A simple HelloWorld program with zero includes except iostream triggers
a build of ca. 2000 source files. The reason is that ClickHouse's
top-level CMakeLists.txt overrides "add_executable()" to link all
binaries against "clickhouse_new_delete". This links against
"clickhouse_common_io", which in turn has lots of 3rd party library
dependencies ... Without linking "clickhouse_new_delete", the number of
compiled files for "HelloWorld" goes down to ca. 70.
As an example, the self-extracting-executable needs none of its current
dependencies but other programs may also benefit.
In order to restore access to the original "add_executable()", the
overriding version is now prefixed. There is precedence for a
"clickhouse_" prefix (as opposed to "ch_"), for example
"clickhouse_split_debug_symbols". In general prefixing makes sense also
because overriding CMake commands relies on undocumented behavior and is
considered not-so-great practice (*).
(*) https://crascit.com/2018/09/14/do-not-redefine-cmake-commands/
- TSA is a static analyzer build by Google which finds race conditions
and deadlocks at compile time.
- It works by associating a shared member variable with a
synchronization primitive that protects it. The compiler can then
check at each access if proper locking happened before. A good
introduction are [0] and [1].
- TSA requires some help by the programmer via annotations. Luckily,
LLVM's libcxx already has annotations for std::mutex, std::lock_guard,
std::shared_mutex and std::scoped_lock. This commit enables them
(--> contrib/libcxx-cmake/CMakeLists.txt).
- Further, this commit adds convenience macros for the low-level
annotations for use in ClickHouse (--> base/defines.h). For
demonstration, they are leveraged in a few places.
- As we compile with "-Wall -Wextra -Weverything", the required compiler
flag "-Wthread-safety-analysis" was already enabled. Negative checks
are an experimental feature of TSA and disabled
(--> cmake/warnings.cmake). Compile times did not increase noticeably.
- TSA is used in a few places with simple locking. I tried TSA also
where locking is more complex. The problem was usually that it is
unclear which data is protected by which lock :-(. But there was
definitely some weird code where locking looked broken. So there is
some potential to find bugs.
*** Limitations of TSA besides the ones listed in [1]:
- The programmer needs to know which lock protects which piece of shared
data. This is not always easy for large classes.
- Two synchronization primitives used in ClickHouse are not annotated in
libcxx:
(1) std::unique_lock: A releaseable lock handle often together with
std::condition_variable, e.g. in solve producer-consumer problems.
(2) std::recursive_mutex: A re-entrant mutex variant. Its usage can be
considered a design flaw + typically it is slower than a standard
mutex. In this commit, one std::recursive_mutex was converted to
std::mutex and annotated with TSA.
- For free-standing functions (e.g. helper functions) which are passed
shared data members, it can be tricky to specify the associated lock.
This is because the annotations use the normal C++ rules for symbol
resolution.
[0] https://clang.llvm.org/docs/ThreadSafetyAnalysis.html
[1] https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42958.pdf
Here is oneliner:
$ gg 'LOG_\(DEBUG\|TRACE\|INFO\|TEST\|WARNING\|ERROR\|FATAL\)([^,]*, [a-zA-Z]' -- :*.cpp :*.h | cut -d: -f1 | sort -u | xargs -r sed -E -i 's#(LOG_[A-Z]*)\(([^,]*), ([A-Za-z][^,)]*)#\1(\2, fmt::runtime(\3)#'
Note, that I tried to do this with coccinelle (tool for semantic
patchin), but it cannot parse C++:
$ cat fmt.cocci
@@
expression log;
expression var;
@@
-LOG_DEBUG(log, var)
+LOG_DEBUG(log, fmt::runtime(var))
I've also tried to use some macros/templates magic to do this implicitly
in logger_useful.h, but I failed to do so, and apparently it is not
possible for now.
Signed-off-by: Azat Khuzhin <a.khuzhin@semrush.com>
v2: manual fixes
Signed-off-by: Azat Khuzhin <a.khuzhin@semrush.com>
This allows starting and stopping separately each protocol server
without restarting ClickHouse.
This also allows adding or removing `listen_host` entries, which
start and stops servers for all enabled ports.
When stopping a server, the listening socket is immediately closed
(and available for another server).
Protocols with persistent connections try to wait for any currently
running query to finish before closing the connection, but idle
connection are closed quickly (depending on how often the protocol
is polled).
An extra ProfileEvent is added, `MainConfigLoads`, it is
incremented every time the configuration is reloaded. This helps
when trying to assess whether the new configuration was applied.
- Uses a small assembly file to include binary resources, rather than
objcopy
- Updates `base/common/getResource.cpp` for this new method of inclusion
- Removes linux-only guards in CMake files, as this solution is
cross-platform.
The resulting binary resources are available in the ClickHouse server
binary on Linux, macOS, and illumos platforms. FreeBSD has not been
tested, but will likely work as well.