*! FSE_normalizeCount():
normalize counts so that sum(count[]) == Power_of_2 (2^tableLog)
'normalizedCounter' is a table of short, of minimum size (maxSymbolValue+1).
@return : tableLog,
or an errorCode, which can be tested using FSE_isError() */
FSE_PUBLIC_API size_t FSE_normalizeCount(short* normalizedCounter, unsigned tableLog, const unsigned* count, size_t srcSize, unsigned maxSymbolValue);
/*! FSE_NCountWriteBound():
Provides the maximum possible size of an FSE normalized table, given 'maxSymbolValue' and 'tableLog'.
Typically useful for allocation purpose. */
FSE_PUBLIC_API size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog);
/*! FSE_writeNCount():
Compactly save 'normalizedCounter' into 'buffer'.
@return : size of the compressed table,
or an errorCode, which can be tested using FSE_isError(). */
FSE_PUBLIC_API size_t FSE_writeNCount (void* buffer, size_t bufferSize, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
/*! Constructor and Destructor of FSE_CTable.
Note that FSE_CTable size depends on 'tableLog' and 'maxSymbolValue' */
typedef unsigned FSE_CTable; /* don't allocate that. It's only meant to be more restrictive than void* */
FSE_PUBLIC_API FSE_CTable* FSE_createCTable (unsigned tableLog, unsigned maxSymbolValue);
FSE_PUBLIC_API void FSE_freeCTable (FSE_CTable* ct);
/*! FSE_buildCTable():
Builds `ct`, which must be already allocated, using FSE_createCTable().
@return : 0, or an errorCode, which can be tested using FSE_isError() */
FSE_PUBLIC_API size_t FSE_buildCTable(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
/*! FSE_compress_usingCTable():
Compress `src` using `ct` into `dst` which must be already allocated.
@return : size of compressed data (<= `dstCapacity`),
or 0 if compressed data could not fit into `dst`,
or an errorCode, which can be tested using FSE_isError() */
FSE_PUBLIC_API size_t FSE_compress_usingCTable (void* dst, size_t dstCapacity, const void* src, size_t srcSize, const FSE_CTable* ct);
/*!
Tutorial :
----------
The first step is to count all symbols. FSE_count() does this job very fast.
Result will be saved into 'count', a table of unsigned int, which must be already allocated, and have 'maxSymbolValuePtr[0]+1' cells.
'src' is a table of bytes of size 'srcSize'. All values within 'src' MUST be <= maxSymbolValuePtr[0]
maxSymbolValuePtr[0] will be updated, with its real value (necessarily <= original value)
FSE_count() will return the number of occurrence of the most frequent symbol.
This can be used to know if there is a single symbol within 'src', and to quickly evaluate its compressibility.
If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
The next step is to normalize the frequencies.
FSE_normalizeCount() will ensure that sum of frequencies is == 2 ^'tableLog'.
It also guarantees a minimum of 1 to any Symbol with frequency >= 1.
You can use 'tableLog'==0 to mean "use default tableLog value".
If you are unsure of which tableLog value to use, you can ask FSE_optimalTableLog(),
which will provide the optimal valid tableLog given sourceSize, maxSymbolValue, and a user-defined maximum (0 means "default").
The result of FSE_normalizeCount() will be saved into a table,
called 'normalizedCounter', which is a table of signed short.
'normalizedCounter' must be already allocated, and have at least 'maxSymbolValue+1' cells.
The return value is tableLog if everything proceeded as expected.
It is 0 if there is a single symbol within distribution.
If there is an error (ex: invalid tableLog value), the function will return an ErrorCode (which can be tested using FSE_isError()).
'normalizedCounter' can be saved in a compact manner to a memory area using FSE_writeNCount().
'buffer' must be already allocated.
For guaranteed success, buffer size must be at least FSE_headerBound().
The result of the function is the number of bytes written into 'buffer'.
If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError(); ex : buffer size too small).
'normalizedCounter' can then be used to create the compression table 'CTable'.
The space required by 'CTable' must be already allocated, using FSE_createCTable().
You can then use FSE_buildCTable() to fill 'CTable'.
If there is an error, both functions will return an ErrorCode (which can be tested using FSE_isError()).
'CTable' can then be used to compress 'src', with FSE_compress_usingCTable().
Similar to FSE_count(), the convention is that 'src' is assumed to be a table of char of size 'srcSize'
The function returns the size of compressed data (without header), necessarily <= `dstCapacity`.
If it returns '0', compressed data could not fit into 'dst'.
If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
*/
/* *** DECOMPRESSION *** */
/*! FSE_readNCount():
Read compactly saved 'normalizedCounter' from 'rBuffer'.
@return : size read from 'rBuffer',
or an errorCode, which can be tested using FSE_isError().
maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */
FSE_PUBLIC_API size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSymbolValuePtr, unsigned* tableLogPtr, const void* rBuffer, size_t rBuffSize);
/*! Constructor and Destructor of FSE_DTable.
Note that its size depends on 'tableLog' */
typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */
FSE_PUBLIC_API FSE_DTable* FSE_createDTable(unsigned tableLog);
FSE_PUBLIC_API void FSE_freeDTable(FSE_DTable* dt);
/*! FSE_buildDTable():
Builds 'dt', which must be already allocated, using FSE_createDTable().
return : 0, or an errorCode, which can be tested using FSE_isError() */
FSE_PUBLIC_API size_t FSE_buildDTable (FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
/*! FSE_decompress_usingDTable():
Decompress compressed source `cSrc` of size `cSrcSize` using `dt`
into `dst` which must be already allocated.
@return : size of regenerated data (necessarily <= `dstCapacity`),
or an errorCode, which can be tested using FSE_isError() */
FSE_PUBLIC_API size_t FSE_decompress_usingDTable(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, const FSE_DTable* dt);
/*!
Tutorial :
----------
(Note : these functions only decompress FSE-compressed blocks.
If block is uncompressed, use memcpy() instead
If block is a single repeated byte, use memset() instead )
The first step is to obtain the normalized frequencies of symbols.
This can be performed by FSE_readNCount() if it was saved using FSE_writeNCount().
'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short.
In practice, that means it's necessary to know 'maxSymbolValue' beforehand,
or size the table to handle worst case situations (typically 256).
FSE_readNCount() will provide 'tableLog' and 'maxSymbolValue'.
The result of FSE_readNCount() is the number of bytes read from 'rBuffer'.
Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that.
If there is an error, the function will return an error code, which can be tested using FSE_isError().
The next step is to build the decompression tables 'FSE_DTable' from 'normalizedCounter'.
This is performed by the function FSE_buildDTable().
The space required by 'FSE_DTable' must be already allocated using FSE_createDTable().
If there is an error, the function will return an error code, which can be tested using FSE_isError().
`FSE_DTable` can then be used to decompress `cSrc`, with FSE_decompress_usingDTable().
`cSrcSize` must be strictly correct, otherwise decompression will fail.
FSE_decompress_usingDTable() result will tell how many bytes were regenerated (<=`dstCapacity`).
If there is an error, the function will return an error code, which can be tested using FSE_isError(). (ex: dst buffer too small)
*/
#endif /* FSE_H */
#if defined(FSE_STATIC_LINKING_ONLY) && !defined(FSE_H_FSE_STATIC_LINKING_ONLY)
#define FSE_H_FSE_STATIC_LINKING_ONLY
/* *** Dependency *** */
#include "bitstream.h"
/* *****************************************
* Static allocation
*******************************************/
/* FSE buffer bounds */
#define FSE_NCOUNTBOUND 512
#define FSE_BLOCKBOUND(size) (size + (size>>7))
#define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
/* It is possible to statically allocate FSE CTable/DTable as a table of FSE_CTable/FSE_DTable using below macros */
#define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) (1 + (1<<(maxTableLog-1)) + ((maxSymbolValue+1)*2))
#define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1<<maxTableLog))
/* or use the size to malloc() space directly. Pay attention to alignment restrictions though */
#define FSE_CTABLE_SIZE(maxTableLog, maxSymbolValue) (FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) * sizeof(FSE_CTable))
#define FSE_DTABLE_SIZE(maxTableLog) (FSE_DTABLE_SIZE_U32(maxTableLog) * sizeof(FSE_DTable))
/* *****************************************
* FSE advanced API
*******************************************/
/* FSE_count_wksp() :
* Same as FSE_count(), but using an externally provided scratch buffer.
* `workSpace` size must be table of >= `1024` unsigned
*/
size_t FSE_count_wksp(unsigned* count, unsigned* maxSymbolValuePtr,
const void* source, size_t sourceSize, unsigned* workSpace);
/** FSE_countFast() :
* same as FSE_count(), but blindly trusts that all byte values within src are <= *maxSymbolValuePtr
*/
size_t FSE_countFast(unsigned* count, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize);
/* FSE_countFast_wksp() :
* Same as FSE_countFast(), but using an externally provided scratch buffer.
* `workSpace` must be a table of minimum `1024` unsigned
*/
size_t FSE_countFast_wksp(unsigned* count, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize, unsigned* workSpace);
/*! FSE_count_simple
* Same as FSE_countFast(), but does not use any additional memory (not even on stack).
* This function is unsafe, and will segfault if any value within `src` is `> *maxSymbolValuePtr` (presuming it's also the size of `count`).
*/
size_t FSE_count_simple(unsigned* count, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize);
unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus);
/**< same as FSE_optimalTableLog(), which used `minus==2` */
/* FSE_compress_wksp() :
* Same as FSE_compress2(), but using an externally allocated scratch buffer (`workSpace`).
* FSE_WKSP_SIZE_U32() provides the minimum size required for `workSpace` as a table of FSE_CTable.
*/
#define FSE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) ( FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) + ((maxTableLog > 12) ? (1 << (maxTableLog - 2)) : 1024) )
size_t FSE_compress_wksp (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize);
size_t FSE_buildCTable_raw (FSE_CTable* ct, unsigned nbBits);
/**< build a fake FSE_CTable, designed for a flat distribution, where each symbol uses nbBits */
size_t FSE_buildCTable_rle (FSE_CTable* ct, unsigned char symbolValue);
/**< build a fake FSE_CTable, designed to compress always the same symbolValue */
/* FSE_buildCTable_wksp() :
* Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`).
* `wkspSize` must be >= `(1<<tableLog)`.
*/
size_t FSE_buildCTable_wksp(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize);
size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits);
/**< build a fake FSE_DTable, designed to read a flat distribution where each symbol uses nbBits */
size_t FSE_buildDTable_rle (FSE_DTable* dt, unsigned char symbolValue);
/**< build a fake FSE_DTable, designed to always generate the same symbolValue */
size_t FSE_decompress_wksp(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, FSE_DTable* workSpace, unsigned maxLog);
/**< same as FSE_decompress(), using an externally allocated `workSpace` produced with `FSE_DTABLE_SIZE_U32(maxLog)` */
typedef enum {
FSE_repeat_none, /**< Cannot use the previous table */
FSE_repeat_check, /**< Can use the previous table but it must be checked */
FSE_repeat_valid /**< Can use the previous table and it is asumed to be valid */
} FSE_repeat;
/* *****************************************
* FSE symbol compression API
*******************************************/
/*!
This API consists of small unitary functions, which highly benefit from being inlined.
Hence their body are included in next section.
*/
typedef struct {
ptrdiff_t value;
const void* stateTable;
const void* symbolTT;
unsigned stateLog;
} FSE_CState_t;
static void FSE_initCState(FSE_CState_t* CStatePtr, const FSE_CTable* ct);
static void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* CStatePtr, unsigned symbol);
static void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* CStatePtr);
/**<
These functions are inner components of FSE_compress_usingCTable().
They allow the creation of custom streams, mixing multiple tables and bit sources.
A key property to keep in mind is that encoding and decoding are done **in reverse direction**.
So the first symbol you will encode is the last you will decode, like a LIFO stack.
You will need a few variables to track your CStream. They are :
FSE_CTable ct; // Provided by FSE_buildCTable()
BIT_CStream_t bitStream; // bitStream tracking structure
FSE_CState_t state; // State tracking structure (can have several)
The first thing to do is to init bitStream and state.
size_t errorCode = BIT_initCStream(&bitStream, dstBuffer, maxDstSize);
FSE_initCState(&state, ct);
Note that BIT_initCStream() can produce an error code, so its result should be tested, using FSE_isError();
You can then encode your input data, byte after byte.
FSE_encodeSymbol() outputs a maximum of 'tableLog' bits at a time.
Remember decoding will be done in reverse direction.
FSE_encodeByte(&bitStream, &state, symbol);
At any time, you can also add any bit sequence.
Note : maximum allowed nbBits is 25, for compatibility with 32-bits decoders
BIT_addBits(&bitStream, bitField, nbBits);
The above methods don't commit data to memory, they just store it into local register, for speed.
Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
Writing data to memory is a manual operation, performed by the flushBits function.
BIT_flushBits(&bitStream);
Your last FSE encoding operation shall be to flush your last state value(s).
FSE_flushState(&bitStream, &state);
Finally, you must close the bitStream.
The function returns the size of CStream in bytes.
If data couldn't fit into dstBuffer, it will return a 0 ( == not compressible)
If there is an error, it returns an errorCode (which can be tested using FSE_isError()).
size_t size = BIT_closeCStream(&bitStream);
*/
/* *****************************************
* FSE symbol decompression API
*******************************************/
typedef struct {
size_t state;
const void* table; /* precise table may vary, depending on U16 */
} FSE_DState_t;
static void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt);
static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr);
/**<
Let's now decompose FSE_decompress_usingDTable() into its unitary components.
You will decode FSE-encoded symbols from the bitStream,
and also any other bitFields you put in, **in reverse order**.
You will need a few variables to track your bitStream. They are :
BIT_DStream_t DStream; // Stream context
FSE_DState_t DState; // State context. Multiple ones are possible
FSE_DTable* DTablePtr; // Decoding table, provided by FSE_buildDTable()
The first thing to do is to init the bitStream.
errorCode = BIT_initDStream(&DStream, srcBuffer, srcSize);
You should then retrieve your initial state(s)
(in reverse flushing order if you have several ones) :
errorCode = FSE_initDState(&DState, &DStream, DTablePtr);
You can then decode your data, symbol after symbol.
For information the maximum number of bits read by FSE_decodeSymbol() is 'tableLog'.
Keep in mind that symbols are decoded in reverse order, like a LIFO stack (last in, first out).
unsigned char symbol = FSE_decodeSymbol(&DState, &DStream);
You can retrieve any bitfield you eventually stored into the bitStream (in reverse order)
Note : maximum allowed nbBits is 25, for 32-bits compatibility
size_t bitField = BIT_readBits(&DStream, nbBits);
All above operations only read from local register (which size depends on size_t).
Refueling the register from memory is manually performed by the reload method.
endSignal = FSE_reloadDStream(&DStream);
BIT_reloadDStream() result tells if there is still some more data to read from DStream.
BIT_DStream_unfinished : there is still some data left into the DStream.
BIT_DStream_endOfBuffer : Dstream reached end of buffer. Its container may no longer be completely filled.
BIT_DStream_completed : Dstream reached its exact end, corresponding in general to decompression completed.
BIT_DStream_tooFar : Dstream went too far. Decompression result is corrupted.
When reaching end of buffer (BIT_DStream_endOfBuffer), progress slowly, notably if you decode multiple symbols per loop,
to properly detect the exact end of stream.
After each decoded symbol, check if DStream is fully consumed using this simple test :
BIT_reloadDStream(&DStream) >= BIT_DStream_completed
When it's done, verify decompression is fully completed, by checking both DStream and the relevant states.
Checking if DStream has reached its end is performed by :
BIT_endOfDStream(&DStream);
Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible.
FSE_endOfDState(&DState);
*/
/* *****************************************
* FSE unsafe API
*******************************************/
static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
/* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */
/* *****************************************
* Implementation of inlined functions
*******************************************/
typedef struct {
int deltaFindState;
U32 deltaNbBits;
} FSE_symbolCompressionTransform; /* total 8 bytes */
MEM_STATIC void FSE_initCState(FSE_CState_t* statePtr, const FSE_CTable* ct)
{
const void* ptr = ct;
const U16* u16ptr = (const U16*) ptr;
const U32 tableLog = MEM_read16(ptr);
statePtr->value = (ptrdiff_t)1<<tableLog;
statePtr->stateTable = u16ptr+2;
statePtr->symbolTT = ((const U32*)ct + 1 + (tableLog ? (1<<(tableLog-1)) : 1));
statePtr->stateLog = tableLog;
}
/*! FSE_initCState2() :
* Same as FSE_initCState(), but the first symbol to include (which will be the last to be read)
* uses the smallest state value possible, saving the cost of this symbol */
MEM_STATIC void FSE_initCState2(FSE_CState_t* statePtr, const FSE_CTable* ct, U32 symbol)
{
FSE_initCState(statePtr, ct);
{ const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
const U16* stateTable = (const U16*)(statePtr->stateTable);
U32 nbBitsOut = (U32)((symbolTT.deltaNbBits + (1<<15)) >> 16);
statePtr->value = (nbBitsOut << 16) - symbolTT.deltaNbBits;
statePtr->value = stateTable[(statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
}
}
MEM_STATIC void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* statePtr, U32 symbol)
{
FSE_symbolCompressionTransform const symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
const U16* const stateTable = (const U16*)(statePtr->stateTable);
U32 const nbBitsOut = (U32)((statePtr->value + symbolTT.deltaNbBits) >> 16);
BIT_addBits(bitC, statePtr->value, nbBitsOut);
statePtr->value = stateTable[ (statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
}
MEM_STATIC void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* statePtr)
{
BIT_addBits(bitC, statePtr->value, statePtr->stateLog);
BIT_flushBits(bitC);
}
/* ====== Decompression ====== */
typedef struct {
U16 tableLog;
U16 fastMode;
} FSE_DTableHeader; /* sizeof U32 */
typedef struct
{
unsigned short newState;
unsigned char symbol;
unsigned char nbBits;
} FSE_decode_t; /* size == U32 */
MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt)
{
const void* ptr = dt;
const FSE_DTableHeader* const DTableH = (const FSE_DTableHeader*)ptr;
DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog);
BIT_reloadDStream(bitD);
DStatePtr->table = dt + 1;
}
MEM_STATIC BYTE FSE_peekSymbol(const FSE_DState_t* DStatePtr)
{
FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
return DInfo.symbol;
}
MEM_STATIC void FSE_updateState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
{
FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
U32 const nbBits = DInfo.nbBits;
size_t const lowBits = BIT_readBits(bitD, nbBits);
DStatePtr->state = DInfo.newState + lowBits;
}
MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
{
FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
U32 const nbBits = DInfo.nbBits;
BYTE const symbol = DInfo.symbol;
size_t const lowBits = BIT_readBits(bitD, nbBits);
DStatePtr->state = DInfo.newState + lowBits;
return symbol;
}
/*! FSE_decodeSymbolFast() :
unsafe, only works if no symbol has a probability > 50% */
MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
{
FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
U32 const nbBits = DInfo.nbBits;
BYTE const symbol = DInfo.symbol;
size_t const lowBits = BIT_readBitsFast(bitD, nbBits);
DStatePtr->state = DInfo.newState + lowBits;
return symbol;
}
MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr)
{
return DStatePtr->state == 0;
}
#ifndef FSE_COMMONDEFS_ONLY
/* **************************************************************
* Tuning parameters
****************************************************************/
/*!MEMORY_USAGE :
* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
* Increasing memory usage improves compression ratio
* Reduced memory usage can improve speed, due to cache effect
* Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
#ifndef FSE_MAX_MEMORY_USAGE
# define FSE_MAX_MEMORY_USAGE 14
#endif
#ifndef FSE_DEFAULT_MEMORY_USAGE
# define FSE_DEFAULT_MEMORY_USAGE 13
#endif
/*!FSE_MAX_SYMBOL_VALUE :
* Maximum symbol value authorized.
* Required for proper stack allocation */
#ifndef FSE_MAX_SYMBOL_VALUE
# define FSE_MAX_SYMBOL_VALUE 255
#endif
/* **************************************************************
* template functions type & suffix
****************************************************************/
#define FSE_FUNCTION_TYPE BYTE
#define FSE_FUNCTION_EXTENSION
#define FSE_DECODE_TYPE FSE_decode_t
#endif /* !FSE_COMMONDEFS_ONLY */
/* ***************************************************************
* Constants
*****************************************************************/
#define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE-2)
#define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG)
#define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1)
#define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2)
#define FSE_MIN_TABLELOG 5
#define FSE_TABLELOG_ABSOLUTE_MAX 15
#if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX
# error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported"
#endif
#define FSE_TABLESTEP(tableSize) ((tableSize>>1) + (tableSize>>3) + 3)
#endif /* FSE_STATIC_LINKING_ONLY */
#if defined (__cplusplus)
}
#endif

View File

@ -1,309 +0,0 @@
/* ******************************************************************
FSE : Finite State Entropy decoder
Copyright (C) 2013-2015, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
/* **************************************************************
* Includes
****************************************************************/
#include <stdlib.h> /* malloc, free, qsort */
#include <string.h> /* memcpy, memset */
#include "bitstream.h"
#include "compiler.h"
#define FSE_STATIC_LINKING_ONLY
#include "fse.h"
#include "error_private.h"
/* **************************************************************
* Error Management
****************************************************************/
#define FSE_isError ERR_isError
#define FSE_STATIC_ASSERT(c) { enum { FSE_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
/* check and forward error code */
#define CHECK_F(f) { size_t const e = f; if (FSE_isError(e)) return e; }
/* **************************************************************
* Templates
****************************************************************/
/*
designed to be included
for type-specific functions (template emulation in C)
Objective is to write these functions only once, for improved maintenance
*/
/* safety checks */
#ifndef FSE_FUNCTION_EXTENSION
# error "FSE_FUNCTION_EXTENSION must be defined"
#endif
#ifndef FSE_FUNCTION_TYPE
# error "FSE_FUNCTION_TYPE must be defined"
#endif
/* Function names */
#define FSE_CAT(X,Y) X##Y
#define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y)
#define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y)
/* Function templates */
FSE_DTable* FSE_createDTable (unsigned tableLog)
{
if (tableLog > FSE_TABLELOG_ABSOLUTE_MAX) tableLog = FSE_TABLELOG_ABSOLUTE_MAX;
return (FSE_DTable*)malloc( FSE_DTABLE_SIZE_U32(tableLog) * sizeof (U32) );
}
void FSE_freeDTable (FSE_DTable* dt)
{
free(dt);
}
size_t FSE_buildDTable(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
{
void* const tdPtr = dt+1; /* because *dt is unsigned, 32-bits aligned on 32-bits */
FSE_DECODE_TYPE* const tableDecode = (FSE_DECODE_TYPE*) (tdPtr);
U16 symbolNext[FSE_MAX_SYMBOL_VALUE+1];
U32 const maxSV1 = maxSymbolValue + 1;
U32 const tableSize = 1 << tableLog;
U32 highThreshold = tableSize-1;
/* Sanity Checks */
if (maxSymbolValue > FSE_MAX_SYMBOL_VALUE) return ERROR(maxSymbolValue_tooLarge);
if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge);
/* Init, lay down lowprob symbols */
{ FSE_DTableHeader DTableH;
DTableH.tableLog = (U16)tableLog;
DTableH.fastMode = 1;
{ S16 const largeLimit= (S16)(1 << (tableLog-1));
U32 s;
for (s=0; s<maxSV1; s++) {
if (normalizedCounter[s]==-1) {
tableDecode[highThreshold--].symbol = (FSE_FUNCTION_TYPE)s;
symbolNext[s] = 1;
} else {
if (normalizedCounter[s] >= largeLimit) DTableH.fastMode=0;
symbolNext[s] = normalizedCounter[s];
} } }
memcpy(dt, &DTableH, sizeof(DTableH));
}
/* Spread symbols */
{ U32 const tableMask = tableSize-1;
U32 const step = FSE_TABLESTEP(tableSize);
U32 s, position = 0;
for (s=0; s<maxSV1; s++) {
int i;
for (i=0; i<normalizedCounter[s]; i++) {
tableDecode[position].symbol = (FSE_FUNCTION_TYPE)s;
position = (position + step) & tableMask;
while (position > highThreshold) position = (position + step) & tableMask; /* lowprob area */
} }
if (position!=0) return ERROR(GENERIC); /* position must reach all cells once, otherwise normalizedCounter is incorrect */
}
/* Build Decoding table */
{ U32 u;
for (u=0; u<tableSize; u++) {
FSE_FUNCTION_TYPE const symbol = (FSE_FUNCTION_TYPE)(tableDecode[u].symbol);
U16 nextState = symbolNext[symbol]++;
tableDecode[u].nbBits = (BYTE) (tableLog - BIT_highbit32 ((U32)nextState) );
tableDecode[u].newState = (U16) ( (nextState << tableDecode[u].nbBits) - tableSize);
} }
return 0;
}
#ifndef FSE_COMMONDEFS_ONLY
/*-*******************************************************
* Decompression (Byte symbols)
*********************************************************/
size_t FSE_buildDTable_rle (FSE_DTable* dt, BYTE symbolValue)
{
void* ptr = dt;
FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
void* dPtr = dt + 1;
FSE_decode_t* const cell = (FSE_decode_t*)dPtr;
DTableH->tableLog = 0;
DTableH->fastMode = 0;
cell->newState = 0;
cell->symbol = symbolValue;
cell->nbBits = 0;
return 0;
}
size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits)
{
void* ptr = dt;
FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
void* dPtr = dt + 1;
FSE_decode_t* const dinfo = (FSE_decode_t*)dPtr;
const unsigned tableSize = 1 << nbBits;
const unsigned tableMask = tableSize - 1;
const unsigned maxSV1 = tableMask+1;
unsigned s;
/* Sanity checks */
if (nbBits < 1) return ERROR(GENERIC); /* min size */
/* Build Decoding Table */
DTableH->tableLog = (U16)nbBits;
DTableH->fastMode = 1;
for (s=0; s<maxSV1; s++) {
dinfo[s].newState = 0;
dinfo[s].symbol = (BYTE)s;
dinfo[s].nbBits = (BYTE)nbBits;
}
return 0;
}
FORCE_INLINE_TEMPLATE size_t FSE_decompress_usingDTable_generic(
void* dst, size_t maxDstSize,
const void* cSrc, size_t cSrcSize,
const FSE_DTable* dt, const unsigned fast)
{
BYTE* const ostart = (BYTE*) dst;
BYTE* op = ostart;
BYTE* const omax = op + maxDstSize;
BYTE* const olimit = omax-3;
BIT_DStream_t bitD;
FSE_DState_t state1;
FSE_DState_t state2;
/* Init */
CHECK_F(BIT_initDStream(&bitD, cSrc, cSrcSize));
FSE_initDState(&state1, &bitD, dt);
FSE_initDState(&state2, &bitD, dt);
#define FSE_GETSYMBOL(statePtr) fast ? FSE_decodeSymbolFast(statePtr, &bitD) : FSE_decodeSymbol(statePtr, &bitD)
/* 4 symbols per loop */
for ( ; (BIT_reloadDStream(&bitD)==BIT_DStream_unfinished) & (op<olimit) ; op+=4) {
op[0] = FSE_GETSYMBOL(&state1);
if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
BIT_reloadDStream(&bitD);
op[1] = FSE_GETSYMBOL(&state2);
if (FSE_MAX_TABLELOG*4+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
{ if (BIT_reloadDStream(&bitD) > BIT_DStream_unfinished) { op+=2; break; } }
op[2] = FSE_GETSYMBOL(&state1);
if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
BIT_reloadDStream(&bitD);
op[3] = FSE_GETSYMBOL(&state2);
}
/* tail */
/* note : BIT_reloadDStream(&bitD) >= FSE_DStream_partiallyFilled; Ends at exactly BIT_DStream_completed */
while (1) {
if (op>(omax-2)) return ERROR(dstSize_tooSmall);
*op++ = FSE_GETSYMBOL(&state1);
if (BIT_reloadDStream(&bitD)==BIT_DStream_overflow) {
*op++ = FSE_GETSYMBOL(&state2);
break;
}
if (op>(omax-2)) return ERROR(dstSize_tooSmall);
*op++ = FSE_GETSYMBOL(&state2);
if (BIT_reloadDStream(&bitD)==BIT_DStream_overflow) {
*op++ = FSE_GETSYMBOL(&state1);
break;
} }
return op-ostart;
}
size_t FSE_decompress_usingDTable(void* dst, size_t originalSize,
const void* cSrc, size_t cSrcSize,
const FSE_DTable* dt)
{
const void* ptr = dt;
const FSE_DTableHeader* DTableH = (const FSE_DTableHeader*)ptr;
const U32 fastMode = DTableH->fastMode;
/* select fast mode (static) */
if (fastMode) return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 1);
return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 0);
}
size_t FSE_decompress_wksp(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, FSE_DTable* workSpace, unsigned maxLog)
{
const BYTE* const istart = (const BYTE*)cSrc;
const BYTE* ip = istart;
short counting[FSE_MAX_SYMBOL_VALUE+1];
unsigned tableLog;
unsigned maxSymbolValue = FSE_MAX_SYMBOL_VALUE;
/* normal FSE decoding mode */
size_t const NCountLength = FSE_readNCount (counting, &maxSymbolValue, &tableLog, istart, cSrcSize);
if (FSE_isError(NCountLength)) return NCountLength;
//if (NCountLength >= cSrcSize) return ERROR(srcSize_wrong); /* too small input size; supposed to be already checked in NCountLength, only remaining case : NCountLength==cSrcSize */
if (tableLog > maxLog) return ERROR(tableLog_tooLarge);
ip += NCountLength;
cSrcSize -= NCountLength;
CHECK_F( FSE_buildDTable (workSpace, counting, maxSymbolValue, tableLog) );
return FSE_decompress_usingDTable (dst, dstCapacity, ip, cSrcSize, workSpace); /* always return, even if it is an error code */
}
typedef FSE_DTable DTable_max_t[FSE_DTABLE_SIZE_U32(FSE_MAX_TABLELOG)];
size_t FSE_decompress(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize)
{
DTable_max_t dt; /* Static analyzer seems unable to understand this table will be properly initialized later */
return FSE_decompress_wksp(dst, dstCapacity, cSrc, cSrcSize, dt, FSE_MAX_TABLELOG);
}
#endif /* FSE_COMMONDEFS_ONLY */

View File

@ -1,302 +0,0 @@
/* ******************************************************************
Huffman coder, part of New Generation Entropy library
header file
Copyright (C) 2013-2016, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
****************************************************************** */
#if defined (__cplusplus)
extern "C" {
#endif
#ifndef HUF_H_298734234
#define HUF_H_298734234
/* *** Dependencies *** */
#include <stddef.h> /* size_t */
/* *** library symbols visibility *** */
/* Note : when linking with -fvisibility=hidden on gcc, or by default on Visual,
* HUF symbols remain "private" (internal symbols for library only).
* Set macro FSE_DLL_EXPORT to 1 if you want HUF symbols visible on DLL interface */
#if defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) && defined(__GNUC__) && (__GNUC__ >= 4)
# define HUF_PUBLIC_API __attribute__ ((visibility ("default")))
#elif defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) /* Visual expected */
# define HUF_PUBLIC_API __declspec(dllexport)
#elif defined(FSE_DLL_IMPORT) && (FSE_DLL_IMPORT==1)
# define HUF_PUBLIC_API __declspec(dllimport) /* not required, just to generate faster code (saves a function pointer load from IAT and an indirect jump) */
#else
# define HUF_PUBLIC_API
#endif
/* *** simple functions *** */
/**
HUF_compress() :
Compress content from buffer 'src', of size 'srcSize', into buffer 'dst'.
'dst' buffer must be already allocated.
Compression runs faster if `dstCapacity` >= HUF_compressBound(srcSize).
`srcSize` must be <= `HUF_BLOCKSIZE_MAX` == 128 KB.
@return : size of compressed data (<= `dstCapacity`).
Special values : if return == 0, srcData is not compressible => Nothing is stored within dst !!!
if return == 1, srcData is a single repeated byte symbol (RLE compression).
if HUF_isError(return), compression failed (more details using HUF_getErrorName())
*/
HUF_PUBLIC_API size_t HUF_compress(void* dst, size_t dstCapacity,
const void* src, size_t srcSize);
/**
HUF_decompress() :
Decompress HUF data from buffer 'cSrc', of size 'cSrcSize',
into already allocated buffer 'dst', of minimum size 'dstSize'.
`originalSize` : **must** be the ***exact*** size of original (uncompressed) data.
Note : in contrast with FSE, HUF_decompress can regenerate
RLE (cSrcSize==1) and uncompressed (cSrcSize==dstSize) data,
because it knows size to regenerate.
@return : size of regenerated data (== originalSize),
or an error code, which can be tested using HUF_isError()
*/
HUF_PUBLIC_API size_t HUF_decompress(void* dst, size_t originalSize,
const void* cSrc, size_t cSrcSize);
/* *** Tool functions *** */
#define HUF_BLOCKSIZE_MAX (128 * 1024) /**< maximum input size for a single block compressed with HUF_compress */
HUF_PUBLIC_API size_t HUF_compressBound(size_t size); /**< maximum compressed size (worst case) */
/* Error Management */
HUF_PUBLIC_API unsigned HUF_isError(size_t code); /**< tells if a return value is an error code */
HUF_PUBLIC_API const char* HUF_getErrorName(size_t code); /**< provides error code string (useful for debugging) */
/* *** Advanced function *** */
/** HUF_compress2() :
* Same as HUF_compress(), but offers direct control over `maxSymbolValue` and `tableLog`.
* `tableLog` must be `<= HUF_TABLELOG_MAX` . */
HUF_PUBLIC_API size_t HUF_compress2 (void* dst, size_t dstCapacity, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog);
/** HUF_compress4X_wksp() :
* Same as HUF_compress2(), but uses externally allocated `workSpace`.
* `workspace` must have minimum alignment of 4, and be at least as large as following macro */
#define HUF_WORKSPACE_SIZE (6 << 10)
#define HUF_WORKSPACE_SIZE_U32 (HUF_WORKSPACE_SIZE / sizeof(U32))
HUF_PUBLIC_API size_t HUF_compress4X_wksp (void* dst, size_t dstCapacity, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize);
/**
* The minimum workspace size for the `workSpace` used in
* HUF_readDTableX2_wksp() and HUF_readDTableX4_wksp().
*
* The space used depends on HUF_TABLELOG_MAX, ranging from ~1500 bytes when
* HUF_TABLE_LOG_MAX=12 to ~1850 bytes when HUF_TABLE_LOG_MAX=15.
* Buffer overflow errors may potentially occur if code modifications result in
* a required workspace size greater than that specified in the following
* macro.
*/
#define HUF_DECOMPRESS_WORKSPACE_SIZE (2 << 10)
#define HUF_DECOMPRESS_WORKSPACE_SIZE_U32 (HUF_DECOMPRESS_WORKSPACE_SIZE / sizeof(U32))
#endif /* HUF_H_298734234 */
/* ******************************************************************
* WARNING !!
* The following section contains advanced and experimental definitions
* which shall never be used in the context of dll
* because they are not guaranteed to remain stable in the future.
* Only consider them in association with static linking.
*******************************************************************/
#if defined(HUF_STATIC_LINKING_ONLY) && !defined(HUF_H_HUF_STATIC_LINKING_ONLY)
#define HUF_H_HUF_STATIC_LINKING_ONLY
/* *** Dependencies *** */
#include "mem.h" /* U32 */
/* *** Constants *** */
#define HUF_TABLELOG_MAX 12 /* max configured tableLog (for static allocation); can be modified up to HUF_ABSOLUTEMAX_TABLELOG */
#define HUF_TABLELOG_DEFAULT 11 /* tableLog by default, when not specified */
#define HUF_SYMBOLVALUE_MAX 255
#define HUF_TABLELOG_ABSOLUTEMAX 15 /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */
#if (HUF_TABLELOG_MAX > HUF_TABLELOG_ABSOLUTEMAX)
# error "HUF_TABLELOG_MAX is too large !"
#endif
/* ****************************************
* Static allocation
******************************************/
/* HUF buffer bounds */
#define HUF_CTABLEBOUND 129
#define HUF_BLOCKBOUND(size) (size + (size>>8) + 8) /* only true when incompressible is pre-filtered with fast heuristic */
#define HUF_COMPRESSBOUND(size) (HUF_CTABLEBOUND + HUF_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
/* static allocation of HUF's Compression Table */
#define HUF_CTABLE_SIZE_U32(maxSymbolValue) ((maxSymbolValue)+1) /* Use tables of U32, for proper alignment */
#define HUF_CTABLE_SIZE(maxSymbolValue) (HUF_CTABLE_SIZE_U32(maxSymbolValue) * sizeof(U32))
#define HUF_CREATE_STATIC_CTABLE(name, maxSymbolValue) \
U32 name##hb[HUF_CTABLE_SIZE_U32(maxSymbolValue)]; \
void* name##hv = &(name##hb); \
HUF_CElt* name = (HUF_CElt*)(name##hv) /* no final ; */
/* static allocation of HUF's DTable */
typedef U32 HUF_DTable;
#define HUF_DTABLE_SIZE(maxTableLog) (1 + (1<<(maxTableLog)))
#define HUF_CREATE_STATIC_DTABLEX2(DTable, maxTableLog) \
HUF_DTable DTable[HUF_DTABLE_SIZE((maxTableLog)-1)] = { ((U32)((maxTableLog)-1) * 0x01000001) }
#define HUF_CREATE_STATIC_DTABLEX4(DTable, maxTableLog) \
HUF_DTable DTable[HUF_DTABLE_SIZE(maxTableLog)] = { ((U32)(maxTableLog) * 0x01000001) }
/* ****************************************
* Advanced decompression functions
******************************************/
size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< single-symbol decoder */
size_t HUF_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< double-symbols decoder */
size_t HUF_decompress4X_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< decodes RLE and uncompressed */
size_t HUF_decompress4X_hufOnly(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< considers RLE and uncompressed as errors */
size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< considers RLE and uncompressed as errors */
size_t HUF_decompress4X2_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< single-symbol decoder */
size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< single-symbol decoder */
size_t HUF_decompress4X4_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< double-symbols decoder */
size_t HUF_decompress4X4_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< double-symbols decoder */
/* ****************************************
* HUF detailed API
******************************************/
/*!
HUF_compress() does the following:
1. count symbol occurrence from source[] into table count[] using FSE_count()
2. (optional) refine tableLog using HUF_optimalTableLog()
3. build Huffman table from count using HUF_buildCTable()
4. save Huffman table to memory buffer using HUF_writeCTable()
5. encode the data stream using HUF_compress4X_usingCTable()
The following API allows targeting specific sub-functions for advanced tasks.
For example, it's possible to compress several blocks using the same 'CTable',
or to save and regenerate 'CTable' using external methods.
*/
/* FSE_count() : find it within "fse.h" */
unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue);
typedef struct HUF_CElt_s HUF_CElt; /* incomplete type */
size_t HUF_buildCTable (HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue, unsigned maxNbBits);
size_t HUF_writeCTable (void* dst, size_t maxDstSize, const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog);
size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable);
typedef enum {
HUF_repeat_none, /**< Cannot use the previous table */
HUF_repeat_check, /**< Can use the previous table but it must be checked. Note : The previous table must have been constructed by HUF_compress{1, 4}X_repeat */
HUF_repeat_valid /**< Can use the previous table and it is asumed to be valid */
} HUF_repeat;
/** HUF_compress4X_repeat() :
* Same as HUF_compress4X_wksp(), but considers using hufTable if *repeat != HUF_repeat_none.
* If it uses hufTable it does not modify hufTable or repeat.
* If it doesn't, it sets *repeat = HUF_repeat_none, and it sets hufTable to the table used.
* If preferRepeat then the old table will always be used if valid. */
size_t HUF_compress4X_repeat(void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize, HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat); /**< `workSpace` must be a table of at least HUF_WORKSPACE_SIZE_U32 unsigned */
/** HUF_buildCTable_wksp() :
* Same as HUF_buildCTable(), but using externally allocated scratch buffer.
* `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as a table of 1024 unsigned.
*/
size_t HUF_buildCTable_wksp (HUF_CElt* tree, const U32* count, U32 maxSymbolValue, U32 maxNbBits, void* workSpace, size_t wkspSize);
/*! HUF_readStats() :
Read compact Huffman tree, saved by HUF_writeCTable().
`huffWeight` is destination buffer.
@return : size read from `src` , or an error Code .
Note : Needed by HUF_readCTable() and HUF_readDTableXn() . */
size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
U32* nbSymbolsPtr, U32* tableLogPtr,
const void* src, size_t srcSize);
/** HUF_readCTable() :
* Loading a CTable saved with HUF_writeCTable() */
size_t HUF_readCTable (HUF_CElt* CTable, unsigned maxSymbolValue, const void* src, size_t srcSize);
/*
HUF_decompress() does the following:
1. select the decompression algorithm (X2, X4) based on pre-computed heuristics
2. build Huffman table from save, using HUF_readDTableXn()
3. decode 1 or 4 segments in parallel using HUF_decompressSXn_usingDTable
*/
/** HUF_selectDecoder() :
* Tells which decoder is likely to decode faster,
* based on a set of pre-determined metrics.
* @return : 0==HUF_decompress4X2, 1==HUF_decompress4X4 .
* Assumption : 0 < cSrcSize < dstSize <= 128 KB */
U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize);
size_t HUF_readDTableX2 (HUF_DTable* DTable, const void* src, size_t srcSize);
size_t HUF_readDTableX2_wksp (HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize);
size_t HUF_readDTableX4 (HUF_DTable* DTable, const void* src, size_t srcSize);
size_t HUF_readDTableX4_wksp (HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize);
size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
size_t HUF_decompress4X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
size_t HUF_decompress4X4_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
/* single stream variants */
size_t HUF_compress1X (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog);
size_t HUF_compress1X_wksp (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize); /**< `workSpace` must be a table of at least HUF_WORKSPACE_SIZE_U32 unsigned */
size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable);
/** HUF_compress1X_repeat() :
* Same as HUF_compress1X_wksp(), but considers using hufTable if *repeat != HUF_repeat_none.
* If it uses hufTable it does not modify hufTable or repeat.
* If it doesn't, it sets *repeat = HUF_repeat_none, and it sets hufTable to the table used.
* If preferRepeat then the old table will always be used if valid. */
size_t HUF_compress1X_repeat(void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize, HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat); /**< `workSpace` must be a table of at least HUF_WORKSPACE_SIZE_U32 unsigned */
size_t HUF_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* single-symbol decoder */
size_t HUF_decompress1X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* double-symbol decoder */
size_t HUF_decompress1X_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);
size_t HUF_decompress1X_DCtx_wksp (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize);
size_t HUF_decompress1X2_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< single-symbol decoder */
size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< single-symbol decoder */
size_t HUF_decompress1X4_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< double-symbols decoder */
size_t HUF_decompress1X4_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< double-symbols decoder */
size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable); /**< automatic selection of sing or double symbol decoder, based on DTable */
size_t HUF_decompress1X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
size_t HUF_decompress1X4_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
#endif /* HUF_STATIC_LINKING_ONLY */
#if defined (__cplusplus)
}
#endif

View File

@ -1,359 +0,0 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
*/
#ifndef MEM_H_MODULE
#define MEM_H_MODULE
#if defined (__cplusplus)
extern "C" {
#endif
/*-****************************************
* Dependencies
******************************************/
#include <stddef.h> /* size_t, ptrdiff_t */
#include <string.h> /* memcpy */
/*-****************************************
* Compiler specifics
******************************************/
#if defined(_MSC_VER) /* Visual Studio */
# include <stdlib.h> /* _byteswap_ulong */
# include <intrin.h> /* _byteswap_* */
#endif
#if defined(__GNUC__)
# define MEM_STATIC static __inline __attribute__((unused))
#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
# define MEM_STATIC static inline
#elif defined(_MSC_VER)
# define MEM_STATIC static __inline
#else
# define MEM_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
#endif
/* code only tested on 32 and 64 bits systems */
#define MEM_STATIC_ASSERT(c) { enum { MEM_static_assert = 1/(int)(!!(c)) }; }
MEM_STATIC void MEM_check(void) { MEM_STATIC_ASSERT((sizeof(size_t)==4) || (sizeof(size_t)==8)); }
/*-**************************************************************
* Basic Types
*****************************************************************/
#if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
# include <stdint.h>
typedef uint8_t BYTE;
typedef uint16_t U16;
typedef int16_t S16;
typedef uint32_t U32;
typedef int32_t S32;
typedef uint64_t U64;
typedef int64_t S64;
typedef intptr_t iPtrDiff;
typedef uintptr_t uPtrDiff;
#else
typedef unsigned char BYTE;
typedef unsigned short U16;
typedef signed short S16;
typedef unsigned int U32;
typedef signed int S32;
typedef unsigned long long U64;
typedef signed long long S64;
typedef ptrdiff_t iPtrDiff;
typedef size_t uPtrDiff;
#endif
/*-**************************************************************
* Memory I/O
*****************************************************************/
/* MEM_FORCE_MEMORY_ACCESS :
* By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
* Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
* The below switch allow to select different access method for improved performance.
* Method 0 (default) : use `memcpy()`. Safe and portable.
* Method 1 : `__packed` statement. It depends on compiler extension (i.e., not portable).
* This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
* Method 2 : direct access. This method is portable but violate C standard.
* It can generate buggy code on targets depending on alignment.
* In some circumstances, it's the only known way to get the most performance (i.e. GCC + ARMv6)
* See http://fastcompression.blogspot.fr/2015/08/accessing-unaligned-memory.html for details.
* Prefer these methods in priority order (0 > 1 > 2)
*/
#ifndef MEM_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
# define MEM_FORCE_MEMORY_ACCESS 2
# elif defined(__INTEL_COMPILER) || defined(__GNUC__)
# define MEM_FORCE_MEMORY_ACCESS 1
# endif
#endif
MEM_STATIC unsigned MEM_32bits(void) { return sizeof(size_t)==4; }
MEM_STATIC unsigned MEM_64bits(void) { return sizeof(size_t)==8; }
MEM_STATIC unsigned MEM_isLittleEndian(void)
{
const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */
return one.c[0];
}
#if defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==2)
/* violates C standard, by lying on structure alignment.
Only use if no other choice to achieve best performance on target platform */
MEM_STATIC U16 MEM_read16(const void* memPtr) { return *(const U16*) memPtr; }
MEM_STATIC U32 MEM_read32(const void* memPtr) { return *(const U32*) memPtr; }
MEM_STATIC U64 MEM_read64(const void* memPtr) { return *(const U64*) memPtr; }
MEM_STATIC size_t MEM_readST(const void* memPtr) { return *(const size_t*) memPtr; }
MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(U16*)memPtr = value; }
MEM_STATIC void MEM_write32(void* memPtr, U32 value) { *(U32*)memPtr = value; }
MEM_STATIC void MEM_write64(void* memPtr, U64 value) { *(U64*)memPtr = value; }
#elif defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==1)
/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
/* currently only defined for gcc and icc */
#if defined(_MSC_VER) || (defined(__INTEL_COMPILER) && defined(WIN32))
__pragma( pack(push, 1) )
typedef union { U16 u16; U32 u32; U64 u64; size_t st; } unalign;
__pragma( pack(pop) )
#else
typedef union { U16 u16; U32 u32; U64 u64; size_t st; } __attribute__((packed)) unalign;
#endif
MEM_STATIC U16 MEM_read16(const void* ptr) { return ((const unalign*)ptr)->u16; }
MEM_STATIC U32 MEM_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
MEM_STATIC U64 MEM_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
MEM_STATIC size_t MEM_readST(const void* ptr) { return ((const unalign*)ptr)->st; }
MEM_STATIC void MEM_write16(void* memPtr, U16 value) { ((unalign*)memPtr)->u16 = value; }
MEM_STATIC void MEM_write32(void* memPtr, U32 value) { ((unalign*)memPtr)->u32 = value; }
MEM_STATIC void MEM_write64(void* memPtr, U64 value) { ((unalign*)memPtr)->u64 = value; }
#else
/* default method, safe and standard.
can sometimes prove slower */
MEM_STATIC U16 MEM_read16(const void* memPtr)
{
U16 val; memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC U32 MEM_read32(const void* memPtr)
{
U32 val; memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC U64 MEM_read64(const void* memPtr)
{
U64 val; memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC size_t MEM_readST(const void* memPtr)
{
size_t val; memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC void MEM_write16(void* memPtr, U16 value)
{
memcpy(memPtr, &value, sizeof(value));
}
MEM_STATIC void MEM_write32(void* memPtr, U32 value)
{
memcpy(memPtr, &value, sizeof(value));
}
MEM_STATIC void MEM_write64(void* memPtr, U64 value)
{
memcpy(memPtr, &value, sizeof(value));
}
#endif /* MEM_FORCE_MEMORY_ACCESS */
MEM_STATIC U32 MEM_swap32(U32 in)
{
#if defined(_MSC_VER) /* Visual Studio */
return _byteswap_ulong(in);
#elif defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)
return __builtin_bswap32(in);
#else
return ((in << 24) & 0xff000000 ) |
((in << 8) & 0x00ff0000 ) |
((in >> 8) & 0x0000ff00 ) |
((in >> 24) & 0x000000ff );
#endif
}
MEM_STATIC U64 MEM_swap64(U64 in)
{
#if defined(_MSC_VER) /* Visual Studio */
return _byteswap_uint64(in);
#elif defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)
return __builtin_bswap64(in);
#else
return ((in << 56) & 0xff00000000000000ULL) |
((in << 40) & 0x00ff000000000000ULL) |
((in << 24) & 0x0000ff0000000000ULL) |
((in << 8) & 0x000000ff00000000ULL) |
((in >> 8) & 0x00000000ff000000ULL) |
((in >> 24) & 0x0000000000ff0000ULL) |
((in >> 40) & 0x000000000000ff00ULL) |
((in >> 56) & 0x00000000000000ffULL);
#endif
}
MEM_STATIC size_t MEM_swapST(size_t in)
{
if (MEM_32bits())
return (size_t)MEM_swap32((U32)in);
else
return (size_t)MEM_swap64((U64)in);
}
/*=== Little endian r/w ===*/
MEM_STATIC U16 MEM_readLE16(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read16(memPtr);
else {
const BYTE* p = (const BYTE*)memPtr;
return (U16)(p[0] + (p[1]<<8));
}
}
MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val)
{
if (MEM_isLittleEndian()) {
MEM_write16(memPtr, val);
} else {
BYTE* p = (BYTE*)memPtr;
p[0] = (BYTE)val;
p[1] = (BYTE)(val>>8);
}
}
MEM_STATIC U32 MEM_readLE24(const void* memPtr)
{
return MEM_readLE16(memPtr) + (((const BYTE*)memPtr)[2] << 16);
}
MEM_STATIC void MEM_writeLE24(void* memPtr, U32 val)
{
MEM_writeLE16(memPtr, (U16)val);
((BYTE*)memPtr)[2] = (BYTE)(val>>16);
}
MEM_STATIC U32 MEM_readLE32(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read32(memPtr);
else
return MEM_swap32(MEM_read32(memPtr));
}
MEM_STATIC void MEM_writeLE32(void* memPtr, U32 val32)
{
if (MEM_isLittleEndian())
MEM_write32(memPtr, val32);
else
MEM_write32(memPtr, MEM_swap32(val32));
}
MEM_STATIC U64 MEM_readLE64(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read64(memPtr);
else
return MEM_swap64(MEM_read64(memPtr));
}
MEM_STATIC void MEM_writeLE64(void* memPtr, U64 val64)
{
if (MEM_isLittleEndian())
MEM_write64(memPtr, val64);
else
MEM_write64(memPtr, MEM_swap64(val64));
}
MEM_STATIC size_t MEM_readLEST(const void* memPtr)
{
if (MEM_32bits())
return (size_t)MEM_readLE32(memPtr);
else
return (size_t)MEM_readLE64(memPtr);
}
MEM_STATIC void MEM_writeLEST(void* memPtr, size_t val)
{
if (MEM_32bits())
MEM_writeLE32(memPtr, (U32)val);
else
MEM_writeLE64(memPtr, (U64)val);
}
/*=== Big endian r/w ===*/
MEM_STATIC U32 MEM_readBE32(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_swap32(MEM_read32(memPtr));
else
return MEM_read32(memPtr);
}
MEM_STATIC void MEM_writeBE32(void* memPtr, U32 val32)
{
if (MEM_isLittleEndian())
MEM_write32(memPtr, MEM_swap32(val32));
else
MEM_write32(memPtr, val32);
}
MEM_STATIC U64 MEM_readBE64(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_swap64(MEM_read64(memPtr));
else
return MEM_read64(memPtr);
}
MEM_STATIC void MEM_writeBE64(void* memPtr, U64 val64)
{
if (MEM_isLittleEndian())
MEM_write64(memPtr, MEM_swap64(val64));
else
MEM_write64(memPtr, val64);
}
MEM_STATIC size_t MEM_readBEST(const void* memPtr)
{
if (MEM_32bits())
return (size_t)MEM_readBE32(memPtr);
else
return (size_t)MEM_readBE64(memPtr);
}
MEM_STATIC void MEM_writeBEST(void* memPtr, size_t val)
{
if (MEM_32bits())
MEM_writeBE32(memPtr, (U32)val);
else
MEM_writeBE64(memPtr, (U64)val);
}
#if defined (__cplusplus)
}
#endif
#endif /* MEM_H_MODULE */

View File

@ -1,240 +0,0 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
*/
/* ====== Dependencies ======= */
#include <stddef.h> /* size_t */
#include <stdlib.h> /* malloc, calloc, free */
#include "pool.h"
/* ====== Compiler specifics ====== */
#if defined(_MSC_VER)
# pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */
#endif
#ifdef ZSTD_MULTITHREAD
#include "threading.h" /* pthread adaptation */
/* A job is a function and an opaque argument */
typedef struct POOL_job_s {
POOL_function function;
void *opaque;
} POOL_job;
struct POOL_ctx_s {
/* Keep track of the threads */
pthread_t *threads;
size_t numThreads;
/* The queue is a circular buffer */
POOL_job *queue;
size_t queueHead;
size_t queueTail;
size_t queueSize;
/* The number of threads working on jobs */
size_t numThreadsBusy;
/* Indicates if the queue is empty */
int queueEmpty;
/* The mutex protects the queue */
pthread_mutex_t queueMutex;
/* Condition variable for pushers to wait on when the queue is full */
pthread_cond_t queuePushCond;
/* Condition variables for poppers to wait on when the queue is empty */
pthread_cond_t queuePopCond;
/* Indicates if the queue is shutting down */
int shutdown;
};
/* POOL_thread() :
Work thread for the thread pool.
Waits for jobs and executes them.
@returns : NULL on failure else non-null.
*/
static void* POOL_thread(void* opaque) {
POOL_ctx* const ctx = (POOL_ctx*)opaque;
if (!ctx) { return NULL; }
for (;;) {
/* Lock the mutex and wait for a non-empty queue or until shutdown */
pthread_mutex_lock(&ctx->queueMutex);
while (ctx->queueEmpty && !ctx->shutdown) {
pthread_cond_wait(&ctx->queuePopCond, &ctx->queueMutex);
}
/* empty => shutting down: so stop */
if (ctx->queueEmpty) {
pthread_mutex_unlock(&ctx->queueMutex);
return opaque;
}
/* Pop a job off the queue */
{ POOL_job const job = ctx->queue[ctx->queueHead];
ctx->queueHead = (ctx->queueHead + 1) % ctx->queueSize;
ctx->numThreadsBusy++;
ctx->queueEmpty = ctx->queueHead == ctx->queueTail;
/* Unlock the mutex, signal a pusher, and run the job */
pthread_mutex_unlock(&ctx->queueMutex);
pthread_cond_signal(&ctx->queuePushCond);
job.function(job.opaque);
/* If the intended queue size was 0, signal after finishing job */
if (ctx->queueSize == 1) {
pthread_mutex_lock(&ctx->queueMutex);
ctx->numThreadsBusy--;
pthread_mutex_unlock(&ctx->queueMutex);
pthread_cond_signal(&ctx->queuePushCond);
} }
} /* for (;;) */
/* Unreachable */
}
POOL_ctx *POOL_create(size_t numThreads, size_t queueSize) {
POOL_ctx *ctx;
/* Check the parameters */
if (!numThreads) { return NULL; }
/* Allocate the context and zero initialize */
ctx = (POOL_ctx *)calloc(1, sizeof(POOL_ctx));
if (!ctx) { return NULL; }
/* Initialize the job queue.
* It needs one extra space since one space is wasted to differentiate empty
* and full queues.
*/
ctx->queueSize = queueSize + 1;
ctx->queue = (POOL_job*) malloc(ctx->queueSize * sizeof(POOL_job));
ctx->queueHead = 0;
ctx->queueTail = 0;
ctx->numThreadsBusy = 0;
ctx->queueEmpty = 1;
(void)pthread_mutex_init(&ctx->queueMutex, NULL);
(void)pthread_cond_init(&ctx->queuePushCond, NULL);
(void)pthread_cond_init(&ctx->queuePopCond, NULL);
ctx->shutdown = 0;
/* Allocate space for the thread handles */
ctx->threads = (pthread_t*)malloc(numThreads * sizeof(pthread_t));
ctx->numThreads = 0;
/* Check for errors */
if (!ctx->threads || !ctx->queue) { POOL_free(ctx); return NULL; }
/* Initialize the threads */
{ size_t i;
for (i = 0; i < numThreads; ++i) {
if (pthread_create(&ctx->threads[i], NULL, &POOL_thread, ctx)) {
ctx->numThreads = i;
POOL_free(ctx);
return NULL;
} }
ctx->numThreads = numThreads;
}
return ctx;
}
/*! POOL_join() :
Shutdown the queue, wake any sleeping threads, and join all of the threads.
*/
static void POOL_join(POOL_ctx *ctx) {
/* Shut down the queue */
pthread_mutex_lock(&ctx->queueMutex);
ctx->shutdown = 1;
pthread_mutex_unlock(&ctx->queueMutex);
/* Wake up sleeping threads */
pthread_cond_broadcast(&ctx->queuePushCond);
pthread_cond_broadcast(&ctx->queuePopCond);
/* Join all of the threads */
{ size_t i;
for (i = 0; i < ctx->numThreads; ++i) {
pthread_join(ctx->threads[i], NULL);
} }
}
void POOL_free(POOL_ctx *ctx) {
if (!ctx) { return; }
POOL_join(ctx);
pthread_mutex_destroy(&ctx->queueMutex);
pthread_cond_destroy(&ctx->queuePushCond);
pthread_cond_destroy(&ctx->queuePopCond);
if (ctx->queue) free(ctx->queue);
if (ctx->threads) free(ctx->threads);
free(ctx);
}
size_t POOL_sizeof(POOL_ctx *ctx) {
if (ctx==NULL) return 0; /* supports sizeof NULL */
return sizeof(*ctx)
+ ctx->queueSize * sizeof(POOL_job)
+ ctx->numThreads * sizeof(pthread_t);
}
/**
* Returns 1 if the queue is full and 0 otherwise.
*
* If the queueSize is 1 (the pool was created with an intended queueSize of 0),
* then a queue is empty if there is a thread free and no job is waiting.
*/
static int isQueueFull(POOL_ctx const* ctx) {
if (ctx->queueSize > 1) {
return ctx->queueHead == ((ctx->queueTail + 1) % ctx->queueSize);
} else {
return ctx->numThreadsBusy == ctx->numThreads ||
!ctx->queueEmpty;
}
}
void POOL_add(void* ctxVoid, POOL_function function, void *opaque) {
POOL_ctx* const ctx = (POOL_ctx*)ctxVoid;
if (!ctx) { return; }
pthread_mutex_lock(&ctx->queueMutex);
{ POOL_job const job = {function, opaque};
/* Wait until there is space in the queue for the new job */
while (isQueueFull(ctx) && !ctx->shutdown) {
pthread_cond_wait(&ctx->queuePushCond, &ctx->queueMutex);
}
/* The queue is still going => there is space */
if (!ctx->shutdown) {
ctx->queueEmpty = 0;
ctx->queue[ctx->queueTail] = job;
ctx->queueTail = (ctx->queueTail + 1) % ctx->queueSize;
}
}
pthread_mutex_unlock(&ctx->queueMutex);
pthread_cond_signal(&ctx->queuePopCond);
}
#else /* ZSTD_MULTITHREAD not defined */
/* No multi-threading support */
/* We don't need any data, but if it is empty malloc() might return NULL. */
struct POOL_ctx_s {
int data;
};
POOL_ctx* POOL_create(size_t numThreads, size_t queueSize) {
(void)numThreads;
(void)queueSize;
return (POOL_ctx*)malloc(sizeof(POOL_ctx));
}
void POOL_free(POOL_ctx* ctx) {
free(ctx);
}
void POOL_add(void* ctx, POOL_function function, void* opaque) {
(void)ctx;
function(opaque);
}
size_t POOL_sizeof(POOL_ctx* ctx) {
if (ctx==NULL) return 0; /* supports sizeof NULL */
return sizeof(*ctx);
}
#endif /* ZSTD_MULTITHREAD */

View File

@ -1,61 +0,0 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
*/
#ifndef POOL_H
#define POOL_H
#if defined (__cplusplus)
extern "C" {
#endif
#include <stddef.h> /* size_t */
typedef struct POOL_ctx_s POOL_ctx;
/*! POOL_create() :
* Create a thread pool with at most `numThreads` threads.
* `numThreads` must be at least 1.
* The maximum number of queued jobs before blocking is `queueSize`.
* @return : POOL_ctx pointer on success, else NULL.
*/
POOL_ctx *POOL_create(size_t numThreads, size_t queueSize);
/*! POOL_free() :
Free a thread pool returned by POOL_create().
*/
void POOL_free(POOL_ctx *ctx);
/*! POOL_sizeof() :
return memory usage of pool returned by POOL_create().
*/
size_t POOL_sizeof(POOL_ctx *ctx);
/*! POOL_function :
The function type that can be added to a thread pool.
*/
typedef void (*POOL_function)(void *);
/*! POOL_add_function :
The function type for a generic thread pool add function.
*/
typedef void (*POOL_add_function)(void *, POOL_function, void *);
/*! POOL_add() :
Add the job `function(opaque)` to the thread pool.
Possibly blocks until there is room in the queue.
Note : The function may be executed asynchronously, so `opaque` must live until the function has been completed.
*/
void POOL_add(void *ctx, POOL_function function, void *opaque);
#if defined (__cplusplus)
}
#endif
#endif

View File

@ -1,79 +0,0 @@
/**
* Copyright (c) 2016 Tino Reichardt
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree. An additional grant
* of patent rights can be found in the PATENTS file in the same directory.
*
* You can contact the author at:
* - zstdmt source repository: https://github.com/mcmilk/zstdmt
*/
/**
* This file will hold wrapper for systems, which do not support pthreads
*/
/* When ZSTD_MULTITHREAD is not defined, this file would become an empty translation unit.
* Include some ISO C header code to prevent this and portably avoid related warnings.
* (Visual C++: C4206 / GCC: -Wpedantic / Clang: -Wempty-translation-unit)
*/
#include <stddef.h>
#if defined(ZSTD_MULTITHREAD) && defined(_WIN32)
/**
* Windows minimalist Pthread Wrapper, based on :
* http://www.cse.wustl.edu/~schmidt/win32-cv-1.html
*/
/* === Dependencies === */
#include <process.h>
#include <errno.h>
#include "threading.h"
/* === Implementation === */
static unsigned __stdcall worker(void *arg)
{
pthread_t* const thread = (pthread_t*) arg;
thread->arg = thread->start_routine(thread->arg);
return 0;
}
int pthread_create(pthread_t* thread, const void* unused,
void* (*start_routine) (void*), void* arg)
{
(void)unused;
thread->arg = arg;
thread->start_routine = start_routine;
thread->handle = (HANDLE) _beginthreadex(NULL, 0, worker, thread, 0, NULL);
if (!thread->handle)
return errno;
else
return 0;
}
int _pthread_join(pthread_t * thread, void **value_ptr)
{
DWORD result;
if (!thread->handle) return 0;
result = WaitForSingleObject(thread->handle, INFINITE);
switch (result) {
case WAIT_OBJECT_0:
if (value_ptr) *value_ptr = thread->arg;
return 0;
case WAIT_ABANDONED:
return EINVAL;
default:
return GetLastError();
}
}
#endif /* ZSTD_MULTITHREAD */

View File

@ -1,103 +0,0 @@
/**
* Copyright (c) 2016 Tino Reichardt
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree. An additional grant
* of patent rights can be found in the PATENTS file in the same directory.
*
* You can contact the author at:
* - zstdmt source repository: https://github.com/mcmilk/zstdmt
*/
#ifndef THREADING_H_938743
#define THREADING_H_938743
#if defined (__cplusplus)
extern "C" {
#endif
#if defined(ZSTD_MULTITHREAD) && defined(_WIN32)
/**
* Windows minimalist Pthread Wrapper, based on :
* http://www.cse.wustl.edu/~schmidt/win32-cv-1.html
*/
#ifdef WINVER
# undef WINVER
#endif
#define WINVER 0x0600
#ifdef _WIN32_WINNT
# undef _WIN32_WINNT
#endif
#define _WIN32_WINNT 0x0600
#ifndef WIN32_LEAN_AND_MEAN
# define WIN32_LEAN_AND_MEAN
#endif
#include <windows.h>
/* mutex */
#define pthread_mutex_t CRITICAL_SECTION
#define pthread_mutex_init(a,b) (InitializeCriticalSection((a)), 0)
#define pthread_mutex_destroy(a) DeleteCriticalSection((a))
#define pthread_mutex_lock(a) EnterCriticalSection((a))
#define pthread_mutex_unlock(a) LeaveCriticalSection((a))
/* condition variable */
#define pthread_cond_t CONDITION_VARIABLE
#define pthread_cond_init(a, b) (InitializeConditionVariable((a)), 0)
#define pthread_cond_destroy(a) /* No delete */
#define pthread_cond_wait(a, b) SleepConditionVariableCS((a), (b), INFINITE)
#define pthread_cond_signal(a) WakeConditionVariable((a))
#define pthread_cond_broadcast(a) WakeAllConditionVariable((a))
/* pthread_create() and pthread_join() */
typedef struct {
HANDLE handle;
void* (*start_routine)(void*);
void* arg;
} pthread_t;
int pthread_create(pthread_t* thread, const void* unused,
void* (*start_routine) (void*), void* arg);
#define pthread_join(a, b) _pthread_join(&(a), (b))
int _pthread_join(pthread_t* thread, void** value_ptr);
/**
* add here more wrappers as required
*/
#elif defined(ZSTD_MULTITHREAD) /* posix assumed ; need a better detection method */
/* === POSIX Systems === */
# include <pthread.h>
#else /* ZSTD_MULTITHREAD not defined */
/* No multithreading support */
#define pthread_mutex_t int /* #define rather than typedef, because sometimes pthread support is implicit, resulting in duplicated symbols */
#define pthread_mutex_init(a,b) ((void)a, 0)
#define pthread_mutex_destroy(a)
#define pthread_mutex_lock(a)
#define pthread_mutex_unlock(a)
#define pthread_cond_t int
#define pthread_cond_init(a,b) ((void)a, 0)
#define pthread_cond_destroy(a)
#define pthread_cond_wait(a,b)
#define pthread_cond_signal(a)
#define pthread_cond_broadcast(a)
/* do not use pthread_t */
#endif /* ZSTD_MULTITHREAD */
#if defined (__cplusplus)
}
#endif
#endif /* THREADING_H_938743 */

View File

@ -1,875 +0,0 @@
/*
* xxHash - Fast Hash algorithm
* Copyright (C) 2012-2016, Yann Collet
*
* BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You can contact the author at :
* - xxHash homepage: http://www.xxhash.com
* - xxHash source repository : https://github.com/Cyan4973/xxHash
*/
/* *************************************
* Tuning parameters
***************************************/
/*!XXH_FORCE_MEMORY_ACCESS :
* By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
* Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
* The below switch allow to select different access method for improved performance.
* Method 0 (default) : use `memcpy()`. Safe and portable.
* Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
* This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
* Method 2 : direct access. This method doesn't depend on compiler but violate C standard.
* It can generate buggy code on targets which do not support unaligned memory accesses.
* But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
* See http://stackoverflow.com/a/32095106/646947 for details.
* Prefer these methods in priority order (0 > 1 > 2)
*/
#ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
# define XXH_FORCE_MEMORY_ACCESS 2
# elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \
(defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) ))
# define XXH_FORCE_MEMORY_ACCESS 1
# endif
#endif
/*!XXH_ACCEPT_NULL_INPUT_POINTER :
* If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer.
* When this option is enabled, xxHash output for null input pointers will be the same as a null-length input.
* By default, this option is disabled. To enable it, uncomment below define :
*/
/* #define XXH_ACCEPT_NULL_INPUT_POINTER 1 */
/*!XXH_FORCE_NATIVE_FORMAT :
* By default, xxHash library provides endian-independant Hash values, based on little-endian convention.
* Results are therefore identical for little-endian and big-endian CPU.
* This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
* Should endian-independance be of no importance for your application, you may set the #define below to 1,
* to improve speed for Big-endian CPU.
* This option has no impact on Little_Endian CPU.
*/
#ifndef XXH_FORCE_NATIVE_FORMAT /* can be defined externally */
# define XXH_FORCE_NATIVE_FORMAT 0
#endif
/*!XXH_FORCE_ALIGN_CHECK :
* This is a minor performance trick, only useful with lots of very small keys.
* It means : check for aligned/unaligned input.
* The check costs one initial branch per hash; set to 0 when the input data
* is guaranteed to be aligned.
*/
#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
# if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
# define XXH_FORCE_ALIGN_CHECK 0
# else
# define XXH_FORCE_ALIGN_CHECK 1
# endif
#endif
/* *************************************
* Includes & Memory related functions
***************************************/
/* Modify the local functions below should you wish to use some other memory routines */
/* for malloc(), free() */
#include <stdlib.h>
static void* XXH_malloc(size_t s) { return malloc(s); }
static void XXH_free (void* p) { free(p); }
/* for memcpy() */
#include <string.h>
static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); }
#ifndef XXH_STATIC_LINKING_ONLY
# define XXH_STATIC_LINKING_ONLY
#endif
#include "xxhash.h"
/* *************************************
* Compiler Specific Options
***************************************/
#if defined (__GNUC__) || defined(__cplusplus) || defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
# define INLINE_KEYWORD inline
#else
# define INLINE_KEYWORD
#endif
#if defined(__GNUC__)
# define FORCE_INLINE_ATTR __attribute__((always_inline))
#elif defined(_MSC_VER)
# define FORCE_INLINE_ATTR __forceinline
#else
# define FORCE_INLINE_ATTR
#endif
#define FORCE_INLINE_TEMPLATE static INLINE_KEYWORD FORCE_INLINE_ATTR
#ifdef _MSC_VER
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
#endif
/* *************************************
* Basic Types
***************************************/
#ifndef MEM_MODULE
# define MEM_MODULE
# if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
# include <stdint.h>
typedef uint8_t BYTE;
typedef uint16_t U16;
typedef uint32_t U32;
typedef int32_t S32;
typedef uint64_t U64;
# else
typedef unsigned char BYTE;
typedef unsigned short U16;
typedef unsigned int U32;
typedef signed int S32;
typedef unsigned long long U64; /* if your compiler doesn't support unsigned long long, replace by another 64-bit type here. Note that xxhash.h will also need to be updated. */
# endif
#endif
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; }
static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; }
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
/* currently only defined for gcc and icc */
typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign;
static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
static U64 XXH_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
#else
/* portable and safe solution. Generally efficient.
* see : http://stackoverflow.com/a/32095106/646947
*/
static U32 XXH_read32(const void* memPtr)
{
U32 val;
memcpy(&val, memPtr, sizeof(val));
return val;
}
static U64 XXH_read64(const void* memPtr)
{
U64 val;
memcpy(&val, memPtr, sizeof(val));
return val;
}
#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
/* ****************************************
* Compiler-specific Functions and Macros
******************************************/
#define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
/* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */
#if defined(_MSC_VER)
# define XXH_rotl32(x,r) _rotl(x,r)
# define XXH_rotl64(x,r) _rotl64(x,r)
#else
# define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
# define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
#endif
#if defined(_MSC_VER) /* Visual Studio */
# define XXH_swap32 _byteswap_ulong
# define XXH_swap64 _byteswap_uint64
#elif GCC_VERSION >= 403
# define XXH_swap32 __builtin_bswap32
# define XXH_swap64 __builtin_bswap64
#else
static U32 XXH_swap32 (U32 x)
{
return ((x << 24) & 0xff000000 ) |
((x << 8) & 0x00ff0000 ) |
((x >> 8) & 0x0000ff00 ) |
((x >> 24) & 0x000000ff );
}
static U64 XXH_swap64 (U64 x)
{
return ((x << 56) & 0xff00000000000000ULL) |
((x << 40) & 0x00ff000000000000ULL) |
((x << 24) & 0x0000ff0000000000ULL) |
((x << 8) & 0x000000ff00000000ULL) |
((x >> 8) & 0x00000000ff000000ULL) |
((x >> 24) & 0x0000000000ff0000ULL) |
((x >> 40) & 0x000000000000ff00ULL) |
((x >> 56) & 0x00000000000000ffULL);
}
#endif
/* *************************************
* Architecture Macros
***************************************/
typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
/* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */
#ifndef XXH_CPU_LITTLE_ENDIAN
static const int g_one = 1;
# define XXH_CPU_LITTLE_ENDIAN (*(const char*)(&g_one))
#endif
/* ***************************
* Memory reads
*****************************/
typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
FORCE_INLINE_TEMPLATE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
{
if (align==XXH_unaligned)
return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
else
return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr);
}
FORCE_INLINE_TEMPLATE U32 XXH_readLE32(const void* ptr, XXH_endianess endian)
{
return XXH_readLE32_align(ptr, endian, XXH_unaligned);
}
static U32 XXH_readBE32(const void* ptr)
{
return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
}
FORCE_INLINE_TEMPLATE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
{
if (align==XXH_unaligned)
return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
else
return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr);
}
FORCE_INLINE_TEMPLATE U64 XXH_readLE64(const void* ptr, XXH_endianess endian)
{
return XXH_readLE64_align(ptr, endian, XXH_unaligned);
}
static U64 XXH_readBE64(const void* ptr)
{
return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
}
/* *************************************
* Macros
***************************************/
#define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
/* *************************************
* Constants
***************************************/
static const U32 PRIME32_1 = 2654435761U;
static const U32 PRIME32_2 = 2246822519U;
static const U32 PRIME32_3 = 3266489917U;
static const U32 PRIME32_4 = 668265263U;
static const U32 PRIME32_5 = 374761393U;
static const U64 PRIME64_1 = 11400714785074694791ULL;
static const U64 PRIME64_2 = 14029467366897019727ULL;
static const U64 PRIME64_3 = 1609587929392839161ULL;
static const U64 PRIME64_4 = 9650029242287828579ULL;
static const U64 PRIME64_5 = 2870177450012600261ULL;
XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
/* **************************
* Utils
****************************/
XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* restrict dstState, const XXH32_state_t* restrict srcState)
{
memcpy(dstState, srcState, sizeof(*dstState));
}
XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* restrict dstState, const XXH64_state_t* restrict srcState)
{
memcpy(dstState, srcState, sizeof(*dstState));
}
/* ***************************
* Simple Hash Functions
*****************************/
static U32 XXH32_round(U32 seed, U32 input)
{
seed += input * PRIME32_2;
seed = XXH_rotl32(seed, 13);
seed *= PRIME32_1;
return seed;
}
FORCE_INLINE_TEMPLATE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align)
{
const BYTE* p = (const BYTE*)input;
const BYTE* bEnd = p + len;
U32 h32;
#define XXH_get32bits(p) XXH_readLE32_align(p, endian, align)
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
if (p==NULL) {
len=0;
bEnd=p=(const BYTE*)(size_t)16;
}
#endif
if (len>=16) {
const BYTE* const limit = bEnd - 16;
U32 v1 = seed + PRIME32_1 + PRIME32_2;
U32 v2 = seed + PRIME32_2;
U32 v3 = seed + 0;
U32 v4 = seed - PRIME32_1;
do {
v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4;
v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4;
v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4;
v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4;
} while (p<=limit);
h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
} else {
h32 = seed + PRIME32_5;
}
h32 += (U32) len;
while (p+4<=bEnd) {
h32 += XXH_get32bits(p) * PRIME32_3;
h32 = XXH_rotl32(h32, 17) * PRIME32_4 ;
p+=4;
}
while (p<bEnd) {
h32 += (*p) * PRIME32_5;
h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
p++;
}
h32 ^= h32 >> 15;
h32 *= PRIME32_2;
h32 ^= h32 >> 13;
h32 *= PRIME32_3;
h32 ^= h32 >> 16;
return h32;
}
XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed)
{
#if 0
/* Simple version, good for code maintenance, but unfortunately slow for small inputs */
XXH32_CREATESTATE_STATIC(state);
XXH32_reset(state, seed);
XXH32_update(state, input, len);
return XXH32_digest(state);
#else
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
if (XXH_FORCE_ALIGN_CHECK) {
if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
else
return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
} }
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
else
return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
#endif
}
static U64 XXH64_round(U64 acc, U64 input)
{
acc += input * PRIME64_2;
acc = XXH_rotl64(acc, 31);
acc *= PRIME64_1;
return acc;
}
static U64 XXH64_mergeRound(U64 acc, U64 val)
{
val = XXH64_round(0, val);
acc ^= val;
acc = acc * PRIME64_1 + PRIME64_4;
return acc;
}
FORCE_INLINE_TEMPLATE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align)
{
const BYTE* p = (const BYTE*)input;
const BYTE* const bEnd = p + len;
U64 h64;
#define XXH_get64bits(p) XXH_readLE64_align(p, endian, align)
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
if (p==NULL) {
len=0;
bEnd=p=(const BYTE*)(size_t)32;
}
#endif
if (len>=32) {
const BYTE* const limit = bEnd - 32;
U64 v1 = seed + PRIME64_1 + PRIME64_2;
U64 v2 = seed + PRIME64_2;
U64 v3 = seed + 0;
U64 v4 = seed - PRIME64_1;
do {
v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8;
v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8;
v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8;
v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8;
} while (p<=limit);
h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
h64 = XXH64_mergeRound(h64, v1);
h64 = XXH64_mergeRound(h64, v2);
h64 = XXH64_mergeRound(h64, v3);
h64 = XXH64_mergeRound(h64, v4);
} else {
h64 = seed + PRIME64_5;
}
h64 += (U64) len;
while (p+8<=bEnd) {
U64 const k1 = XXH64_round(0, XXH_get64bits(p));
h64 ^= k1;
h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
p+=8;
}
if (p+4<=bEnd) {
h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1;
h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
p+=4;
}
while (p<bEnd) {
h64 ^= (*p) * PRIME64_5;
h64 = XXH_rotl64(h64, 11) * PRIME64_1;
p++;
}
h64 ^= h64 >> 33;
h64 *= PRIME64_2;
h64 ^= h64 >> 29;
h64 *= PRIME64_3;
h64 ^= h64 >> 32;
return h64;
}
XXH_PUBLIC_API unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed)
{
#if 0
/* Simple version, good for code maintenance, but unfortunately slow for small inputs */
XXH64_CREATESTATE_STATIC(state);
XXH64_reset(state, seed);
XXH64_update(state, input, len);
return XXH64_digest(state);
#else
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
if (XXH_FORCE_ALIGN_CHECK) {
if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
else
return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
} }
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
else
return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
#endif
}
/* **************************************************
* Advanced Hash Functions
****************************************************/
XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
{
return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
}
XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
{
XXH_free(statePtr);
return XXH_OK;
}
XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
{
return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
}
XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
{
XXH_free(statePtr);
return XXH_OK;
}
/*** Hash feed ***/
XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed)
{
XXH32_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
memset(&state, 0, sizeof(state)-4); /* do not write into reserved, for future removal */
state.v1 = seed + PRIME32_1 + PRIME32_2;
state.v2 = seed + PRIME32_2;
state.v3 = seed + 0;
state.v4 = seed - PRIME32_1;
memcpy(statePtr, &state, sizeof(state));
return XXH_OK;
}
XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed)
{
XXH64_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
memset(&state, 0, sizeof(state)-8); /* do not write into reserved, for future removal */
state.v1 = seed + PRIME64_1 + PRIME64_2;
state.v2 = seed + PRIME64_2;
state.v3 = seed + 0;
state.v4 = seed - PRIME64_1;
memcpy(statePtr, &state, sizeof(state));
return XXH_OK;
}
FORCE_INLINE_TEMPLATE XXH_errorcode XXH32_update_endian (XXH32_state_t* state, const void* input, size_t len, XXH_endianess endian)
{
const BYTE* p = (const BYTE*)input;
const BYTE* const bEnd = p + len;
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
if (input==NULL) return XXH_ERROR;
#endif
state->total_len_32 += (unsigned)len;
state->large_len |= (len>=16) | (state->total_len_32>=16);
if (state->memsize + len < 16) { /* fill in tmp buffer */
XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len);
state->memsize += (unsigned)len;
return XXH_OK;
}
if (state->memsize) { /* some data left from previous update */
XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize);
{ const U32* p32 = state->mem32;
state->v1 = XXH32_round(state->v1, XXH_readLE32(p32, endian)); p32++;
state->v2 = XXH32_round(state->v2, XXH_readLE32(p32, endian)); p32++;
state->v3 = XXH32_round(state->v3, XXH_readLE32(p32, endian)); p32++;
state->v4 = XXH32_round(state->v4, XXH_readLE32(p32, endian)); p32++;
}
p += 16-state->memsize;
state->memsize = 0;
}
if (p <= bEnd-16) {
const BYTE* const limit = bEnd - 16;
U32 v1 = state->v1;
U32 v2 = state->v2;
U32 v3 = state->v3;
U32 v4 = state->v4;
do {
v1 = XXH32_round(v1, XXH_readLE32(p, endian)); p+=4;
v2 = XXH32_round(v2, XXH_readLE32(p, endian)); p+=4;
v3 = XXH32_round(v3, XXH_readLE32(p, endian)); p+=4;
v4 = XXH32_round(v4, XXH_readLE32(p, endian)); p+=4;
} while (p<=limit);
state->v1 = v1;
state->v2 = v2;
state->v3 = v3;
state->v4 = v4;
}
if (p < bEnd) {
XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
state->memsize = (unsigned)(bEnd-p);
}
return XXH_OK;
}
XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len)
{
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH32_update_endian(state_in, input, len, XXH_littleEndian);
else
return XXH32_update_endian(state_in, input, len, XXH_bigEndian);
}
FORCE_INLINE_TEMPLATE U32 XXH32_digest_endian (const XXH32_state_t* state, XXH_endianess endian)
{
const BYTE * p = (const BYTE*)state->mem32;
const BYTE* const bEnd = (const BYTE*)(state->mem32) + state->memsize;
U32 h32;
if (state->large_len) {
h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);
} else {
h32 = state->v3 /* == seed */ + PRIME32_5;
}
h32 += state->total_len_32;
while (p+4<=bEnd) {
h32 += XXH_readLE32(p, endian) * PRIME32_3;
h32 = XXH_rotl32(h32, 17) * PRIME32_4;
p+=4;
}
while (p<bEnd) {
h32 += (*p) * PRIME32_5;
h32 = XXH_rotl32(h32, 11) * PRIME32_1;
p++;
}
h32 ^= h32 >> 15;
h32 *= PRIME32_2;
h32 ^= h32 >> 13;
h32 *= PRIME32_3;
h32 ^= h32 >> 16;
return h32;
}
XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state_in)
{
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH32_digest_endian(state_in, XXH_littleEndian);
else
return XXH32_digest_endian(state_in, XXH_bigEndian);
}
/* **** XXH64 **** */
FORCE_INLINE_TEMPLATE XXH_errorcode XXH64_update_endian (XXH64_state_t* state, const void* input, size_t len, XXH_endianess endian)
{
const BYTE* p = (const BYTE*)input;
const BYTE* const bEnd = p + len;
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
if (input==NULL) return XXH_ERROR;
#endif
state->total_len += len;
if (state->memsize + len < 32) { /* fill in tmp buffer */
XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len);
state->memsize += (U32)len;
return XXH_OK;
}
if (state->memsize) { /* tmp buffer is full */
XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize);
state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0, endian));
state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1, endian));
state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2, endian));
state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3, endian));
p += 32-state->memsize;
state->memsize = 0;
}
if (p+32 <= bEnd) {
const BYTE* const limit = bEnd - 32;
U64 v1 = state->v1;
U64 v2 = state->v2;
U64 v3 = state->v3;
U64 v4 = state->v4;
do {
v1 = XXH64_round(v1, XXH_readLE64(p, endian)); p+=8;
v2 = XXH64_round(v2, XXH_readLE64(p, endian)); p+=8;
v3 = XXH64_round(v3, XXH_readLE64(p, endian)); p+=8;
v4 = XXH64_round(v4, XXH_readLE64(p, endian)); p+=8;
} while (p<=limit);
state->v1 = v1;
state->v2 = v2;
state->v3 = v3;
state->v4 = v4;
}
if (p < bEnd) {
XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
state->memsize = (unsigned)(bEnd-p);
}
return XXH_OK;
}
XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len)
{
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH64_update_endian(state_in, input, len, XXH_littleEndian);
else
return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
}
FORCE_INLINE_TEMPLATE U64 XXH64_digest_endian (const XXH64_state_t* state, XXH_endianess endian)
{
const BYTE * p = (const BYTE*)state->mem64;
const BYTE* const bEnd = (const BYTE*)state->mem64 + state->memsize;
U64 h64;
if (state->total_len >= 32) {
U64 const v1 = state->v1;
U64 const v2 = state->v2;
U64 const v3 = state->v3;
U64 const v4 = state->v4;
h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
h64 = XXH64_mergeRound(h64, v1);
h64 = XXH64_mergeRound(h64, v2);
h64 = XXH64_mergeRound(h64, v3);
h64 = XXH64_mergeRound(h64, v4);
} else {
h64 = state->v3 + PRIME64_5;
}
h64 += (U64) state->total_len;
while (p+8<=bEnd) {
U64 const k1 = XXH64_round(0, XXH_readLE64(p, endian));
h64 ^= k1;
h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
p+=8;
}
if (p+4<=bEnd) {
h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1;
h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
p+=4;
}
while (p<bEnd) {
h64 ^= (*p) * PRIME64_5;
h64 = XXH_rotl64(h64, 11) * PRIME64_1;
p++;
}
h64 ^= h64 >> 33;
h64 *= PRIME64_2;
h64 ^= h64 >> 29;
h64 *= PRIME64_3;
h64 ^= h64 >> 32;
return h64;
}
XXH_PUBLIC_API unsigned long long XXH64_digest (const XXH64_state_t* state_in)
{
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH64_digest_endian(state_in, XXH_littleEndian);
else
return XXH64_digest_endian(state_in, XXH_bigEndian);
}
/* **************************
* Canonical representation
****************************/
/*! Default XXH result types are basic unsigned 32 and 64 bits.
* The canonical representation follows human-readable write convention, aka big-endian (large digits first).
* These functions allow transformation of hash result into and from its canonical format.
* This way, hash values can be written into a file or buffer, and remain comparable across different systems and programs.
*/
XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
{
XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
memcpy(dst, &hash, sizeof(*dst));
}
XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
{
XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
memcpy(dst, &hash, sizeof(*dst));
}
XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
{
return XXH_readBE32(src);
}
XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
{
return XXH_readBE64(src);
}

View File

@ -1,305 +0,0 @@
/*
xxHash - Extremely Fast Hash algorithm
Header File
Copyright (C) 2012-2016, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- xxHash source repository : https://github.com/Cyan4973/xxHash
*/
/* Notice extracted from xxHash homepage :
xxHash is an extremely fast Hash algorithm, running at RAM speed limits.
It also successfully passes all tests from the SMHasher suite.
Comparison (single thread, Windows Seven 32 bits, using SMHasher on a Core 2 Duo @3GHz)
Name Speed Q.Score Author
xxHash 5.4 GB/s 10
CrapWow 3.2 GB/s 2 Andrew
MumurHash 3a 2.7 GB/s 10 Austin Appleby
SpookyHash 2.0 GB/s 10 Bob Jenkins
SBox 1.4 GB/s 9 Bret Mulvey
Lookup3 1.2 GB/s 9 Bob Jenkins
SuperFastHash 1.2 GB/s 1 Paul Hsieh
CityHash64 1.05 GB/s 10 Pike & Alakuijala
FNV 0.55 GB/s 5 Fowler, Noll, Vo
CRC32 0.43 GB/s 9
MD5-32 0.33 GB/s 10 Ronald L. Rivest
SHA1-32 0.28 GB/s 10
Q.Score is a measure of quality of the hash function.
It depends on successfully passing SMHasher test set.
10 is a perfect score.
A 64-bits version, named XXH64, is available since r35.
It offers much better speed, but for 64-bits applications only.
Name Speed on 64 bits Speed on 32 bits
XXH64 13.8 GB/s 1.9 GB/s
XXH32 6.8 GB/s 6.0 GB/s
*/
#if defined (__cplusplus)
extern "C" {
#endif
#ifndef XXHASH_H_5627135585666179
#define XXHASH_H_5627135585666179 1
/* ****************************
* Definitions
******************************/
#include <stddef.h> /* size_t */
typedef enum { XXH_OK=0, XXH_ERROR } XXH_errorcode;
/* ****************************
* API modifier
******************************/
/** XXH_PRIVATE_API
* This is useful if you want to include xxhash functions in `static` mode
* in order to inline them, and remove their symbol from the public list.
* Methodology :
* #define XXH_PRIVATE_API
* #include "xxhash.h"
* `xxhash.c` is automatically included.
* It's not useful to compile and link it as a separate module anymore.
*/
#ifdef XXH_PRIVATE_API
# ifndef XXH_STATIC_LINKING_ONLY
# define XXH_STATIC_LINKING_ONLY
# endif
# if defined(__GNUC__)
# define XXH_PUBLIC_API static __inline __attribute__((unused))
# elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
# define XXH_PUBLIC_API static inline
# elif defined(_MSC_VER)
# define XXH_PUBLIC_API static __inline
# else
# define XXH_PUBLIC_API static /* this version may generate warnings for unused static functions; disable the relevant warning */
# endif
#else
# define XXH_PUBLIC_API /* do nothing */
#endif /* XXH_PRIVATE_API */
/*!XXH_NAMESPACE, aka Namespace Emulation :
If you want to include _and expose_ xxHash functions from within your own library,
but also want to avoid symbol collisions with another library which also includes xxHash,
you can use XXH_NAMESPACE, to automatically prefix any public symbol from xxhash library
with the value of XXH_NAMESPACE (so avoid to keep it NULL and avoid numeric values).
Note that no change is required within the calling program as long as it includes `xxhash.h` :
regular symbol name will be automatically translated by this header.
*/
#ifdef XXH_NAMESPACE
# define XXH_CAT(A,B) A##B
# define XXH_NAME2(A,B) XXH_CAT(A,B)
# define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32)
# define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64)
# define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber)
# define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState)
# define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState)
# define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState)
# define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState)
# define XXH32_reset XXH_NAME2(XXH_NAMESPACE, XXH32_reset)
# define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset)
# define XXH32_update XXH_NAME2(XXH_NAMESPACE, XXH32_update)
# define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update)
# define XXH32_digest XXH_NAME2(XXH_NAMESPACE, XXH32_digest)
# define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest)
# define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState)
# define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState)
# define XXH32_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash)
# define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash)
# define XXH32_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical)
# define XXH64_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical)
#endif
/* *************************************
* Version
***************************************/
#define XXH_VERSION_MAJOR 0
#define XXH_VERSION_MINOR 6
#define XXH_VERSION_RELEASE 2
#define XXH_VERSION_NUMBER (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE)
XXH_PUBLIC_API unsigned XXH_versionNumber (void);
/* ****************************
* Simple Hash Functions
******************************/
typedef unsigned int XXH32_hash_t;
typedef unsigned long long XXH64_hash_t;
XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t length, unsigned int seed);
XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t length, unsigned long long seed);
/*!
XXH32() :
Calculate the 32-bits hash of sequence "length" bytes stored at memory address "input".
The memory between input & input+length must be valid (allocated and read-accessible).
"seed" can be used to alter the result predictably.
Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark) : 5.4 GB/s
XXH64() :
Calculate the 64-bits hash of sequence of length "len" stored at memory address "input".
"seed" can be used to alter the result predictably.
This function runs 2x faster on 64-bits systems, but slower on 32-bits systems (see benchmark).
*/
/* ****************************
* Streaming Hash Functions
******************************/
typedef struct XXH32_state_s XXH32_state_t; /* incomplete type */
typedef struct XXH64_state_s XXH64_state_t; /* incomplete type */
/*! State allocation, compatible with dynamic libraries */
XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void);
XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr);
XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void);
XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr);
/* hash streaming */
XXH_PUBLIC_API XXH_errorcode XXH32_reset (XXH32_state_t* statePtr, unsigned int seed);
XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length);
XXH_PUBLIC_API XXH32_hash_t XXH32_digest (const XXH32_state_t* statePtr);
XXH_PUBLIC_API XXH_errorcode XXH64_reset (XXH64_state_t* statePtr, unsigned long long seed);
XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* statePtr, const void* input, size_t length);
XXH_PUBLIC_API XXH64_hash_t XXH64_digest (const XXH64_state_t* statePtr);
/*
These functions generate the xxHash of an input provided in multiple segments.
Note that, for small input, they are slower than single-call functions, due to state management.
For small input, prefer `XXH32()` and `XXH64()` .
XXH state must first be allocated, using XXH*_createState() .
Start a new hash by initializing state with a seed, using XXH*_reset().
Then, feed the hash state by calling XXH*_update() as many times as necessary.
Obviously, input must be allocated and read accessible.
The function returns an error code, with 0 meaning OK, and any other value meaning there is an error.
Finally, a hash value can be produced anytime, by using XXH*_digest().
This function returns the nn-bits hash as an int or long long.
It's still possible to continue inserting input into the hash state after a digest,
and generate some new hashes later on, by calling again XXH*_digest().
When done, free XXH state space if it was allocated dynamically.
*/
/* **************************
* Utils
****************************/
#if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) /* ! C99 */
# define restrict /* disable restrict */
#endif
XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* restrict dst_state, const XXH32_state_t* restrict src_state);
XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* restrict dst_state, const XXH64_state_t* restrict src_state);
/* **************************
* Canonical representation
****************************/
/* Default result type for XXH functions are primitive unsigned 32 and 64 bits.
* The canonical representation uses human-readable write convention, aka big-endian (large digits first).
* These functions allow transformation of hash result into and from its canonical format.
* This way, hash values can be written into a file / memory, and remain comparable on different systems and programs.
*/
typedef struct { unsigned char digest[4]; } XXH32_canonical_t;
typedef struct { unsigned char digest[8]; } XXH64_canonical_t;
XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash);
XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash);
XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src);
XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src);
#endif /* XXHASH_H_5627135585666179 */
/* ================================================================================================
This section contains definitions which are not guaranteed to remain stable.
They may change in future versions, becoming incompatible with a different version of the library.
They shall only be used with static linking.
Never use these definitions in association with dynamic linking !
=================================================================================================== */
#if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXH_STATIC_H_3543687687345)
#define XXH_STATIC_H_3543687687345
/* These definitions are only meant to allow allocation of XXH state
statically, on stack, or in a struct for example.
Do not use members directly. */
struct XXH32_state_s {
unsigned total_len_32;
unsigned large_len;
unsigned v1;
unsigned v2;
unsigned v3;
unsigned v4;
unsigned mem32[4]; /* buffer defined as U32 for alignment */
unsigned memsize;
unsigned reserved; /* never read nor write, will be removed in a future version */
}; /* typedef'd to XXH32_state_t */
struct XXH64_state_s {
unsigned long long total_len;
unsigned long long v1;
unsigned long long v2;
unsigned long long v3;
unsigned long long v4;
unsigned long long mem64[4]; /* buffer defined as U64 for alignment */
unsigned memsize;
unsigned reserved[2]; /* never read nor write, will be removed in a future version */
}; /* typedef'd to XXH64_state_t */
# ifdef XXH_PRIVATE_API
# include "xxhash.c" /* include xxhash functions as `static`, for inlining */
# endif
#endif /* XXH_STATIC_LINKING_ONLY && XXH_STATIC_H_3543687687345 */
#if defined (__cplusplus)
}
#endif

View File

@ -1,80 +0,0 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
*/
/*-*************************************
* Dependencies
***************************************/
#include <stdlib.h> /* malloc, calloc, free */
#include <string.h> /* memset */
#include "error_private.h"
#define ZSTD_STATIC_LINKING_ONLY
#include "zstd.h"
/*-****************************************
* Version
******************************************/
unsigned ZSTD_versionNumber(void) { return ZSTD_VERSION_NUMBER; }
const char* ZSTD_versionString(void) { return ZSTD_VERSION_STRING; }
/*-****************************************
* ZSTD Error Management
******************************************/
/*! ZSTD_isError() :
* tells if a return value is an error code */
unsigned ZSTD_isError(size_t code) { return ERR_isError(code); }
/*! ZSTD_getErrorName() :
* provides error code string from function result (useful for debugging) */
const char* ZSTD_getErrorName(size_t code) { return ERR_getErrorName(code); }
/*! ZSTD_getError() :
* convert a `size_t` function result into a proper ZSTD_errorCode enum */
ZSTD_ErrorCode ZSTD_getErrorCode(size_t code) { return ERR_getErrorCode(code); }
/*! ZSTD_getErrorString() :
* provides error code string from enum */
const char* ZSTD_getErrorString(ZSTD_ErrorCode code) { return ERR_getErrorString(code); }
/*=**************************************************************
* Custom allocator
****************************************************************/
void* ZSTD_malloc(size_t size, ZSTD_customMem customMem)
{
if (customMem.customAlloc)
return customMem.customAlloc(customMem.opaque, size);
return malloc(size);
}
void* ZSTD_calloc(size_t size, ZSTD_customMem customMem)
{
if (customMem.customAlloc) {
/* calloc implemented as malloc+memset;
* not as efficient as calloc, but next best guess for custom malloc */
void* const ptr = customMem.customAlloc(customMem.opaque, size);
memset(ptr, 0, size);
return ptr;
}
return calloc(1, size);
}
void ZSTD_free(void* ptr, ZSTD_customMem customMem)
{
if (ptr!=NULL) {
if (customMem.customFree)
customMem.customFree(customMem.opaque, ptr);
else
free(ptr);
}
}

View File

@ -1,81 +0,0 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
*/
#ifndef ZSTD_ERRORS_H_398273423
#define ZSTD_ERRORS_H_398273423
#if defined (__cplusplus)
extern "C" {
#endif
/*===== dependency =====*/
#include <stddef.h> /* size_t */
/* ===== ZSTDERRORLIB_API : control library symbols visibility ===== */
#ifndef ZSTDERRORLIB_VISIBILITY
# if defined(__GNUC__) && (__GNUC__ >= 4)
# define ZSTDERRORLIB_VISIBILITY __attribute__ ((visibility ("default")))
# else
# define ZSTDERRORLIB_VISIBILITY
# endif
#endif
#if defined(ZSTD_DLL_EXPORT) && (ZSTD_DLL_EXPORT==1)
# define ZSTDERRORLIB_API __declspec(dllexport) ZSTDERRORLIB_VISIBILITY
#elif defined(ZSTD_DLL_IMPORT) && (ZSTD_DLL_IMPORT==1)
# define ZSTDERRORLIB_API __declspec(dllimport) ZSTDERRORLIB_VISIBILITY /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/
#else
# define ZSTDERRORLIB_API ZSTDERRORLIB_VISIBILITY
#endif
/*-****************************************
* error codes list
* note : this API is still considered unstable
* and shall not be used with a dynamic library.
* only static linking is allowed
******************************************/
typedef enum {
ZSTD_error_no_error = 0,
ZSTD_error_GENERIC = 1,
ZSTD_error_prefix_unknown = 10,
ZSTD_error_version_unsupported = 12,
ZSTD_error_frameParameter_unsupported = 14,
ZSTD_error_frameParameter_windowTooLarge = 16,
ZSTD_error_corruption_detected = 20,
ZSTD_error_checksum_wrong = 22,
ZSTD_error_dictionary_corrupted = 30,
ZSTD_error_dictionary_wrong = 32,
ZSTD_error_dictionaryCreation_failed = 34,
ZSTD_error_parameter_unsupported = 40,
ZSTD_error_parameter_outOfBound = 42,
ZSTD_error_tableLog_tooLarge = 44,
ZSTD_error_maxSymbolValue_tooLarge = 46,
ZSTD_error_maxSymbolValue_tooSmall = 48,
ZSTD_error_stage_wrong = 60,
ZSTD_error_init_missing = 62,
ZSTD_error_memory_allocation = 64,
ZSTD_error_dstSize_tooSmall = 70,
ZSTD_error_srcSize_wrong = 72,
ZSTD_error_frameIndex_tooLarge = 100,
ZSTD_error_seekableIO = 102,
ZSTD_error_maxCode = 120 /* never EVER use this value directly, it may change in future versions! Use ZSTD_isError() instead */
} ZSTD_ErrorCode;
/*! ZSTD_getErrorCode() :
convert a `size_t` function result into a `ZSTD_ErrorCode` enum type,
which can be used to compare with enum list published above */
ZSTDERRORLIB_API ZSTD_ErrorCode ZSTD_getErrorCode(size_t functionResult);
ZSTDERRORLIB_API const char* ZSTD_getErrorString(ZSTD_ErrorCode code); /**< Same as ZSTD_getErrorName, but using a `ZSTD_ErrorCode` enum argument */
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_ERRORS_H_398273423 */

View File

@ -1,335 +0,0 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
*/
#ifndef ZSTD_CCOMMON_H_MODULE
#define ZSTD_CCOMMON_H_MODULE
/*-*************************************
* Dependencies
***************************************/
#include "compiler.h"
#include "mem.h"
#include "error_private.h"
#define ZSTD_STATIC_LINKING_ONLY
#include "zstd.h"
#define FSE_STATIC_LINKING_ONLY
#include "fse.h"
#define HUF_STATIC_LINKING_ONLY
#include "huf.h"
#ifndef XXH_STATIC_LINKING_ONLY
# define XXH_STATIC_LINKING_ONLY /* XXH64_state_t */
#endif
#include "xxhash.h" /* XXH_reset, update, digest */
/*-*************************************
* Debug
***************************************/
#if defined(ZSTD_DEBUG) && (ZSTD_DEBUG>=1)
# include <assert.h>
#else
# ifndef assert
# define assert(condition) ((void)0)
# endif
#endif
#define ZSTD_STATIC_ASSERT(c) { enum { ZSTD_static_assert = 1/(int)(!!(c)) }; }
#if defined(ZSTD_DEBUG) && (ZSTD_DEBUG>=2)
# include <stdio.h>
/* recommended values for ZSTD_DEBUG display levels :
* 1 : no display, enables assert() only
* 2 : reserved for currently active debugging path
* 3 : events once per object lifetime (CCtx, CDict)
* 4 : events once per frame
* 5 : events once per block
* 6 : events once per sequence (*very* verbose) */
# define DEBUGLOG(l, ...) { \
if (l<=ZSTD_DEBUG) { \
fprintf(stderr, __FILE__ ": "); \
fprintf(stderr, __VA_ARGS__); \
fprintf(stderr, " \n"); \
} }
#else
# define DEBUGLOG(l, ...) {} /* disabled */
#endif
/*-*************************************
* shared macros
***************************************/
#undef MIN
#undef MAX
#define MIN(a,b) ((a)<(b) ? (a) : (b))
#define MAX(a,b) ((a)>(b) ? (a) : (b))
#define CHECK_F(f) { size_t const errcod = f; if (ERR_isError(errcod)) return errcod; } /* check and Forward error code */
#define CHECK_E(f, e) { size_t const errcod = f; if (ERR_isError(errcod)) return ERROR(e); } /* check and send Error code */
/*-*************************************
* Common constants
***************************************/
#define ZSTD_OPT_NUM (1<<12)
#define ZSTD_REP_NUM 3 /* number of repcodes */
#define ZSTD_REP_CHECK (ZSTD_REP_NUM) /* number of repcodes to check by the optimal parser */
#define ZSTD_REP_MOVE (ZSTD_REP_NUM-1)
#define ZSTD_REP_MOVE_OPT (ZSTD_REP_NUM)
static const U32 repStartValue[ZSTD_REP_NUM] = { 1, 4, 8 };
#define KB *(1 <<10)
#define MB *(1 <<20)
#define GB *(1U<<30)
#define BIT7 128
#define BIT6 64
#define BIT5 32
#define BIT4 16
#define BIT1 2
#define BIT0 1
#define ZSTD_WINDOWLOG_ABSOLUTEMIN 10
static const size_t ZSTD_fcs_fieldSize[4] = { 0, 2, 4, 8 };
static const size_t ZSTD_did_fieldSize[4] = { 0, 1, 2, 4 };
#define ZSTD_BLOCKHEADERSIZE 3 /* C standard doesn't allow `static const` variable to be init using another `static const` variable */
static const size_t ZSTD_blockHeaderSize = ZSTD_BLOCKHEADERSIZE;
typedef enum { bt_raw, bt_rle, bt_compressed, bt_reserved } blockType_e;
#define MIN_SEQUENCES_SIZE 1 /* nbSeq==0 */
#define MIN_CBLOCK_SIZE (1 /*litCSize*/ + 1 /* RLE or RAW */ + MIN_SEQUENCES_SIZE /* nbSeq==0 */) /* for a non-null block */
#define HufLog 12
typedef enum { set_basic, set_rle, set_compressed, set_repeat } symbolEncodingType_e;
#define LONGNBSEQ 0x7F00
#define MINMATCH 3
#define Litbits 8
#define MaxLit ((1<<Litbits) - 1)
#define MaxML 52
#define MaxLL 35
#define MaxOff 28
#define MaxSeq MAX(MaxLL, MaxML) /* Assumption : MaxOff < MaxLL,MaxML */
#define MLFSELog 9
#define LLFSELog 9
#define OffFSELog 8
static const U32 LL_bits[MaxLL+1] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 2, 2, 3, 3, 4, 6, 7, 8, 9,10,11,12,
13,14,15,16 };
static const S16 LL_defaultNorm[MaxLL+1] = { 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 1, 1, 1, 1, 1,
-1,-1,-1,-1 };
#define LL_DEFAULTNORMLOG 6 /* for static allocation */
static const U32 LL_defaultNormLog = LL_DEFAULTNORMLOG;
static const U32 ML_bits[MaxML+1] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 7, 8, 9,10,11,
12,13,14,15,16 };
static const S16 ML_defaultNorm[MaxML+1] = { 1, 4, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,-1,-1,
-1,-1,-1,-1,-1 };
#define ML_DEFAULTNORMLOG 6 /* for static allocation */
static const U32 ML_defaultNormLog = ML_DEFAULTNORMLOG;
static const S16 OF_defaultNorm[MaxOff+1] = { 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,-1,-1,-1,-1,-1 };
#define OF_DEFAULTNORMLOG 5 /* for static allocation */
static const U32 OF_defaultNormLog = OF_DEFAULTNORMLOG;
/*-*******************************************
* Shared functions to include for inlining
*********************************************/
static void ZSTD_copy8(void* dst, const void* src) { memcpy(dst, src, 8); }
#define COPY8(d,s) { ZSTD_copy8(d,s); d+=8; s+=8; }
/*! ZSTD_wildcopy() :
* custom version of memcpy(), can copy up to 7 bytes too many (8 bytes if length==0) */
#define WILDCOPY_OVERLENGTH 8
MEM_STATIC void ZSTD_wildcopy(void* dst, const void* src, ptrdiff_t length)
{
const BYTE* ip = (const BYTE*)src;
BYTE* op = (BYTE*)dst;
BYTE* const oend = op + length;
do
COPY8(op, ip)
while (op < oend);
}
MEM_STATIC void ZSTD_wildcopy_e(void* dst, const void* src, void* dstEnd) /* should be faster for decoding, but strangely, not verified on all platform */
{
const BYTE* ip = (const BYTE*)src;
BYTE* op = (BYTE*)dst;
BYTE* const oend = (BYTE*)dstEnd;
do
COPY8(op, ip)
while (op < oend);
}
/*-*******************************************
* Private interfaces
*********************************************/
typedef struct ZSTD_stats_s ZSTD_stats_t;
typedef struct seqDef_s {
U32 offset;
U16 litLength;
U16 matchLength;
} seqDef;
typedef struct {
seqDef* sequencesStart;
seqDef* sequences;
BYTE* litStart;
BYTE* lit;
BYTE* llCode;
BYTE* mlCode;
BYTE* ofCode;
U32 longLengthID; /* 0 == no longLength; 1 == Lit.longLength; 2 == Match.longLength; */
U32 longLengthPos;
U32 rep[ZSTD_REP_NUM];
U32 repToConfirm[ZSTD_REP_NUM];
} seqStore_t;
typedef struct {
U32 off;
U32 len;
} ZSTD_match_t;
typedef struct {
U32 price;
U32 off;
U32 mlen;
U32 litlen;
U32 rep[ZSTD_REP_NUM];
} ZSTD_optimal_t;
typedef struct {
U32* litFreq;
U32* litLengthFreq;
U32* matchLengthFreq;
U32* offCodeFreq;
ZSTD_match_t* matchTable;
ZSTD_optimal_t* priceTable;
U32 matchLengthSum;
U32 matchSum;
U32 litLengthSum;
U32 litSum;
U32 offCodeSum;
U32 log2matchLengthSum;
U32 log2matchSum;
U32 log2litLengthSum;
U32 log2litSum;
U32 log2offCodeSum;
U32 factor;
U32 staticPrices;
U32 cachedPrice;
U32 cachedLitLength;
const BYTE* cachedLiterals;
} optState_t;
typedef struct {
U32 hufCTable[HUF_CTABLE_SIZE_U32(255)];
FSE_CTable offcodeCTable[FSE_CTABLE_SIZE_U32(OffFSELog, MaxOff)];
FSE_CTable matchlengthCTable[FSE_CTABLE_SIZE_U32(MLFSELog, MaxML)];
FSE_CTable litlengthCTable[FSE_CTABLE_SIZE_U32(LLFSELog, MaxLL)];
U32 workspace[HUF_WORKSPACE_SIZE_U32];
HUF_repeat hufCTable_repeatMode;
FSE_repeat offcode_repeatMode;
FSE_repeat matchlength_repeatMode;
FSE_repeat litlength_repeatMode;
} ZSTD_entropyCTables_t;
const seqStore_t* ZSTD_getSeqStore(const ZSTD_CCtx* ctx);
void ZSTD_seqToCodes(const seqStore_t* seqStorePtr);
/* custom memory allocation functions */
void* ZSTD_malloc(size_t size, ZSTD_customMem customMem);
void* ZSTD_calloc(size_t size, ZSTD_customMem customMem);
void ZSTD_free(void* ptr, ZSTD_customMem customMem);
/*====== common function ======*/
MEM_STATIC U32 ZSTD_highbit32(U32 val)
{
# if defined(_MSC_VER) /* Visual */
unsigned long r=0;
_BitScanReverse(&r, val);
return (unsigned)r;
# elif defined(__GNUC__) && (__GNUC__ >= 3) /* GCC Intrinsic */
return 31 - __builtin_clz(val);
# else /* Software version */
static const int DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
U32 v = val;
int r;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
r = DeBruijnClz[(U32)(v * 0x07C4ACDDU) >> 27];
return r;
# endif
}
/* hidden functions */
/* ZSTD_invalidateRepCodes() :
* ensures next compression will not use repcodes from previous block.
* Note : only works with regular variant;
* do not use with extDict variant ! */
void ZSTD_invalidateRepCodes(ZSTD_CCtx* cctx);
/*! ZSTD_initCStream_internal() :
* Private use only. Init streaming operation.
* expects params to be valid.
* must receive dict, or cdict, or none, but not both.
* @return : 0, or an error code */
size_t ZSTD_initCStream_internal(ZSTD_CStream* zcs,
const void* dict, size_t dictSize,
const ZSTD_CDict* cdict,
ZSTD_parameters params, unsigned long long pledgedSrcSize);
/*! ZSTD_compressStream_generic() :
* Private use only. To be called from zstdmt_compress.c in single-thread mode. */
size_t ZSTD_compressStream_generic(ZSTD_CStream* zcs,
ZSTD_outBuffer* output,
ZSTD_inBuffer* input,
ZSTD_EndDirective const flushMode);
/*! ZSTD_getParamsFromCDict() :
* as the name implies */
ZSTD_parameters ZSTD_getParamsFromCDict(const ZSTD_CDict* cdict);
typedef struct {
blockType_e blockType;
U32 lastBlock;
U32 origSize;
} blockProperties_t;
/*! ZSTD_getcBlockSize() :
* Provides the size of compressed block from block header `src` */
size_t ZSTD_getcBlockSize(const void* src, size_t srcSize,
blockProperties_t* bpPtr);
#endif /* ZSTD_CCOMMON_H_MODULE */

View File

@ -1,839 +0,0 @@
/* ******************************************************************
FSE : Finite State Entropy encoder
Copyright (C) 2013-2015, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
/* **************************************************************
* Includes
****************************************************************/
#include <stdlib.h> /* malloc, free, qsort */
#include <string.h> /* memcpy, memset */
#include <stdio.h> /* printf (debug) */
#include "bitstream.h"
#include "compiler.h"
#define FSE_STATIC_LINKING_ONLY
#include "fse.h"
#include "error_private.h"
/* **************************************************************
* Error Management
****************************************************************/
#define FSE_isError ERR_isError
#define FSE_STATIC_ASSERT(c) { enum { FSE_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
/* **************************************************************
* Templates
****************************************************************/
/*
designed to be included
for type-specific functions (template emulation in C)
Objective is to write these functions only once, for improved maintenance
*/
/* safety checks */
#ifndef FSE_FUNCTION_EXTENSION
# error "FSE_FUNCTION_EXTENSION must be defined"
#endif
#ifndef FSE_FUNCTION_TYPE
# error "FSE_FUNCTION_TYPE must be defined"
#endif
/* Function names */
#define FSE_CAT(X,Y) X##Y
#define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y)
#define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y)
/* Function templates */
/* FSE_buildCTable_wksp() :
* Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`).
* wkspSize should be sized to handle worst case situation, which is `1<<max_tableLog * sizeof(FSE_FUNCTION_TYPE)`
* workSpace must also be properly aligned with FSE_FUNCTION_TYPE requirements
*/
size_t FSE_buildCTable_wksp(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize)
{
U32 const tableSize = 1 << tableLog;
U32 const tableMask = tableSize - 1;
void* const ptr = ct;
U16* const tableU16 = ( (U16*) ptr) + 2;
void* const FSCT = ((U32*)ptr) + 1 /* header */ + (tableLog ? tableSize>>1 : 1) ;
FSE_symbolCompressionTransform* const symbolTT = (FSE_symbolCompressionTransform*) (FSCT);
U32 const step = FSE_TABLESTEP(tableSize);
U32 cumul[FSE_MAX_SYMBOL_VALUE+2];
FSE_FUNCTION_TYPE* const tableSymbol = (FSE_FUNCTION_TYPE*)workSpace;
U32 highThreshold = tableSize-1;
/* CTable header */
if (((size_t)1 << tableLog) * sizeof(FSE_FUNCTION_TYPE) > wkspSize) return ERROR(tableLog_tooLarge);
tableU16[-2] = (U16) tableLog;
tableU16[-1] = (U16) maxSymbolValue;
/* For explanations on how to distribute symbol values over the table :
* http://fastcompression.blogspot.fr/2014/02/fse-distributing-symbol-values.html */
/* symbol start positions */
{ U32 u;
cumul[0] = 0;
for (u=1; u<=maxSymbolValue+1; u++) {
if (normalizedCounter[u-1]==-1) { /* Low proba symbol */
cumul[u] = cumul[u-1] + 1;
tableSymbol[highThreshold--] = (FSE_FUNCTION_TYPE)(u-1);
} else {
cumul[u] = cumul[u-1] + normalizedCounter[u-1];
} }
cumul[maxSymbolValue+1] = tableSize+1;
}
/* Spread symbols */
{ U32 position = 0;
U32 symbol;
for (symbol=0; symbol<=maxSymbolValue; symbol++) {
int nbOccurences;
for (nbOccurences=0; nbOccurences<normalizedCounter[symbol]; nbOccurences++) {
tableSymbol[position] = (FSE_FUNCTION_TYPE)symbol;
position = (position + step) & tableMask;
while (position > highThreshold) position = (position + step) & tableMask; /* Low proba area */
} }
if (position!=0) return ERROR(GENERIC); /* Must have gone through all positions */
}
/* Build table */
{ U32 u; for (u=0; u<tableSize; u++) {
FSE_FUNCTION_TYPE s = tableSymbol[u]; /* note : static analyzer may not understand tableSymbol is properly initialized */
tableU16[cumul[s]++] = (U16) (tableSize+u); /* TableU16 : sorted by symbol order; gives next state value */
} }
/* Build Symbol Transformation Table */
{ unsigned total = 0;
unsigned s;
for (s=0; s<=maxSymbolValue; s++) {
switch (normalizedCounter[s])
{
case 0: break;
case -1:
case 1:
symbolTT[s].deltaNbBits = (tableLog << 16) - (1<<tableLog);
symbolTT[s].deltaFindState = total - 1;
total ++;
break;
default :
{
U32 const maxBitsOut = tableLog - BIT_highbit32 (normalizedCounter[s]-1);
U32 const minStatePlus = normalizedCounter[s] << maxBitsOut;
symbolTT[s].deltaNbBits = (maxBitsOut << 16) - minStatePlus;
symbolTT[s].deltaFindState = total - normalizedCounter[s];
total += normalizedCounter[s];
} } } }
return 0;
}
size_t FSE_buildCTable(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
{
FSE_FUNCTION_TYPE tableSymbol[FSE_MAX_TABLESIZE]; /* memset() is not necessary, even if static analyzer complain about it */
return FSE_buildCTable_wksp(ct, normalizedCounter, maxSymbolValue, tableLog, tableSymbol, sizeof(tableSymbol));
}
#ifndef FSE_COMMONDEFS_ONLY
/*-**************************************************************
* FSE NCount encoding-decoding
****************************************************************/
size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog)
{
size_t const maxHeaderSize = (((maxSymbolValue+1) * tableLog) >> 3) + 3;
return maxSymbolValue ? maxHeaderSize : FSE_NCOUNTBOUND; /* maxSymbolValue==0 ? use default */
}
static size_t FSE_writeNCount_generic (void* header, size_t headerBufferSize,
const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog,
unsigned writeIsSafe)
{
BYTE* const ostart = (BYTE*) header;
BYTE* out = ostart;
BYTE* const oend = ostart + headerBufferSize;
int nbBits;
const int tableSize = 1 << tableLog;
int remaining;
int threshold;
U32 bitStream;
int bitCount;
unsigned charnum = 0;
int previous0 = 0;
bitStream = 0;
bitCount = 0;
/* Table Size */
bitStream += (tableLog-FSE_MIN_TABLELOG) << bitCount;
bitCount += 4;
/* Init */
remaining = tableSize+1; /* +1 for extra accuracy */
threshold = tableSize;
nbBits = tableLog+1;
while (remaining>1) { /* stops at 1 */
if (previous0) {
unsigned start = charnum;
while (!normalizedCounter[charnum]) charnum++;
while (charnum >= start+24) {
start+=24;
bitStream += 0xFFFFU << bitCount;
if ((!writeIsSafe) && (out > oend-2)) return ERROR(dstSize_tooSmall); /* Buffer overflow */
out[0] = (BYTE) bitStream;
out[1] = (BYTE)(bitStream>>8);
out+=2;
bitStream>>=16;
}
while (charnum >= start+3) {
start+=3;
bitStream += 3 << bitCount;
bitCount += 2;
}
bitStream += (charnum-start) << bitCount;
bitCount += 2;
if (bitCount>16) {
if ((!writeIsSafe) && (out > oend - 2)) return ERROR(dstSize_tooSmall); /* Buffer overflow */
out[0] = (BYTE)bitStream;
out[1] = (BYTE)(bitStream>>8);
out += 2;
bitStream >>= 16;
bitCount -= 16;
} }
{ int count = normalizedCounter[charnum++];
int const max = (2*threshold-1)-remaining;
remaining -= count < 0 ? -count : count;
count++; /* +1 for extra accuracy */
if (count>=threshold) count += max; /* [0..max[ [max..threshold[ (...) [threshold+max 2*threshold[ */
bitStream += count << bitCount;
bitCount += nbBits;
bitCount -= (count<max);
previous0 = (count==1);
if (remaining<1) return ERROR(GENERIC);
while (remaining<threshold) nbBits--, threshold>>=1;
}
if (bitCount>16) {
if ((!writeIsSafe) && (out > oend - 2)) return ERROR(dstSize_tooSmall); /* Buffer overflow */
out[0] = (BYTE)bitStream;
out[1] = (BYTE)(bitStream>>8);
out += 2;
bitStream >>= 16;
bitCount -= 16;
} }
/* flush remaining bitStream */
if ((!writeIsSafe) && (out > oend - 2)) return ERROR(dstSize_tooSmall); /* Buffer overflow */
out[0] = (BYTE)bitStream;
out[1] = (BYTE)(bitStream>>8);
out+= (bitCount+7) /8;
if (charnum > maxSymbolValue + 1) return ERROR(GENERIC);
return (out-ostart);
}
size_t FSE_writeNCount (void* buffer, size_t bufferSize, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
{
if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge); /* Unsupported */
if (tableLog < FSE_MIN_TABLELOG) return ERROR(GENERIC); /* Unsupported */
if (bufferSize < FSE_NCountWriteBound(maxSymbolValue, tableLog))
return FSE_writeNCount_generic(buffer, bufferSize, normalizedCounter, maxSymbolValue, tableLog, 0);
return FSE_writeNCount_generic(buffer, bufferSize, normalizedCounter, maxSymbolValue, tableLog, 1);
}
/*-**************************************************************
* Counting histogram
****************************************************************/
/*! FSE_count_simple
This function counts byte values within `src`, and store the histogram into table `count`.
It doesn't use any additional memory.
But this function is unsafe : it doesn't check that all values within `src` can fit into `count`.
For this reason, prefer using a table `count` with 256 elements.
@return : count of most numerous element
*/
size_t FSE_count_simple(unsigned* count, unsigned* maxSymbolValuePtr,
const void* src, size_t srcSize)
{
const BYTE* ip = (const BYTE*)src;
const BYTE* const end = ip + srcSize;
unsigned maxSymbolValue = *maxSymbolValuePtr;
unsigned max=0;
memset(count, 0, (maxSymbolValue+1)*sizeof(*count));
if (srcSize==0) { *maxSymbolValuePtr = 0; return 0; }
while (ip<end) count[*ip++]++;
while (!count[maxSymbolValue]) maxSymbolValue--;
*maxSymbolValuePtr = maxSymbolValue;
{ U32 s; for (s=0; s<=maxSymbolValue; s++) if (count[s] > max) max = count[s]; }
return (size_t)max;
}
/* FSE_count_parallel_wksp() :
* Same as FSE_count_parallel(), but using an externally provided scratch buffer.
* `workSpace` size must be a minimum of `1024 * sizeof(unsigned)`` */
static size_t FSE_count_parallel_wksp(
unsigned* count, unsigned* maxSymbolValuePtr,
const void* source, size_t sourceSize,
unsigned checkMax, unsigned* const workSpace)
{
const BYTE* ip = (const BYTE*)source;
const BYTE* const iend = ip+sourceSize;
unsigned maxSymbolValue = *maxSymbolValuePtr;
unsigned max=0;
U32* const Counting1 = workSpace;
U32* const Counting2 = Counting1 + 256;
U32* const Counting3 = Counting2 + 256;
U32* const Counting4 = Counting3 + 256;
memset(Counting1, 0, 4*256*sizeof(unsigned));
/* safety checks */
if (!sourceSize) {
memset(count, 0, maxSymbolValue + 1);
*maxSymbolValuePtr = 0;
return 0;
}
if (!maxSymbolValue) maxSymbolValue = 255; /* 0 == default */
/* by stripes of 16 bytes */
{ U32 cached = MEM_read32(ip); ip += 4;
while (ip < iend-15) {
U32 c = cached; cached = MEM_read32(ip); ip += 4;
Counting1[(BYTE) c ]++;
Counting2[(BYTE)(c>>8) ]++;
Counting3[(BYTE)(c>>16)]++;
Counting4[ c>>24 ]++;
c = cached; cached = MEM_read32(ip); ip += 4;
Counting1[(BYTE) c ]++;
Counting2[(BYTE)(c>>8) ]++;
Counting3[(BYTE)(c>>16)]++;
Counting4[ c>>24 ]++;
c = cached; cached = MEM_read32(ip); ip += 4;
Counting1[(BYTE) c ]++;
Counting2[(BYTE)(c>>8) ]++;
Counting3[(BYTE)(c>>16)]++;
Counting4[ c>>24 ]++;
c = cached; cached = MEM_read32(ip); ip += 4;
Counting1[(BYTE) c ]++;
Counting2[(BYTE)(c>>8) ]++;
Counting3[(BYTE)(c>>16)]++;
Counting4[ c>>24 ]++;
}
ip-=4;
}
/* finish last symbols */
while (ip<iend) Counting1[*ip++]++;
if (checkMax) { /* verify stats will fit into destination table */
U32 s; for (s=255; s>maxSymbolValue; s--) {
Counting1[s] += Counting2[s] + Counting3[s] + Counting4[s];
if (Counting1[s]) return ERROR(maxSymbolValue_tooSmall);
} }
{ U32 s; for (s=0; s<=maxSymbolValue; s++) {
count[s] = Counting1[s] + Counting2[s] + Counting3[s] + Counting4[s];
if (count[s] > max) max = count[s];
} }
while (!count[maxSymbolValue]) maxSymbolValue--;
*maxSymbolValuePtr = maxSymbolValue;
return (size_t)max;
}
/* FSE_countFast_wksp() :
* Same as FSE_countFast(), but using an externally provided scratch buffer.
* `workSpace` size must be table of >= `1024` unsigned */
size_t FSE_countFast_wksp(unsigned* count, unsigned* maxSymbolValuePtr,
const void* source, size_t sourceSize, unsigned* workSpace)
{
if (sourceSize < 1500) return FSE_count_simple(count, maxSymbolValuePtr, source, sourceSize);
return FSE_count_parallel_wksp(count, maxSymbolValuePtr, source, sourceSize, 0, workSpace);
}
/* fast variant (unsafe : won't check if src contains values beyond count[] limit) */
size_t FSE_countFast(unsigned* count, unsigned* maxSymbolValuePtr,
const void* source, size_t sourceSize)
{
unsigned tmpCounters[1024];
return FSE_countFast_wksp(count, maxSymbolValuePtr, source, sourceSize, tmpCounters);
}
/* FSE_count_wksp() :
* Same as FSE_count(), but using an externally provided scratch buffer.
* `workSpace` size must be table of >= `1024` unsigned */
size_t FSE_count_wksp(unsigned* count, unsigned* maxSymbolValuePtr,
const void* source, size_t sourceSize, unsigned* workSpace)
{
if (*maxSymbolValuePtr < 255)
return FSE_count_parallel_wksp(count, maxSymbolValuePtr, source, sourceSize, 1, workSpace);
*maxSymbolValuePtr = 255;
return FSE_countFast_wksp(count, maxSymbolValuePtr, source, sourceSize, workSpace);
}
size_t FSE_count(unsigned* count, unsigned* maxSymbolValuePtr,
const void* src, size_t srcSize)
{
unsigned tmpCounters[1024];
return FSE_count_wksp(count, maxSymbolValuePtr, src, srcSize, tmpCounters);
}
/*-**************************************************************
* FSE Compression Code
****************************************************************/
/*! FSE_sizeof_CTable() :
FSE_CTable is a variable size structure which contains :
`U16 tableLog;`
`U16 maxSymbolValue;`
`U16 nextStateNumber[1 << tableLog];` // This size is variable
`FSE_symbolCompressionTransform symbolTT[maxSymbolValue+1];` // This size is variable
Allocation is manual (C standard does not support variable-size structures).
*/
size_t FSE_sizeof_CTable (unsigned maxSymbolValue, unsigned tableLog)
{
if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge);
return FSE_CTABLE_SIZE_U32 (tableLog, maxSymbolValue) * sizeof(U32);
}
FSE_CTable* FSE_createCTable (unsigned maxSymbolValue, unsigned tableLog)
{
size_t size;
if (tableLog > FSE_TABLELOG_ABSOLUTE_MAX) tableLog = FSE_TABLELOG_ABSOLUTE_MAX;
size = FSE_CTABLE_SIZE_U32 (tableLog, maxSymbolValue) * sizeof(U32);
return (FSE_CTable*)malloc(size);
}
void FSE_freeCTable (FSE_CTable* ct) { free(ct); }
/* provides the minimum logSize to safely represent a distribution */
static unsigned FSE_minTableLog(size_t srcSize, unsigned maxSymbolValue)
{
U32 minBitsSrc = BIT_highbit32((U32)(srcSize - 1)) + 1;
U32 minBitsSymbols = BIT_highbit32(maxSymbolValue) + 2;
U32 minBits = minBitsSrc < minBitsSymbols ? minBitsSrc : minBitsSymbols;
return minBits;
}
unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus)
{
U32 maxBitsSrc = BIT_highbit32((U32)(srcSize - 1)) - minus;
U32 tableLog = maxTableLog;
U32 minBits = FSE_minTableLog(srcSize, maxSymbolValue);
if (tableLog==0) tableLog = FSE_DEFAULT_TABLELOG;
if (maxBitsSrc < tableLog) tableLog = maxBitsSrc; /* Accuracy can be reduced */
if (minBits > tableLog) tableLog = minBits; /* Need a minimum to safely represent all symbol values */
if (tableLog < FSE_MIN_TABLELOG) tableLog = FSE_MIN_TABLELOG;
if (tableLog > FSE_MAX_TABLELOG) tableLog = FSE_MAX_TABLELOG;
return tableLog;
}
unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue)
{
return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 2);
}
/* Secondary normalization method.
To be used when primary method fails. */
static size_t FSE_normalizeM2(short* norm, U32 tableLog, const unsigned* count, size_t total, U32 maxSymbolValue)
{
short const NOT_YET_ASSIGNED = -2;
U32 s;
U32 distributed = 0;
U32 ToDistribute;
/* Init */
U32 const lowThreshold = (U32)(total >> tableLog);
U32 lowOne = (U32)((total * 3) >> (tableLog + 1));
for (s=0; s<=maxSymbolValue; s++) {
if (count[s] == 0) {
norm[s]=0;
continue;
}
if (count[s] <= lowThreshold) {
norm[s] = -1;
distributed++;
total -= count[s];
continue;
}
if (count[s] <= lowOne) {
norm[s] = 1;
distributed++;
total -= count[s];
continue;
}
norm[s]=NOT_YET_ASSIGNED;
}
ToDistribute = (1 << tableLog) - distributed;
if ((total / ToDistribute) > lowOne) {
/* risk of rounding to zero */
lowOne = (U32)((total * 3) / (ToDistribute * 2));
for (s=0; s<=maxSymbolValue; s++) {
if ((norm[s] == NOT_YET_ASSIGNED) && (count[s] <= lowOne)) {
norm[s] = 1;
distributed++;
total -= count[s];
continue;
} }
ToDistribute = (1 << tableLog) - distributed;
}
if (distributed == maxSymbolValue+1) {
/* all values are pretty poor;
probably incompressible data (should have already been detected);
find max, then give all remaining points to max */
U32 maxV = 0, maxC = 0;
for (s=0; s<=maxSymbolValue; s++)
if (count[s] > maxC) maxV=s, maxC=count[s];
norm[maxV] += (short)ToDistribute;
return 0;
}
if (total == 0) {
/* all of the symbols were low enough for the lowOne or lowThreshold */
for (s=0; ToDistribute > 0; s = (s+1)%(maxSymbolValue+1))
if (norm[s] > 0) ToDistribute--, norm[s]++;
return 0;
}
{ U64 const vStepLog = 62 - tableLog;
U64 const mid = (1ULL << (vStepLog-1)) - 1;
U64 const rStep = ((((U64)1<<vStepLog) * ToDistribute) + mid) / total; /* scale on remaining */
U64 tmpTotal = mid;
for (s=0; s<=maxSymbolValue; s++) {
if (norm[s]==NOT_YET_ASSIGNED) {
U64 const end = tmpTotal + (count[s] * rStep);
U32 const sStart = (U32)(tmpTotal >> vStepLog);
U32 const sEnd = (U32)(end >> vStepLog);
U32 const weight = sEnd - sStart;
if (weight < 1)
return ERROR(GENERIC);
norm[s] = (short)weight;
tmpTotal = end;
} } }
return 0;
}
size_t FSE_normalizeCount (short* normalizedCounter, unsigned tableLog,
const unsigned* count, size_t total,
unsigned maxSymbolValue)
{
/* Sanity checks */
if (tableLog==0) tableLog = FSE_DEFAULT_TABLELOG;
if (tableLog < FSE_MIN_TABLELOG) return ERROR(GENERIC); /* Unsupported size */
if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge); /* Unsupported size */
if (tableLog < FSE_minTableLog(total, maxSymbolValue)) return ERROR(GENERIC); /* Too small tableLog, compression potentially impossible */
{ U32 const rtbTable[] = { 0, 473195, 504333, 520860, 550000, 700000, 750000, 830000 };
U64 const scale = 62 - tableLog;
U64 const step = ((U64)1<<62) / total; /* <== here, one division ! */
U64 const vStep = 1ULL<<(scale-20);
int stillToDistribute = 1<<tableLog;
unsigned s;
unsigned largest=0;
short largestP=0;
U32 lowThreshold = (U32)(total >> tableLog);
for (s=0; s<=maxSymbolValue; s++) {
if (count[s] == total) return 0; /* rle special case */
if (count[s] == 0) { normalizedCounter[s]=0; continue; }
if (count[s] <= lowThreshold) {
normalizedCounter[s] = -1;
stillToDistribute--;
} else {
short proba = (short)((count[s]*step) >> scale);
if (proba<8) {
U64 restToBeat = vStep * rtbTable[proba];
proba += (count[s]*step) - ((U64)proba<<scale) > restToBeat;
}
if (proba > largestP) largestP=proba, largest=s;
normalizedCounter[s] = proba;
stillToDistribute -= proba;
} }
if (-stillToDistribute >= (normalizedCounter[largest] >> 1)) {
/* corner case, need another normalization method */
size_t const errorCode = FSE_normalizeM2(normalizedCounter, tableLog, count, total, maxSymbolValue);
if (FSE_isError(errorCode)) return errorCode;
}
else normalizedCounter[largest] += (short)stillToDistribute;
}
#if 0
{ /* Print Table (debug) */
U32 s;
U32 nTotal = 0;
for (s=0; s<=maxSymbolValue; s++)
printf("%3i: %4i \n", s, normalizedCounter[s]);
for (s=0; s<=maxSymbolValue; s++)
nTotal += abs(normalizedCounter[s]);
if (nTotal != (1U<<tableLog))
printf("Warning !!! Total == %u != %u !!!", nTotal, 1U<<tableLog);
getchar();
}
#endif
return tableLog;
}
/* fake FSE_CTable, for raw (uncompressed) input */
size_t FSE_buildCTable_raw (FSE_CTable* ct, unsigned nbBits)
{
const unsigned tableSize = 1 << nbBits;
const unsigned tableMask = tableSize - 1;
const unsigned maxSymbolValue = tableMask;
void* const ptr = ct;
U16* const tableU16 = ( (U16*) ptr) + 2;
void* const FSCT = ((U32*)ptr) + 1 /* header */ + (tableSize>>1); /* assumption : tableLog >= 1 */
FSE_symbolCompressionTransform* const symbolTT = (FSE_symbolCompressionTransform*) (FSCT);
unsigned s;
/* Sanity checks */
if (nbBits < 1) return ERROR(GENERIC); /* min size */
/* header */
tableU16[-2] = (U16) nbBits;
tableU16[-1] = (U16) maxSymbolValue;
/* Build table */
for (s=0; s<tableSize; s++)
tableU16[s] = (U16)(tableSize + s);
/* Build Symbol Transformation Table */
{ const U32 deltaNbBits = (nbBits << 16) - (1 << nbBits);
for (s=0; s<=maxSymbolValue; s++) {
symbolTT[s].deltaNbBits = deltaNbBits;
symbolTT[s].deltaFindState = s-1;
} }
return 0;
}
/* fake FSE_CTable, for rle input (always same symbol) */
size_t FSE_buildCTable_rle (FSE_CTable* ct, BYTE symbolValue)
{
void* ptr = ct;
U16* tableU16 = ( (U16*) ptr) + 2;
void* FSCTptr = (U32*)ptr + 2;
FSE_symbolCompressionTransform* symbolTT = (FSE_symbolCompressionTransform*) FSCTptr;
/* header */
tableU16[-2] = (U16) 0;
tableU16[-1] = (U16) symbolValue;
/* Build table */
tableU16[0] = 0;
tableU16[1] = 0; /* just in case */
/* Build Symbol Transformation Table */
symbolTT[symbolValue].deltaNbBits = 0;
symbolTT[symbolValue].deltaFindState = 0;
return 0;
}
static size_t FSE_compress_usingCTable_generic (void* dst, size_t dstSize,
const void* src, size_t srcSize,
const FSE_CTable* ct, const unsigned fast)
{
const BYTE* const istart = (const BYTE*) src;
const BYTE* const iend = istart + srcSize;
const BYTE* ip=iend;
BIT_CStream_t bitC;
FSE_CState_t CState1, CState2;
/* init */
if (srcSize <= 2) return 0;
{ size_t const initError = BIT_initCStream(&bitC, dst, dstSize);
if (FSE_isError(initError)) return 0; /* not enough space available to write a bitstream */ }
#define FSE_FLUSHBITS(s) (fast ? BIT_flushBitsFast(s) : BIT_flushBits(s))
if (srcSize & 1) {
FSE_initCState2(&CState1, ct, *--ip);
FSE_initCState2(&CState2, ct, *--ip);
FSE_encodeSymbol(&bitC, &CState1, *--ip);
FSE_FLUSHBITS(&bitC);
} else {
FSE_initCState2(&CState2, ct, *--ip);
FSE_initCState2(&CState1, ct, *--ip);
}
/* join to mod 4 */
srcSize -= 2;
if ((sizeof(bitC.bitContainer)*8 > FSE_MAX_TABLELOG*4+7 ) && (srcSize & 2)) { /* test bit 2 */
FSE_encodeSymbol(&bitC, &CState2, *--ip);
FSE_encodeSymbol(&bitC, &CState1, *--ip);
FSE_FLUSHBITS(&bitC);
}
/* 2 or 4 encoding per loop */
while ( ip>istart ) {
FSE_encodeSymbol(&bitC, &CState2, *--ip);
if (sizeof(bitC.bitContainer)*8 < FSE_MAX_TABLELOG*2+7 ) /* this test must be static */
FSE_FLUSHBITS(&bitC);
FSE_encodeSymbol(&bitC, &CState1, *--ip);
if (sizeof(bitC.bitContainer)*8 > FSE_MAX_TABLELOG*4+7 ) { /* this test must be static */
FSE_encodeSymbol(&bitC, &CState2, *--ip);
FSE_encodeSymbol(&bitC, &CState1, *--ip);
}
FSE_FLUSHBITS(&bitC);
}
FSE_flushCState(&bitC, &CState2);
FSE_flushCState(&bitC, &CState1);
return BIT_closeCStream(&bitC);
}
size_t FSE_compress_usingCTable (void* dst, size_t dstSize,
const void* src, size_t srcSize,
const FSE_CTable* ct)
{
unsigned const fast = (dstSize >= FSE_BLOCKBOUND(srcSize));
if (fast)
return FSE_compress_usingCTable_generic(dst, dstSize, src, srcSize, ct, 1);
else
return FSE_compress_usingCTable_generic(dst, dstSize, src, srcSize, ct, 0);
}
size_t FSE_compressBound(size_t size) { return FSE_COMPRESSBOUND(size); }
#define CHECK_V_F(e, f) size_t const e = f; if (ERR_isError(e)) return e
#define CHECK_F(f) { CHECK_V_F(_var_err__, f); }
/* FSE_compress_wksp() :
* Same as FSE_compress2(), but using an externally allocated scratch buffer (`workSpace`).
* `wkspSize` size must be `(1<<tableLog)`.
*/
size_t FSE_compress_wksp (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize)
{
BYTE* const ostart = (BYTE*) dst;
BYTE* op = ostart;
BYTE* const oend = ostart + dstSize;
U32 count[FSE_MAX_SYMBOL_VALUE+1];
S16 norm[FSE_MAX_SYMBOL_VALUE+1];
FSE_CTable* CTable = (FSE_CTable*)workSpace;
size_t const CTableSize = FSE_CTABLE_SIZE_U32(tableLog, maxSymbolValue);
void* scratchBuffer = (void*)(CTable + CTableSize);
size_t const scratchBufferSize = wkspSize - (CTableSize * sizeof(FSE_CTable));
/* init conditions */
if (wkspSize < FSE_WKSP_SIZE_U32(tableLog, maxSymbolValue)) return ERROR(tableLog_tooLarge);
if (srcSize <= 1) return 0; /* Not compressible */
if (!maxSymbolValue) maxSymbolValue = FSE_MAX_SYMBOL_VALUE;
if (!tableLog) tableLog = FSE_DEFAULT_TABLELOG;
/* Scan input and build symbol stats */
{ CHECK_V_F(maxCount, FSE_count_wksp(count, &maxSymbolValue, src, srcSize, (unsigned*)scratchBuffer) );
if (maxCount == srcSize) return 1; /* only a single symbol in src : rle */
if (maxCount == 1) return 0; /* each symbol present maximum once => not compressible */
if (maxCount < (srcSize >> 7)) return 0; /* Heuristic : not compressible enough */
}
tableLog = FSE_optimalTableLog(tableLog, srcSize, maxSymbolValue);
CHECK_F( FSE_normalizeCount(norm, tableLog, count, srcSize, maxSymbolValue) );
/* Write table description header */
{ CHECK_V_F(nc_err, FSE_writeNCount(op, oend-op, norm, maxSymbolValue, tableLog) );
op += nc_err;
}
/* Compress */
CHECK_F( FSE_buildCTable_wksp(CTable, norm, maxSymbolValue, tableLog, scratchBuffer, scratchBufferSize) );
{ CHECK_V_F(cSize, FSE_compress_usingCTable(op, oend - op, src, srcSize, CTable) );
if (cSize == 0) return 0; /* not enough space for compressed data */
op += cSize;
}
/* check compressibility */
if ( (size_t)(op-ostart) >= srcSize-1 ) return 0;
return op-ostart;
}
typedef struct {
FSE_CTable CTable_max[FSE_CTABLE_SIZE_U32(FSE_MAX_TABLELOG, FSE_MAX_SYMBOL_VALUE)];
BYTE scratchBuffer[1 << FSE_MAX_TABLELOG];
} fseWkspMax_t;
size_t FSE_compress2 (void* dst, size_t dstCapacity, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog)
{
fseWkspMax_t scratchBuffer;
FSE_STATIC_ASSERT(sizeof(scratchBuffer) >= FSE_WKSP_SIZE_U32(FSE_MAX_TABLELOG, FSE_MAX_SYMBOL_VALUE)); /* compilation failures here means scratchBuffer is not large enough */
if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge);
return FSE_compress_wksp(dst, dstCapacity, src, srcSize, maxSymbolValue, tableLog, &scratchBuffer, sizeof(scratchBuffer));
}
size_t FSE_compress (void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
return FSE_compress2(dst, dstCapacity, src, srcSize, FSE_MAX_SYMBOL_VALUE, FSE_DEFAULT_TABLELOG);
}
#endif /* FSE_COMMONDEFS_ONLY */

View File

@ -1,689 +0,0 @@
/* ******************************************************************
Huffman encoder, part of New Generation Entropy library
Copyright (C) 2013-2016, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
/* **************************************************************
* Compiler specifics
****************************************************************/
#ifdef _MSC_VER /* Visual Studio */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
#endif
/* **************************************************************
* Includes
****************************************************************/
#include <string.h> /* memcpy, memset */
#include <stdio.h> /* printf (debug) */
#include "bitstream.h"
#define FSE_STATIC_LINKING_ONLY /* FSE_optimalTableLog_internal */
#include "fse.h" /* header compression */
#define HUF_STATIC_LINKING_ONLY
#include "huf.h"
#include "error_private.h"
/* **************************************************************
* Error Management
****************************************************************/
#define HUF_isError ERR_isError
#define HUF_STATIC_ASSERT(c) { enum { HUF_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
#define CHECK_V_F(e, f) size_t const e = f; if (ERR_isError(e)) return e
#define CHECK_F(f) { CHECK_V_F(_var_err__, f); }
/* **************************************************************
* Utils
****************************************************************/
unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue)
{
return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 1);
}
/* *******************************************************
* HUF : Huffman block compression
*********************************************************/
/* HUF_compressWeights() :
* Same as FSE_compress(), but dedicated to huff0's weights compression.
* The use case needs much less stack memory.
* Note : all elements within weightTable are supposed to be <= HUF_TABLELOG_MAX.
*/
#define MAX_FSE_TABLELOG_FOR_HUFF_HEADER 6
size_t HUF_compressWeights (void* dst, size_t dstSize, const void* weightTable, size_t wtSize)
{
BYTE* const ostart = (BYTE*) dst;
BYTE* op = ostart;
BYTE* const oend = ostart + dstSize;
U32 maxSymbolValue = HUF_TABLELOG_MAX;
U32 tableLog = MAX_FSE_TABLELOG_FOR_HUFF_HEADER;
FSE_CTable CTable[FSE_CTABLE_SIZE_U32(MAX_FSE_TABLELOG_FOR_HUFF_HEADER, HUF_TABLELOG_MAX)];
BYTE scratchBuffer[1<<MAX_FSE_TABLELOG_FOR_HUFF_HEADER];
U32 count[HUF_TABLELOG_MAX+1];
S16 norm[HUF_TABLELOG_MAX+1];
/* init conditions */
if (wtSize <= 1) return 0; /* Not compressible */
/* Scan input and build symbol stats */
{ CHECK_V_F(maxCount, FSE_count_simple(count, &maxSymbolValue, weightTable, wtSize) );
if (maxCount == wtSize) return 1; /* only a single symbol in src : rle */
if (maxCount == 1) return 0; /* each symbol present maximum once => not compressible */
}
tableLog = FSE_optimalTableLog(tableLog, wtSize, maxSymbolValue);
CHECK_F( FSE_normalizeCount(norm, tableLog, count, wtSize, maxSymbolValue) );
/* Write table description header */
{ CHECK_V_F(hSize, FSE_writeNCount(op, oend-op, norm, maxSymbolValue, tableLog) );
op += hSize;
}
/* Compress */
CHECK_F( FSE_buildCTable_wksp(CTable, norm, maxSymbolValue, tableLog, scratchBuffer, sizeof(scratchBuffer)) );
{ CHECK_V_F(cSize, FSE_compress_usingCTable(op, oend - op, weightTable, wtSize, CTable) );
if (cSize == 0) return 0; /* not enough space for compressed data */
op += cSize;
}
return op-ostart;
}
struct HUF_CElt_s {
U16 val;
BYTE nbBits;
}; /* typedef'd to HUF_CElt within "huf.h" */
/*! HUF_writeCTable() :
`CTable` : Huffman tree to save, using huf representation.
@return : size of saved CTable */
size_t HUF_writeCTable (void* dst, size_t maxDstSize,
const HUF_CElt* CTable, U32 maxSymbolValue, U32 huffLog)
{
BYTE bitsToWeight[HUF_TABLELOG_MAX + 1]; /* precomputed conversion table */
BYTE huffWeight[HUF_SYMBOLVALUE_MAX];
BYTE* op = (BYTE*)dst;
U32 n;
/* check conditions */
if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
/* convert to weight */
bitsToWeight[0] = 0;
for (n=1; n<huffLog+1; n++)
bitsToWeight[n] = (BYTE)(huffLog + 1 - n);
for (n=0; n<maxSymbolValue; n++)
huffWeight[n] = bitsToWeight[CTable[n].nbBits];
/* attempt weights compression by FSE */
{ CHECK_V_F(hSize, HUF_compressWeights(op+1, maxDstSize-1, huffWeight, maxSymbolValue) );
if ((hSize>1) & (hSize < maxSymbolValue/2)) { /* FSE compressed */
op[0] = (BYTE)hSize;
return hSize+1;
} }
/* write raw values as 4-bits (max : 15) */
if (maxSymbolValue > (256-128)) return ERROR(GENERIC); /* should not happen : likely means source cannot be compressed */
if (((maxSymbolValue+1)/2) + 1 > maxDstSize) return ERROR(dstSize_tooSmall); /* not enough space within dst buffer */
op[0] = (BYTE)(128 /*special case*/ + (maxSymbolValue-1));
huffWeight[maxSymbolValue] = 0; /* to be sure it doesn't cause msan issue in final combination */
for (n=0; n<maxSymbolValue; n+=2)
op[(n/2)+1] = (BYTE)((huffWeight[n] << 4) + huffWeight[n+1]);
return ((maxSymbolValue+1)/2) + 1;
}
size_t HUF_readCTable (HUF_CElt* CTable, U32 maxSymbolValue, const void* src, size_t srcSize)
{
BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1]; /* init not required, even though some static analyzer may complain */
U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1]; /* large enough for values from 0 to 16 */
U32 tableLog = 0;
U32 nbSymbols = 0;
/* get symbol weights */
CHECK_V_F(readSize, HUF_readStats(huffWeight, HUF_SYMBOLVALUE_MAX+1, rankVal, &nbSymbols, &tableLog, src, srcSize));
/* check result */
if (tableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
if (nbSymbols > maxSymbolValue+1) return ERROR(maxSymbolValue_tooSmall);
/* Prepare base value per rank */
{ U32 n, nextRankStart = 0;
for (n=1; n<=tableLog; n++) {
U32 current = nextRankStart;
nextRankStart += (rankVal[n] << (n-1));
rankVal[n] = current;
} }
/* fill nbBits */
{ U32 n; for (n=0; n<nbSymbols; n++) {
const U32 w = huffWeight[n];
CTable[n].nbBits = (BYTE)(tableLog + 1 - w);
} }
/* fill val */
{ U16 nbPerRank[HUF_TABLELOG_MAX+2] = {0}; /* support w=0=>n=tableLog+1 */
U16 valPerRank[HUF_TABLELOG_MAX+2] = {0};
{ U32 n; for (n=0; n<nbSymbols; n++) nbPerRank[CTable[n].nbBits]++; }
/* determine stating value per rank */
valPerRank[tableLog+1] = 0; /* for w==0 */
{ U16 min = 0;
U32 n; for (n=tableLog; n>0; n--) { /* start at n=tablelog <-> w=1 */
valPerRank[n] = min; /* get starting value within each rank */
min += nbPerRank[n];
min >>= 1;
} }
/* assign value within rank, symbol order */
{ U32 n; for (n=0; n<=maxSymbolValue; n++) CTable[n].val = valPerRank[CTable[n].nbBits]++; }
}
return readSize;
}
typedef struct nodeElt_s {
U32 count;
U16 parent;
BYTE byte;
BYTE nbBits;
} nodeElt;
static U32 HUF_setMaxHeight(nodeElt* huffNode, U32 lastNonNull, U32 maxNbBits)
{
const U32 largestBits = huffNode[lastNonNull].nbBits;
if (largestBits <= maxNbBits) return largestBits; /* early exit : no elt > maxNbBits */
/* there are several too large elements (at least >= 2) */
{ int totalCost = 0;
const U32 baseCost = 1 << (largestBits - maxNbBits);
U32 n = lastNonNull;
while (huffNode[n].nbBits > maxNbBits) {
totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits));
huffNode[n].nbBits = (BYTE)maxNbBits;
n --;
} /* n stops at huffNode[n].nbBits <= maxNbBits */
while (huffNode[n].nbBits == maxNbBits) n--; /* n end at index of smallest symbol using < maxNbBits */
/* renorm totalCost */
totalCost >>= (largestBits - maxNbBits); /* note : totalCost is necessarily a multiple of baseCost */
/* repay normalized cost */
{ U32 const noSymbol = 0xF0F0F0F0;
U32 rankLast[HUF_TABLELOG_MAX+2];
int pos;
/* Get pos of last (smallest) symbol per rank */
memset(rankLast, 0xF0, sizeof(rankLast));
{ U32 currentNbBits = maxNbBits;
for (pos=n ; pos >= 0; pos--) {
if (huffNode[pos].nbBits >= currentNbBits) continue;
currentNbBits = huffNode[pos].nbBits; /* < maxNbBits */
rankLast[maxNbBits-currentNbBits] = pos;
} }
while (totalCost > 0) {
U32 nBitsToDecrease = BIT_highbit32(totalCost) + 1;
for ( ; nBitsToDecrease > 1; nBitsToDecrease--) {
U32 highPos = rankLast[nBitsToDecrease];
U32 lowPos = rankLast[nBitsToDecrease-1];
if (highPos == noSymbol) continue;
if (lowPos == noSymbol) break;
{ U32 const highTotal = huffNode[highPos].count;
U32 const lowTotal = 2 * huffNode[lowPos].count;
if (highTotal <= lowTotal) break;
} }
/* only triggered when no more rank 1 symbol left => find closest one (note : there is necessarily at least one !) */
/* HUF_MAX_TABLELOG test just to please gcc 5+; but it should not be necessary */
while ((nBitsToDecrease<=HUF_TABLELOG_MAX) && (rankLast[nBitsToDecrease] == noSymbol))
nBitsToDecrease ++;
totalCost -= 1 << (nBitsToDecrease-1);
if (rankLast[nBitsToDecrease-1] == noSymbol)
rankLast[nBitsToDecrease-1] = rankLast[nBitsToDecrease]; /* this rank is no longer empty */
huffNode[rankLast[nBitsToDecrease]].nbBits ++;
if (rankLast[nBitsToDecrease] == 0) /* special case, reached largest symbol */
rankLast[nBitsToDecrease] = noSymbol;
else {
rankLast[nBitsToDecrease]--;
if (huffNode[rankLast[nBitsToDecrease]].nbBits != maxNbBits-nBitsToDecrease)
rankLast[nBitsToDecrease] = noSymbol; /* this rank is now empty */
} } /* while (totalCost > 0) */
while (totalCost < 0) { /* Sometimes, cost correction overshoot */
if (rankLast[1] == noSymbol) { /* special case : no rank 1 symbol (using maxNbBits-1); let's create one from largest rank 0 (using maxNbBits) */
while (huffNode[n].nbBits == maxNbBits) n--;
huffNode[n+1].nbBits--;
rankLast[1] = n+1;
totalCost++;
continue;
}
huffNode[ rankLast[1] + 1 ].nbBits--;
rankLast[1]++;
totalCost ++;
} } } /* there are several too large elements (at least >= 2) */
return maxNbBits;
}
typedef struct {
U32 base;
U32 current;
} rankPos;
static void HUF_sort(nodeElt* huffNode, const U32* count, U32 maxSymbolValue)
{
rankPos rank[32];
U32 n;
memset(rank, 0, sizeof(rank));
for (n=0; n<=maxSymbolValue; n++) {
U32 r = BIT_highbit32(count[n] + 1);
rank[r].base ++;
}
for (n=30; n>0; n--) rank[n-1].base += rank[n].base;
for (n=0; n<32; n++) rank[n].current = rank[n].base;
for (n=0; n<=maxSymbolValue; n++) {
U32 const c = count[n];
U32 const r = BIT_highbit32(c+1) + 1;
U32 pos = rank[r].current++;
while ((pos > rank[r].base) && (c > huffNode[pos-1].count)) huffNode[pos]=huffNode[pos-1], pos--;
huffNode[pos].count = c;
huffNode[pos].byte = (BYTE)n;
}
}
/** HUF_buildCTable_wksp() :
* Same as HUF_buildCTable(), but using externally allocated scratch buffer.
* `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as a table of 1024 unsigned.
*/
#define STARTNODE (HUF_SYMBOLVALUE_MAX+1)
typedef nodeElt huffNodeTable[2*HUF_SYMBOLVALUE_MAX+1 +1];
size_t HUF_buildCTable_wksp (HUF_CElt* tree, const U32* count, U32 maxSymbolValue, U32 maxNbBits, void* workSpace, size_t wkspSize)
{
nodeElt* const huffNode0 = (nodeElt*)workSpace;
nodeElt* const huffNode = huffNode0+1;
U32 n, nonNullRank;
int lowS, lowN;
U16 nodeNb = STARTNODE;
U32 nodeRoot;
/* safety checks */
if (wkspSize < sizeof(huffNodeTable)) return ERROR(GENERIC); /* workSpace is not large enough */
if (maxNbBits == 0) maxNbBits = HUF_TABLELOG_DEFAULT;
if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(GENERIC);
memset(huffNode0, 0, sizeof(huffNodeTable));
/* sort, decreasing order */
HUF_sort(huffNode, count, maxSymbolValue);
/* init for parents */
nonNullRank = maxSymbolValue;
while(huffNode[nonNullRank].count == 0) nonNullRank--;
lowS = nonNullRank; nodeRoot = nodeNb + lowS - 1; lowN = nodeNb;
huffNode[nodeNb].count = huffNode[lowS].count + huffNode[lowS-1].count;
huffNode[lowS].parent = huffNode[lowS-1].parent = nodeNb;
nodeNb++; lowS-=2;
for (n=nodeNb; n<=nodeRoot; n++) huffNode[n].count = (U32)(1U<<30);
huffNode0[0].count = (U32)(1U<<31); /* fake entry, strong barrier */
/* create parents */
while (nodeNb <= nodeRoot) {
U32 n1 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
U32 n2 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
huffNode[nodeNb].count = huffNode[n1].count + huffNode[n2].count;
huffNode[n1].parent = huffNode[n2].parent = nodeNb;
nodeNb++;
}
/* distribute weights (unlimited tree height) */
huffNode[nodeRoot].nbBits = 0;
for (n=nodeRoot-1; n>=STARTNODE; n--)
huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
for (n=0; n<=nonNullRank; n++)
huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
/* enforce maxTableLog */
maxNbBits = HUF_setMaxHeight(huffNode, nonNullRank, maxNbBits);
/* fill result into tree (val, nbBits) */
{ U16 nbPerRank[HUF_TABLELOG_MAX+1] = {0};
U16 valPerRank[HUF_TABLELOG_MAX+1] = {0};
if (maxNbBits > HUF_TABLELOG_MAX) return ERROR(GENERIC); /* check fit into table */
for (n=0; n<=nonNullRank; n++)
nbPerRank[huffNode[n].nbBits]++;
/* determine stating value per rank */
{ U16 min = 0;
for (n=maxNbBits; n>0; n--) {
valPerRank[n] = min; /* get starting value within each rank */
min += nbPerRank[n];
min >>= 1;
} }
for (n=0; n<=maxSymbolValue; n++)
tree[huffNode[n].byte].nbBits = huffNode[n].nbBits; /* push nbBits per symbol, symbol order */
for (n=0; n<=maxSymbolValue; n++)
tree[n].val = valPerRank[tree[n].nbBits]++; /* assign value within rank, symbol order */
}
return maxNbBits;
}
/** HUF_buildCTable() :
* Note : count is used before tree is written, so they can safely overlap
*/
size_t HUF_buildCTable (HUF_CElt* tree, const U32* count, U32 maxSymbolValue, U32 maxNbBits)
{
huffNodeTable nodeTable;
return HUF_buildCTable_wksp(tree, count, maxSymbolValue, maxNbBits, nodeTable, sizeof(nodeTable));
}
static size_t HUF_estimateCompressedSize(HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue)
{
size_t nbBits = 0;
int s;
for (s = 0; s <= (int)maxSymbolValue; ++s) {
nbBits += CTable[s].nbBits * count[s];
}
return nbBits >> 3;
}
static int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue) {
int bad = 0;
int s;
for (s = 0; s <= (int)maxSymbolValue; ++s) {
bad |= (count[s] != 0) & (CTable[s].nbBits == 0);
}
return !bad;
}
static void HUF_encodeSymbol(BIT_CStream_t* bitCPtr, U32 symbol, const HUF_CElt* CTable)
{
BIT_addBitsFast(bitCPtr, CTable[symbol].val, CTable[symbol].nbBits);
}
size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); }
#define HUF_FLUSHBITS(s) BIT_flushBits(s)
#define HUF_FLUSHBITS_1(stream) \
if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*2+7) HUF_FLUSHBITS(stream)
#define HUF_FLUSHBITS_2(stream) \
if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*4+7) HUF_FLUSHBITS(stream)
size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
{
const BYTE* ip = (const BYTE*) src;
BYTE* const ostart = (BYTE*)dst;
BYTE* const oend = ostart + dstSize;
BYTE* op = ostart;
size_t n;
BIT_CStream_t bitC;
/* init */
if (dstSize < 8) return 0; /* not enough space to compress */
{ size_t const initErr = BIT_initCStream(&bitC, op, oend-op);
if (HUF_isError(initErr)) return 0; }
n = srcSize & ~3; /* join to mod 4 */
switch (srcSize & 3)
{
case 3 : HUF_encodeSymbol(&bitC, ip[n+ 2], CTable);
HUF_FLUSHBITS_2(&bitC);
/* fall-through */
case 2 : HUF_encodeSymbol(&bitC, ip[n+ 1], CTable);
HUF_FLUSHBITS_1(&bitC);
/* fall-through */
case 1 : HUF_encodeSymbol(&bitC, ip[n+ 0], CTable);
HUF_FLUSHBITS(&bitC);
/* fall-through */
case 0 : /* fall-through */
default: break;
}
for (; n>0; n-=4) { /* note : n&3==0 at this stage */
HUF_encodeSymbol(&bitC, ip[n- 1], CTable);
HUF_FLUSHBITS_1(&bitC);
HUF_encodeSymbol(&bitC, ip[n- 2], CTable);
HUF_FLUSHBITS_2(&bitC);
HUF_encodeSymbol(&bitC, ip[n- 3], CTable);
HUF_FLUSHBITS_1(&bitC);
HUF_encodeSymbol(&bitC, ip[n- 4], CTable);
HUF_FLUSHBITS(&bitC);
}
return BIT_closeCStream(&bitC);
}
size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
{
size_t const segmentSize = (srcSize+3)/4; /* first 3 segments */
const BYTE* ip = (const BYTE*) src;
const BYTE* const iend = ip + srcSize;
BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
BYTE* op = ostart;
if (dstSize < 6 + 1 + 1 + 1 + 8) return 0; /* minimum space to compress successfully */
if (srcSize < 12) return 0; /* no saving possible : too small input */
op += 6; /* jumpTable */
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable(op, oend-op, ip, segmentSize, CTable) );
if (cSize==0) return 0;
MEM_writeLE16(ostart, (U16)cSize);
op += cSize;
}
ip += segmentSize;
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable(op, oend-op, ip, segmentSize, CTable) );
if (cSize==0) return 0;
MEM_writeLE16(ostart+2, (U16)cSize);
op += cSize;
}
ip += segmentSize;
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable(op, oend-op, ip, segmentSize, CTable) );
if (cSize==0) return 0;
MEM_writeLE16(ostart+4, (U16)cSize);
op += cSize;
}
ip += segmentSize;
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable(op, oend-op, ip, iend-ip, CTable) );
if (cSize==0) return 0;
op += cSize;
}
return op-ostart;
}
static size_t HUF_compressCTable_internal(
BYTE* const ostart, BYTE* op, BYTE* const oend,
const void* src, size_t srcSize,
unsigned singleStream, const HUF_CElt* CTable)
{
size_t const cSize = singleStream ?
HUF_compress1X_usingCTable(op, oend - op, src, srcSize, CTable) :
HUF_compress4X_usingCTable(op, oend - op, src, srcSize, CTable);
if (HUF_isError(cSize)) { return cSize; }
if (cSize==0) { return 0; } /* uncompressible */
op += cSize;
/* check compressibility */
if ((size_t)(op-ostart) >= srcSize-1) { return 0; }
return op-ostart;
}
/* `workSpace` must a table of at least 1024 unsigned */
static size_t HUF_compress_internal (
void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned huffLog,
unsigned singleStream,
void* workSpace, size_t wkspSize,
HUF_CElt* oldHufTable, HUF_repeat* repeat, int preferRepeat)
{
BYTE* const ostart = (BYTE*)dst;
BYTE* const oend = ostart + dstSize;
BYTE* op = ostart;
U32* count;
size_t const countSize = sizeof(U32) * (HUF_SYMBOLVALUE_MAX + 1);
HUF_CElt* CTable;
size_t const CTableSize = sizeof(HUF_CElt) * (HUF_SYMBOLVALUE_MAX + 1);
/* checks & inits */
if (wkspSize < sizeof(huffNodeTable) + countSize + CTableSize) return ERROR(GENERIC);
if (!srcSize) return 0; /* Uncompressed (note : 1 means rle, so first byte must be correct) */
if (!dstSize) return 0; /* cannot fit within dst budget */
if (srcSize > HUF_BLOCKSIZE_MAX) return ERROR(srcSize_wrong); /* current block size limit */
if (huffLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
if (!maxSymbolValue) maxSymbolValue = HUF_SYMBOLVALUE_MAX;
if (!huffLog) huffLog = HUF_TABLELOG_DEFAULT;
count = (U32*)workSpace;
workSpace = (BYTE*)workSpace + countSize;
wkspSize -= countSize;
CTable = (HUF_CElt*)workSpace;
workSpace = (BYTE*)workSpace + CTableSize;
wkspSize -= CTableSize;
/* Heuristic : If we don't need to check the validity of the old table use the old table for small inputs */
if (preferRepeat && repeat && *repeat == HUF_repeat_valid) {
return HUF_compressCTable_internal(ostart, op, oend, src, srcSize, singleStream, oldHufTable);
}
/* Scan input and build symbol stats */
{ CHECK_V_F(largest, FSE_count_wksp (count, &maxSymbolValue, (const BYTE*)src, srcSize, (U32*)workSpace) );
if (largest == srcSize) { *ostart = ((const BYTE*)src)[0]; return 1; } /* single symbol, rle */
if (largest <= (srcSize >> 7)+1) return 0; /* Fast heuristic : not compressible enough */
}
/* Check validity of previous table */
if (repeat && *repeat == HUF_repeat_check && !HUF_validateCTable(oldHufTable, count, maxSymbolValue)) {
*repeat = HUF_repeat_none;
}
/* Heuristic : use existing table for small inputs */
if (preferRepeat && repeat && *repeat != HUF_repeat_none) {
return HUF_compressCTable_internal(ostart, op, oend, src, srcSize, singleStream, oldHufTable);
}
/* Build Huffman Tree */
huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue);
{ CHECK_V_F(maxBits, HUF_buildCTable_wksp (CTable, count, maxSymbolValue, huffLog, workSpace, wkspSize) );
huffLog = (U32)maxBits;
/* Zero the unused symbols so we can check it for validity */
memset(CTable + maxSymbolValue + 1, 0, CTableSize - (maxSymbolValue + 1) * sizeof(HUF_CElt));
}
/* Write table description header */
{ CHECK_V_F(hSize, HUF_writeCTable (op, dstSize, CTable, maxSymbolValue, huffLog) );
/* Check if using the previous table will be beneficial */
if (repeat && *repeat != HUF_repeat_none) {
size_t const oldSize = HUF_estimateCompressedSize(oldHufTable, count, maxSymbolValue);
size_t const newSize = HUF_estimateCompressedSize(CTable, count, maxSymbolValue);
if (oldSize <= hSize + newSize || hSize + 12 >= srcSize) {
return HUF_compressCTable_internal(ostart, op, oend, src, srcSize, singleStream, oldHufTable);
}
}
/* Use the new table */
if (hSize + 12ul >= srcSize) { return 0; }
op += hSize;
if (repeat) { *repeat = HUF_repeat_none; }
if (oldHufTable) { memcpy(oldHufTable, CTable, CTableSize); } /* Save the new table */
}
return HUF_compressCTable_internal(ostart, op, oend, src, srcSize, singleStream, CTable);
}
size_t HUF_compress1X_wksp (void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned huffLog,
void* workSpace, size_t wkspSize)
{
return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, 1 /* single stream */, workSpace, wkspSize, NULL, NULL, 0);
}
size_t HUF_compress1X_repeat (void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned huffLog,
void* workSpace, size_t wkspSize,
HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat)
{
return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, 1 /* single stream */, workSpace, wkspSize, hufTable, repeat, preferRepeat);
}
size_t HUF_compress1X (void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned huffLog)
{
unsigned workSpace[1024];
return HUF_compress1X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace));
}
size_t HUF_compress4X_wksp (void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned huffLog,
void* workSpace, size_t wkspSize)
{
return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, 0 /* 4 streams */, workSpace, wkspSize, NULL, NULL, 0);
}
size_t HUF_compress4X_repeat (void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned huffLog,
void* workSpace, size_t wkspSize,
HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat)
{
return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, 0 /* 4 streams */, workSpace, wkspSize, hufTable, repeat, preferRepeat);
}
size_t HUF_compress2 (void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned huffLog)
{
unsigned workSpace[1024];
return HUF_compress4X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace));
}
size_t HUF_compress (void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
return HUF_compress2(dst, maxDstSize, src, (U32)srcSize, 255, HUF_TABLELOG_DEFAULT);
}

File diff suppressed because it is too large Load Diff

View File

@ -1,938 +0,0 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
*/
/* Note : this file is intended to be included within zstd_compress.c */
#ifndef ZSTD_OPT_H_91842398743
#define ZSTD_OPT_H_91842398743
#define ZSTD_LITFREQ_ADD 2
#define ZSTD_FREQ_DIV 4
#define ZSTD_MAX_PRICE (1<<30)
/*-*************************************
* Price functions for optimal parser
***************************************/
static void ZSTD_setLog2Prices(optState_t* optPtr)
{
optPtr->log2matchLengthSum = ZSTD_highbit32(optPtr->matchLengthSum+1);
optPtr->log2litLengthSum = ZSTD_highbit32(optPtr->litLengthSum+1);
optPtr->log2litSum = ZSTD_highbit32(optPtr->litSum+1);
optPtr->log2offCodeSum = ZSTD_highbit32(optPtr->offCodeSum+1);
optPtr->factor = 1 + ((optPtr->litSum>>5) / optPtr->litLengthSum) + ((optPtr->litSum<<1) / (optPtr->litSum + optPtr->matchSum));
}
static void ZSTD_rescaleFreqs(optState_t* optPtr, const BYTE* src, size_t srcSize)
{
unsigned u;
optPtr->cachedLiterals = NULL;
optPtr->cachedPrice = optPtr->cachedLitLength = 0;
optPtr->staticPrices = 0;
if (optPtr->litLengthSum == 0) {
if (srcSize <= 1024) optPtr->staticPrices = 1;
assert(optPtr->litFreq!=NULL);
for (u=0; u<=MaxLit; u++)
optPtr->litFreq[u] = 0;
for (u=0; u<srcSize; u++)
optPtr->litFreq[src[u]]++;
optPtr->litSum = 0;
optPtr->litLengthSum = MaxLL+1;
optPtr->matchLengthSum = MaxML+1;
optPtr->offCodeSum = (MaxOff+1);
optPtr->matchSum = (ZSTD_LITFREQ_ADD<<Litbits);
for (u=0; u<=MaxLit; u++) {
optPtr->litFreq[u] = 1 + (optPtr->litFreq[u]>>ZSTD_FREQ_DIV);
optPtr->litSum += optPtr->litFreq[u];
}
for (u=0; u<=MaxLL; u++)
optPtr->litLengthFreq[u] = 1;
for (u=0; u<=MaxML; u++)
optPtr->matchLengthFreq[u] = 1;
for (u=0; u<=MaxOff; u++)
optPtr->offCodeFreq[u] = 1;
} else {
optPtr->matchLengthSum = 0;
optPtr->litLengthSum = 0;
optPtr->offCodeSum = 0;
optPtr->matchSum = 0;
optPtr->litSum = 0;
for (u=0; u<=MaxLit; u++) {
optPtr->litFreq[u] = 1 + (optPtr->litFreq[u]>>(ZSTD_FREQ_DIV+1));
optPtr->litSum += optPtr->litFreq[u];
}
for (u=0; u<=MaxLL; u++) {
optPtr->litLengthFreq[u] = 1 + (optPtr->litLengthFreq[u]>>(ZSTD_FREQ_DIV+1));
optPtr->litLengthSum += optPtr->litLengthFreq[u];
}
for (u=0; u<=MaxML; u++) {
optPtr->matchLengthFreq[u] = 1 + (optPtr->matchLengthFreq[u]>>ZSTD_FREQ_DIV);
optPtr->matchLengthSum += optPtr->matchLengthFreq[u];
optPtr->matchSum += optPtr->matchLengthFreq[u] * (u + 3);
}
optPtr->matchSum *= ZSTD_LITFREQ_ADD;
for (u=0; u<=MaxOff; u++) {
optPtr->offCodeFreq[u] = 1 + (optPtr->offCodeFreq[u]>>ZSTD_FREQ_DIV);
optPtr->offCodeSum += optPtr->offCodeFreq[u];
}
}
ZSTD_setLog2Prices(optPtr);
}
static U32 ZSTD_getLiteralPrice(optState_t* optPtr, U32 litLength, const BYTE* literals)
{
U32 price, u;
if (optPtr->staticPrices)
return ZSTD_highbit32((U32)litLength+1) + (litLength*6);
if (litLength == 0)
return optPtr->log2litLengthSum - ZSTD_highbit32(optPtr->litLengthFreq[0]+1);
/* literals */
if (optPtr->cachedLiterals == literals) {
U32 const additional = litLength - optPtr->cachedLitLength;
const BYTE* literals2 = optPtr->cachedLiterals + optPtr->cachedLitLength;
price = optPtr->cachedPrice + additional * optPtr->log2litSum;
for (u=0; u < additional; u++)
price -= ZSTD_highbit32(optPtr->litFreq[literals2[u]]+1);
optPtr->cachedPrice = price;
optPtr->cachedLitLength = litLength;
} else {
price = litLength * optPtr->log2litSum;
for (u=0; u < litLength; u++)
price -= ZSTD_highbit32(optPtr->litFreq[literals[u]]+1);
if (litLength >= 12) {
optPtr->cachedLiterals = literals;
optPtr->cachedPrice = price;
optPtr->cachedLitLength = litLength;
}
}
/* literal Length */
{ const BYTE LL_deltaCode = 19;
const BYTE llCode = (litLength>63) ? (BYTE)ZSTD_highbit32(litLength) + LL_deltaCode : LL_Code[litLength];
price += LL_bits[llCode] + optPtr->log2litLengthSum - ZSTD_highbit32(optPtr->litLengthFreq[llCode]+1);
}
return price;
}
FORCE_INLINE_TEMPLATE U32 ZSTD_getPrice(optState_t* optPtr, U32 litLength, const BYTE* literals, U32 offset, U32 matchLength, const int ultra)
{
/* offset */
U32 price;
BYTE const offCode = (BYTE)ZSTD_highbit32(offset+1);
if (optPtr->staticPrices)
return ZSTD_getLiteralPrice(optPtr, litLength, literals) + ZSTD_highbit32((U32)matchLength+1) + 16 + offCode;
price = offCode + optPtr->log2offCodeSum - ZSTD_highbit32(optPtr->offCodeFreq[offCode]+1);
if (!ultra && offCode >= 20) price += (offCode-19)*2;
/* match Length */
{ const BYTE ML_deltaCode = 36;
const BYTE mlCode = (matchLength>127) ? (BYTE)ZSTD_highbit32(matchLength) + ML_deltaCode : ML_Code[matchLength];
price += ML_bits[mlCode] + optPtr->log2matchLengthSum - ZSTD_highbit32(optPtr->matchLengthFreq[mlCode]+1);
}
return price + ZSTD_getLiteralPrice(optPtr, litLength, literals) + optPtr->factor;
}
static void ZSTD_updatePrice(optState_t* optPtr, U32 litLength, const BYTE* literals, U32 offset, U32 matchLength)
{
U32 u;
/* literals */
optPtr->litSum += litLength*ZSTD_LITFREQ_ADD;
for (u=0; u < litLength; u++)
optPtr->litFreq[literals[u]] += ZSTD_LITFREQ_ADD;
/* literal Length */
{ const BYTE LL_deltaCode = 19;
const BYTE llCode = (litLength>63) ? (BYTE)ZSTD_highbit32(litLength) + LL_deltaCode : LL_Code[litLength];
optPtr->litLengthFreq[llCode]++;
optPtr->litLengthSum++;
}
/* match offset */
{ BYTE const offCode = (BYTE)ZSTD_highbit32(offset+1);
optPtr->offCodeSum++;
optPtr->offCodeFreq[offCode]++;
}
/* match Length */
{ const BYTE ML_deltaCode = 36;
const BYTE mlCode = (matchLength>127) ? (BYTE)ZSTD_highbit32(matchLength) + ML_deltaCode : ML_Code[matchLength];
optPtr->matchLengthFreq[mlCode]++;
optPtr->matchLengthSum++;
}
ZSTD_setLog2Prices(optPtr);
}
#define SET_PRICE(pos, mlen_, offset_, litlen_, price_) \
{ \
while (last_pos < pos) { opt[last_pos+1].price = ZSTD_MAX_PRICE; last_pos++; } \
opt[pos].mlen = mlen_; \
opt[pos].off = offset_; \
opt[pos].litlen = litlen_; \
opt[pos].price = price_; \
}
/* function safe only for comparisons */
static U32 ZSTD_readMINMATCH(const void* memPtr, U32 length)
{
switch (length)
{
default :
case 4 : return MEM_read32(memPtr);
case 3 : if (MEM_isLittleEndian())
return MEM_read32(memPtr)<<8;
else
return MEM_read32(memPtr)>>8;
}
}
/* Update hashTable3 up to ip (excluded)
Assumption : always within prefix (i.e. not within extDict) */
static
U32 ZSTD_insertAndFindFirstIndexHash3 (ZSTD_CCtx* zc, const BYTE* ip)
{
U32* const hashTable3 = zc->hashTable3;
U32 const hashLog3 = zc->hashLog3;
const BYTE* const base = zc->base;
U32 idx = zc->nextToUpdate3;
const U32 target = zc->nextToUpdate3 = (U32)(ip - base);
const size_t hash3 = ZSTD_hash3Ptr(ip, hashLog3);
while(idx < target) {
hashTable3[ZSTD_hash3Ptr(base+idx, hashLog3)] = idx;
idx++;
}
return hashTable3[hash3];
}
/*-*************************************
* Binary Tree search
***************************************/
static U32 ZSTD_insertBtAndGetAllMatches (
ZSTD_CCtx* zc,
const BYTE* const ip, const BYTE* const iLimit,
U32 nbCompares, const U32 mls,
U32 extDict, ZSTD_match_t* matches, const U32 minMatchLen)
{
const BYTE* const base = zc->base;
const U32 current = (U32)(ip-base);
const U32 hashLog = zc->appliedParams.cParams.hashLog;
const size_t h = ZSTD_hashPtr(ip, hashLog, mls);
U32* const hashTable = zc->hashTable;
U32 matchIndex = hashTable[h];
U32* const bt = zc->chainTable;
const U32 btLog = zc->appliedParams.cParams.chainLog - 1;
const U32 btMask= (1U << btLog) - 1;
size_t commonLengthSmaller=0, commonLengthLarger=0;
const BYTE* const dictBase = zc->dictBase;
const U32 dictLimit = zc->dictLimit;
const BYTE* const dictEnd = dictBase + dictLimit;
const BYTE* const prefixStart = base + dictLimit;
const U32 btLow = btMask >= current ? 0 : current - btMask;
const U32 windowLow = zc->lowLimit;
U32* smallerPtr = bt + 2*(current&btMask);
U32* largerPtr = bt + 2*(current&btMask) + 1;
U32 matchEndIdx = current+8;
U32 dummy32; /* to be nullified at the end */
U32 mnum = 0;
const U32 minMatch = (mls == 3) ? 3 : 4;
size_t bestLength = minMatchLen-1;
if (minMatch == 3) { /* HC3 match finder */
U32 const matchIndex3 = ZSTD_insertAndFindFirstIndexHash3 (zc, ip);
if (matchIndex3>windowLow && (current - matchIndex3 < (1<<18))) {
const BYTE* match;
size_t currentMl=0;
if ((!extDict) || matchIndex3 >= dictLimit) {
match = base + matchIndex3;
if (match[bestLength] == ip[bestLength]) currentMl = ZSTD_count(ip, match, iLimit);
} else {
match = dictBase + matchIndex3;
if (ZSTD_readMINMATCH(match, MINMATCH) == ZSTD_readMINMATCH(ip, MINMATCH)) /* assumption : matchIndex3 <= dictLimit-4 (by table construction) */
currentMl = ZSTD_count_2segments(ip+MINMATCH, match+MINMATCH, iLimit, dictEnd, prefixStart) + MINMATCH;
}
/* save best solution */
if (currentMl > bestLength) {
bestLength = currentMl;
matches[mnum].off = ZSTD_REP_MOVE_OPT + current - matchIndex3;
matches[mnum].len = (U32)currentMl;
mnum++;
if (currentMl > ZSTD_OPT_NUM) goto update;
if (ip+currentMl == iLimit) goto update; /* best possible, and avoid read overflow*/
}
}
}
hashTable[h] = current; /* Update Hash Table */
while (nbCompares-- && (matchIndex > windowLow)) {
U32* nextPtr = bt + 2*(matchIndex & btMask);
size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
const BYTE* match;
if ((!extDict) || (matchIndex+matchLength >= dictLimit)) {
match = base + matchIndex;
if (match[matchLength] == ip[matchLength]) {
matchLength += ZSTD_count(ip+matchLength+1, match+matchLength+1, iLimit) +1;
}
} else {
match = dictBase + matchIndex;
matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iLimit, dictEnd, prefixStart);
if (matchIndex+matchLength >= dictLimit)
match = base + matchIndex; /* to prepare for next usage of match[matchLength] */
}
if (matchLength > bestLength) {
if (matchLength > matchEndIdx - matchIndex) matchEndIdx = matchIndex + (U32)matchLength;
bestLength = matchLength;
matches[mnum].off = ZSTD_REP_MOVE_OPT + current - matchIndex;
matches[mnum].len = (U32)matchLength;
mnum++;
if (matchLength > ZSTD_OPT_NUM) break;
if (ip+matchLength == iLimit) /* equal : no way to know if inf or sup */
break; /* drop, to guarantee consistency (miss a little bit of compression) */
}
if (match[matchLength] < ip[matchLength]) {
/* match is smaller than current */
*smallerPtr = matchIndex; /* update smaller idx */
commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop the search */
smallerPtr = nextPtr+1; /* new "smaller" => larger of match */
matchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */
} else {
/* match is larger than current */
*largerPtr = matchIndex;
commonLengthLarger = matchLength;
if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop the search */
largerPtr = nextPtr;
matchIndex = nextPtr[0];
} }
*smallerPtr = *largerPtr = 0;
update:
zc->nextToUpdate = (matchEndIdx > current + 8) ? matchEndIdx - 8 : current+1;
return mnum;
}
/** Tree updater, providing best match */
static U32 ZSTD_BtGetAllMatches (
ZSTD_CCtx* zc,
const BYTE* const ip, const BYTE* const iLimit,
const U32 maxNbAttempts, const U32 mls, ZSTD_match_t* matches, const U32 minMatchLen)
{
if (ip < zc->base + zc->nextToUpdate) return 0; /* skipped area */
ZSTD_updateTree(zc, ip, iLimit, maxNbAttempts, mls);
return ZSTD_insertBtAndGetAllMatches(zc, ip, iLimit, maxNbAttempts, mls, 0, matches, minMatchLen);
}
static U32 ZSTD_BtGetAllMatches_selectMLS (
ZSTD_CCtx* zc, /* Index table will be updated */
const BYTE* ip, const BYTE* const iHighLimit,
const U32 maxNbAttempts, const U32 matchLengthSearch, ZSTD_match_t* matches, const U32 minMatchLen)
{
switch(matchLengthSearch)
{
case 3 : return ZSTD_BtGetAllMatches(zc, ip, iHighLimit, maxNbAttempts, 3, matches, minMatchLen);
default :
case 4 : return ZSTD_BtGetAllMatches(zc, ip, iHighLimit, maxNbAttempts, 4, matches, minMatchLen);
case 5 : return ZSTD_BtGetAllMatches(zc, ip, iHighLimit, maxNbAttempts, 5, matches, minMatchLen);
case 7 :
case 6 : return ZSTD_BtGetAllMatches(zc, ip, iHighLimit, maxNbAttempts, 6, matches, minMatchLen);
}
}
/** Tree updater, providing best match */
static U32 ZSTD_BtGetAllMatches_extDict (
ZSTD_CCtx* zc,
const BYTE* const ip, const BYTE* const iLimit,
const U32 maxNbAttempts, const U32 mls, ZSTD_match_t* matches, const U32 minMatchLen)
{
if (ip < zc->base + zc->nextToUpdate) return 0; /* skipped area */
ZSTD_updateTree_extDict(zc, ip, iLimit, maxNbAttempts, mls);
return ZSTD_insertBtAndGetAllMatches(zc, ip, iLimit, maxNbAttempts, mls, 1, matches, minMatchLen);
}
static U32 ZSTD_BtGetAllMatches_selectMLS_extDict (
ZSTD_CCtx* zc, /* Index table will be updated */
const BYTE* ip, const BYTE* const iHighLimit,
const U32 maxNbAttempts, const U32 matchLengthSearch, ZSTD_match_t* matches, const U32 minMatchLen)
{
switch(matchLengthSearch)
{
case 3 : return ZSTD_BtGetAllMatches_extDict(zc, ip, iHighLimit, maxNbAttempts, 3, matches, minMatchLen);
default :
case 4 : return ZSTD_BtGetAllMatches_extDict(zc, ip, iHighLimit, maxNbAttempts, 4, matches, minMatchLen);
case 5 : return ZSTD_BtGetAllMatches_extDict(zc, ip, iHighLimit, maxNbAttempts, 5, matches, minMatchLen);
case 7 :
case 6 : return ZSTD_BtGetAllMatches_extDict(zc, ip, iHighLimit, maxNbAttempts, 6, matches, minMatchLen);
}
}
/*-*******************************
* Optimal parser
*********************************/
FORCE_INLINE_TEMPLATE
void ZSTD_compressBlock_opt_generic(ZSTD_CCtx* ctx,
const void* src, size_t srcSize, const int ultra)
{
seqStore_t* seqStorePtr = &(ctx->seqStore);
optState_t* optStatePtr = &(ctx->optState);
const BYTE* const istart = (const BYTE*)src;
const BYTE* ip = istart;
const BYTE* anchor = istart;
const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - 8;
const BYTE* const base = ctx->base;
const BYTE* const prefixStart = base + ctx->dictLimit;
const U32 maxSearches = 1U << ctx->appliedParams.cParams.searchLog;
const U32 sufficient_len = ctx->appliedParams.cParams.targetLength;
const U32 mls = ctx->appliedParams.cParams.searchLength;
const U32 minMatch = (ctx->appliedParams.cParams.searchLength == 3) ? 3 : 4;
ZSTD_optimal_t* opt = optStatePtr->priceTable;
ZSTD_match_t* matches = optStatePtr->matchTable;
const BYTE* inr;
U32 offset, rep[ZSTD_REP_NUM];
/* init */
ctx->nextToUpdate3 = ctx->nextToUpdate;
ZSTD_rescaleFreqs(optStatePtr, (const BYTE*)src, srcSize);
ip += (ip==prefixStart);
{ U32 i; for (i=0; i<ZSTD_REP_NUM; i++) rep[i]=seqStorePtr->rep[i]; }
/* Match Loop */
while (ip < ilimit) {
U32 cur, match_num, last_pos, litlen, price;
U32 u, mlen, best_mlen, best_off, litLength;
memset(opt, 0, sizeof(ZSTD_optimal_t));
last_pos = 0;
litlen = (U32)(ip - anchor);
/* check repCode */
{ U32 i, last_i = ZSTD_REP_CHECK + (ip==anchor);
for (i=(ip == anchor); i<last_i; i++) {
const S32 repCur = (i==ZSTD_REP_MOVE_OPT) ? (rep[0] - 1) : rep[i];
if ( (repCur > 0) && (repCur < (S32)(ip-prefixStart))
&& (ZSTD_readMINMATCH(ip, minMatch) == ZSTD_readMINMATCH(ip - repCur, minMatch))) {
mlen = (U32)ZSTD_count(ip+minMatch, ip+minMatch-repCur, iend) + minMatch;
if (mlen > sufficient_len || mlen >= ZSTD_OPT_NUM) {
best_mlen = mlen; best_off = i; cur = 0; last_pos = 1;
goto _storeSequence;
}
best_off = i - (ip == anchor);
do {
price = ZSTD_getPrice(optStatePtr, litlen, anchor, best_off, mlen - MINMATCH, ultra);
if (mlen > last_pos || price < opt[mlen].price)
SET_PRICE(mlen, mlen, i, litlen, price); /* note : macro modifies last_pos */
mlen--;
} while (mlen >= minMatch);
} } }
match_num = ZSTD_BtGetAllMatches_selectMLS(ctx, ip, iend, maxSearches, mls, matches, minMatch);
if (!last_pos && !match_num) { ip++; continue; }
if (match_num && (matches[match_num-1].len > sufficient_len || matches[match_num-1].len >= ZSTD_OPT_NUM)) {
best_mlen = matches[match_num-1].len;
best_off = matches[match_num-1].off;
cur = 0;
last_pos = 1;
goto _storeSequence;
}
/* set prices using matches at position = 0 */
best_mlen = (last_pos) ? last_pos : minMatch;
for (u = 0; u < match_num; u++) {
mlen = (u>0) ? matches[u-1].len+1 : best_mlen;
best_mlen = matches[u].len;
while (mlen <= best_mlen) {
price = ZSTD_getPrice(optStatePtr, litlen, anchor, matches[u].off-1, mlen - MINMATCH, ultra);
if (mlen > last_pos || price < opt[mlen].price)
SET_PRICE(mlen, mlen, matches[u].off, litlen, price); /* note : macro modifies last_pos */
mlen++;
} }
if (last_pos < minMatch) { ip++; continue; }
/* initialize opt[0] */
{ U32 i ; for (i=0; i<ZSTD_REP_NUM; i++) opt[0].rep[i] = rep[i]; }
opt[0].mlen = 1;
opt[0].litlen = litlen;
/* check further positions */
for (cur = 1; cur <= last_pos; cur++) {
inr = ip + cur;
if (opt[cur-1].mlen == 1) {
litlen = opt[cur-1].litlen + 1;
if (cur > litlen) {
price = opt[cur - litlen].price + ZSTD_getLiteralPrice(optStatePtr, litlen, inr-litlen);
} else
price = ZSTD_getLiteralPrice(optStatePtr, litlen, anchor);
} else {
litlen = 1;
price = opt[cur - 1].price + ZSTD_getLiteralPrice(optStatePtr, litlen, inr-1);
}
if (cur > last_pos || price <= opt[cur].price)
SET_PRICE(cur, 1, 0, litlen, price);
if (cur == last_pos) break;
if (inr > ilimit) /* last match must start at a minimum distance of 8 from oend */
continue;
mlen = opt[cur].mlen;
if (opt[cur].off > ZSTD_REP_MOVE_OPT) {
opt[cur].rep[2] = opt[cur-mlen].rep[1];
opt[cur].rep[1] = opt[cur-mlen].rep[0];
opt[cur].rep[0] = opt[cur].off - ZSTD_REP_MOVE_OPT;
} else {
opt[cur].rep[2] = (opt[cur].off > 1) ? opt[cur-mlen].rep[1] : opt[cur-mlen].rep[2];
opt[cur].rep[1] = (opt[cur].off > 0) ? opt[cur-mlen].rep[0] : opt[cur-mlen].rep[1];
opt[cur].rep[0] = ((opt[cur].off==ZSTD_REP_MOVE_OPT) && (mlen != 1)) ? (opt[cur-mlen].rep[0] - 1) : (opt[cur-mlen].rep[opt[cur].off]);
}
best_mlen = minMatch;
{ U32 i, last_i = ZSTD_REP_CHECK + (mlen != 1);
for (i=(opt[cur].mlen != 1); i<last_i; i++) { /* check rep */
const S32 repCur = (i==ZSTD_REP_MOVE_OPT) ? (opt[cur].rep[0] - 1) : opt[cur].rep[i];
if ( (repCur > 0) && (repCur < (S32)(inr-prefixStart))
&& (ZSTD_readMINMATCH(inr, minMatch) == ZSTD_readMINMATCH(inr - repCur, minMatch))) {
mlen = (U32)ZSTD_count(inr+minMatch, inr+minMatch - repCur, iend) + minMatch;
if (mlen > sufficient_len || cur + mlen >= ZSTD_OPT_NUM) {
best_mlen = mlen; best_off = i; last_pos = cur + 1;
goto _storeSequence;
}
best_off = i - (opt[cur].mlen != 1);
if (mlen > best_mlen) best_mlen = mlen;
do {
if (opt[cur].mlen == 1) {
litlen = opt[cur].litlen;
if (cur > litlen) {
price = opt[cur - litlen].price + ZSTD_getPrice(optStatePtr, litlen, inr-litlen, best_off, mlen - MINMATCH, ultra);
} else
price = ZSTD_getPrice(optStatePtr, litlen, anchor, best_off, mlen - MINMATCH, ultra);
} else {
litlen = 0;
price = opt[cur].price + ZSTD_getPrice(optStatePtr, 0, NULL, best_off, mlen - MINMATCH, ultra);
}
if (cur + mlen > last_pos || price <= opt[cur + mlen].price)
SET_PRICE(cur + mlen, mlen, i, litlen, price);
mlen--;
} while (mlen >= minMatch);
} } }
match_num = ZSTD_BtGetAllMatches_selectMLS(ctx, inr, iend, maxSearches, mls, matches, best_mlen);
if (match_num > 0 && (matches[match_num-1].len > sufficient_len || cur + matches[match_num-1].len >= ZSTD_OPT_NUM)) {
best_mlen = matches[match_num-1].len;
best_off = matches[match_num-1].off;
last_pos = cur + 1;
goto _storeSequence;
}
/* set prices using matches at position = cur */
for (u = 0; u < match_num; u++) {
mlen = (u>0) ? matches[u-1].len+1 : best_mlen;
best_mlen = matches[u].len;
while (mlen <= best_mlen) {
if (opt[cur].mlen == 1) {
litlen = opt[cur].litlen;
if (cur > litlen)
price = opt[cur - litlen].price + ZSTD_getPrice(optStatePtr, litlen, ip+cur-litlen, matches[u].off-1, mlen - MINMATCH, ultra);
else
price = ZSTD_getPrice(optStatePtr, litlen, anchor, matches[u].off-1, mlen - MINMATCH, ultra);
} else {
litlen = 0;
price = opt[cur].price + ZSTD_getPrice(optStatePtr, 0, NULL, matches[u].off-1, mlen - MINMATCH, ultra);
}
if (cur + mlen > last_pos || (price < opt[cur + mlen].price))
SET_PRICE(cur + mlen, mlen, matches[u].off, litlen, price);
mlen++;
} } }
best_mlen = opt[last_pos].mlen;
best_off = opt[last_pos].off;
cur = last_pos - best_mlen;
/* store sequence */
_storeSequence: /* cur, last_pos, best_mlen, best_off have to be set */
opt[0].mlen = 1;
while (1) {
mlen = opt[cur].mlen;
offset = opt[cur].off;
opt[cur].mlen = best_mlen;
opt[cur].off = best_off;
best_mlen = mlen;
best_off = offset;
if (mlen > cur) break;
cur -= mlen;
}
for (u = 0; u <= last_pos;) {
u += opt[u].mlen;
}
for (cur=0; cur < last_pos; ) {
mlen = opt[cur].mlen;
if (mlen == 1) { ip++; cur++; continue; }
offset = opt[cur].off;
cur += mlen;
litLength = (U32)(ip - anchor);
if (offset > ZSTD_REP_MOVE_OPT) {
rep[2] = rep[1];
rep[1] = rep[0];
rep[0] = offset - ZSTD_REP_MOVE_OPT;
offset--;
} else {
if (offset != 0) {
best_off = (offset==ZSTD_REP_MOVE_OPT) ? (rep[0] - 1) : (rep[offset]);
if (offset != 1) rep[2] = rep[1];
rep[1] = rep[0];
rep[0] = best_off;
}
if (litLength==0) offset--;
}
ZSTD_updatePrice(optStatePtr, litLength, anchor, offset, mlen-MINMATCH);
ZSTD_storeSeq(seqStorePtr, litLength, anchor, offset, mlen-MINMATCH);
anchor = ip = ip + mlen;
} } /* for (cur=0; cur < last_pos; ) */
/* Save reps for next block */
{ int i; for (i=0; i<ZSTD_REP_NUM; i++) seqStorePtr->repToConfirm[i] = rep[i]; }
/* Last Literals */
{ size_t const lastLLSize = iend - anchor;
memcpy(seqStorePtr->lit, anchor, lastLLSize);
seqStorePtr->lit += lastLLSize;
}
}
FORCE_INLINE_TEMPLATE
void ZSTD_compressBlock_opt_extDict_generic(ZSTD_CCtx* ctx,
const void* src, size_t srcSize, const int ultra)
{
seqStore_t* seqStorePtr = &(ctx->seqStore);
optState_t* optStatePtr = &(ctx->optState);
const BYTE* const istart = (const BYTE*)src;
const BYTE* ip = istart;
const BYTE* anchor = istart;
const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - 8;
const BYTE* const base = ctx->base;
const U32 lowestIndex = ctx->lowLimit;
const U32 dictLimit = ctx->dictLimit;
const BYTE* const prefixStart = base + dictLimit;
const BYTE* const dictBase = ctx->dictBase;
const BYTE* const dictEnd = dictBase + dictLimit;
const U32 maxSearches = 1U << ctx->appliedParams.cParams.searchLog;
const U32 sufficient_len = ctx->appliedParams.cParams.targetLength;
const U32 mls = ctx->appliedParams.cParams.searchLength;
const U32 minMatch = (ctx->appliedParams.cParams.searchLength == 3) ? 3 : 4;
ZSTD_optimal_t* opt = optStatePtr->priceTable;
ZSTD_match_t* matches = optStatePtr->matchTable;
const BYTE* inr;
/* init */
U32 offset, rep[ZSTD_REP_NUM];
{ U32 i; for (i=0; i<ZSTD_REP_NUM; i++) rep[i]=seqStorePtr->rep[i]; }
ctx->nextToUpdate3 = ctx->nextToUpdate;
ZSTD_rescaleFreqs(optStatePtr, (const BYTE*)src, srcSize);
ip += (ip==prefixStart);
/* Match Loop */
while (ip < ilimit) {
U32 cur, match_num, last_pos, litlen, price;
U32 u, mlen, best_mlen, best_off, litLength;
U32 current = (U32)(ip-base);
memset(opt, 0, sizeof(ZSTD_optimal_t));
last_pos = 0;
opt[0].litlen = (U32)(ip - anchor);
/* check repCode */
{ U32 i, last_i = ZSTD_REP_CHECK + (ip==anchor);
for (i = (ip==anchor); i<last_i; i++) {
const S32 repCur = (i==ZSTD_REP_MOVE_OPT) ? (rep[0] - 1) : rep[i];
const U32 repIndex = (U32)(current - repCur);
const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
const BYTE* const repMatch = repBase + repIndex;
if ( (repCur > 0 && repCur <= (S32)current)
&& (((U32)((dictLimit-1) - repIndex) >= 3) & (repIndex>lowestIndex)) /* intentional overflow */
&& (ZSTD_readMINMATCH(ip, minMatch) == ZSTD_readMINMATCH(repMatch, minMatch)) ) {
/* repcode detected we should take it */
const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
mlen = (U32)ZSTD_count_2segments(ip+minMatch, repMatch+minMatch, iend, repEnd, prefixStart) + minMatch;
if (mlen > sufficient_len || mlen >= ZSTD_OPT_NUM) {
best_mlen = mlen; best_off = i; cur = 0; last_pos = 1;
goto _storeSequence;
}
best_off = i - (ip==anchor);
litlen = opt[0].litlen;
do {
price = ZSTD_getPrice(optStatePtr, litlen, anchor, best_off, mlen - MINMATCH, ultra);
if (mlen > last_pos || price < opt[mlen].price)
SET_PRICE(mlen, mlen, i, litlen, price); /* note : macro modifies last_pos */
mlen--;
} while (mlen >= minMatch);
} } }
match_num = ZSTD_BtGetAllMatches_selectMLS_extDict(ctx, ip, iend, maxSearches, mls, matches, minMatch); /* first search (depth 0) */
if (!last_pos && !match_num) { ip++; continue; }
{ U32 i; for (i=0; i<ZSTD_REP_NUM; i++) opt[0].rep[i] = rep[i]; }
opt[0].mlen = 1;
if (match_num && (matches[match_num-1].len > sufficient_len || matches[match_num-1].len >= ZSTD_OPT_NUM)) {
best_mlen = matches[match_num-1].len;
best_off = matches[match_num-1].off;
cur = 0;
last_pos = 1;
goto _storeSequence;
}
best_mlen = (last_pos) ? last_pos : minMatch;
/* set prices using matches at position = 0 */
for (u = 0; u < match_num; u++) {
mlen = (u>0) ? matches[u-1].len+1 : best_mlen;
best_mlen = matches[u].len;
litlen = opt[0].litlen;
while (mlen <= best_mlen) {
price = ZSTD_getPrice(optStatePtr, litlen, anchor, matches[u].off-1, mlen - MINMATCH, ultra);
if (mlen > last_pos || price < opt[mlen].price)
SET_PRICE(mlen, mlen, matches[u].off, litlen, price);
mlen++;
} }
if (last_pos < minMatch) {
ip++; continue;
}
/* check further positions */
for (cur = 1; cur <= last_pos; cur++) {
inr = ip + cur;
if (opt[cur-1].mlen == 1) {
litlen = opt[cur-1].litlen + 1;
if (cur > litlen) {
price = opt[cur - litlen].price + ZSTD_getLiteralPrice(optStatePtr, litlen, inr-litlen);
} else
price = ZSTD_getLiteralPrice(optStatePtr, litlen, anchor);
} else {
litlen = 1;
price = opt[cur - 1].price + ZSTD_getLiteralPrice(optStatePtr, litlen, inr-1);
}
if (cur > last_pos || price <= opt[cur].price)
SET_PRICE(cur, 1, 0, litlen, price);
if (cur == last_pos) break;
if (inr > ilimit) /* last match must start at a minimum distance of 8 from oend */
continue;
mlen = opt[cur].mlen;
if (opt[cur].off > ZSTD_REP_MOVE_OPT) {
opt[cur].rep[2] = opt[cur-mlen].rep[1];
opt[cur].rep[1] = opt[cur-mlen].rep[0];
opt[cur].rep[0] = opt[cur].off - ZSTD_REP_MOVE_OPT;
} else {
opt[cur].rep[2] = (opt[cur].off > 1) ? opt[cur-mlen].rep[1] : opt[cur-mlen].rep[2];
opt[cur].rep[1] = (opt[cur].off > 0) ? opt[cur-mlen].rep[0] : opt[cur-mlen].rep[1];
opt[cur].rep[0] = ((opt[cur].off==ZSTD_REP_MOVE_OPT) && (mlen != 1)) ? (opt[cur-mlen].rep[0] - 1) : (opt[cur-mlen].rep[opt[cur].off]);
}
best_mlen = minMatch;
{ U32 i, last_i = ZSTD_REP_CHECK + (mlen != 1);
for (i = (mlen != 1); i<last_i; i++) {
const S32 repCur = (i==ZSTD_REP_MOVE_OPT) ? (opt[cur].rep[0] - 1) : opt[cur].rep[i];
const U32 repIndex = (U32)(current+cur - repCur);
const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
const BYTE* const repMatch = repBase + repIndex;
if ( (repCur > 0 && repCur <= (S32)(current+cur))
&& (((U32)((dictLimit-1) - repIndex) >= 3) & (repIndex>lowestIndex)) /* intentional overflow */
&& (ZSTD_readMINMATCH(inr, minMatch) == ZSTD_readMINMATCH(repMatch, minMatch)) ) {
/* repcode detected */
const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
mlen = (U32)ZSTD_count_2segments(inr+minMatch, repMatch+minMatch, iend, repEnd, prefixStart) + minMatch;
if (mlen > sufficient_len || cur + mlen >= ZSTD_OPT_NUM) {
best_mlen = mlen; best_off = i; last_pos = cur + 1;
goto _storeSequence;
}
best_off = i - (opt[cur].mlen != 1);
if (mlen > best_mlen) best_mlen = mlen;
do {
if (opt[cur].mlen == 1) {
litlen = opt[cur].litlen;
if (cur > litlen) {
price = opt[cur - litlen].price + ZSTD_getPrice(optStatePtr, litlen, inr-litlen, best_off, mlen - MINMATCH, ultra);
} else
price = ZSTD_getPrice(optStatePtr, litlen, anchor, best_off, mlen - MINMATCH, ultra);
} else {
litlen = 0;
price = opt[cur].price + ZSTD_getPrice(optStatePtr, 0, NULL, best_off, mlen - MINMATCH, ultra);
}
if (cur + mlen > last_pos || price <= opt[cur + mlen].price)
SET_PRICE(cur + mlen, mlen, i, litlen, price);
mlen--;
} while (mlen >= minMatch);
} } }
match_num = ZSTD_BtGetAllMatches_selectMLS_extDict(ctx, inr, iend, maxSearches, mls, matches, minMatch);
if (match_num > 0 && (matches[match_num-1].len > sufficient_len || cur + matches[match_num-1].len >= ZSTD_OPT_NUM)) {
best_mlen = matches[match_num-1].len;
best_off = matches[match_num-1].off;
last_pos = cur + 1;
goto _storeSequence;
}
/* set prices using matches at position = cur */
for (u = 0; u < match_num; u++) {
mlen = (u>0) ? matches[u-1].len+1 : best_mlen;
best_mlen = matches[u].len;
while (mlen <= best_mlen) {
if (opt[cur].mlen == 1) {
litlen = opt[cur].litlen;
if (cur > litlen)
price = opt[cur - litlen].price + ZSTD_getPrice(optStatePtr, litlen, ip+cur-litlen, matches[u].off-1, mlen - MINMATCH, ultra);
else
price = ZSTD_getPrice(optStatePtr, litlen, anchor, matches[u].off-1, mlen - MINMATCH, ultra);
} else {
litlen = 0;
price = opt[cur].price + ZSTD_getPrice(optStatePtr, 0, NULL, matches[u].off-1, mlen - MINMATCH, ultra);
}
if (cur + mlen > last_pos || (price < opt[cur + mlen].price))
SET_PRICE(cur + mlen, mlen, matches[u].off, litlen, price);
mlen++;
} } } /* for (cur = 1; cur <= last_pos; cur++) */
best_mlen = opt[last_pos].mlen;
best_off = opt[last_pos].off;
cur = last_pos - best_mlen;
/* store sequence */
_storeSequence: /* cur, last_pos, best_mlen, best_off have to be set */
opt[0].mlen = 1;
while (1) {
mlen = opt[cur].mlen;
offset = opt[cur].off;
opt[cur].mlen = best_mlen;
opt[cur].off = best_off;
best_mlen = mlen;
best_off = offset;
if (mlen > cur) break;
cur -= mlen;
}
for (u = 0; u <= last_pos; ) {
u += opt[u].mlen;
}
for (cur=0; cur < last_pos; ) {
mlen = opt[cur].mlen;
if (mlen == 1) { ip++; cur++; continue; }
offset = opt[cur].off;
cur += mlen;
litLength = (U32)(ip - anchor);
if (offset > ZSTD_REP_MOVE_OPT) {
rep[2] = rep[1];
rep[1] = rep[0];
rep[0] = offset - ZSTD_REP_MOVE_OPT;
offset--;
} else {
if (offset != 0) {
best_off = (offset==ZSTD_REP_MOVE_OPT) ? (rep[0] - 1) : (rep[offset]);
if (offset != 1) rep[2] = rep[1];
rep[1] = rep[0];
rep[0] = best_off;
}
if (litLength==0) offset--;
}
ZSTD_updatePrice(optStatePtr, litLength, anchor, offset, mlen-MINMATCH);
ZSTD_storeSeq(seqStorePtr, litLength, anchor, offset, mlen-MINMATCH);
anchor = ip = ip + mlen;
} } /* for (cur=0; cur < last_pos; ) */
/* Save reps for next block */
{ int i; for (i=0; i<ZSTD_REP_NUM; i++) seqStorePtr->repToConfirm[i] = rep[i]; }
/* Last Literals */
{ size_t lastLLSize = iend - anchor;
memcpy(seqStorePtr->lit, anchor, lastLLSize);
seqStorePtr->lit += lastLLSize;
}
}
#endif /* ZSTD_OPT_H_91842398743 */

File diff suppressed because it is too large Load Diff

View File

@ -1,115 +0,0 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
*/
#ifndef ZSTDMT_COMPRESS_H
#define ZSTDMT_COMPRESS_H
#if defined (__cplusplus)
extern "C" {
#endif
/* Note : This is an internal API.
* Some methods are still exposed (ZSTDLIB_API),
* because it used to be the only way to invoke MT compression.
* Now, it's recommended to use ZSTD_compress_generic() instead.
* These methods will stop being exposed in a future version */
/* === Dependencies === */
#include <stddef.h> /* size_t */
#define ZSTD_STATIC_LINKING_ONLY /* ZSTD_parameters */
#include "zstd.h" /* ZSTD_inBuffer, ZSTD_outBuffer, ZSTDLIB_API */
/* === Memory management === */
typedef struct ZSTDMT_CCtx_s ZSTDMT_CCtx;
ZSTDLIB_API ZSTDMT_CCtx* ZSTDMT_createCCtx(unsigned nbThreads);
ZSTDLIB_API ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced(unsigned nbThreads,
ZSTD_customMem cMem);
ZSTDLIB_API size_t ZSTDMT_freeCCtx(ZSTDMT_CCtx* mtctx);
ZSTDLIB_API size_t ZSTDMT_sizeof_CCtx(ZSTDMT_CCtx* mtctx);
/* === Simple buffer-to-butter one-pass function === */
ZSTDLIB_API size_t ZSTDMT_compressCCtx(ZSTDMT_CCtx* mtctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
int compressionLevel);
/* === Streaming functions === */
ZSTDLIB_API size_t ZSTDMT_initCStream(ZSTDMT_CCtx* mtctx, int compressionLevel);
ZSTDLIB_API size_t ZSTDMT_resetCStream(ZSTDMT_CCtx* mtctx, unsigned long long pledgedSrcSize); /**< pledgedSrcSize is optional and can be zero == unknown */
ZSTDLIB_API size_t ZSTDMT_compressStream(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, ZSTD_inBuffer* input);
ZSTDLIB_API size_t ZSTDMT_flushStream(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output); /**< @return : 0 == all flushed; >0 : still some data to be flushed; or an error code (ZSTD_isError()) */
ZSTDLIB_API size_t ZSTDMT_endStream(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output); /**< @return : 0 == all flushed; >0 : still some data to be flushed; or an error code (ZSTD_isError()) */
/* === Advanced functions and parameters === */
#ifndef ZSTDMT_SECTION_SIZE_MIN
# define ZSTDMT_SECTION_SIZE_MIN (1U << 20) /* 1 MB - Minimum size of each compression job */
#endif
ZSTDLIB_API size_t ZSTDMT_compress_advanced(ZSTDMT_CCtx* mtctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const ZSTD_CDict* cdict,
ZSTD_parameters const params,
unsigned overlapLog);
ZSTDLIB_API size_t ZSTDMT_initCStream_advanced(ZSTDMT_CCtx* mtctx,
const void* dict, size_t dictSize, /* dict can be released after init, a local copy is preserved within zcs */
ZSTD_parameters params,
unsigned long long pledgedSrcSize); /* pledgedSrcSize is optional and can be zero == unknown */
ZSTDLIB_API size_t ZSTDMT_initCStream_usingCDict(ZSTDMT_CCtx* mtctx,
const ZSTD_CDict* cdict,
ZSTD_frameParameters fparams,
unsigned long long pledgedSrcSize); /* note : zero means empty */
/* ZSDTMT_parameter :
* List of parameters that can be set using ZSTDMT_setMTCtxParameter() */
typedef enum {
ZSTDMT_p_sectionSize, /* size of input "section". Each section is compressed in parallel. 0 means default, which is dynamically determined within compression functions */
ZSTDMT_p_overlapSectionLog /* Log of overlapped section; 0 == no overlap, 6(default) == use 1/8th of window, >=9 == use full window */
} ZSDTMT_parameter;
/* ZSTDMT_setMTCtxParameter() :
* allow setting individual parameters, one at a time, among a list of enums defined in ZSTDMT_parameter.
* The function must be called typically after ZSTD_createCCtx().
* Parameters not explicitly reset by ZSTDMT_init*() remain the same in consecutive compression sessions.
* @return : 0, or an error code (which can be tested using ZSTD_isError()) */
ZSTDLIB_API size_t ZSTDMT_setMTCtxParameter(ZSTDMT_CCtx* mtctx, ZSDTMT_parameter parameter, unsigned value);
/*! ZSTDMT_compressStream_generic() :
* Combines ZSTDMT_compressStream() with ZSTDMT_flushStream() or ZSTDMT_endStream()
* depending on flush directive.
* @return : minimum amount of data still to be flushed
* 0 if fully flushed
* or an error code */
ZSTDLIB_API size_t ZSTDMT_compressStream_generic(ZSTDMT_CCtx* mtctx,
ZSTD_outBuffer* output,
ZSTD_inBuffer* input,
ZSTD_EndDirective endOp);
#if defined (__cplusplus)
}
#endif
#endif /* ZSTDMT_COMPRESS_H */

View File

@ -1,996 +0,0 @@
/* ******************************************************************
Huffman decoder, part of New Generation Entropy library
Copyright (C) 2013-2016, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
/* **************************************************************
* Dependencies
****************************************************************/
#include <string.h> /* memcpy, memset */
#include "bitstream.h" /* BIT_* */
#include "compiler.h"
#include "fse.h" /* header compression */
#define HUF_STATIC_LINKING_ONLY
#include "huf.h"
#include "error_private.h"
/* **************************************************************
* Error Management
****************************************************************/
#define HUF_isError ERR_isError
#define HUF_STATIC_ASSERT(c) { enum { HUF_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
/* **************************************************************
* Byte alignment for workSpace management
****************************************************************/
#define HUF_ALIGN(x, a) HUF_ALIGN_MASK((x), (a) - 1)
#define HUF_ALIGN_MASK(x, mask) (((x) + (mask)) & ~(mask))
/*-***************************/
/* generic DTableDesc */
/*-***************************/
typedef struct { BYTE maxTableLog; BYTE tableType; BYTE tableLog; BYTE reserved; } DTableDesc;
static DTableDesc HUF_getDTableDesc(const HUF_DTable* table)
{
DTableDesc dtd;
memcpy(&dtd, table, sizeof(dtd));
return dtd;
}
/*-***************************/
/* single-symbol decoding */
/*-***************************/
typedef struct { BYTE byte; BYTE nbBits; } HUF_DEltX2; /* single-symbol decoding */
size_t HUF_readDTableX2_wksp(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize)
{
U32 tableLog = 0;
U32 nbSymbols = 0;
size_t iSize;
void* const dtPtr = DTable + 1;
HUF_DEltX2* const dt = (HUF_DEltX2*)dtPtr;
U32* rankVal;
BYTE* huffWeight;
size_t spaceUsed32 = 0;
rankVal = (U32 *)workSpace + spaceUsed32;
spaceUsed32 += HUF_TABLELOG_ABSOLUTEMAX + 1;
huffWeight = (BYTE *)((U32 *)workSpace + spaceUsed32);
spaceUsed32 += HUF_ALIGN(HUF_SYMBOLVALUE_MAX + 1, sizeof(U32)) >> 2;
if ((spaceUsed32 << 2) > wkspSize)
return ERROR(tableLog_tooLarge);
workSpace = (U32 *)workSpace + spaceUsed32;
wkspSize -= (spaceUsed32 << 2);
HUF_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUF_DTable));
/* memset(huffWeight, 0, sizeof(huffWeight)); */ /* is not necessary, even though some analyzer complain ... */
iSize = HUF_readStats(huffWeight, HUF_SYMBOLVALUE_MAX + 1, rankVal, &nbSymbols, &tableLog, src, srcSize);
if (HUF_isError(iSize)) return iSize;
/* Table header */
{ DTableDesc dtd = HUF_getDTableDesc(DTable);
if (tableLog > (U32)(dtd.maxTableLog+1)) return ERROR(tableLog_tooLarge); /* DTable too small, Huffman tree cannot fit in */
dtd.tableType = 0;
dtd.tableLog = (BYTE)tableLog;
memcpy(DTable, &dtd, sizeof(dtd));
}
/* Calculate starting value for each rank */
{ U32 n, nextRankStart = 0;
for (n=1; n<tableLog+1; n++) {
U32 const current = nextRankStart;
nextRankStart += (rankVal[n] << (n-1));
rankVal[n] = current;
} }
/* fill DTable */
{ U32 n;
for (n=0; n<nbSymbols; n++) {
U32 const w = huffWeight[n];
U32 const length = (1 << w) >> 1;
U32 u;
HUF_DEltX2 D;
D.byte = (BYTE)n; D.nbBits = (BYTE)(tableLog + 1 - w);
for (u = rankVal[w]; u < rankVal[w] + length; u++)
dt[u] = D;
rankVal[w] += length;
} }
return iSize;
}
size_t HUF_readDTableX2(HUF_DTable* DTable, const void* src, size_t srcSize)
{
U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
return HUF_readDTableX2_wksp(DTable, src, srcSize,
workSpace, sizeof(workSpace));
}
static BYTE HUF_decodeSymbolX2(BIT_DStream_t* Dstream, const HUF_DEltX2* dt, const U32 dtLog)
{
size_t const val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
BYTE const c = dt[val].byte;
BIT_skipBits(Dstream, dt[val].nbBits);
return c;
}
#define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
*ptr++ = HUF_decodeSymbolX2(DStreamPtr, dt, dtLog)
#define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
#define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
if (MEM_64bits()) \
HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
HINT_INLINE size_t HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX2* const dt, const U32 dtLog)
{
BYTE* const pStart = p;
/* up to 4 symbols at a time */
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-4)) {
HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
HUF_DECODE_SYMBOLX2_1(p, bitDPtr);
HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
}
/* closer to the end */
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd))
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
/* no more data to retrieve from bitstream, hence no need to reload */
while (p < pEnd)
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
return pEnd-pStart;
}
static size_t HUF_decompress1X2_usingDTable_internal(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
BYTE* op = (BYTE*)dst;
BYTE* const oend = op + dstSize;
const void* dtPtr = DTable + 1;
const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
BIT_DStream_t bitD;
DTableDesc const dtd = HUF_getDTableDesc(DTable);
U32 const dtLog = dtd.tableLog;
{ size_t const errorCode = BIT_initDStream(&bitD, cSrc, cSrcSize);
if (HUF_isError(errorCode)) return errorCode; }
HUF_decodeStreamX2(op, &bitD, oend, dt, dtLog);
/* check */
if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
return dstSize;
}
size_t HUF_decompress1X2_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
DTableDesc dtd = HUF_getDTableDesc(DTable);
if (dtd.tableType != 0) return ERROR(GENERIC);
return HUF_decompress1X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable);
}
size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
void* workSpace, size_t wkspSize)
{
const BYTE* ip = (const BYTE*) cSrc;
size_t const hSize = HUF_readDTableX2_wksp(DCtx, cSrc, cSrcSize, workSpace, wkspSize);
if (HUF_isError(hSize)) return hSize;
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize; cSrcSize -= hSize;
return HUF_decompress1X2_usingDTable_internal (dst, dstSize, ip, cSrcSize, DCtx);
}
size_t HUF_decompress1X2_DCtx(HUF_DTable* DCtx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize)
{
U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
return HUF_decompress1X2_DCtx_wksp(DCtx, dst, dstSize, cSrc, cSrcSize,
workSpace, sizeof(workSpace));
}
size_t HUF_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_TABLELOG_MAX);
return HUF_decompress1X2_DCtx (DTable, dst, dstSize, cSrc, cSrcSize);
}
static size_t HUF_decompress4X2_usingDTable_internal(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
/* Check */
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
{ const BYTE* const istart = (const BYTE*) cSrc;
BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
const void* const dtPtr = DTable + 1;
const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
/* Init */
BIT_DStream_t bitD1;
BIT_DStream_t bitD2;
BIT_DStream_t bitD3;
BIT_DStream_t bitD4;
size_t const length1 = MEM_readLE16(istart);
size_t const length2 = MEM_readLE16(istart+2);
size_t const length3 = MEM_readLE16(istart+4);
size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
const BYTE* const istart1 = istart + 6; /* jumpTable */
const BYTE* const istart2 = istart1 + length1;
const BYTE* const istart3 = istart2 + length2;
const BYTE* const istart4 = istart3 + length3;
const size_t segmentSize = (dstSize+3) / 4;
BYTE* const opStart2 = ostart + segmentSize;
BYTE* const opStart3 = opStart2 + segmentSize;
BYTE* const opStart4 = opStart3 + segmentSize;
BYTE* op1 = ostart;
BYTE* op2 = opStart2;
BYTE* op3 = opStart3;
BYTE* op4 = opStart4;
U32 endSignal;
DTableDesc const dtd = HUF_getDTableDesc(DTable);
U32 const dtLog = dtd.tableLog;
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
{ size_t const errorCode = BIT_initDStream(&bitD1, istart1, length1);
if (HUF_isError(errorCode)) return errorCode; }
{ size_t const errorCode = BIT_initDStream(&bitD2, istart2, length2);
if (HUF_isError(errorCode)) return errorCode; }
{ size_t const errorCode = BIT_initDStream(&bitD3, istart3, length3);
if (HUF_isError(errorCode)) return errorCode; }
{ size_t const errorCode = BIT_initDStream(&bitD4, istart4, length4);
if (HUF_isError(errorCode)) return errorCode; }
/* 16-32 symbols per loop (4-8 symbols per stream) */
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; ) {
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
}
/* check corruption */
if (op1 > opStart2) return ERROR(corruption_detected);
if (op2 > opStart3) return ERROR(corruption_detected);
if (op3 > opStart4) return ERROR(corruption_detected);
/* note : op4 supposed already verified within main loop */
/* finish bitStreams one by one */
HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog);
/* check */
endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
if (!endSignal) return ERROR(corruption_detected);
/* decoded size */
return dstSize;
}
}
size_t HUF_decompress4X2_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
DTableDesc dtd = HUF_getDTableDesc(DTable);
if (dtd.tableType != 0) return ERROR(GENERIC);
return HUF_decompress4X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable);
}
size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
void* workSpace, size_t wkspSize)
{
const BYTE* ip = (const BYTE*) cSrc;
size_t const hSize = HUF_readDTableX2_wksp (dctx, cSrc, cSrcSize,
workSpace, wkspSize);
if (HUF_isError(hSize)) return hSize;
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize; cSrcSize -= hSize;
return HUF_decompress4X2_usingDTable_internal (dst, dstSize, ip, cSrcSize, dctx);
}
size_t HUF_decompress4X2_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
return HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize,
workSpace, sizeof(workSpace));
}
size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_TABLELOG_MAX);
return HUF_decompress4X2_DCtx(DTable, dst, dstSize, cSrc, cSrcSize);
}
/* *************************/
/* double-symbols decoding */
/* *************************/
typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX4; /* double-symbols decoding */
typedef struct { BYTE symbol; BYTE weight; } sortedSymbol_t;
/* HUF_fillDTableX4Level2() :
* `rankValOrigin` must be a table of at least (HUF_TABLELOG_MAX + 1) U32 */
static void HUF_fillDTableX4Level2(HUF_DEltX4* DTable, U32 sizeLog, const U32 consumed,
const U32* rankValOrigin, const int minWeight,
const sortedSymbol_t* sortedSymbols, const U32 sortedListSize,
U32 nbBitsBaseline, U16 baseSeq)
{
HUF_DEltX4 DElt;
U32 rankVal[HUF_TABLELOG_MAX + 1];
/* get pre-calculated rankVal */
memcpy(rankVal, rankValOrigin, sizeof(rankVal));
/* fill skipped values */
if (minWeight>1) {
U32 i, skipSize = rankVal[minWeight];
MEM_writeLE16(&(DElt.sequence), baseSeq);
DElt.nbBits = (BYTE)(consumed);
DElt.length = 1;
for (i = 0; i < skipSize; i++)
DTable[i] = DElt;
}
/* fill DTable */
{ U32 s; for (s=0; s<sortedListSize; s++) { /* note : sortedSymbols already skipped */
const U32 symbol = sortedSymbols[s].symbol;
const U32 weight = sortedSymbols[s].weight;
const U32 nbBits = nbBitsBaseline - weight;
const U32 length = 1 << (sizeLog-nbBits);
const U32 start = rankVal[weight];
U32 i = start;
const U32 end = start + length;
MEM_writeLE16(&(DElt.sequence), (U16)(baseSeq + (symbol << 8)));
DElt.nbBits = (BYTE)(nbBits + consumed);
DElt.length = 2;
do { DTable[i++] = DElt; } while (i<end); /* since length >= 1 */
rankVal[weight] += length;
} }
}
typedef U32 rankValCol_t[HUF_TABLELOG_MAX + 1];
typedef rankValCol_t rankVal_t[HUF_TABLELOG_MAX];
static void HUF_fillDTableX4(HUF_DEltX4* DTable, const U32 targetLog,
const sortedSymbol_t* sortedList, const U32 sortedListSize,
const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight,
const U32 nbBitsBaseline)
{
U32 rankVal[HUF_TABLELOG_MAX + 1];
const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */
const U32 minBits = nbBitsBaseline - maxWeight;
U32 s;
memcpy(rankVal, rankValOrigin, sizeof(rankVal));
/* fill DTable */
for (s=0; s<sortedListSize; s++) {
const U16 symbol = sortedList[s].symbol;
const U32 weight = sortedList[s].weight;
const U32 nbBits = nbBitsBaseline - weight;
const U32 start = rankVal[weight];
const U32 length = 1 << (targetLog-nbBits);
if (targetLog-nbBits >= minBits) { /* enough room for a second symbol */
U32 sortedRank;
int minWeight = nbBits + scaleLog;
if (minWeight < 1) minWeight = 1;
sortedRank = rankStart[minWeight];
HUF_fillDTableX4Level2(DTable+start, targetLog-nbBits, nbBits,
rankValOrigin[nbBits], minWeight,
sortedList+sortedRank, sortedListSize-sortedRank,
nbBitsBaseline, symbol);
} else {
HUF_DEltX4 DElt;
MEM_writeLE16(&(DElt.sequence), symbol);
DElt.nbBits = (BYTE)(nbBits);
DElt.length = 1;
{ U32 const end = start + length;
U32 u;
for (u = start; u < end; u++) DTable[u] = DElt;
} }
rankVal[weight] += length;
}
}
size_t HUF_readDTableX4_wksp(HUF_DTable* DTable, const void* src,
size_t srcSize, void* workSpace,
size_t wkspSize)
{
U32 tableLog, maxW, sizeOfSort, nbSymbols;
DTableDesc dtd = HUF_getDTableDesc(DTable);
U32 const maxTableLog = dtd.maxTableLog;
size_t iSize;
void* dtPtr = DTable+1; /* force compiler to avoid strict-aliasing */
HUF_DEltX4* const dt = (HUF_DEltX4*)dtPtr;
U32 *rankStart;
rankValCol_t* rankVal;
U32* rankStats;
U32* rankStart0;
sortedSymbol_t* sortedSymbol;
BYTE* weightList;
size_t spaceUsed32 = 0;
rankVal = (rankValCol_t *)((U32 *)workSpace + spaceUsed32);
spaceUsed32 += (sizeof(rankValCol_t) * HUF_TABLELOG_MAX) >> 2;
rankStats = (U32 *)workSpace + spaceUsed32;
spaceUsed32 += HUF_TABLELOG_MAX + 1;
rankStart0 = (U32 *)workSpace + spaceUsed32;
spaceUsed32 += HUF_TABLELOG_MAX + 2;
sortedSymbol = (sortedSymbol_t *)workSpace + (spaceUsed32 * sizeof(U32)) / sizeof(sortedSymbol_t);
spaceUsed32 += HUF_ALIGN(sizeof(sortedSymbol_t) * (HUF_SYMBOLVALUE_MAX + 1), sizeof(U32)) >> 2;
weightList = (BYTE *)((U32 *)workSpace + spaceUsed32);
spaceUsed32 += HUF_ALIGN(HUF_SYMBOLVALUE_MAX + 1, sizeof(U32)) >> 2;
if ((spaceUsed32 << 2) > wkspSize)
return ERROR(tableLog_tooLarge);
workSpace = (U32 *)workSpace + spaceUsed32;
wkspSize -= (spaceUsed32 << 2);
rankStart = rankStart0 + 1;
memset(rankStats, 0, sizeof(U32) * (2 * HUF_TABLELOG_MAX + 2 + 1));
HUF_STATIC_ASSERT(sizeof(HUF_DEltX4) == sizeof(HUF_DTable)); /* if compiler fails here, assertion is wrong */
if (maxTableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
/* memset(weightList, 0, sizeof(weightList)); */ /* is not necessary, even though some analyzer complain ... */
iSize = HUF_readStats(weightList, HUF_SYMBOLVALUE_MAX + 1, rankStats, &nbSymbols, &tableLog, src, srcSize);
if (HUF_isError(iSize)) return iSize;
/* check result */
if (tableLog > maxTableLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */
/* find maxWeight */
for (maxW = tableLog; rankStats[maxW]==0; maxW--) {} /* necessarily finds a solution before 0 */
/* Get start index of each weight */
{ U32 w, nextRankStart = 0;
for (w=1; w<maxW+1; w++) {
U32 current = nextRankStart;
nextRankStart += rankStats[w];
rankStart[w] = current;
}
rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/
sizeOfSort = nextRankStart;
}
/* sort symbols by weight */
{ U32 s;
for (s=0; s<nbSymbols; s++) {
U32 const w = weightList[s];
U32 const r = rankStart[w]++;
sortedSymbol[r].symbol = (BYTE)s;
sortedSymbol[r].weight = (BYTE)w;
}
rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */
}
/* Build rankVal */
{ U32* const rankVal0 = rankVal[0];
{ int const rescale = (maxTableLog-tableLog) - 1; /* tableLog <= maxTableLog */
U32 nextRankVal = 0;
U32 w;
for (w=1; w<maxW+1; w++) {
U32 current = nextRankVal;
nextRankVal += rankStats[w] << (w+rescale);
rankVal0[w] = current;
} }
{ U32 const minBits = tableLog+1 - maxW;
U32 consumed;
for (consumed = minBits; consumed < maxTableLog - minBits + 1; consumed++) {
U32* const rankValPtr = rankVal[consumed];
U32 w;
for (w = 1; w < maxW+1; w++) {
rankValPtr[w] = rankVal0[w] >> consumed;
} } } }
HUF_fillDTableX4(dt, maxTableLog,
sortedSymbol, sizeOfSort,
rankStart0, rankVal, maxW,
tableLog+1);
dtd.tableLog = (BYTE)maxTableLog;
dtd.tableType = 1;
memcpy(DTable, &dtd, sizeof(dtd));
return iSize;
}
size_t HUF_readDTableX4(HUF_DTable* DTable, const void* src, size_t srcSize)
{
U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
return HUF_readDTableX4_wksp(DTable, src, srcSize,
workSpace, sizeof(workSpace));
}
static U32 HUF_decodeSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog)
{
size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
memcpy(op, dt+val, 2);
BIT_skipBits(DStream, dt[val].nbBits);
return dt[val].length;
}
static U32 HUF_decodeLastSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog)
{
size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
memcpy(op, dt+val, 1);
if (dt[val].length==1) BIT_skipBits(DStream, dt[val].nbBits);
else {
if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) {
BIT_skipBits(DStream, dt[val].nbBits);
if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
/* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8);
} }
return 1;
}
#define HUF_DECODE_SYMBOLX4_0(ptr, DStreamPtr) \
ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
#define HUF_DECODE_SYMBOLX4_1(ptr, DStreamPtr) \
if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
#define HUF_DECODE_SYMBOLX4_2(ptr, DStreamPtr) \
if (MEM_64bits()) \
ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
HINT_INLINE size_t HUF_decodeStreamX4(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd, const HUF_DEltX4* const dt, const U32 dtLog)
{
BYTE* const pStart = p;
/* up to 8 symbols at a time */
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-(sizeof(bitDPtr->bitContainer)-1))) {
HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
HUF_DECODE_SYMBOLX4_1(p, bitDPtr);
HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
HUF_DECODE_SYMBOLX4_0(p, bitDPtr);
}
/* closer to end : up to 2 symbols at a time */
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p <= pEnd-2))
HUF_DECODE_SYMBOLX4_0(p, bitDPtr);
while (p <= pEnd-2)
HUF_DECODE_SYMBOLX4_0(p, bitDPtr); /* no need to reload : reached the end of DStream */
if (p < pEnd)
p += HUF_decodeLastSymbolX4(p, bitDPtr, dt, dtLog);
return p-pStart;
}
static size_t HUF_decompress1X4_usingDTable_internal(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
BIT_DStream_t bitD;
/* Init */
{ size_t const errorCode = BIT_initDStream(&bitD, cSrc, cSrcSize);
if (HUF_isError(errorCode)) return errorCode;
}
/* decode */
{ BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
const void* const dtPtr = DTable+1; /* force compiler to not use strict-aliasing */
const HUF_DEltX4* const dt = (const HUF_DEltX4*)dtPtr;
DTableDesc const dtd = HUF_getDTableDesc(DTable);
HUF_decodeStreamX4(ostart, &bitD, oend, dt, dtd.tableLog);
}
/* check */
if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
/* decoded size */
return dstSize;
}
size_t HUF_decompress1X4_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
DTableDesc dtd = HUF_getDTableDesc(DTable);
if (dtd.tableType != 1) return ERROR(GENERIC);
return HUF_decompress1X4_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable);
}
size_t HUF_decompress1X4_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
void* workSpace, size_t wkspSize)
{
const BYTE* ip = (const BYTE*) cSrc;
size_t const hSize = HUF_readDTableX4_wksp(DCtx, cSrc, cSrcSize,
workSpace, wkspSize);
if (HUF_isError(hSize)) return hSize;
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize; cSrcSize -= hSize;
return HUF_decompress1X4_usingDTable_internal (dst, dstSize, ip, cSrcSize, DCtx);
}
size_t HUF_decompress1X4_DCtx(HUF_DTable* DCtx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize)
{
U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
return HUF_decompress1X4_DCtx_wksp(DCtx, dst, dstSize, cSrc, cSrcSize,
workSpace, sizeof(workSpace));
}
size_t HUF_decompress1X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
HUF_CREATE_STATIC_DTABLEX4(DTable, HUF_TABLELOG_MAX);
return HUF_decompress1X4_DCtx(DTable, dst, dstSize, cSrc, cSrcSize);
}
static size_t HUF_decompress4X4_usingDTable_internal(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
{ const BYTE* const istart = (const BYTE*) cSrc;
BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
const void* const dtPtr = DTable+1;
const HUF_DEltX4* const dt = (const HUF_DEltX4*)dtPtr;
/* Init */
BIT_DStream_t bitD1;
BIT_DStream_t bitD2;
BIT_DStream_t bitD3;
BIT_DStream_t bitD4;
size_t const length1 = MEM_readLE16(istart);
size_t const length2 = MEM_readLE16(istart+2);
size_t const length3 = MEM_readLE16(istart+4);
size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
const BYTE* const istart1 = istart + 6; /* jumpTable */
const BYTE* const istart2 = istart1 + length1;
const BYTE* const istart3 = istart2 + length2;
const BYTE* const istart4 = istart3 + length3;
size_t const segmentSize = (dstSize+3) / 4;
BYTE* const opStart2 = ostart + segmentSize;
BYTE* const opStart3 = opStart2 + segmentSize;
BYTE* const opStart4 = opStart3 + segmentSize;
BYTE* op1 = ostart;
BYTE* op2 = opStart2;
BYTE* op3 = opStart3;
BYTE* op4 = opStart4;
U32 endSignal;
DTableDesc const dtd = HUF_getDTableDesc(DTable);
U32 const dtLog = dtd.tableLog;
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
{ size_t const errorCode = BIT_initDStream(&bitD1, istart1, length1);
if (HUF_isError(errorCode)) return errorCode; }
{ size_t const errorCode = BIT_initDStream(&bitD2, istart2, length2);
if (HUF_isError(errorCode)) return errorCode; }
{ size_t const errorCode = BIT_initDStream(&bitD3, istart3, length3);
if (HUF_isError(errorCode)) return errorCode; }
{ size_t const errorCode = BIT_initDStream(&bitD4, istart4, length4);
if (HUF_isError(errorCode)) return errorCode; }
/* 16-32 symbols per loop (4-8 symbols per stream) */
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
for ( ; (endSignal==BIT_DStream_unfinished) & (op4<(oend-(sizeof(bitD4.bitContainer)-1))) ; ) {
HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
HUF_DECODE_SYMBOLX4_1(op1, &bitD1);
HUF_DECODE_SYMBOLX4_1(op2, &bitD2);
HUF_DECODE_SYMBOLX4_1(op3, &bitD3);
HUF_DECODE_SYMBOLX4_1(op4, &bitD4);
HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
HUF_DECODE_SYMBOLX4_0(op1, &bitD1);
HUF_DECODE_SYMBOLX4_0(op2, &bitD2);
HUF_DECODE_SYMBOLX4_0(op3, &bitD3);
HUF_DECODE_SYMBOLX4_0(op4, &bitD4);
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
}
/* check corruption */
if (op1 > opStart2) return ERROR(corruption_detected);
if (op2 > opStart3) return ERROR(corruption_detected);
if (op3 > opStart4) return ERROR(corruption_detected);
/* note : op4 already verified within main loop */
/* finish bitStreams one by one */
HUF_decodeStreamX4(op1, &bitD1, opStart2, dt, dtLog);
HUF_decodeStreamX4(op2, &bitD2, opStart3, dt, dtLog);
HUF_decodeStreamX4(op3, &bitD3, opStart4, dt, dtLog);
HUF_decodeStreamX4(op4, &bitD4, oend, dt, dtLog);
/* check */
{ U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
if (!endCheck) return ERROR(corruption_detected); }
/* decoded size */
return dstSize;
}
}
size_t HUF_decompress4X4_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
DTableDesc dtd = HUF_getDTableDesc(DTable);
if (dtd.tableType != 1) return ERROR(GENERIC);
return HUF_decompress4X4_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable);
}
size_t HUF_decompress4X4_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
void* workSpace, size_t wkspSize)
{
const BYTE* ip = (const BYTE*) cSrc;
size_t hSize = HUF_readDTableX4_wksp(dctx, cSrc, cSrcSize,
workSpace, wkspSize);
if (HUF_isError(hSize)) return hSize;
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize; cSrcSize -= hSize;
return HUF_decompress4X4_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx);
}
size_t HUF_decompress4X4_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize)
{
U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
return HUF_decompress4X4_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize,
workSpace, sizeof(workSpace));
}
size_t HUF_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
HUF_CREATE_STATIC_DTABLEX4(DTable, HUF_TABLELOG_MAX);
return HUF_decompress4X4_DCtx(DTable, dst, dstSize, cSrc, cSrcSize);
}
/* ********************************/
/* Generic decompression selector */
/* ********************************/
size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
DTableDesc const dtd = HUF_getDTableDesc(DTable);
return dtd.tableType ? HUF_decompress1X4_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable) :
HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable);
}
size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
DTableDesc const dtd = HUF_getDTableDesc(DTable);
return dtd.tableType ? HUF_decompress4X4_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable) :
HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable);
}
typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t;
static const algo_time_t algoTime[16 /* Quantization */][3 /* single, double, quad */] =
{
/* single, double, quad */
{{0,0}, {1,1}, {2,2}}, /* Q==0 : impossible */
{{0,0}, {1,1}, {2,2}}, /* Q==1 : impossible */
{{ 38,130}, {1313, 74}, {2151, 38}}, /* Q == 2 : 12-18% */
{{ 448,128}, {1353, 74}, {2238, 41}}, /* Q == 3 : 18-25% */
{{ 556,128}, {1353, 74}, {2238, 47}}, /* Q == 4 : 25-32% */
{{ 714,128}, {1418, 74}, {2436, 53}}, /* Q == 5 : 32-38% */
{{ 883,128}, {1437, 74}, {2464, 61}}, /* Q == 6 : 38-44% */
{{ 897,128}, {1515, 75}, {2622, 68}}, /* Q == 7 : 44-50% */
{{ 926,128}, {1613, 75}, {2730, 75}}, /* Q == 8 : 50-56% */
{{ 947,128}, {1729, 77}, {3359, 77}}, /* Q == 9 : 56-62% */
{{1107,128}, {2083, 81}, {4006, 84}}, /* Q ==10 : 62-69% */
{{1177,128}, {2379, 87}, {4785, 88}}, /* Q ==11 : 69-75% */
{{1242,128}, {2415, 93}, {5155, 84}}, /* Q ==12 : 75-81% */
{{1349,128}, {2644,106}, {5260,106}}, /* Q ==13 : 81-87% */
{{1455,128}, {2422,124}, {4174,124}}, /* Q ==14 : 87-93% */
{{ 722,128}, {1891,145}, {1936,146}}, /* Q ==15 : 93-99% */
};
/** HUF_selectDecoder() :
* Tells which decoder is likely to decode faster,
* based on a set of pre-determined metrics.
* @return : 0==HUF_decompress4X2, 1==HUF_decompress4X4 .
* Assumption : 0 < cSrcSize, dstSize <= 128 KB */
U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize)
{
/* decoder timing evaluation */
U32 const Q = cSrcSize >= dstSize ? 15 : (U32)(cSrcSize * 16 / dstSize); /* Q < 16 */
U32 const D256 = (U32)(dstSize >> 8);
U32 const DTime0 = algoTime[Q][0].tableTime + (algoTime[Q][0].decode256Time * D256);
U32 DTime1 = algoTime[Q][1].tableTime + (algoTime[Q][1].decode256Time * D256);
DTime1 += DTime1 >> 3; /* advantage to algorithm using less memory, for cache eviction */
return DTime1 < DTime0;
}
typedef size_t (*decompressionAlgo)(void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);
size_t HUF_decompress (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
static const decompressionAlgo decompress[2] = { HUF_decompress4X2, HUF_decompress4X4 };
/* validation checks */
if (dstSize == 0) return ERROR(dstSize_tooSmall);
if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
{ U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
return decompress[algoNb](dst, dstSize, cSrc, cSrcSize);
}
}
size_t HUF_decompress4X_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
/* validation checks */
if (dstSize == 0) return ERROR(dstSize_tooSmall);
if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
{ U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
return algoNb ? HUF_decompress4X4_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) :
HUF_decompress4X2_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) ;
}
}
size_t HUF_decompress4X_hufOnly(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
return HUF_decompress4X_hufOnly_wksp(dctx, dst, dstSize, cSrc, cSrcSize,
workSpace, sizeof(workSpace));
}
size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst,
size_t dstSize, const void* cSrc,
size_t cSrcSize, void* workSpace,
size_t wkspSize)
{
/* validation checks */
if (dstSize == 0) return ERROR(dstSize_tooSmall);
if (cSrcSize == 0) return ERROR(corruption_detected);
{ U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
return algoNb ? HUF_decompress4X4_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize):
HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize);
}
}
size_t HUF_decompress1X_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
void* workSpace, size_t wkspSize)
{
/* validation checks */
if (dstSize == 0) return ERROR(dstSize_tooSmall);
if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
{ U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
return algoNb ? HUF_decompress1X4_DCtx_wksp(dctx, dst, dstSize, cSrc,
cSrcSize, workSpace, wkspSize):
HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
cSrcSize, workSpace, wkspSize);
}
}
size_t HUF_decompress1X_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize)
{
U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
return HUF_decompress1X_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize,
workSpace, sizeof(workSpace));
}

File diff suppressed because it is too large Load Diff

View File

@ -1,212 +0,0 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
*/
/* ***************************************************************
* NOTES/WARNINGS
******************************************************************/
/* The streaming API defined here is deprecated.
* Consider migrating towards ZSTD_compressStream() API in `zstd.h`
* See 'lib/README.md'.
*****************************************************************/
#if defined (__cplusplus)
extern "C" {
#endif
#ifndef ZSTD_BUFFERED_H_23987
#define ZSTD_BUFFERED_H_23987
/* *************************************
* Dependencies
***************************************/
#include <stddef.h> /* size_t */
#include "zstd.h" /* ZSTD_CStream, ZSTD_DStream, ZSTDLIB_API */
/* ***************************************************************
* Compiler specifics
*****************************************************************/
/* Deprecation warnings */
/* Should these warnings be a problem,
it is generally possible to disable them,
typically with -Wno-deprecated-declarations for gcc
or _CRT_SECURE_NO_WARNINGS in Visual.
Otherwise, it's also possible to define ZBUFF_DISABLE_DEPRECATE_WARNINGS */
#ifdef ZBUFF_DISABLE_DEPRECATE_WARNINGS
# define ZBUFF_DEPRECATED(message) ZSTDLIB_API /* disable deprecation warnings */
#else
# if defined (__cplusplus) && (__cplusplus >= 201402) /* C++14 or greater */
# define ZBUFF_DEPRECATED(message) [[deprecated(message)]] ZSTDLIB_API
# elif (defined(__GNUC__) && (__GNUC__ >= 5)) || defined(__clang__)
# define ZBUFF_DEPRECATED(message) ZSTDLIB_API __attribute__((deprecated(message)))
# elif defined(__GNUC__) && (__GNUC__ >= 3)
# define ZBUFF_DEPRECATED(message) ZSTDLIB_API __attribute__((deprecated))
# elif defined(_MSC_VER)
# define ZBUFF_DEPRECATED(message) ZSTDLIB_API __declspec(deprecated(message))
# else
# pragma message("WARNING: You need to implement ZBUFF_DEPRECATED for this compiler")
# define ZBUFF_DEPRECATED(message) ZSTDLIB_API
# endif
#endif /* ZBUFF_DISABLE_DEPRECATE_WARNINGS */
/* *************************************
* Streaming functions
***************************************/
/* This is the easier "buffered" streaming API,
* using an internal buffer to lift all restrictions on user-provided buffers
* which can be any size, any place, for both input and output.
* ZBUFF and ZSTD are 100% interoperable,
* frames created by one can be decoded by the other one */
typedef ZSTD_CStream ZBUFF_CCtx;
ZBUFF_DEPRECATED("use ZSTD_createCStream") ZBUFF_CCtx* ZBUFF_createCCtx(void);
ZBUFF_DEPRECATED("use ZSTD_freeCStream") size_t ZBUFF_freeCCtx(ZBUFF_CCtx* cctx);
ZBUFF_DEPRECATED("use ZSTD_initCStream") size_t ZBUFF_compressInit(ZBUFF_CCtx* cctx, int compressionLevel);
ZBUFF_DEPRECATED("use ZSTD_initCStream_usingDict") size_t ZBUFF_compressInitDictionary(ZBUFF_CCtx* cctx, const void* dict, size_t dictSize, int compressionLevel);
ZBUFF_DEPRECATED("use ZSTD_compressStream") size_t ZBUFF_compressContinue(ZBUFF_CCtx* cctx, void* dst, size_t* dstCapacityPtr, const void* src, size_t* srcSizePtr);
ZBUFF_DEPRECATED("use ZSTD_flushStream") size_t ZBUFF_compressFlush(ZBUFF_CCtx* cctx, void* dst, size_t* dstCapacityPtr);
ZBUFF_DEPRECATED("use ZSTD_endStream") size_t ZBUFF_compressEnd(ZBUFF_CCtx* cctx, void* dst, size_t* dstCapacityPtr);
/*-*************************************************
* Streaming compression - howto
*
* A ZBUFF_CCtx object is required to track streaming operation.
* Use ZBUFF_createCCtx() and ZBUFF_freeCCtx() to create/release resources.
* ZBUFF_CCtx objects can be reused multiple times.
*
* Start by initializing ZBUF_CCtx.
* Use ZBUFF_compressInit() to start a new compression operation.
* Use ZBUFF_compressInitDictionary() for a compression which requires a dictionary.
*
* Use ZBUFF_compressContinue() repetitively to consume input stream.
* *srcSizePtr and *dstCapacityPtr can be any size.
* The function will report how many bytes were read or written within *srcSizePtr and *dstCapacityPtr.
* Note that it may not consume the entire input, in which case it's up to the caller to present again remaining data.
* The content of `dst` will be overwritten (up to *dstCapacityPtr) at each call, so save its content if it matters or change @dst .
* @return : a hint to preferred nb of bytes to use as input for next function call (it's just a hint, to improve latency)
* or an error code, which can be tested using ZBUFF_isError().
*
* At any moment, it's possible to flush whatever data remains within buffer, using ZBUFF_compressFlush().
* The nb of bytes written into `dst` will be reported into *dstCapacityPtr.
* Note that the function cannot output more than *dstCapacityPtr,
* therefore, some content might still be left into internal buffer if *dstCapacityPtr is too small.
* @return : nb of bytes still present into internal buffer (0 if it's empty)
* or an error code, which can be tested using ZBUFF_isError().
*
* ZBUFF_compressEnd() instructs to finish a frame.
* It will perform a flush and write frame epilogue.
* The epilogue is required for decoders to consider a frame completed.
* Similar to ZBUFF_compressFlush(), it may not be able to output the entire internal buffer content if *dstCapacityPtr is too small.
* In which case, call again ZBUFF_compressFlush() to complete the flush.
* @return : nb of bytes still present into internal buffer (0 if it's empty)
* or an error code, which can be tested using ZBUFF_isError().
*
* Hint : _recommended buffer_ sizes (not compulsory) : ZBUFF_recommendedCInSize() / ZBUFF_recommendedCOutSize()
* input : ZBUFF_recommendedCInSize==128 KB block size is the internal unit, use this value to reduce intermediate stages (better latency)
* output : ZBUFF_recommendedCOutSize==ZSTD_compressBound(128 KB) + 3 + 3 : ensures it's always possible to write/flush/end a full block. Skip some buffering.
* By using both, it ensures that input will be entirely consumed, and output will always contain the result, reducing intermediate buffering.
* **************************************************/
typedef ZSTD_DStream ZBUFF_DCtx;
ZBUFF_DEPRECATED("use ZSTD_createDStream") ZBUFF_DCtx* ZBUFF_createDCtx(void);
ZBUFF_DEPRECATED("use ZSTD_freeDStream") size_t ZBUFF_freeDCtx(ZBUFF_DCtx* dctx);
ZBUFF_DEPRECATED("use ZSTD_initDStream") size_t ZBUFF_decompressInit(ZBUFF_DCtx* dctx);
ZBUFF_DEPRECATED("use ZSTD_initDStream_usingDict") size_t ZBUFF_decompressInitDictionary(ZBUFF_DCtx* dctx, const void* dict, size_t dictSize);
ZBUFF_DEPRECATED("use ZSTD_decompressStream") size_t ZBUFF_decompressContinue(ZBUFF_DCtx* dctx,
void* dst, size_t* dstCapacityPtr,
const void* src, size_t* srcSizePtr);
/*-***************************************************************************
* Streaming decompression howto
*
* A ZBUFF_DCtx object is required to track streaming operations.
* Use ZBUFF_createDCtx() and ZBUFF_freeDCtx() to create/release resources.
* Use ZBUFF_decompressInit() to start a new decompression operation,
* or ZBUFF_decompressInitDictionary() if decompression requires a dictionary.
* Note that ZBUFF_DCtx objects can be re-init multiple times.
*
* Use ZBUFF_decompressContinue() repetitively to consume your input.
* *srcSizePtr and *dstCapacityPtr can be any size.
* The function will report how many bytes were read or written by modifying *srcSizePtr and *dstCapacityPtr.
* Note that it may not consume the entire input, in which case it's up to the caller to present remaining input again.
* The content of `dst` will be overwritten (up to *dstCapacityPtr) at each function call, so save its content if it matters, or change `dst`.
* @return : 0 when a frame is completely decoded and fully flushed,
* 1 when there is still some data left within internal buffer to flush,
* >1 when more data is expected, with value being a suggested next input size (it's just a hint, which helps latency),
* or an error code, which can be tested using ZBUFF_isError().
*
* Hint : recommended buffer sizes (not compulsory) : ZBUFF_recommendedDInSize() and ZBUFF_recommendedDOutSize()
* output : ZBUFF_recommendedDOutSize== 128 KB block size is the internal unit, it ensures it's always possible to write a full block when decoded.
* input : ZBUFF_recommendedDInSize == 128KB + 3;
* just follow indications from ZBUFF_decompressContinue() to minimize latency. It should always be <= 128 KB + 3 .
* *******************************************************************************/
/* *************************************
* Tool functions
***************************************/
ZBUFF_DEPRECATED("use ZSTD_isError") unsigned ZBUFF_isError(size_t errorCode);
ZBUFF_DEPRECATED("use ZSTD_getErrorName") const char* ZBUFF_getErrorName(size_t errorCode);
/** Functions below provide recommended buffer sizes for Compression or Decompression operations.
* These sizes are just hints, they tend to offer better latency */
ZBUFF_DEPRECATED("use ZSTD_CStreamInSize") size_t ZBUFF_recommendedCInSize(void);
ZBUFF_DEPRECATED("use ZSTD_CStreamOutSize") size_t ZBUFF_recommendedCOutSize(void);
ZBUFF_DEPRECATED("use ZSTD_DStreamInSize") size_t ZBUFF_recommendedDInSize(void);
ZBUFF_DEPRECATED("use ZSTD_DStreamOutSize") size_t ZBUFF_recommendedDOutSize(void);
#endif /* ZSTD_BUFFERED_H_23987 */
#ifdef ZBUFF_STATIC_LINKING_ONLY
#ifndef ZBUFF_STATIC_H_30298098432
#define ZBUFF_STATIC_H_30298098432
/* ====================================================================================
* The definitions in this section are considered experimental.
* They should never be used in association with a dynamic library, as they may change in the future.
* They are provided for advanced usages.
* Use them only in association with static linking.
* ==================================================================================== */
/*--- Dependency ---*/
#define ZSTD_STATIC_LINKING_ONLY /* ZSTD_parameters, ZSTD_customMem */
#include "zstd.h"
/*--- Custom memory allocator ---*/
/*! ZBUFF_createCCtx_advanced() :
* Create a ZBUFF compression context using external alloc and free functions */
ZBUFF_DEPRECATED("use ZSTD_createCStream_advanced") ZBUFF_CCtx* ZBUFF_createCCtx_advanced(ZSTD_customMem customMem);
/*! ZBUFF_createDCtx_advanced() :
* Create a ZBUFF decompression context using external alloc and free functions */
ZBUFF_DEPRECATED("use ZSTD_createDStream_advanced") ZBUFF_DCtx* ZBUFF_createDCtx_advanced(ZSTD_customMem customMem);
/*--- Advanced Streaming Initialization ---*/
ZBUFF_DEPRECATED("use ZSTD_initDStream_usingDict") size_t ZBUFF_compressInit_advanced(ZBUFF_CCtx* zbc,
const void* dict, size_t dictSize,
ZSTD_parameters params, unsigned long long pledgedSrcSize);
#endif /* ZBUFF_STATIC_H_30298098432 */
#endif /* ZBUFF_STATIC_LINKING_ONLY */
#if defined (__cplusplus)
}
#endif

View File

@ -1,25 +0,0 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
*/
/*-*************************************
* Dependencies
***************************************/
#include "error_private.h"
#include "zbuff.h"
/*-****************************************
* ZBUFF Error Management (deprecated)
******************************************/
/*! ZBUFF_isError() :
* tells if a return value is an error code */
unsigned ZBUFF_isError(size_t errorCode) { return ERR_isError(errorCode); }
/*! ZBUFF_getErrorName() :
* provides error code string from function result (useful for debugging) */
const char* ZBUFF_getErrorName(size_t errorCode) { return ERR_getErrorName(errorCode); }

View File

@ -1,145 +0,0 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
*/
/* *************************************
* Dependencies
***************************************/
#define ZBUFF_STATIC_LINKING_ONLY
#include "zbuff.h"
/*-***********************************************************
* Streaming compression
*
* A ZBUFF_CCtx object is required to track streaming operation.
* Use ZBUFF_createCCtx() and ZBUFF_freeCCtx() to create/release resources.
* Use ZBUFF_compressInit() to start a new compression operation.
* ZBUFF_CCtx objects can be reused multiple times.
*
* Use ZBUFF_compressContinue() repetitively to consume your input.
* *srcSizePtr and *dstCapacityPtr can be any size.
* The function will report how many bytes were read or written by modifying *srcSizePtr and *dstCapacityPtr.
* Note that it may not consume the entire input, in which case it's up to the caller to call again the function with remaining input.
* The content of dst will be overwritten (up to *dstCapacityPtr) at each function call, so save its content if it matters or change dst .
* @return : a hint to preferred nb of bytes to use as input for next function call (it's only a hint, to improve latency)
* or an error code, which can be tested using ZBUFF_isError().
*
* ZBUFF_compressFlush() can be used to instruct ZBUFF to compress and output whatever remains within its buffer.
* Note that it will not output more than *dstCapacityPtr.
* Therefore, some content might still be left into its internal buffer if dst buffer is too small.
* @return : nb of bytes still present into internal buffer (0 if it's empty)
* or an error code, which can be tested using ZBUFF_isError().
*
* ZBUFF_compressEnd() instructs to finish a frame.
* It will perform a flush and write frame epilogue.
* Similar to ZBUFF_compressFlush(), it may not be able to output the entire internal buffer content if *dstCapacityPtr is too small.
* @return : nb of bytes still present into internal buffer (0 if it's empty)
* or an error code, which can be tested using ZBUFF_isError().
*
* Hint : recommended buffer sizes (not compulsory)
* input : ZSTD_BLOCKSIZE_MAX (128 KB), internal unit size, it improves latency to use this value.
* output : ZSTD_compressBound(ZSTD_BLOCKSIZE_MAX) + ZSTD_blockHeaderSize + ZBUFF_endFrameSize : ensures it's always possible to write/flush/end a full block at best speed.
* ***********************************************************/
ZBUFF_CCtx* ZBUFF_createCCtx(void)
{
return ZSTD_createCStream();
}
ZBUFF_CCtx* ZBUFF_createCCtx_advanced(ZSTD_customMem customMem)
{
return ZSTD_createCStream_advanced(customMem);
}
size_t ZBUFF_freeCCtx(ZBUFF_CCtx* zbc)
{
return ZSTD_freeCStream(zbc);
}
/* ====== Initialization ====== */
size_t ZBUFF_compressInit_advanced(ZBUFF_CCtx* zbc,
const void* dict, size_t dictSize,
ZSTD_parameters params, unsigned long long pledgedSrcSize)
{
return ZSTD_initCStream_advanced(zbc, dict, dictSize, params, pledgedSrcSize);
}
size_t ZBUFF_compressInitDictionary(ZBUFF_CCtx* zbc, const void* dict, size_t dictSize, int compressionLevel)
{
return ZSTD_initCStream_usingDict(zbc, dict, dictSize, compressionLevel);
}
size_t ZBUFF_compressInit(ZBUFF_CCtx* zbc, int compressionLevel)
{
return ZSTD_initCStream(zbc, compressionLevel);
}
/* ====== Compression ====== */
size_t ZBUFF_compressContinue(ZBUFF_CCtx* zbc,
void* dst, size_t* dstCapacityPtr,
const void* src, size_t* srcSizePtr)
{
size_t result;
ZSTD_outBuffer outBuff;
ZSTD_inBuffer inBuff;
outBuff.dst = dst;
outBuff.pos = 0;
outBuff.size = *dstCapacityPtr;
inBuff.src = src;
inBuff.pos = 0;
inBuff.size = *srcSizePtr;
result = ZSTD_compressStream(zbc, &outBuff, &inBuff);
*dstCapacityPtr = outBuff.pos;
*srcSizePtr = inBuff.pos;
return result;
}
/* ====== Finalize ====== */
size_t ZBUFF_compressFlush(ZBUFF_CCtx* zbc, void* dst, size_t* dstCapacityPtr)
{
size_t result;
ZSTD_outBuffer outBuff;
outBuff.dst = dst;
outBuff.pos = 0;
outBuff.size = *dstCapacityPtr;
result = ZSTD_flushStream(zbc, &outBuff);
*dstCapacityPtr = outBuff.pos;
return result;
}
size_t ZBUFF_compressEnd(ZBUFF_CCtx* zbc, void* dst, size_t* dstCapacityPtr)
{
size_t result;
ZSTD_outBuffer outBuff;
outBuff.dst = dst;
outBuff.pos = 0;
outBuff.size = *dstCapacityPtr;
result = ZSTD_endStream(zbc, &outBuff);
*dstCapacityPtr = outBuff.pos;
return result;
}
/* *************************************
* Tool functions
***************************************/
size_t ZBUFF_recommendedCInSize(void) { return ZSTD_CStreamInSize(); }
size_t ZBUFF_recommendedCOutSize(void) { return ZSTD_CStreamOutSize(); }

View File

@ -1,74 +0,0 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
*/
/* *************************************
* Dependencies
***************************************/
#define ZBUFF_STATIC_LINKING_ONLY
#include "zbuff.h"
ZBUFF_DCtx* ZBUFF_createDCtx(void)
{
return ZSTD_createDStream();
}
ZBUFF_DCtx* ZBUFF_createDCtx_advanced(ZSTD_customMem customMem)
{
return ZSTD_createDStream_advanced(customMem);
}
size_t ZBUFF_freeDCtx(ZBUFF_DCtx* zbd)
{
return ZSTD_freeDStream(zbd);
}
/* *** Initialization *** */
size_t ZBUFF_decompressInitDictionary(ZBUFF_DCtx* zbd, const void* dict, size_t dictSize)
{
return ZSTD_initDStream_usingDict(zbd, dict, dictSize);
}
size_t ZBUFF_decompressInit(ZBUFF_DCtx* zbd)
{
return ZSTD_initDStream(zbd);
}
/* *** Decompression *** */
size_t ZBUFF_decompressContinue(ZBUFF_DCtx* zbd,
void* dst, size_t* dstCapacityPtr,
const void* src, size_t* srcSizePtr)
{
ZSTD_outBuffer outBuff;
ZSTD_inBuffer inBuff;
size_t result;
outBuff.dst = dst;
outBuff.pos = 0;
outBuff.size = *dstCapacityPtr;
inBuff.src = src;
inBuff.pos = 0;
inBuff.size = *srcSizePtr;
result = ZSTD_decompressStream(zbd, &outBuff, &inBuff);
*dstCapacityPtr = outBuff.pos;
*srcSizePtr = inBuff.pos;
return result;
}
/* *************************************
* Tool functions
***************************************/
size_t ZBUFF_recommendedDInSize(void) { return ZSTD_DStreamInSize(); }
size_t ZBUFF_recommendedDOutSize(void) { return ZSTD_DStreamOutSize(); }

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,67 +0,0 @@
/*
* divsufsort.h for libdivsufsort-lite
* Copyright (c) 2003-2008 Yuta Mori All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following
* conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef _DIVSUFSORT_H
#define _DIVSUFSORT_H 1
#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */
/*- Prototypes -*/
/**
* Constructs the suffix array of a given string.
* @param T [0..n-1] The input string.
* @param SA [0..n-1] The output array of suffixes.
* @param n The length of the given string.
* @param openMP enables OpenMP optimization.
* @return 0 if no error occurred, -1 or -2 otherwise.
*/
int
divsufsort(const unsigned char *T, int *SA, int n, int openMP);
/**
* Constructs the burrows-wheeler transformed string of a given string.
* @param T [0..n-1] The input string.
* @param U [0..n-1] The output string. (can be T)
* @param A [0..n-1] The temporary array. (can be NULL)
* @param n The length of the given string.
* @param num_indexes The length of secondary indexes array. (can be NULL)
* @param indexes The secondary indexes array. (can be NULL)
* @param openMP enables OpenMP optimization.
* @return The primary index if no error occurred, -1 or -2 otherwise.
*/
int
divbwt(const unsigned char *T, unsigned char *U, int *A, int n, unsigned char * num_indexes, int * indexes, int openMP);
#ifdef __cplusplus
} /* extern "C" */
#endif /* __cplusplus */
#endif /* _DIVSUFSORT_H */

File diff suppressed because it is too large Load Diff

View File

@ -1,210 +0,0 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
*/
#ifndef DICTBUILDER_H_001
#define DICTBUILDER_H_001
#if defined (__cplusplus)
extern "C" {
#endif
/*====== Dependencies ======*/
#include <stddef.h> /* size_t */
/* ===== ZDICTLIB_API : control library symbols visibility ===== */
#ifndef ZDICTLIB_VISIBILITY
# if defined(__GNUC__) && (__GNUC__ >= 4)
# define ZDICTLIB_VISIBILITY __attribute__ ((visibility ("default")))
# else
# define ZDICTLIB_VISIBILITY
# endif
#endif
#if defined(ZSTD_DLL_EXPORT) && (ZSTD_DLL_EXPORT==1)
# define ZDICTLIB_API __declspec(dllexport) ZDICTLIB_VISIBILITY
#elif defined(ZSTD_DLL_IMPORT) && (ZSTD_DLL_IMPORT==1)
# define ZDICTLIB_API __declspec(dllimport) ZDICTLIB_VISIBILITY /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/
#else
# define ZDICTLIB_API ZDICTLIB_VISIBILITY
#endif
/*! ZDICT_trainFromBuffer():
* Train a dictionary from an array of samples.
* Uses ZDICT_optimizeTrainFromBuffer_cover() single-threaded, with d=8 and steps=4.
* Samples must be stored concatenated in a single flat buffer `samplesBuffer`,
* supplied with an array of sizes `samplesSizes`, providing the size of each sample, in order.
* The resulting dictionary will be saved into `dictBuffer`.
* @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`)
* or an error code, which can be tested with ZDICT_isError().
* Note: ZDICT_trainFromBuffer() requires about 9 bytes of memory for each input byte.
* Tips: In general, a reasonable dictionary has a size of ~ 100 KB.
* It's obviously possible to target smaller or larger ones, just by specifying different `dictBufferCapacity`.
* In general, it's recommended to provide a few thousands samples, but this can vary a lot.
* It's recommended that total size of all samples be about ~x100 times the target size of dictionary.
*/
ZDICTLIB_API size_t ZDICT_trainFromBuffer(void* dictBuffer, size_t dictBufferCapacity,
const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples);
/*====== Helper functions ======*/
ZDICTLIB_API unsigned ZDICT_getDictID(const void* dictBuffer, size_t dictSize); /**< extracts dictID; @return zero if error (not a valid dictionary) */
ZDICTLIB_API unsigned ZDICT_isError(size_t errorCode);
ZDICTLIB_API const char* ZDICT_getErrorName(size_t errorCode);
#ifdef ZDICT_STATIC_LINKING_ONLY
/* ====================================================================================
* The definitions in this section are considered experimental.
* They should never be used with a dynamic library, as they may change in the future.
* They are provided for advanced usages.
* Use them only in association with static linking.
* ==================================================================================== */
typedef struct {
int compressionLevel; /* 0 means default; target a specific zstd compression level */
unsigned notificationLevel; /* Write to stderr; 0 = none (default); 1 = errors; 2 = progression; 3 = details; 4 = debug; */
unsigned dictID; /* 0 means auto mode (32-bits random value); other : force dictID value */
} ZDICT_params_t;
/*! ZDICT_cover_params_t:
* For all values 0 means default.
* k and d are the only required parameters.
*/
typedef struct {
unsigned k; /* Segment size : constraint: 0 < k : Reasonable range [16, 2048+] */
unsigned d; /* dmer size : constraint: 0 < d <= k : Reasonable range [6, 16] */
unsigned steps; /* Number of steps : Only used for optimization : 0 means default (32) : Higher means more parameters checked */
unsigned nbThreads; /* Number of threads : constraint: 0 < nbThreads : 1 means single-threaded : Only used for optimization : Ignored if ZSTD_MULTITHREAD is not defined */
ZDICT_params_t zParams;
} ZDICT_cover_params_t;
/*! ZDICT_trainFromBuffer_cover():
* Train a dictionary from an array of samples using the COVER algorithm.
* Samples must be stored concatenated in a single flat buffer `samplesBuffer`,
* supplied with an array of sizes `samplesSizes`, providing the size of each sample, in order.
* The resulting dictionary will be saved into `dictBuffer`.
* @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`)
* or an error code, which can be tested with ZDICT_isError().
* Note: ZDICT_trainFromBuffer_cover() requires about 9 bytes of memory for each input byte.
* Tips: In general, a reasonable dictionary has a size of ~ 100 KB.
* It's obviously possible to target smaller or larger ones, just by specifying different `dictBufferCapacity`.
* In general, it's recommended to provide a few thousands samples, but this can vary a lot.
* It's recommended that total size of all samples be about ~x100 times the target size of dictionary.
*/
ZDICTLIB_API size_t ZDICT_trainFromBuffer_cover(
void *dictBuffer, size_t dictBufferCapacity, const void *samplesBuffer,
const size_t *samplesSizes, unsigned nbSamples,
ZDICT_cover_params_t parameters);
/*! ZDICT_optimizeTrainFromBuffer_cover():
* The same requirements as above hold for all the parameters except `parameters`.
* This function tries many parameter combinations and picks the best parameters.
* `*parameters` is filled with the best parameters found, and the dictionary
* constructed with those parameters is stored in `dictBuffer`.
*
* All of the parameters d, k, steps are optional.
* If d is non-zero then we don't check multiple values of d, otherwise we check d = {6, 8, 10, 12, 14, 16}.
* if steps is zero it defaults to its default value.
* If k is non-zero then we don't check multiple values of k, otherwise we check steps values in [16, 2048].
*
* @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`)
* or an error code, which can be tested with ZDICT_isError().
* On success `*parameters` contains the parameters selected.
* Note: ZDICT_optimizeTrainFromBuffer_cover() requires about 8 bytes of memory for each input byte and additionally another 5 bytes of memory for each byte of memory for each thread.
*/
ZDICTLIB_API size_t ZDICT_optimizeTrainFromBuffer_cover(
void *dictBuffer, size_t dictBufferCapacity, const void *samplesBuffer,
const size_t *samplesSizes, unsigned nbSamples,
ZDICT_cover_params_t *parameters);
/*! ZDICT_finalizeDictionary():
* Given a custom content as a basis for dictionary, and a set of samples,
* finalize dictionary by adding headers and statistics.
*
* Samples must be stored concatenated in a flat buffer `samplesBuffer`,
* supplied with an array of sizes `samplesSizes`, providing the size of each sample in order.
*
* dictContentSize must be >= ZDICT_CONTENTSIZE_MIN bytes.
* maxDictSize must be >= dictContentSize, and must be >= ZDICT_DICTSIZE_MIN bytes.
*
* @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`),
* or an error code, which can be tested by ZDICT_isError().
* Note: ZDICT_finalizeDictionary() will push notifications into stderr if instructed to, using notificationLevel>0.
* Note 2: dictBuffer and dictContent can overlap
*/
#define ZDICT_CONTENTSIZE_MIN 128
#define ZDICT_DICTSIZE_MIN 256
ZDICTLIB_API size_t ZDICT_finalizeDictionary(void* dictBuffer, size_t dictBufferCapacity,
const void* dictContent, size_t dictContentSize,
const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
ZDICT_params_t parameters);
typedef struct {
unsigned selectivityLevel; /* 0 means default; larger => select more => larger dictionary */
ZDICT_params_t zParams;
} ZDICT_legacy_params_t;
/*! ZDICT_trainFromBuffer_legacy():
* Train a dictionary from an array of samples.
* Samples must be stored concatenated in a single flat buffer `samplesBuffer`,
* supplied with an array of sizes `samplesSizes`, providing the size of each sample, in order.
* The resulting dictionary will be saved into `dictBuffer`.
* `parameters` is optional and can be provided with values set to 0 to mean "default".
* @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`)
* or an error code, which can be tested with ZDICT_isError().
* Tips: In general, a reasonable dictionary has a size of ~ 100 KB.
* It's obviously possible to target smaller or larger ones, just by specifying different `dictBufferCapacity`.
* In general, it's recommended to provide a few thousands samples, but this can vary a lot.
* It's recommended that total size of all samples be about ~x100 times the target size of dictionary.
* Note: ZDICT_trainFromBuffer_legacy() will send notifications into stderr if instructed to, using notificationLevel>0.
*/
ZDICTLIB_API size_t ZDICT_trainFromBuffer_legacy(
void *dictBuffer, size_t dictBufferCapacity, const void *samplesBuffer,
const size_t *samplesSizes, unsigned nbSamples, ZDICT_legacy_params_t parameters);
/* Deprecation warnings */
/* It is generally possible to disable deprecation warnings from compiler,
for example with -Wno-deprecated-declarations for gcc
or _CRT_SECURE_NO_WARNINGS in Visual.
Otherwise, it's also possible to manually define ZDICT_DISABLE_DEPRECATE_WARNINGS */
#ifdef ZDICT_DISABLE_DEPRECATE_WARNINGS
# define ZDICT_DEPRECATED(message) ZDICTLIB_API /* disable deprecation warnings */
#else
# define ZDICT_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
# if defined (__cplusplus) && (__cplusplus >= 201402) /* C++14 or greater */
# define ZDICT_DEPRECATED(message) [[deprecated(message)]] ZDICTLIB_API
# elif (ZDICT_GCC_VERSION >= 405) || defined(__clang__)
# define ZDICT_DEPRECATED(message) ZDICTLIB_API __attribute__((deprecated(message)))
# elif (ZDICT_GCC_VERSION >= 301)
# define ZDICT_DEPRECATED(message) ZDICTLIB_API __attribute__((deprecated))
# elif defined(_MSC_VER)
# define ZDICT_DEPRECATED(message) ZDICTLIB_API __declspec(deprecated(message))
# else
# pragma message("WARNING: You need to implement ZDICT_DEPRECATED for this compiler")
# define ZDICT_DEPRECATED(message) ZDICTLIB_API
# endif
#endif /* ZDICT_DISABLE_DEPRECATE_WARNINGS */
ZDICT_DEPRECATED("use ZDICT_finalizeDictionary() instead")
size_t ZDICT_addEntropyTablesFromBuffer(void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity,
const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples);
#endif /* ZDICT_STATIC_LINKING_ONLY */
#if defined (__cplusplus)
}
#endif
#endif /* DICTBUILDER_H_001 */

View File

@ -1,378 +0,0 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
*/
#ifndef ZSTD_LEGACY_H
#define ZSTD_LEGACY_H
#if defined (__cplusplus)
extern "C" {
#endif
/* *************************************
* Includes
***************************************/
#include "mem.h" /* MEM_STATIC */
#include "error_private.h" /* ERROR */
#include "zstd.h" /* ZSTD_inBuffer, ZSTD_outBuffer */
#if !defined (ZSTD_LEGACY_SUPPORT) || (ZSTD_LEGACY_SUPPORT == 0)
# undef ZSTD_LEGACY_SUPPORT
# define ZSTD_LEGACY_SUPPORT 8
#endif
#if (ZSTD_LEGACY_SUPPORT <= 1)
# include "zstd_v01.h"
#endif
#if (ZSTD_LEGACY_SUPPORT <= 2)
# include "zstd_v02.h"
#endif
#if (ZSTD_LEGACY_SUPPORT <= 3)
# include "zstd_v03.h"
#endif
#if (ZSTD_LEGACY_SUPPORT <= 4)
# include "zstd_v04.h"
#endif
#if (ZSTD_LEGACY_SUPPORT <= 5)
# include "zstd_v05.h"
#endif
#if (ZSTD_LEGACY_SUPPORT <= 6)
# include "zstd_v06.h"
#endif
#if (ZSTD_LEGACY_SUPPORT <= 7)
# include "zstd_v07.h"
#endif
/** ZSTD_isLegacy() :
@return : > 0 if supported by legacy decoder. 0 otherwise.
return value is the version.
*/
MEM_STATIC unsigned ZSTD_isLegacy(const void* src, size_t srcSize)
{
U32 magicNumberLE;
if (srcSize<4) return 0;
magicNumberLE = MEM_readLE32(src);
switch(magicNumberLE)
{
#if (ZSTD_LEGACY_SUPPORT <= 1)
case ZSTDv01_magicNumberLE:return 1;
#endif
#if (ZSTD_LEGACY_SUPPORT <= 2)
case ZSTDv02_magicNumber : return 2;
#endif
#if (ZSTD_LEGACY_SUPPORT <= 3)
case ZSTDv03_magicNumber : return 3;
#endif
#if (ZSTD_LEGACY_SUPPORT <= 4)
case ZSTDv04_magicNumber : return 4;
#endif
#if (ZSTD_LEGACY_SUPPORT <= 5)
case ZSTDv05_MAGICNUMBER : return 5;
#endif
#if (ZSTD_LEGACY_SUPPORT <= 6)
case ZSTDv06_MAGICNUMBER : return 6;
#endif
#if (ZSTD_LEGACY_SUPPORT <= 7)
case ZSTDv07_MAGICNUMBER : return 7;
#endif
default : return 0;
}
}
MEM_STATIC unsigned long long ZSTD_getDecompressedSize_legacy(const void* src, size_t srcSize)
{
U32 const version = ZSTD_isLegacy(src, srcSize);
if (version < 5) return 0; /* no decompressed size in frame header, or not a legacy format */
#if (ZSTD_LEGACY_SUPPORT <= 5)
if (version==5) {
ZSTDv05_parameters fParams;
size_t const frResult = ZSTDv05_getFrameParams(&fParams, src, srcSize);
if (frResult != 0) return 0;
return fParams.srcSize;
}
#endif
#if (ZSTD_LEGACY_SUPPORT <= 6)
if (version==6) {
ZSTDv06_frameParams fParams;
size_t const frResult = ZSTDv06_getFrameParams(&fParams, src, srcSize);
if (frResult != 0) return 0;
return fParams.frameContentSize;
}
#endif
#if (ZSTD_LEGACY_SUPPORT <= 7)
if (version==7) {
ZSTDv07_frameParams fParams;
size_t const frResult = ZSTDv07_getFrameParams(&fParams, src, srcSize);
if (frResult != 0) return 0;
return fParams.frameContentSize;
}
#endif
return 0; /* should not be possible */
}
MEM_STATIC size_t ZSTD_decompressLegacy(
void* dst, size_t dstCapacity,
const void* src, size_t compressedSize,
const void* dict,size_t dictSize)
{
U32 const version = ZSTD_isLegacy(src, compressedSize);
(void)dst; (void)dstCapacity; (void)dict; (void)dictSize; /* unused when ZSTD_LEGACY_SUPPORT >= 8 */
switch(version)
{
#if (ZSTD_LEGACY_SUPPORT <= 1)
case 1 :
return ZSTDv01_decompress(dst, dstCapacity, src, compressedSize);
#endif
#if (ZSTD_LEGACY_SUPPORT <= 2)
case 2 :
return ZSTDv02_decompress(dst, dstCapacity, src, compressedSize);
#endif
#if (ZSTD_LEGACY_SUPPORT <= 3)
case 3 :
return ZSTDv03_decompress(dst, dstCapacity, src, compressedSize);
#endif
#if (ZSTD_LEGACY_SUPPORT <= 4)
case 4 :
return ZSTDv04_decompress(dst, dstCapacity, src, compressedSize);
#endif
#if (ZSTD_LEGACY_SUPPORT <= 5)
case 5 :
{ size_t result;
ZSTDv05_DCtx* const zd = ZSTDv05_createDCtx();
if (zd==NULL) return ERROR(memory_allocation);
result = ZSTDv05_decompress_usingDict(zd, dst, dstCapacity, src, compressedSize, dict, dictSize);
ZSTDv05_freeDCtx(zd);
return result;
}
#endif
#if (ZSTD_LEGACY_SUPPORT <= 6)
case 6 :
{ size_t result;
ZSTDv06_DCtx* const zd = ZSTDv06_createDCtx();
if (zd==NULL) return ERROR(memory_allocation);
result = ZSTDv06_decompress_usingDict(zd, dst, dstCapacity, src, compressedSize, dict, dictSize);
ZSTDv06_freeDCtx(zd);
return result;
}
#endif
#if (ZSTD_LEGACY_SUPPORT <= 7)
case 7 :
{ size_t result;
ZSTDv07_DCtx* const zd = ZSTDv07_createDCtx();
if (zd==NULL) return ERROR(memory_allocation);
result = ZSTDv07_decompress_usingDict(zd, dst, dstCapacity, src, compressedSize, dict, dictSize);
ZSTDv07_freeDCtx(zd);
return result;
}
#endif
default :
return ERROR(prefix_unknown);
}
}
MEM_STATIC size_t ZSTD_findFrameCompressedSizeLegacy(const void *src,
size_t compressedSize)
{
U32 const version = ZSTD_isLegacy(src, compressedSize);
switch(version)
{
#if (ZSTD_LEGACY_SUPPORT <= 1)
case 1 :
return ZSTDv01_findFrameCompressedSize(src, compressedSize);
#endif
#if (ZSTD_LEGACY_SUPPORT <= 2)
case 2 :
return ZSTDv02_findFrameCompressedSize(src, compressedSize);
#endif
#if (ZSTD_LEGACY_SUPPORT <= 3)
case 3 :
return ZSTDv03_findFrameCompressedSize(src, compressedSize);
#endif
#if (ZSTD_LEGACY_SUPPORT <= 4)
case 4 :
return ZSTDv04_findFrameCompressedSize(src, compressedSize);
#endif
#if (ZSTD_LEGACY_SUPPORT <= 5)
case 5 :
return ZSTDv05_findFrameCompressedSize(src, compressedSize);
#endif
#if (ZSTD_LEGACY_SUPPORT <= 6)
case 6 :
return ZSTDv06_findFrameCompressedSize(src, compressedSize);
#endif
#if (ZSTD_LEGACY_SUPPORT <= 7)
case 7 :
return ZSTDv07_findFrameCompressedSize(src, compressedSize);
#endif
default :
return ERROR(prefix_unknown);
}
}
MEM_STATIC size_t ZSTD_freeLegacyStreamContext(void* legacyContext, U32 version)
{
switch(version)
{
default :
case 1 :
case 2 :
case 3 :
(void)legacyContext;
return ERROR(version_unsupported);
#if (ZSTD_LEGACY_SUPPORT <= 4)
case 4 : return ZBUFFv04_freeDCtx((ZBUFFv04_DCtx*)legacyContext);
#endif
#if (ZSTD_LEGACY_SUPPORT <= 5)
case 5 : return ZBUFFv05_freeDCtx((ZBUFFv05_DCtx*)legacyContext);
#endif
#if (ZSTD_LEGACY_SUPPORT <= 6)
case 6 : return ZBUFFv06_freeDCtx((ZBUFFv06_DCtx*)legacyContext);
#endif
#if (ZSTD_LEGACY_SUPPORT <= 7)
case 7 : return ZBUFFv07_freeDCtx((ZBUFFv07_DCtx*)legacyContext);
#endif
}
}
MEM_STATIC size_t ZSTD_initLegacyStream(void** legacyContext, U32 prevVersion, U32 newVersion,
const void* dict, size_t dictSize)
{
if (prevVersion != newVersion) ZSTD_freeLegacyStreamContext(*legacyContext, prevVersion);
switch(newVersion)
{
default :
case 1 :
case 2 :
case 3 :
(void)dict; (void)dictSize;
return 0;
#if (ZSTD_LEGACY_SUPPORT <= 4)
case 4 :
{
ZBUFFv04_DCtx* dctx = (prevVersion != newVersion) ? ZBUFFv04_createDCtx() : (ZBUFFv04_DCtx*)*legacyContext;
if (dctx==NULL) return ERROR(memory_allocation);
ZBUFFv04_decompressInit(dctx);
ZBUFFv04_decompressWithDictionary(dctx, dict, dictSize);
*legacyContext = dctx;
return 0;
}
#endif
#if (ZSTD_LEGACY_SUPPORT <= 5)
case 5 :
{
ZBUFFv05_DCtx* dctx = (prevVersion != newVersion) ? ZBUFFv05_createDCtx() : (ZBUFFv05_DCtx*)*legacyContext;
if (dctx==NULL) return ERROR(memory_allocation);
ZBUFFv05_decompressInitDictionary(dctx, dict, dictSize);
*legacyContext = dctx;
return 0;
}
#endif
#if (ZSTD_LEGACY_SUPPORT <= 6)
case 6 :
{
ZBUFFv06_DCtx* dctx = (prevVersion != newVersion) ? ZBUFFv06_createDCtx() : (ZBUFFv06_DCtx*)*legacyContext;
if (dctx==NULL) return ERROR(memory_allocation);
ZBUFFv06_decompressInitDictionary(dctx, dict, dictSize);
*legacyContext = dctx;
return 0;
}
#endif
#if (ZSTD_LEGACY_SUPPORT <= 7)
case 7 :
{
ZBUFFv07_DCtx* dctx = (prevVersion != newVersion) ? ZBUFFv07_createDCtx() : (ZBUFFv07_DCtx*)*legacyContext;
if (dctx==NULL) return ERROR(memory_allocation);
ZBUFFv07_decompressInitDictionary(dctx, dict, dictSize);
*legacyContext = dctx;
return 0;
}
#endif
}
}
MEM_STATIC size_t ZSTD_decompressLegacyStream(void* legacyContext, U32 version,
ZSTD_outBuffer* output, ZSTD_inBuffer* input)
{
switch(version)
{
default :
case 1 :
case 2 :
case 3 :
(void)legacyContext; (void)output; (void)input;
return ERROR(version_unsupported);
#if (ZSTD_LEGACY_SUPPORT <= 4)
case 4 :
{
ZBUFFv04_DCtx* dctx = (ZBUFFv04_DCtx*) legacyContext;
const void* src = (const char*)input->src + input->pos;
size_t readSize = input->size - input->pos;
void* dst = (char*)output->dst + output->pos;
size_t decodedSize = output->size - output->pos;
size_t const hintSize = ZBUFFv04_decompressContinue(dctx, dst, &decodedSize, src, &readSize);
output->pos += decodedSize;
input->pos += readSize;
return hintSize;
}
#endif
#if (ZSTD_LEGACY_SUPPORT <= 5)
case 5 :
{
ZBUFFv05_DCtx* dctx = (ZBUFFv05_DCtx*) legacyContext;
const void* src = (const char*)input->src + input->pos;
size_t readSize = input->size - input->pos;
void* dst = (char*)output->dst + output->pos;
size_t decodedSize = output->size - output->pos;
size_t const hintSize = ZBUFFv05_decompressContinue(dctx, dst, &decodedSize, src, &readSize);
output->pos += decodedSize;
input->pos += readSize;
return hintSize;
}
#endif
#if (ZSTD_LEGACY_SUPPORT <= 6)
case 6 :
{
ZBUFFv06_DCtx* dctx = (ZBUFFv06_DCtx*) legacyContext;
const void* src = (const char*)input->src + input->pos;
size_t readSize = input->size - input->pos;
void* dst = (char*)output->dst + output->pos;
size_t decodedSize = output->size - output->pos;
size_t const hintSize = ZBUFFv06_decompressContinue(dctx, dst, &decodedSize, src, &readSize);
output->pos += decodedSize;
input->pos += readSize;
return hintSize;
}
#endif
#if (ZSTD_LEGACY_SUPPORT <= 7)
case 7 :
{
ZBUFFv07_DCtx* dctx = (ZBUFFv07_DCtx*) legacyContext;
const void* src = (const char*)input->src + input->pos;
size_t readSize = input->size - input->pos;
void* dst = (char*)output->dst + output->pos;
size_t decodedSize = output->size - output->pos;
size_t const hintSize = ZBUFFv07_decompressContinue(dctx, dst, &decodedSize, src, &readSize);
output->pos += decodedSize;
input->pos += readSize;
return hintSize;
}
#endif
}
}
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_LEGACY_H */

File diff suppressed because it is too large Load Diff

View File

@ -1,88 +0,0 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
*/
#ifndef ZSTD_V01_H_28739879432
#define ZSTD_V01_H_28739879432
#if defined (__cplusplus)
extern "C" {
#endif
/* *************************************
* Includes
***************************************/
#include <stddef.h> /* size_t */
/* *************************************
* Simple one-step function
***************************************/
/**
ZSTDv01_decompress() : decompress ZSTD frames compliant with v0.1.x format
compressedSize : is the exact source size
maxOriginalSize : is the size of the 'dst' buffer, which must be already allocated.
It must be equal or larger than originalSize, otherwise decompression will fail.
return : the number of bytes decompressed into destination buffer (originalSize)
or an errorCode if it fails (which can be tested using ZSTDv01_isError())
*/
size_t ZSTDv01_decompress( void* dst, size_t maxOriginalSize,
const void* src, size_t compressedSize);
/**
ZSTDv01_getFrameSrcSize() : get the source length of a ZSTD frame compliant with v0.1.x format
compressedSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src'
return : the number of bytes that would be read to decompress this frame
or an errorCode if it fails (which can be tested using ZSTDv01_isError())
*/
size_t ZSTDv01_findFrameCompressedSize(const void* src, size_t compressedSize);
/**
ZSTDv01_isError() : tells if the result of ZSTDv01_decompress() is an error
*/
unsigned ZSTDv01_isError(size_t code);
/* *************************************
* Advanced functions
***************************************/
typedef struct ZSTDv01_Dctx_s ZSTDv01_Dctx;
ZSTDv01_Dctx* ZSTDv01_createDCtx(void);
size_t ZSTDv01_freeDCtx(ZSTDv01_Dctx* dctx);
size_t ZSTDv01_decompressDCtx(void* ctx,
void* dst, size_t maxOriginalSize,
const void* src, size_t compressedSize);
/* *************************************
* Streaming functions
***************************************/
size_t ZSTDv01_resetDCtx(ZSTDv01_Dctx* dctx);
size_t ZSTDv01_nextSrcSizeToDecompress(ZSTDv01_Dctx* dctx);
size_t ZSTDv01_decompressContinue(ZSTDv01_Dctx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize);
/**
Use above functions alternatively.
ZSTD_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTD_decompressContinue().
ZSTD_decompressContinue() will use previous data blocks to improve compression if they are located prior to current block.
Result is the number of bytes regenerated within 'dst'.
It can be zero, which is not an error; it just means ZSTD_decompressContinue() has decoded some header.
*/
/* *************************************
* Prefix - version detection
***************************************/
#define ZSTDv01_magicNumber 0xFD2FB51E /* Big Endian version */
#define ZSTDv01_magicNumberLE 0x1EB52FFD /* Little Endian version */
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_V01_H_28739879432 */

File diff suppressed because it is too large Load Diff

View File

@ -1,87 +0,0 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
*/
#ifndef ZSTD_V02_H_4174539423
#define ZSTD_V02_H_4174539423
#if defined (__cplusplus)
extern "C" {
#endif
/* *************************************
* Includes
***************************************/
#include <stddef.h> /* size_t */
/* *************************************
* Simple one-step function
***************************************/
/**
ZSTDv02_decompress() : decompress ZSTD frames compliant with v0.2.x format
compressedSize : is the exact source size
maxOriginalSize : is the size of the 'dst' buffer, which must be already allocated.
It must be equal or larger than originalSize, otherwise decompression will fail.
return : the number of bytes decompressed into destination buffer (originalSize)
or an errorCode if it fails (which can be tested using ZSTDv01_isError())
*/
size_t ZSTDv02_decompress( void* dst, size_t maxOriginalSize,
const void* src, size_t compressedSize);
/**
ZSTDv02_getFrameSrcSize() : get the source length of a ZSTD frame compliant with v0.2.x format
compressedSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src'
return : the number of bytes that would be read to decompress this frame
or an errorCode if it fails (which can be tested using ZSTDv02_isError())
*/
size_t ZSTDv02_findFrameCompressedSize(const void* src, size_t compressedSize);
/**
ZSTDv02_isError() : tells if the result of ZSTDv02_decompress() is an error
*/
unsigned ZSTDv02_isError(size_t code);
/* *************************************
* Advanced functions
***************************************/
typedef struct ZSTDv02_Dctx_s ZSTDv02_Dctx;
ZSTDv02_Dctx* ZSTDv02_createDCtx(void);
size_t ZSTDv02_freeDCtx(ZSTDv02_Dctx* dctx);
size_t ZSTDv02_decompressDCtx(void* ctx,
void* dst, size_t maxOriginalSize,
const void* src, size_t compressedSize);
/* *************************************
* Streaming functions
***************************************/
size_t ZSTDv02_resetDCtx(ZSTDv02_Dctx* dctx);
size_t ZSTDv02_nextSrcSizeToDecompress(ZSTDv02_Dctx* dctx);
size_t ZSTDv02_decompressContinue(ZSTDv02_Dctx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize);
/**
Use above functions alternatively.
ZSTD_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTD_decompressContinue().
ZSTD_decompressContinue() will use previous data blocks to improve compression if they are located prior to current block.
Result is the number of bytes regenerated within 'dst'.
It can be zero, which is not an error; it just means ZSTD_decompressContinue() has decoded some header.
*/
/* *************************************
* Prefix - version detection
***************************************/
#define ZSTDv02_magicNumber 0xFD2FB522 /* v0.2 */
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_V02_H_4174539423 */

File diff suppressed because it is too large Load Diff

View File

@ -1,87 +0,0 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
*/
#ifndef ZSTD_V03_H_298734209782
#define ZSTD_V03_H_298734209782
#if defined (__cplusplus)
extern "C" {
#endif
/* *************************************
* Includes
***************************************/
#include <stddef.h> /* size_t */
/* *************************************
* Simple one-step function
***************************************/
/**
ZSTDv03_decompress() : decompress ZSTD frames compliant with v0.3.x format
compressedSize : is the exact source size
maxOriginalSize : is the size of the 'dst' buffer, which must be already allocated.
It must be equal or larger than originalSize, otherwise decompression will fail.
return : the number of bytes decompressed into destination buffer (originalSize)
or an errorCode if it fails (which can be tested using ZSTDv01_isError())
*/
size_t ZSTDv03_decompress( void* dst, size_t maxOriginalSize,
const void* src, size_t compressedSize);
/**
ZSTDv03_getFrameSrcSize() : get the source length of a ZSTD frame compliant with v0.3.x format
compressedSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src'
return : the number of bytes that would be read to decompress this frame
or an errorCode if it fails (which can be tested using ZSTDv03_isError())
*/
size_t ZSTDv03_findFrameCompressedSize(const void* src, size_t compressedSize);
/**
ZSTDv03_isError() : tells if the result of ZSTDv03_decompress() is an error
*/
unsigned ZSTDv03_isError(size_t code);
/* *************************************
* Advanced functions
***************************************/
typedef struct ZSTDv03_Dctx_s ZSTDv03_Dctx;
ZSTDv03_Dctx* ZSTDv03_createDCtx(void);
size_t ZSTDv03_freeDCtx(ZSTDv03_Dctx* dctx);
size_t ZSTDv03_decompressDCtx(void* ctx,
void* dst, size_t maxOriginalSize,
const void* src, size_t compressedSize);
/* *************************************
* Streaming functions
***************************************/
size_t ZSTDv03_resetDCtx(ZSTDv03_Dctx* dctx);
size_t ZSTDv03_nextSrcSizeToDecompress(ZSTDv03_Dctx* dctx);
size_t ZSTDv03_decompressContinue(ZSTDv03_Dctx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize);
/**
Use above functions alternatively.
ZSTD_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTD_decompressContinue().
ZSTD_decompressContinue() will use previous data blocks to improve compression if they are located prior to current block.
Result is the number of bytes regenerated within 'dst'.
It can be zero, which is not an error; it just means ZSTD_decompressContinue() has decoded some header.
*/
/* *************************************
* Prefix - version detection
***************************************/
#define ZSTDv03_magicNumber 0xFD2FB523 /* v0.3 */
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_V03_H_298734209782 */

File diff suppressed because it is too large Load Diff

View File

@ -1,136 +0,0 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
*/
#ifndef ZSTD_V04_H_91868324769238
#define ZSTD_V04_H_91868324769238
#if defined (__cplusplus)
extern "C" {
#endif
/* *************************************
* Includes
***************************************/
#include <stddef.h> /* size_t */
/* *************************************
* Simple one-step function
***************************************/
/**
ZSTDv04_decompress() : decompress ZSTD frames compliant with v0.4.x format
compressedSize : is the exact source size
maxOriginalSize : is the size of the 'dst' buffer, which must be already allocated.
It must be equal or larger than originalSize, otherwise decompression will fail.
return : the number of bytes decompressed into destination buffer (originalSize)
or an errorCode if it fails (which can be tested using ZSTDv01_isError())
*/
size_t ZSTDv04_decompress( void* dst, size_t maxOriginalSize,
const void* src, size_t compressedSize);
/**
ZSTDv04_getFrameSrcSize() : get the source length of a ZSTD frame compliant with v0.4.x format
compressedSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src'
return : the number of bytes that would be read to decompress this frame
or an errorCode if it fails (which can be tested using ZSTDv04_isError())
*/
size_t ZSTDv04_findFrameCompressedSize(const void* src, size_t compressedSize);
/**
ZSTDv04_isError() : tells if the result of ZSTDv04_decompress() is an error
*/
unsigned ZSTDv04_isError(size_t code);
/* *************************************
* Advanced functions
***************************************/
typedef struct ZSTDv04_Dctx_s ZSTDv04_Dctx;
ZSTDv04_Dctx* ZSTDv04_createDCtx(void);
size_t ZSTDv04_freeDCtx(ZSTDv04_Dctx* dctx);
size_t ZSTDv04_decompressDCtx(ZSTDv04_Dctx* dctx,
void* dst, size_t maxOriginalSize,
const void* src, size_t compressedSize);
/* *************************************
* Direct Streaming
***************************************/
size_t ZSTDv04_resetDCtx(ZSTDv04_Dctx* dctx);
size_t ZSTDv04_nextSrcSizeToDecompress(ZSTDv04_Dctx* dctx);
size_t ZSTDv04_decompressContinue(ZSTDv04_Dctx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize);
/**
Use above functions alternatively.
ZSTD_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTD_decompressContinue().
ZSTD_decompressContinue() will use previous data blocks to improve compression if they are located prior to current block.
Result is the number of bytes regenerated within 'dst'.
It can be zero, which is not an error; it just means ZSTD_decompressContinue() has decoded some header.
*/
/* *************************************
* Buffered Streaming
***************************************/
typedef struct ZBUFFv04_DCtx_s ZBUFFv04_DCtx;
ZBUFFv04_DCtx* ZBUFFv04_createDCtx(void);
size_t ZBUFFv04_freeDCtx(ZBUFFv04_DCtx* dctx);
size_t ZBUFFv04_decompressInit(ZBUFFv04_DCtx* dctx);
size_t ZBUFFv04_decompressWithDictionary(ZBUFFv04_DCtx* dctx, const void* dict, size_t dictSize);
size_t ZBUFFv04_decompressContinue(ZBUFFv04_DCtx* dctx, void* dst, size_t* maxDstSizePtr, const void* src, size_t* srcSizePtr);
/** ************************************************
* Streaming decompression
*
* A ZBUFF_DCtx object is required to track streaming operation.
* Use ZBUFF_createDCtx() and ZBUFF_freeDCtx() to create/release resources.
* Use ZBUFF_decompressInit() to start a new decompression operation.
* ZBUFF_DCtx objects can be reused multiple times.
*
* Optionally, a reference to a static dictionary can be set, using ZBUFF_decompressWithDictionary()
* It must be the same content as the one set during compression phase.
* Dictionary content must remain accessible during the decompression process.
*
* Use ZBUFF_decompressContinue() repetitively to consume your input.
* *srcSizePtr and *maxDstSizePtr can be any size.
* The function will report how many bytes were read or written by modifying *srcSizePtr and *maxDstSizePtr.
* Note that it may not consume the entire input, in which case it's up to the caller to present remaining input again.
* The content of dst will be overwritten (up to *maxDstSizePtr) at each function call, so save its content if it matters or change dst.
* @return : a hint to preferred nb of bytes to use as input for next function call (it's only a hint, to improve latency)
* or 0 when a frame is completely decoded
* or an error code, which can be tested using ZBUFF_isError().
*
* Hint : recommended buffer sizes (not compulsory) : ZBUFF_recommendedDInSize / ZBUFF_recommendedDOutSize
* output : ZBUFF_recommendedDOutSize==128 KB block size is the internal unit, it ensures it's always possible to write a full block when it's decoded.
* input : ZBUFF_recommendedDInSize==128Kb+3; just follow indications from ZBUFF_decompressContinue() to minimize latency. It should always be <= 128 KB + 3 .
* **************************************************/
unsigned ZBUFFv04_isError(size_t errorCode);
const char* ZBUFFv04_getErrorName(size_t errorCode);
/** The below functions provide recommended buffer sizes for Compression or Decompression operations.
* These sizes are not compulsory, they just tend to offer better latency */
size_t ZBUFFv04_recommendedDInSize(void);
size_t ZBUFFv04_recommendedDOutSize(void);
/* *************************************
* Prefix - version detection
***************************************/
#define ZSTDv04_magicNumber 0xFD2FB524 /* v0.4 */
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_V04_H_91868324769238 */

File diff suppressed because it is too large Load Diff

View File

@ -1,156 +0,0 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
*/
#ifndef ZSTDv05_H
#define ZSTDv05_H
#if defined (__cplusplus)
extern "C" {
#endif
/*-*************************************
* Dependencies
***************************************/
#include <stddef.h> /* size_t */
#include "mem.h" /* U64, U32 */
/* *************************************
* Simple functions
***************************************/
/*! ZSTDv05_decompress() :
`compressedSize` : is the _exact_ size of the compressed blob, otherwise decompression will fail.
`dstCapacity` must be large enough, equal or larger than originalSize.
@return : the number of bytes decompressed into `dst` (<= `dstCapacity`),
or an errorCode if it fails (which can be tested using ZSTDv05_isError()) */
size_t ZSTDv05_decompress( void* dst, size_t dstCapacity,
const void* src, size_t compressedSize);
/**
ZSTDv05_getFrameSrcSize() : get the source length of a ZSTD frame
compressedSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src'
return : the number of bytes that would be read to decompress this frame
or an errorCode if it fails (which can be tested using ZSTDv05_isError())
*/
size_t ZSTDv05_findFrameCompressedSize(const void* src, size_t compressedSize);
/* *************************************
* Helper functions
***************************************/
/* Error Management */
unsigned ZSTDv05_isError(size_t code); /*!< tells if a `size_t` function result is an error code */
const char* ZSTDv05_getErrorName(size_t code); /*!< provides readable string for an error code */
/* *************************************
* Explicit memory management
***************************************/
/** Decompression context */
typedef struct ZSTDv05_DCtx_s ZSTDv05_DCtx;
ZSTDv05_DCtx* ZSTDv05_createDCtx(void);
size_t ZSTDv05_freeDCtx(ZSTDv05_DCtx* dctx); /*!< @return : errorCode */
/** ZSTDv05_decompressDCtx() :
* Same as ZSTDv05_decompress(), but requires an already allocated ZSTDv05_DCtx (see ZSTDv05_createDCtx()) */
size_t ZSTDv05_decompressDCtx(ZSTDv05_DCtx* ctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
/*-***********************
* Simple Dictionary API
*************************/
/*! ZSTDv05_decompress_usingDict() :
* Decompression using a pre-defined Dictionary content (see dictBuilder).
* Dictionary must be identical to the one used during compression, otherwise regenerated data will be corrupted.
* Note : dict can be NULL, in which case, it's equivalent to ZSTDv05_decompressDCtx() */
size_t ZSTDv05_decompress_usingDict(ZSTDv05_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict,size_t dictSize);
/*-************************
* Advanced Streaming API
***************************/
typedef enum { ZSTDv05_fast, ZSTDv05_greedy, ZSTDv05_lazy, ZSTDv05_lazy2, ZSTDv05_btlazy2, ZSTDv05_opt, ZSTDv05_btopt } ZSTDv05_strategy;
typedef struct {
U64 srcSize;
U32 windowLog; /* the only useful information to retrieve */
U32 contentLog; U32 hashLog; U32 searchLog; U32 searchLength; U32 targetLength; ZSTDv05_strategy strategy;
} ZSTDv05_parameters;
size_t ZSTDv05_getFrameParams(ZSTDv05_parameters* params, const void* src, size_t srcSize);
size_t ZSTDv05_decompressBegin_usingDict(ZSTDv05_DCtx* dctx, const void* dict, size_t dictSize);
void ZSTDv05_copyDCtx(ZSTDv05_DCtx* dstDCtx, const ZSTDv05_DCtx* srcDCtx);
size_t ZSTDv05_nextSrcSizeToDecompress(ZSTDv05_DCtx* dctx);
size_t ZSTDv05_decompressContinue(ZSTDv05_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
/*-***********************
* ZBUFF API
*************************/
typedef struct ZBUFFv05_DCtx_s ZBUFFv05_DCtx;
ZBUFFv05_DCtx* ZBUFFv05_createDCtx(void);
size_t ZBUFFv05_freeDCtx(ZBUFFv05_DCtx* dctx);
size_t ZBUFFv05_decompressInit(ZBUFFv05_DCtx* dctx);
size_t ZBUFFv05_decompressInitDictionary(ZBUFFv05_DCtx* dctx, const void* dict, size_t dictSize);
size_t ZBUFFv05_decompressContinue(ZBUFFv05_DCtx* dctx,
void* dst, size_t* dstCapacityPtr,
const void* src, size_t* srcSizePtr);
/*-***************************************************************************
* Streaming decompression
*
* A ZBUFFv05_DCtx object is required to track streaming operations.
* Use ZBUFFv05_createDCtx() and ZBUFFv05_freeDCtx() to create/release resources.
* Use ZBUFFv05_decompressInit() to start a new decompression operation,
* or ZBUFFv05_decompressInitDictionary() if decompression requires a dictionary.
* Note that ZBUFFv05_DCtx objects can be reused multiple times.
*
* Use ZBUFFv05_decompressContinue() repetitively to consume your input.
* *srcSizePtr and *dstCapacityPtr can be any size.
* The function will report how many bytes were read or written by modifying *srcSizePtr and *dstCapacityPtr.
* Note that it may not consume the entire input, in which case it's up to the caller to present remaining input again.
* The content of @dst will be overwritten (up to *dstCapacityPtr) at each function call, so save its content if it matters or change @dst.
* @return : a hint to preferred nb of bytes to use as input for next function call (it's only a hint, to help latency)
* or 0 when a frame is completely decoded
* or an error code, which can be tested using ZBUFFv05_isError().
*
* Hint : recommended buffer sizes (not compulsory) : ZBUFFv05_recommendedDInSize() / ZBUFFv05_recommendedDOutSize()
* output : ZBUFFv05_recommendedDOutSize==128 KB block size is the internal unit, it ensures it's always possible to write a full block when decoded.
* input : ZBUFFv05_recommendedDInSize==128Kb+3; just follow indications from ZBUFFv05_decompressContinue() to minimize latency. It should always be <= 128 KB + 3 .
* *******************************************************************************/
/* *************************************
* Tool functions
***************************************/
unsigned ZBUFFv05_isError(size_t errorCode);
const char* ZBUFFv05_getErrorName(size_t errorCode);
/** Functions below provide recommended buffer sizes for Compression or Decompression operations.
* These sizes are just hints, and tend to offer better latency */
size_t ZBUFFv05_recommendedDInSize(void);
size_t ZBUFFv05_recommendedDOutSize(void);
/*-*************************************
* Constants
***************************************/
#define ZSTDv05_MAGICNUMBER 0xFD2FB525 /* v0.5 */
#if defined (__cplusplus)
}
#endif
#endif /* ZSTDv0505_H */

File diff suppressed because it is too large Load Diff

View File

@ -1,166 +0,0 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
*/
#ifndef ZSTDv06_H
#define ZSTDv06_H
#if defined (__cplusplus)
extern "C" {
#endif
/*====== Dependency ======*/
#include <stddef.h> /* size_t */
/*====== Export for Windows ======*/
/*!
* ZSTDv06_DLL_EXPORT :
* Enable exporting of functions when building a Windows DLL
*/
#if defined(_WIN32) && defined(ZSTDv06_DLL_EXPORT) && (ZSTDv06_DLL_EXPORT==1)
# define ZSTDLIBv06_API __declspec(dllexport)
#else
# define ZSTDLIBv06_API
#endif
/* *************************************
* Simple functions
***************************************/
/*! ZSTDv06_decompress() :
`compressedSize` : is the _exact_ size of the compressed blob, otherwise decompression will fail.
`dstCapacity` must be large enough, equal or larger than originalSize.
@return : the number of bytes decompressed into `dst` (<= `dstCapacity`),
or an errorCode if it fails (which can be tested using ZSTDv06_isError()) */
ZSTDLIBv06_API size_t ZSTDv06_decompress( void* dst, size_t dstCapacity,
const void* src, size_t compressedSize);
/**
ZSTDv06_getFrameSrcSize() : get the source length of a ZSTD frame
compressedSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src'
return : the number of bytes that would be read to decompress this frame
or an errorCode if it fails (which can be tested using ZSTDv06_isError())
*/
size_t ZSTDv06_findFrameCompressedSize(const void* src, size_t compressedSize);
/* *************************************
* Helper functions
***************************************/
ZSTDLIBv06_API size_t ZSTDv06_compressBound(size_t srcSize); /*!< maximum compressed size (worst case scenario) */
/* Error Management */
ZSTDLIBv06_API unsigned ZSTDv06_isError(size_t code); /*!< tells if a `size_t` function result is an error code */
ZSTDLIBv06_API const char* ZSTDv06_getErrorName(size_t code); /*!< provides readable string for an error code */
/* *************************************
* Explicit memory management
***************************************/
/** Decompression context */
typedef struct ZSTDv06_DCtx_s ZSTDv06_DCtx;
ZSTDLIBv06_API ZSTDv06_DCtx* ZSTDv06_createDCtx(void);
ZSTDLIBv06_API size_t ZSTDv06_freeDCtx(ZSTDv06_DCtx* dctx); /*!< @return : errorCode */
/** ZSTDv06_decompressDCtx() :
* Same as ZSTDv06_decompress(), but requires an already allocated ZSTDv06_DCtx (see ZSTDv06_createDCtx()) */
ZSTDLIBv06_API size_t ZSTDv06_decompressDCtx(ZSTDv06_DCtx* ctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
/*-***********************
* Dictionary API
*************************/
/*! ZSTDv06_decompress_usingDict() :
* Decompression using a pre-defined Dictionary content (see dictBuilder).
* Dictionary must be identical to the one used during compression, otherwise regenerated data will be corrupted.
* Note : dict can be NULL, in which case, it's equivalent to ZSTDv06_decompressDCtx() */
ZSTDLIBv06_API size_t ZSTDv06_decompress_usingDict(ZSTDv06_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict,size_t dictSize);
/*-************************
* Advanced Streaming API
***************************/
struct ZSTDv06_frameParams_s { unsigned long long frameContentSize; unsigned windowLog; };
typedef struct ZSTDv06_frameParams_s ZSTDv06_frameParams;
ZSTDLIBv06_API size_t ZSTDv06_getFrameParams(ZSTDv06_frameParams* fparamsPtr, const void* src, size_t srcSize); /**< doesn't consume input */
ZSTDLIBv06_API size_t ZSTDv06_decompressBegin_usingDict(ZSTDv06_DCtx* dctx, const void* dict, size_t dictSize);
ZSTDLIBv06_API void ZSTDv06_copyDCtx(ZSTDv06_DCtx* dctx, const ZSTDv06_DCtx* preparedDCtx);
ZSTDLIBv06_API size_t ZSTDv06_nextSrcSizeToDecompress(ZSTDv06_DCtx* dctx);
ZSTDLIBv06_API size_t ZSTDv06_decompressContinue(ZSTDv06_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
/* *************************************
* ZBUFF API
***************************************/
typedef struct ZBUFFv06_DCtx_s ZBUFFv06_DCtx;
ZSTDLIBv06_API ZBUFFv06_DCtx* ZBUFFv06_createDCtx(void);
ZSTDLIBv06_API size_t ZBUFFv06_freeDCtx(ZBUFFv06_DCtx* dctx);
ZSTDLIBv06_API size_t ZBUFFv06_decompressInit(ZBUFFv06_DCtx* dctx);
ZSTDLIBv06_API size_t ZBUFFv06_decompressInitDictionary(ZBUFFv06_DCtx* dctx, const void* dict, size_t dictSize);
ZSTDLIBv06_API size_t ZBUFFv06_decompressContinue(ZBUFFv06_DCtx* dctx,
void* dst, size_t* dstCapacityPtr,
const void* src, size_t* srcSizePtr);
/*-***************************************************************************
* Streaming decompression howto
*
* A ZBUFFv06_DCtx object is required to track streaming operations.
* Use ZBUFFv06_createDCtx() and ZBUFFv06_freeDCtx() to create/release resources.
* Use ZBUFFv06_decompressInit() to start a new decompression operation,
* or ZBUFFv06_decompressInitDictionary() if decompression requires a dictionary.
* Note that ZBUFFv06_DCtx objects can be re-init multiple times.
*
* Use ZBUFFv06_decompressContinue() repetitively to consume your input.
* *srcSizePtr and *dstCapacityPtr can be any size.
* The function will report how many bytes were read or written by modifying *srcSizePtr and *dstCapacityPtr.
* Note that it may not consume the entire input, in which case it's up to the caller to present remaining input again.
* The content of `dst` will be overwritten (up to *dstCapacityPtr) at each function call, so save its content if it matters, or change `dst`.
* @return : a hint to preferred nb of bytes to use as input for next function call (it's only a hint, to help latency),
* or 0 when a frame is completely decoded,
* or an error code, which can be tested using ZBUFFv06_isError().
*
* Hint : recommended buffer sizes (not compulsory) : ZBUFFv06_recommendedDInSize() and ZBUFFv06_recommendedDOutSize()
* output : ZBUFFv06_recommendedDOutSize== 128 KB block size is the internal unit, it ensures it's always possible to write a full block when decoded.
* input : ZBUFFv06_recommendedDInSize == 128KB + 3;
* just follow indications from ZBUFFv06_decompressContinue() to minimize latency. It should always be <= 128 KB + 3 .
* *******************************************************************************/
/* *************************************
* Tool functions
***************************************/
ZSTDLIBv06_API unsigned ZBUFFv06_isError(size_t errorCode);
ZSTDLIBv06_API const char* ZBUFFv06_getErrorName(size_t errorCode);
/** Functions below provide recommended buffer sizes for Compression or Decompression operations.
* These sizes are just hints, they tend to offer better latency */
ZSTDLIBv06_API size_t ZBUFFv06_recommendedDInSize(void);
ZSTDLIBv06_API size_t ZBUFFv06_recommendedDOutSize(void);
/*-*************************************
* Constants
***************************************/
#define ZSTDv06_MAGICNUMBER 0xFD2FB526 /* v0.6 */
#if defined (__cplusplus)
}
#endif
#endif /* ZSTDv06_BUFFERED_H */

File diff suppressed because it is too large Load Diff

View File

@ -1,181 +0,0 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
*/
#ifndef ZSTDv07_H_235446
#define ZSTDv07_H_235446
#if defined (__cplusplus)
extern "C" {
#endif
/*====== Dependency ======*/
#include <stddef.h> /* size_t */
/*====== Export for Windows ======*/
/*!
* ZSTDv07_DLL_EXPORT :
* Enable exporting of functions when building a Windows DLL
*/
#if defined(_WIN32) && defined(ZSTDv07_DLL_EXPORT) && (ZSTDv07_DLL_EXPORT==1)
# define ZSTDLIBv07_API __declspec(dllexport)
#else
# define ZSTDLIBv07_API
#endif
/* *************************************
* Simple API
***************************************/
/*! ZSTDv07_getDecompressedSize() :
* @return : decompressed size if known, 0 otherwise.
note 1 : if `0`, follow up with ZSTDv07_getFrameParams() to know precise failure cause.
note 2 : decompressed size could be wrong or intentionally modified !
always ensure results fit within application's authorized limits */
unsigned long long ZSTDv07_getDecompressedSize(const void* src, size_t srcSize);
/*! ZSTDv07_decompress() :
`compressedSize` : must be _exact_ size of compressed input, otherwise decompression will fail.
`dstCapacity` must be equal or larger than originalSize.
@return : the number of bytes decompressed into `dst` (<= `dstCapacity`),
or an errorCode if it fails (which can be tested using ZSTDv07_isError()) */
ZSTDLIBv07_API size_t ZSTDv07_decompress( void* dst, size_t dstCapacity,
const void* src, size_t compressedSize);
/**
ZSTDv07_getFrameSrcSize() : get the source length of a ZSTD frame
compressedSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src'
return : the number of bytes that would be read to decompress this frame
or an errorCode if it fails (which can be tested using ZSTDv07_isError())
*/
size_t ZSTDv07_findFrameCompressedSize(const void* src, size_t compressedSize);
/*====== Helper functions ======*/
ZSTDLIBv07_API unsigned ZSTDv07_isError(size_t code); /*!< tells if a `size_t` function result is an error code */
ZSTDLIBv07_API const char* ZSTDv07_getErrorName(size_t code); /*!< provides readable string from an error code */
/*-*************************************
* Explicit memory management
***************************************/
/** Decompression context */
typedef struct ZSTDv07_DCtx_s ZSTDv07_DCtx;
ZSTDLIBv07_API ZSTDv07_DCtx* ZSTDv07_createDCtx(void);
ZSTDLIBv07_API size_t ZSTDv07_freeDCtx(ZSTDv07_DCtx* dctx); /*!< @return : errorCode */
/** ZSTDv07_decompressDCtx() :
* Same as ZSTDv07_decompress(), requires an allocated ZSTDv07_DCtx (see ZSTDv07_createDCtx()) */
ZSTDLIBv07_API size_t ZSTDv07_decompressDCtx(ZSTDv07_DCtx* ctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
/*-************************
* Simple dictionary API
***************************/
/*! ZSTDv07_decompress_usingDict() :
* Decompression using a pre-defined Dictionary content (see dictBuilder).
* Dictionary must be identical to the one used during compression.
* Note : This function load the dictionary, resulting in a significant startup time */
ZSTDLIBv07_API size_t ZSTDv07_decompress_usingDict(ZSTDv07_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict,size_t dictSize);
/*-**************************
* Advanced Dictionary API
****************************/
/*! ZSTDv07_createDDict() :
* Create a digested dictionary, ready to start decompression operation without startup delay.
* `dict` can be released after creation */
typedef struct ZSTDv07_DDict_s ZSTDv07_DDict;
ZSTDLIBv07_API ZSTDv07_DDict* ZSTDv07_createDDict(const void* dict, size_t dictSize);
ZSTDLIBv07_API size_t ZSTDv07_freeDDict(ZSTDv07_DDict* ddict);
/*! ZSTDv07_decompress_usingDDict() :
* Decompression using a pre-digested Dictionary
* Faster startup than ZSTDv07_decompress_usingDict(), recommended when same dictionary is used multiple times. */
ZSTDLIBv07_API size_t ZSTDv07_decompress_usingDDict(ZSTDv07_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const ZSTDv07_DDict* ddict);
typedef struct {
unsigned long long frameContentSize;
unsigned windowSize;
unsigned dictID;
unsigned checksumFlag;
} ZSTDv07_frameParams;
ZSTDLIBv07_API size_t ZSTDv07_getFrameParams(ZSTDv07_frameParams* fparamsPtr, const void* src, size_t srcSize); /**< doesn't consume input */
/* *************************************
* Streaming functions
***************************************/
typedef struct ZBUFFv07_DCtx_s ZBUFFv07_DCtx;
ZSTDLIBv07_API ZBUFFv07_DCtx* ZBUFFv07_createDCtx(void);
ZSTDLIBv07_API size_t ZBUFFv07_freeDCtx(ZBUFFv07_DCtx* dctx);
ZSTDLIBv07_API size_t ZBUFFv07_decompressInit(ZBUFFv07_DCtx* dctx);
ZSTDLIBv07_API size_t ZBUFFv07_decompressInitDictionary(ZBUFFv07_DCtx* dctx, const void* dict, size_t dictSize);
ZSTDLIBv07_API size_t ZBUFFv07_decompressContinue(ZBUFFv07_DCtx* dctx,
void* dst, size_t* dstCapacityPtr,
const void* src, size_t* srcSizePtr);
/*-***************************************************************************
* Streaming decompression howto
*
* A ZBUFFv07_DCtx object is required to track streaming operations.
* Use ZBUFFv07_createDCtx() and ZBUFFv07_freeDCtx() to create/release resources.
* Use ZBUFFv07_decompressInit() to start a new decompression operation,
* or ZBUFFv07_decompressInitDictionary() if decompression requires a dictionary.
* Note that ZBUFFv07_DCtx objects can be re-init multiple times.
*
* Use ZBUFFv07_decompressContinue() repetitively to consume your input.
* *srcSizePtr and *dstCapacityPtr can be any size.
* The function will report how many bytes were read or written by modifying *srcSizePtr and *dstCapacityPtr.
* Note that it may not consume the entire input, in which case it's up to the caller to present remaining input again.
* The content of `dst` will be overwritten (up to *dstCapacityPtr) at each function call, so save its content if it matters, or change `dst`.
* @return : a hint to preferred nb of bytes to use as input for next function call (it's only a hint, to help latency),
* or 0 when a frame is completely decoded,
* or an error code, which can be tested using ZBUFFv07_isError().
*
* Hint : recommended buffer sizes (not compulsory) : ZBUFFv07_recommendedDInSize() and ZBUFFv07_recommendedDOutSize()
* output : ZBUFFv07_recommendedDOutSize== 128 KB block size is the internal unit, it ensures it's always possible to write a full block when decoded.
* input : ZBUFFv07_recommendedDInSize == 128KB + 3;
* just follow indications from ZBUFFv07_decompressContinue() to minimize latency. It should always be <= 128 KB + 3 .
* *******************************************************************************/
/* *************************************
* Tool functions
***************************************/
ZSTDLIBv07_API unsigned ZBUFFv07_isError(size_t errorCode);
ZSTDLIBv07_API const char* ZBUFFv07_getErrorName(size_t errorCode);
/** Functions below provide recommended buffer sizes for Compression or Decompression operations.
* These sizes are just hints, they tend to offer better latency */
ZSTDLIBv07_API size_t ZBUFFv07_recommendedDInSize(void);
ZSTDLIBv07_API size_t ZBUFFv07_recommendedDOutSize(void);
/*-*************************************
* Constants
***************************************/
#define ZSTDv07_MAGICNUMBER 0xFD2FB527 /* v0.7 */
#if defined (__cplusplus)
}
#endif
#endif /* ZSTDv07_H_235446 */

File diff suppressed because it is too large Load Diff

1
contrib/lz4 vendored Submodule

@ -0,0 +1 @@
Subproject commit c10863b98e1503af90616ae99725ecd120265dfb

View File

@ -0,0 +1,13 @@
SET(LIBRARY_DIR ${ClickHouse_SOURCE_DIR}/contrib/lz4/lib)
add_library (lz4
${LIBRARY_DIR}/lz4.c
${LIBRARY_DIR}/lz4hc.c
${LIBRARY_DIR}/lz4.h
${LIBRARY_DIR}/lz4hc.h
${LIBRARY_DIR}/lz4opt.h)
target_compile_definitions(lz4 PUBLIC LZ4_DISABLE_DEPRECATE_WARNINGS=1)
target_include_directories(lz4 PUBLIC ${LIBRARY_DIR})

1
contrib/zstd vendored Submodule

@ -0,0 +1 @@
Subproject commit aecf3b479c45affa9fd8ead068e9160253a8ec5c

View File

@ -39,7 +39,7 @@ function(GetLibraryVersion _content _outputVar1 _outputVar2 _outputVar3)
endfunction()
# Define library directory, where sources and header files are located
SET(LIBRARY_DIR include/zstd)
SET(LIBRARY_DIR ${ClickHouse_SOURCE_DIR}/contrib/zstd/lib)
INCLUDE_DIRECTORIES(BEFORE ${LIBRARY_DIR} ${LIBRARY_DIR}/common)
# Read file content
@ -117,4 +117,4 @@ ENDIF (ZSTD_LEGACY_SUPPORT)
ADD_LIBRARY(zstd ${Sources} ${Headers})
target_include_directories (zstd PUBLIC include/zstd)
target_include_directories (zstd PUBLIC ${LIBRARY_DIR})

View File

@ -209,6 +209,12 @@ target_link_libraries (dbms
target_include_directories (dbms BEFORE PRIVATE ${DIVIDE_INCLUDE_DIR})
target_include_directories (dbms BEFORE PRIVATE ${SPARCEHASH_INCLUDE_DIR})
if (NOT USE_INTERNAL_LZ4_LIBRARY)
target_include_directories (dbms BEFORE PRIVATE ${LZ4_INCLUDE_DIR})
endif ()
if (NOT USE_INTERNAL_ZSTD_LIBRARY)
target_include_directories (dbms BEFORE PRIVATE ${ZSTD_INCLUDE_DIR})
endif ()
target_include_directories (dbms PUBLIC ${DBMS_INCLUDE_DIR})
target_include_directories (dbms PUBLIC ${PCG_RANDOM_INCLUDE_DIR})