Compare commits

...

23 Commits

Author SHA1 Message Date
Vladimir Cherkasov
6f4c4dc206
Merge c9e674a01e into e0f8b8d351 2024-11-21 07:06:34 +01:00
Yakov Olkhovskiy
e0f8b8d351
Merge pull request #70458 from ClickHouse/fix-ephemeral-comment
Fix ephemeral column comment
2024-11-21 05:10:11 +00:00
Alexey Milovidov
da2176d696
Merge pull request #72081 from ClickHouse/add-dashboard-selector
Add advanced dashboard selector
2024-11-21 05:06:51 +00:00
Alexey Milovidov
53e0036593
Merge pull request #72176 from ClickHouse/change-ldf-major-versions
Get rid of `major` tags in official docker images
2024-11-21 05:05:41 +00:00
Alexey Milovidov
25bd73ea5e
Merge pull request #72023 from ClickHouse/fix-bind
Fix comments
2024-11-21 05:03:24 +00:00
Yakov Olkhovskiy
72d5af29e0 Merge branch 'master' into fix-ephemeral-comment 2024-11-20 22:01:54 +00:00
Mikhail Artemenko
44b4bd38b9
Merge pull request #72045 from ClickHouse/issues/70174/cluster_versions
Enable cluster table functions for DataLake Storages
2024-11-20 21:22:37 +00:00
vdimir
c9e674a01e
Add missing settings to randomization 2024-11-20 16:30:26 +00:00
Mikhail f. Shiryaev
9a2a664b04
Get rid of major tags in official docker images 2024-11-20 16:36:50 +01:00
Mikhail Artemenko
4ccebd9a24 fix syntax for iceberg in docs 2024-11-20 11:15:39 +00:00
Mikhail Artemenko
99177c0daf remove icebergCluster alias 2024-11-20 11:15:12 +00:00
serxa
ad67608956 Add advanced dashboard selector 2024-11-19 13:18:21 +00:00
Mikhail Artemenko
0951991c1d update aspell-dict.txt 2024-11-19 13:10:42 +00:00
Mikhail Artemenko
19aec5e572 Merge branch 'issues/70174/cluster_versions' of github.com:ClickHouse/ClickHouse into issues/70174/cluster_versions 2024-11-19 12:51:56 +00:00
Mikhail Artemenko
a367de9977 add docs 2024-11-19 12:49:59 +00:00
Mikhail Artemenko
6894e280b2 fix pr issues 2024-11-19 12:34:42 +00:00
Mikhail Artemenko
39ebe113d9 Merge branch 'master' into issues/70174/cluster_versions 2024-11-19 11:28:46 +00:00
robot-clickhouse
014608fb6b Automatic style fix 2024-11-18 17:51:51 +00:00
Mikhail Artemenko
a29ded4941 add test for iceberg 2024-11-18 17:39:46 +00:00
Mikhail Artemenko
d2efae7511 enable cluster versions for datalake storages 2024-11-18 17:35:21 +00:00
Alexey Milovidov
49589da56e Fix comments 2024-11-18 07:18:46 +01:00
Yakov Olkhovskiy
3827d90bb0 add test 2024-10-08 02:37:41 +00:00
Yakov Olkhovskiy
bf3a3ad607 fix ephemeral comment 2024-10-08 02:27:36 +00:00
29 changed files with 547 additions and 62 deletions

View File

@ -16,16 +16,18 @@ ClickHouse works 100-1000x faster than traditional database management systems,
For more information and documentation see https://clickhouse.com/.
<!-- This is not related to the docker official library, remove it before commit to https://github.com/docker-library/docs -->
## Versions
- The `latest` tag points to the latest release of the latest stable branch.
- Branch tags like `22.2` point to the latest release of the corresponding branch.
- Full version tags like `22.2.3.5` point to the corresponding release.
- Full version tags like `22.2.3` and `22.2.3.5` point to the corresponding release.
<!-- docker-official-library:off -->
<!-- This is not related to the docker official library, remove it before commit to https://github.com/docker-library/docs -->
- The tag `head` is built from the latest commit to the default branch.
- Each tag has optional `-alpine` suffix to reflect that it's built on top of `alpine`.
<!-- REMOVE UNTIL HERE -->
<!-- docker-official-library:on -->
### Compatibility
- The amd64 image requires support for [SSE3 instructions](https://en.wikipedia.org/wiki/SSE3). Virtually all x86 CPUs after 2005 support SSE3.

View File

@ -10,16 +10,18 @@ ClickHouse works 100-1000x faster than traditional database management systems,
For more information and documentation see https://clickhouse.com/.
<!-- This is not related to the docker official library, remove it before commit to https://github.com/docker-library/docs -->
## Versions
- The `latest` tag points to the latest release of the latest stable branch.
- Branch tags like `22.2` point to the latest release of the corresponding branch.
- Full version tags like `22.2.3.5` point to the corresponding release.
- Full version tags like `22.2.3` and `22.2.3.5` point to the corresponding release.
<!-- docker-official-library:off -->
<!-- This is not related to the docker official library, remove it before commit to https://github.com/docker-library/docs -->
- The tag `head` is built from the latest commit to the default branch.
- Each tag has optional `-alpine` suffix to reflect that it's built on top of `alpine`.
<!-- REMOVE UNTIL HERE -->
<!-- docker-official-library:on -->
### Compatibility
- The amd64 image requires support for [SSE3 instructions](https://en.wikipedia.org/wiki/SSE3). Virtually all x86 CPUs after 2005 support SSE3.

View File

@ -522,4 +522,3 @@ sidebar_label: 2024
* Backported in [#68518](https://github.com/ClickHouse/ClickHouse/issues/68518): Minor update in Dynamic/JSON serializations. [#68459](https://github.com/ClickHouse/ClickHouse/pull/68459) ([Kruglov Pavel](https://github.com/Avogar)).
* Backported in [#68558](https://github.com/ClickHouse/ClickHouse/issues/68558): CI: Minor release workflow fix. [#68536](https://github.com/ClickHouse/ClickHouse/pull/68536) ([Max K.](https://github.com/maxknv)).
* Backported in [#68576](https://github.com/ClickHouse/ClickHouse/issues/68576): CI: Tidy build timeout from 2h to 3h. [#68567](https://github.com/ClickHouse/ClickHouse/pull/68567) ([Max K.](https://github.com/maxknv)).

View File

@ -497,4 +497,3 @@ sidebar_label: 2024
* Backported in [#69899](https://github.com/ClickHouse/ClickHouse/issues/69899): Revert "Merge pull request [#69032](https://github.com/ClickHouse/ClickHouse/issues/69032) from alexon1234/include_real_time_execution_in_http_header". [#69885](https://github.com/ClickHouse/ClickHouse/pull/69885) ([Alexey Milovidov](https://github.com/alexey-milovidov)).
* Backported in [#69931](https://github.com/ClickHouse/ClickHouse/issues/69931): RIPE is an acronym and thus should be capital. RIPE stands for **R**ACE **I**ntegrity **P**rimitives **E**valuation and RACE stands for **R**esearch and Development in **A**dvanced **C**ommunications **T**echnologies in **E**urope. [#69901](https://github.com/ClickHouse/ClickHouse/pull/69901) ([Nikita Mikhaylov](https://github.com/nikitamikhaylov)).
* Backported in [#70034](https://github.com/ClickHouse/ClickHouse/issues/70034): Revert "Add RIPEMD160 function". [#70005](https://github.com/ClickHouse/ClickHouse/pull/70005) ([Robert Schulze](https://github.com/rschu1ze)).

View File

@ -49,4 +49,4 @@ LIMIT 2
**See Also**
- [DeltaLake engine](/docs/en/engines/table-engines/integrations/deltalake.md)
- [DeltaLake cluster table function](/docs/en/sql-reference/table-functions/deltalakeCluster.md)

View File

@ -0,0 +1,30 @@
---
slug: /en/sql-reference/table-functions/deltalakeCluster
sidebar_position: 46
sidebar_label: deltaLakeCluster
title: "deltaLakeCluster Table Function"
---
This is an extension to the [deltaLake](/docs/en/sql-reference/table-functions/deltalake.md) table function.
Allows processing files from [Delta Lake](https://github.com/delta-io/delta) tables in Amazon S3 in parallel from many nodes in a specified cluster. On initiator it creates a connection to all nodes in the cluster and dispatches each file dynamically. On the worker node it asks the initiator about the next task to process and processes it. This is repeated until all tasks are finished.
**Syntax**
``` sql
deltaLakeCluster(cluster_name, url [,aws_access_key_id, aws_secret_access_key] [,format] [,structure] [,compression])
```
**Arguments**
- `cluster_name` — Name of a cluster that is used to build a set of addresses and connection parameters to remote and local servers.
- Description of all other arguments coincides with description of arguments in equivalent [deltaLake](/docs/en/sql-reference/table-functions/deltalake.md) table function.
**Returned value**
A table with the specified structure for reading data from cluster in the specified Delta Lake table in S3.
**See Also**
- [deltaLake engine](/docs/en/engines/table-engines/integrations/deltalake.md)
- [deltaLake table function](/docs/en/sql-reference/table-functions/deltalake.md)

View File

@ -29,4 +29,4 @@ A table with the specified structure for reading data in the specified Hudi tabl
**See Also**
- [Hudi engine](/docs/en/engines/table-engines/integrations/hudi.md)
- [Hudi cluster table function](/docs/en/sql-reference/table-functions/hudiCluster.md)

View File

@ -0,0 +1,30 @@
---
slug: /en/sql-reference/table-functions/hudiCluster
sidebar_position: 86
sidebar_label: hudiCluster
title: "hudiCluster Table Function"
---
This is an extension to the [hudi](/docs/en/sql-reference/table-functions/hudi.md) table function.
Allows processing files from Apache [Hudi](https://hudi.apache.org/) tables in Amazon S3 in parallel from many nodes in a specified cluster. On initiator it creates a connection to all nodes in the cluster and dispatches each file dynamically. On the worker node it asks the initiator about the next task to process and processes it. This is repeated until all tasks are finished.
**Syntax**
``` sql
hudiCluster(cluster_name, url [,aws_access_key_id, aws_secret_access_key] [,format] [,structure] [,compression])
```
**Arguments**
- `cluster_name` — Name of a cluster that is used to build a set of addresses and connection parameters to remote and local servers.
- Description of all other arguments coincides with description of arguments in equivalent [hudi](/docs/en/sql-reference/table-functions/hudi.md) table function.
**Returned value**
A table with the specified structure for reading data from cluster in the specified Hudi table in S3.
**See Also**
- [Hudi engine](/docs/en/engines/table-engines/integrations/hudi.md)
- [Hudi table function](/docs/en/sql-reference/table-functions/hudi.md)

View File

@ -72,3 +72,4 @@ Table function `iceberg` is an alias to `icebergS3` now.
**See Also**
- [Iceberg engine](/docs/en/engines/table-engines/integrations/iceberg.md)
- [Iceberg cluster table function](/docs/en/sql-reference/table-functions/icebergCluster.md)

View File

@ -0,0 +1,43 @@
---
slug: /en/sql-reference/table-functions/icebergCluster
sidebar_position: 91
sidebar_label: icebergCluster
title: "icebergCluster Table Function"
---
This is an extension to the [iceberg](/docs/en/sql-reference/table-functions/iceberg.md) table function.
Allows processing files from Apache [Iceberg](https://iceberg.apache.org/) in parallel from many nodes in a specified cluster. On initiator it creates a connection to all nodes in the cluster and dispatches each file dynamically. On the worker node it asks the initiator about the next task to process and processes it. This is repeated until all tasks are finished.
**Syntax**
``` sql
icebergS3Cluster(cluster_name, url [, NOSIGN | access_key_id, secret_access_key, [session_token]] [,format] [,compression_method])
icebergS3Cluster(cluster_name, named_collection[, option=value [,..]])
icebergAzureCluster(cluster_name, connection_string|storage_account_url, container_name, blobpath, [,account_name], [,account_key] [,format] [,compression_method])
icebergAzureCluster(cluster_name, named_collection[, option=value [,..]])
icebergHDFSCluster(cluster_name, path_to_table, [,format] [,compression_method])
icebergHDFSCluster(cluster_name, named_collection[, option=value [,..]])
```
**Arguments**
- `cluster_name` — Name of a cluster that is used to build a set of addresses and connection parameters to remote and local servers.
- Description of all other arguments coincides with description of arguments in equivalent [iceberg](/docs/en/sql-reference/table-functions/iceberg.md) table function.
**Returned value**
A table with the specified structure for reading data from cluster in the specified Iceberg table.
**Examples**
```sql
SELECT * FROM icebergS3Cluster('cluster_simple', 'http://test.s3.amazonaws.com/clickhouse-bucket/test_table', 'test', 'test')
```
**See Also**
- [Iceberg engine](/docs/en/engines/table-engines/integrations/iceberg.md)
- [Iceberg table function](/docs/en/sql-reference/table-functions/iceberg.md)

View File

@ -476,7 +476,7 @@
<input id="edit" type="button" value="✎" style="display: none;">
<input id="add" type="button" value="Add chart" style="display: none;">
<input id="reload" type="button" value="Reload">
<span id="search-span" class="nowrap" style="display: none;"><input id="search" type="button" value="🔎" title="Run query to obtain list of charts from ClickHouse"><input id="search-query" name="search" type="text" spellcheck="false"></span>
<span id="search-span" class="nowrap" style="display: none;"><input id="search" type="button" value="🔎" title="Run query to obtain list of charts from ClickHouse. Either select dashboard name or write your own query"><input id="search-query" name="search" list="search-options" type="text" spellcheck="false"><datalist id="search-options"></datalist></span>
<div id="chart-params"></div>
</div>
</form>
@ -532,9 +532,15 @@ const errorMessages = [
}
]
/// Dashboard selector
const dashboardSearchQuery = (dashboard_name) => `SELECT title, query FROM system.dashboards WHERE dashboard = '${dashboard_name}'`;
let dashboard_queries = {
"Overview": dashboardSearchQuery("Overview"),
};
const default_dashboard = 'Overview';
/// Query to fill `queries` list for the dashboard
let search_query = `SELECT title, query FROM system.dashboards WHERE dashboard = 'Overview'`;
let search_query = dashboardSearchQuery(default_dashboard);
let customized = false;
let queries = [];
@ -1439,7 +1445,7 @@ async function reloadAll(do_search) {
try {
updateParams();
if (do_search) {
search_query = document.getElementById('search-query').value;
search_query = toSearchQuery(document.getElementById('search-query').value);
queries = [];
refreshCustomized(false);
}
@ -1504,7 +1510,7 @@ function updateFromState() {
document.getElementById('url').value = host;
document.getElementById('user').value = user;
document.getElementById('password').value = password;
document.getElementById('search-query').value = search_query;
document.getElementById('search-query').value = fromSearchQuery(search_query);
refreshCustomized();
}
@ -1543,6 +1549,44 @@ if (window.location.hash) {
} catch {}
}
function fromSearchQuery(query) {
for (const dashboard_name in dashboard_queries) {
if (query == dashboard_queries[dashboard_name])
return dashboard_name;
}
return query;
}
function toSearchQuery(value) {
if (value in dashboard_queries)
return dashboard_queries[value];
else
return value;
}
async function populateSearchOptions() {
let {reply, error} = await doFetch("SELECT dashboard FROM system.dashboards GROUP BY dashboard ORDER BY ALL");
if (error) {
throw new Error(error);
}
let data = reply.data;
if (data.dashboard.length == 0) {
console.log("Unable to fetch dashboards list");
return;
}
dashboard_queries = {};
for (let i = 0; i < data.dashboard.length; i++) {
const dashboard = data.dashboard[i];
dashboard_queries[dashboard] = dashboardSearchQuery(dashboard);
}
const searchOptions = document.getElementById('search-options');
for (const dashboard in dashboard_queries) {
const opt = document.createElement('option');
opt.value = dashboard;
searchOptions.appendChild(opt);
}
}
async function start() {
try {
updateFromState();
@ -1558,6 +1602,7 @@ async function start() {
} else {
drawAll();
}
await populateSearchOptions();
} catch (e) {
showError(e.message);
}

View File

@ -528,7 +528,7 @@ QueryTreeNodePtr IdentifierResolver::tryResolveIdentifierFromCompoundExpression(
*
* Resolve strategy:
* 1. Try to bind identifier to scope argument name to node map.
* 2. If identifier is binded but expression context and node type are incompatible return nullptr.
* 2. If identifier is bound but expression context and node type are incompatible return nullptr.
*
* It is important to support edge cases, where we lookup for table or function node, but argument has same name.
* Example: WITH (x -> x + 1) AS func, (func -> func(1) + func) AS lambda SELECT lambda(1);

View File

@ -362,7 +362,7 @@ ReplxxLineReader::ReplxxLineReader(
if (highlighter)
rx.set_highlighter_callback(highlighter);
/// By default C-p/C-n binded to COMPLETE_NEXT/COMPLETE_PREV,
/// By default C-p/C-n bound to COMPLETE_NEXT/COMPLETE_PREV,
/// bind C-p/C-n to history-previous/history-next like readline.
rx.bind_key(Replxx::KEY::control('N'), [this](char32_t code) { return rx.invoke(Replxx::ACTION::HISTORY_NEXT, code); });
rx.bind_key(Replxx::KEY::control('P'), [this](char32_t code) { return rx.invoke(Replxx::ACTION::HISTORY_PREVIOUS, code); });
@ -384,9 +384,9 @@ ReplxxLineReader::ReplxxLineReader(
rx.bind_key(Replxx::KEY::control('J'), commit_action);
rx.bind_key(Replxx::KEY::ENTER, commit_action);
/// By default COMPLETE_NEXT/COMPLETE_PREV was binded to C-p/C-n, re-bind
/// By default COMPLETE_NEXT/COMPLETE_PREV was bound to C-p/C-n, re-bind
/// to M-P/M-N (that was used for HISTORY_COMMON_PREFIX_SEARCH before, but
/// it also binded to M-p/M-n).
/// it also bound to M-p/M-n).
rx.bind_key(Replxx::KEY::meta('N'), [this](char32_t code) { return rx.invoke(Replxx::ACTION::COMPLETE_NEXT, code); });
rx.bind_key(Replxx::KEY::meta('P'), [this](char32_t code) { return rx.invoke(Replxx::ACTION::COMPLETE_PREVIOUS, code); });
/// By default M-BACKSPACE is KILL_TO_WHITESPACE_ON_LEFT, while in readline it is backward-kill-word

View File

@ -237,6 +237,7 @@ bool IParserColumnDeclaration<NameParser>::parseImpl(Pos & pos, ASTPtr & node, E
null_modifier.emplace(true);
}
bool is_comment = false;
/// Collate is also allowed after NULL/NOT NULL
if (!collation_expression && s_collate.ignore(pos, expected)
&& !collation_parser.parse(pos, collation_expression, expected))
@ -254,7 +255,9 @@ bool IParserColumnDeclaration<NameParser>::parseImpl(Pos & pos, ASTPtr & node, E
else if (s_ephemeral.ignore(pos, expected))
{
default_specifier = s_ephemeral.getName();
if (!expr_parser.parse(pos, default_expression, expected) && type)
if (s_comment.ignore(pos, expected))
is_comment = true;
if ((is_comment || !expr_parser.parse(pos, default_expression, expected)) && type)
{
ephemeral_default = true;
@ -289,6 +292,8 @@ bool IParserColumnDeclaration<NameParser>::parseImpl(Pos & pos, ASTPtr & node, E
if (require_type && !type && !default_expression)
return false; /// reject column name without type
if (!is_comment)
{
if ((type || default_expression) && allow_null_modifiers && !null_modifier.has_value())
{
if (s_not.ignore(pos, expected))
@ -300,8 +305,9 @@ bool IParserColumnDeclaration<NameParser>::parseImpl(Pos & pos, ASTPtr & node, E
else if (s_null.ignore(pos, expected))
null_modifier.emplace(true);
}
}
if (s_comment.ignore(pos, expected))
if (is_comment || s_comment.ignore(pos, expected))
{
/// should be followed by a string literal
if (!string_literal_parser.parse(pos, comment_expression, expected))

View File

@ -226,6 +226,26 @@ template class TableFunctionObjectStorage<HDFSClusterDefinition, StorageHDFSConf
#endif
template class TableFunctionObjectStorage<LocalDefinition, StorageLocalConfiguration>;
#if USE_AVRO && USE_AWS_S3
template class TableFunctionObjectStorage<IcebergS3ClusterDefinition, StorageS3IcebergConfiguration>;
#endif
#if USE_AVRO && USE_AZURE_BLOB_STORAGE
template class TableFunctionObjectStorage<IcebergAzureClusterDefinition, StorageAzureIcebergConfiguration>;
#endif
#if USE_AVRO && USE_HDFS
template class TableFunctionObjectStorage<IcebergHDFSClusterDefinition, StorageHDFSIcebergConfiguration>;
#endif
#if USE_PARQUET && USE_AWS_S3
template class TableFunctionObjectStorage<DeltaLakeClusterDefinition, StorageS3DeltaLakeConfiguration>;
#endif
#if USE_AWS_S3
template class TableFunctionObjectStorage<HudiClusterDefinition, StorageS3HudiConfiguration>;
#endif
#if USE_AVRO
void registerTableFunctionIceberg(TableFunctionFactory & factory)
{

View File

@ -96,7 +96,7 @@ void registerTableFunctionObjectStorageCluster(TableFunctionFactory & factory)
{
.documentation = {
.description=R"(The table function can be used to read the data stored on HDFS in parallel for many nodes in a specified cluster.)",
.examples{{"HDFSCluster", "SELECT * FROM HDFSCluster(cluster_name, uri, format)", ""}}},
.examples{{"HDFSCluster", "SELECT * FROM HDFSCluster(cluster, uri, format)", ""}}},
.allow_readonly = false
}
);
@ -105,15 +105,77 @@ void registerTableFunctionObjectStorageCluster(TableFunctionFactory & factory)
UNUSED(factory);
}
#if USE_AVRO
void registerTableFunctionIcebergCluster(TableFunctionFactory & factory)
{
UNUSED(factory);
#if USE_AWS_S3
template class TableFunctionObjectStorageCluster<S3ClusterDefinition, StorageS3Configuration>;
factory.registerFunction<TableFunctionIcebergS3Cluster>(
{.documentation
= {.description = R"(The table function can be used to read the Iceberg table stored on S3 object store in parallel for many nodes in a specified cluster.)",
.examples{{"icebergS3Cluster", "SELECT * FROM icebergS3Cluster(cluster, url, [, NOSIGN | access_key_id, secret_access_key, [session_token]], format, [,compression])", ""}},
.categories{"DataLake"}},
.allow_readonly = false});
#endif
#if USE_AZURE_BLOB_STORAGE
template class TableFunctionObjectStorageCluster<AzureClusterDefinition, StorageAzureConfiguration>;
factory.registerFunction<TableFunctionIcebergAzureCluster>(
{.documentation
= {.description = R"(The table function can be used to read the Iceberg table stored on Azure object store in parallel for many nodes in a specified cluster.)",
.examples{{"icebergAzureCluster", "SELECT * FROM icebergAzureCluster(cluster, connection_string|storage_account_url, container_name, blobpath, [account_name, account_key, format, compression])", ""}},
.categories{"DataLake"}},
.allow_readonly = false});
#endif
#if USE_HDFS
template class TableFunctionObjectStorageCluster<HDFSClusterDefinition, StorageHDFSConfiguration>;
factory.registerFunction<TableFunctionIcebergHDFSCluster>(
{.documentation
= {.description = R"(The table function can be used to read the Iceberg table stored on HDFS virtual filesystem in parallel for many nodes in a specified cluster.)",
.examples{{"icebergHDFSCluster", "SELECT * FROM icebergHDFSCluster(cluster, uri, [format], [structure], [compression_method])", ""}},
.categories{"DataLake"}},
.allow_readonly = false});
#endif
}
#endif
#if USE_AWS_S3
#if USE_PARQUET
void registerTableFunctionDeltaLakeCluster(TableFunctionFactory & factory)
{
factory.registerFunction<TableFunctionDeltaLakeCluster>(
{.documentation
= {.description = R"(The table function can be used to read the DeltaLake table stored on object store in parallel for many nodes in a specified cluster.)",
.examples{{"deltaLakeCluster", "SELECT * FROM deltaLakeCluster(cluster, url, access_key_id, secret_access_key)", ""}},
.categories{"DataLake"}},
.allow_readonly = false});
}
#endif
void registerTableFunctionHudiCluster(TableFunctionFactory & factory)
{
factory.registerFunction<TableFunctionHudiCluster>(
{.documentation
= {.description = R"(The table function can be used to read the Hudi table stored on object store in parallel for many nodes in a specified cluster.)",
.examples{{"hudiCluster", "SELECT * FROM hudiCluster(cluster, url, access_key_id, secret_access_key)", ""}},
.categories{"DataLake"}},
.allow_readonly = false});
}
#endif
void registerDataLakeClusterTableFunctions(TableFunctionFactory & factory)
{
UNUSED(factory);
#if USE_AVRO
registerTableFunctionIcebergCluster(factory);
#endif
#if USE_AWS_S3
#if USE_PARQUET
registerTableFunctionDeltaLakeCluster(factory);
#endif
registerTableFunctionHudiCluster(factory);
#endif
}
}

View File

@ -33,6 +33,36 @@ struct HDFSClusterDefinition
static constexpr auto storage_type_name = "HDFSCluster";
};
struct IcebergS3ClusterDefinition
{
static constexpr auto name = "icebergS3Cluster";
static constexpr auto storage_type_name = "IcebergS3Cluster";
};
struct IcebergAzureClusterDefinition
{
static constexpr auto name = "icebergAzureCluster";
static constexpr auto storage_type_name = "IcebergAzureCluster";
};
struct IcebergHDFSClusterDefinition
{
static constexpr auto name = "icebergHDFSCluster";
static constexpr auto storage_type_name = "IcebergHDFSCluster";
};
struct DeltaLakeClusterDefinition
{
static constexpr auto name = "deltaLakeCluster";
static constexpr auto storage_type_name = "DeltaLakeS3Cluster";
};
struct HudiClusterDefinition
{
static constexpr auto name = "hudiCluster";
static constexpr auto storage_type_name = "HudiS3Cluster";
};
/**
* Class implementing s3/hdfs/azureBlobStorageCluster(...) table functions,
* which allow to process many files from S3/HDFS/Azure blob storage on a specific cluster.
@ -79,4 +109,25 @@ using TableFunctionAzureBlobCluster = TableFunctionObjectStorageCluster<AzureClu
#if USE_HDFS
using TableFunctionHDFSCluster = TableFunctionObjectStorageCluster<HDFSClusterDefinition, StorageHDFSConfiguration>;
#endif
#if USE_AVRO && USE_AWS_S3
using TableFunctionIcebergS3Cluster = TableFunctionObjectStorageCluster<IcebergS3ClusterDefinition, StorageS3IcebergConfiguration>;
#endif
#if USE_AVRO && USE_AZURE_BLOB_STORAGE
using TableFunctionIcebergAzureCluster = TableFunctionObjectStorageCluster<IcebergAzureClusterDefinition, StorageAzureIcebergConfiguration>;
#endif
#if USE_AVRO && USE_HDFS
using TableFunctionIcebergHDFSCluster = TableFunctionObjectStorageCluster<IcebergHDFSClusterDefinition, StorageHDFSIcebergConfiguration>;
#endif
#if USE_AWS_S3 && USE_PARQUET
using TableFunctionDeltaLakeCluster = TableFunctionObjectStorageCluster<DeltaLakeClusterDefinition, StorageS3DeltaLakeConfiguration>;
#endif
#if USE_AWS_S3
using TableFunctionHudiCluster = TableFunctionObjectStorageCluster<HudiClusterDefinition, StorageS3HudiConfiguration>;
#endif
}

View File

@ -66,6 +66,7 @@ void registerTableFunctions(bool use_legacy_mongodb_integration [[maybe_unused]]
registerTableFunctionObjectStorage(factory);
registerTableFunctionObjectStorageCluster(factory);
registerDataLakeTableFunctions(factory);
registerDataLakeClusterTableFunctions(factory);
}
}

View File

@ -70,6 +70,7 @@ void registerTableFunctionExplain(TableFunctionFactory & factory);
void registerTableFunctionObjectStorage(TableFunctionFactory & factory);
void registerTableFunctionObjectStorageCluster(TableFunctionFactory & factory);
void registerDataLakeTableFunctions(TableFunctionFactory & factory);
void registerDataLakeClusterTableFunctions(TableFunctionFactory & factory);
void registerTableFunctionTimeSeries(TableFunctionFactory & factory);

View File

@ -299,8 +299,6 @@ class TagAttrs:
# Only one latest can exist
latest: ClickHouseVersion
# Only one can be a major one (the most fresh per a year)
majors: Dict[int, ClickHouseVersion]
# Only one lts version can exist
lts: Optional[ClickHouseVersion]
@ -345,14 +343,6 @@ def ldf_tags(version: ClickHouseVersion, distro: str, tag_attrs: TagAttrs) -> st
tags.append("lts")
tags.append(f"lts-{distro}")
# If the tag `22`, `23`, `24` etc. should be included in the tags
with_major = tag_attrs.majors.get(version.major) in (None, version)
if with_major:
tag_attrs.majors[version.major] = version
if without_distro:
tags.append(f"{version.major}")
tags.append(f"{version.major}-{distro}")
# Add all normal tags
for tag in (
f"{version.major}.{version.minor}",
@ -384,7 +374,7 @@ def generate_ldf(args: argparse.Namespace) -> None:
args.directory / git_runner(f"git -C {args.directory} rev-parse --show-cdup")
).absolute()
lines = ldf_header(git, directory)
tag_attrs = TagAttrs(versions[-1], {}, None)
tag_attrs = TagAttrs(versions[-1], None)
# We iterate from the most recent to the oldest version
for version in reversed(versions):

View File

@ -809,6 +809,7 @@ class SettingsRandomizer:
"prefer_localhost_replica": lambda: random.randint(0, 1),
"max_block_size": lambda: random.randint(8000, 100000),
"max_joined_block_size_rows": lambda: random.randint(8000, 100000),
"min_joined_block_size_bytes": lambda: random.randint(524288 // 2, 4 * 524288),
"max_threads": lambda: 32 if random.random() < 0.03 else random.randint(1, 3),
"optimize_append_index": lambda: random.randint(0, 1),
"optimize_if_chain_to_multiif": lambda: random.randint(0, 1),
@ -921,6 +922,14 @@ class SettingsRandomizer:
"parallel_replicas_local_plan": lambda: random.randint(0, 1),
"output_format_native_write_json_as_string": lambda: random.randint(0, 1),
"enable_vertical_final": lambda: random.randint(0, 1),
"grace_hash_join_initial_buckets": lambda: random.randint(1, 16),
"grace_hash_join_max_buckets": lambda: 1024 * random.randint(0, 4),
"join_to_sort_minimum_perkey_rows": lambda: random.randint(1, 100),
"join_to_sort_maximum_table_rows": lambda: random.randint(1000, 100000),
"allow_experimental_join_right_table_sorting": lambda: True,
"allow_experimental_join_condition": lambda: True,
"join_output_by_rowlist_perkey_rows_threshold": lambda: random.randint(0, 10),
"max_rows_in_set_to_optimize_join": lambda: random.randint(0, 100),
}
@staticmethod

View File

@ -378,7 +378,7 @@ def test_reload_via_client(cluster, zk):
configure_from_zk(zk)
break
except QueryRuntimeException:
logging.exception("The new socket is not binded yet")
logging.exception("The new socket is not bound yet")
time.sleep(0.1)
if exception:

View File

@ -0,0 +1,20 @@
<clickhouse>
<remote_servers>
<cluster_simple>
<shard>
<replica>
<host>node1</host>
<port>9000</port>
</replica>
<replica>
<host>node2</host>
<port>9000</port>
</replica>
<replica>
<host>node3</host>
<port>9000</port>
</replica>
</shard>
</cluster_simple>
</remote_servers>
</clickhouse>

View File

@ -0,0 +1,6 @@
<clickhouse>
<query_log>
<database>system</database>
<table>query_log</table>
</query_log>
</clickhouse>

View File

@ -73,14 +73,38 @@ def started_cluster():
cluster.add_instance(
"node1",
main_configs=[
"configs/config.d/query_log.xml",
"configs/config.d/cluster.xml",
"configs/config.d/named_collections.xml",
"configs/config.d/filesystem_caches.xml",
],
user_configs=["configs/users.d/users.xml"],
with_minio=True,
with_azurite=True,
stay_alive=True,
with_hdfs=with_hdfs,
stay_alive=True,
)
cluster.add_instance(
"node2",
main_configs=[
"configs/config.d/query_log.xml",
"configs/config.d/cluster.xml",
"configs/config.d/named_collections.xml",
"configs/config.d/filesystem_caches.xml",
],
user_configs=["configs/users.d/users.xml"],
stay_alive=True,
)
cluster.add_instance(
"node3",
main_configs=[
"configs/config.d/query_log.xml",
"configs/config.d/cluster.xml",
"configs/config.d/named_collections.xml",
"configs/config.d/filesystem_caches.xml",
],
user_configs=["configs/users.d/users.xml"],
stay_alive=True,
)
logging.info("Starting cluster...")
@ -182,6 +206,7 @@ def get_creation_expression(
cluster,
format="Parquet",
table_function=False,
run_on_cluster=False,
**kwargs,
):
if storage_type == "s3":
@ -189,7 +214,11 @@ def get_creation_expression(
bucket = kwargs["bucket"]
else:
bucket = cluster.minio_bucket
print(bucket)
if run_on_cluster:
assert table_function
return f"icebergS3Cluster('cluster_simple', s3, filename = 'iceberg_data/default/{table_name}/', format={format}, url = 'http://minio1:9001/{bucket}/')"
else:
if table_function:
return f"icebergS3(s3, filename = 'iceberg_data/default/{table_name}/', format={format}, url = 'http://minio1:9001/{bucket}/')"
else:
@ -197,7 +226,14 @@ def get_creation_expression(
DROP TABLE IF EXISTS {table_name};
CREATE TABLE {table_name}
ENGINE=IcebergS3(s3, filename = 'iceberg_data/default/{table_name}/', format={format}, url = 'http://minio1:9001/{bucket}/')"""
elif storage_type == "azure":
if run_on_cluster:
assert table_function
return f"""
icebergAzureCluster('cluster_simple', azure, container = '{cluster.azure_container_name}', storage_account_url = '{cluster.env_variables["AZURITE_STORAGE_ACCOUNT_URL"]}', blob_path = '/iceberg_data/default/{table_name}/', format={format})
"""
else:
if table_function:
return f"""
icebergAzure(azure, container = '{cluster.azure_container_name}', storage_account_url = '{cluster.env_variables["AZURITE_STORAGE_ACCOUNT_URL"]}', blob_path = '/iceberg_data/default/{table_name}/', format={format})
@ -207,7 +243,14 @@ def get_creation_expression(
DROP TABLE IF EXISTS {table_name};
CREATE TABLE {table_name}
ENGINE=IcebergAzure(azure, container = {cluster.azure_container_name}, storage_account_url = '{cluster.env_variables["AZURITE_STORAGE_ACCOUNT_URL"]}', blob_path = '/iceberg_data/default/{table_name}/', format={format})"""
elif storage_type == "hdfs":
if run_on_cluster:
assert table_function
return f"""
icebergHDFSCluster('cluster_simple', hdfs, filename= 'iceberg_data/default/{table_name}/', format={format}, url = 'hdfs://hdfs1:9000/')
"""
else:
if table_function:
return f"""
icebergHDFS(hdfs, filename= 'iceberg_data/default/{table_name}/', format={format}, url = 'hdfs://hdfs1:9000/')
@ -217,7 +260,10 @@ def get_creation_expression(
DROP TABLE IF EXISTS {table_name};
CREATE TABLE {table_name}
ENGINE=IcebergHDFS(hdfs, filename = 'iceberg_data/default/{table_name}/', format={format}, url = 'hdfs://hdfs1:9000/');"""
elif storage_type == "local":
assert not run_on_cluster
if table_function:
return f"""
icebergLocal(local, path = '/iceberg_data/default/{table_name}/', format={format})
@ -227,6 +273,7 @@ def get_creation_expression(
DROP TABLE IF EXISTS {table_name};
CREATE TABLE {table_name}
ENGINE=IcebergLocal(local, path = '/iceberg_data/default/{table_name}/', format={format});"""
else:
raise Exception(f"Unknown iceberg storage type: {storage_type}")
@ -492,6 +539,108 @@ def test_types(started_cluster, format_version, storage_type):
)
@pytest.mark.parametrize("format_version", ["1", "2"])
@pytest.mark.parametrize("storage_type", ["s3", "azure", "hdfs"])
def test_cluster_table_function(started_cluster, format_version, storage_type):
if is_arm() and storage_type == "hdfs":
pytest.skip("Disabled test IcebergHDFS for aarch64")
instance = started_cluster.instances["node1"]
spark = started_cluster.spark_session
TABLE_NAME = (
"test_iceberg_cluster_"
+ format_version
+ "_"
+ storage_type
+ "_"
+ get_uuid_str()
)
def add_df(mode):
write_iceberg_from_df(
spark,
generate_data(spark, 0, 100),
TABLE_NAME,
mode=mode,
format_version=format_version,
)
files = default_upload_directory(
started_cluster,
storage_type,
f"/iceberg_data/default/{TABLE_NAME}/",
f"/iceberg_data/default/{TABLE_NAME}/",
)
logging.info(f"Adding another dataframe. result files: {files}")
return files
files = add_df(mode="overwrite")
for i in range(1, len(started_cluster.instances)):
files = add_df(mode="append")
logging.info(f"Setup complete. files: {files}")
assert len(files) == 5 + 4 * (len(started_cluster.instances) - 1)
clusters = instance.query(f"SELECT * FROM system.clusters")
logging.info(f"Clusters setup: {clusters}")
# Regular Query only node1
table_function_expr = get_creation_expression(
storage_type, TABLE_NAME, started_cluster, table_function=True
)
select_regular = (
instance.query(f"SELECT * FROM {table_function_expr}").strip().split()
)
# Cluster Query with node1 as coordinator
table_function_expr_cluster = get_creation_expression(
storage_type,
TABLE_NAME,
started_cluster,
table_function=True,
run_on_cluster=True,
)
select_cluster = (
instance.query(f"SELECT * FROM {table_function_expr_cluster}").strip().split()
)
# Simple size check
assert len(select_regular) == 600
assert len(select_cluster) == 600
# Actual check
assert select_cluster == select_regular
# Check query_log
for replica in started_cluster.instances.values():
replica.query("SYSTEM FLUSH LOGS")
for node_name, replica in started_cluster.instances.items():
cluster_secondary_queries = (
replica.query(
f"""
SELECT query, type, is_initial_query, read_rows, read_bytes FROM system.query_log
WHERE
type = 'QueryStart' AND
positionCaseInsensitive(query, '{storage_type}Cluster') != 0 AND
position(query, '{TABLE_NAME}') != 0 AND
position(query, 'system.query_log') = 0 AND
NOT is_initial_query
"""
)
.strip()
.split("\n")
)
logging.info(
f"[{node_name}] cluster_secondary_queries: {cluster_secondary_queries}"
)
assert len(cluster_secondary_queries) == 1
@pytest.mark.parametrize("format_version", ["1", "2"])
@pytest.mark.parametrize("storage_type", ["s3", "azure", "hdfs", "local"])
def test_delete_files(started_cluster, format_version, storage_type):

View File

@ -0,0 +1,11 @@
drop table if exists test;
CREATE TABLE test (
`start_s` UInt32 EPHEMERAL COMMENT 'start UNIX time' ,
`start_us` UInt16 EPHEMERAL COMMENT 'start microseconds',
`finish_s` UInt32 EPHEMERAL COMMENT 'finish UNIX time',
`finish_us` UInt16 EPHEMERAL COMMENT 'finish microseconds',
`captured` DateTime MATERIALIZED fromUnixTimestamp(start_s),
`duration` Decimal32(6) MATERIALIZED finish_s - start_s + (finish_us - start_us)/1000000
)
ENGINE Null;
drop table if exists test;

View File

@ -244,7 +244,10 @@ Deduplication
DefaultTableEngine
DelayedInserts
DeliveryTag
Deltalake
DeltaLake
deltalakeCluster
deltaLakeCluster
Denormalize
DestroyAggregatesThreads
DestroyAggregatesThreadsActive
@ -377,10 +380,15 @@ Homebrew's
HorizontalDivide
Hostname
HouseOps
hudi
Hudi
hudiCluster
HudiCluster
HyperLogLog
Hypot
IANA
icebergCluster
IcebergCluster
IDE
IDEs
IDNA