Compare commits

..

1 Commits

Author SHA1 Message Date
JIaQi
2bc04c0b4b
Merge bf4445158c into 4e56c026cd 2024-11-20 21:57:21 +03:00
30 changed files with 65 additions and 545 deletions

View File

@ -16,18 +16,16 @@ ClickHouse works 100-1000x faster than traditional database management systems,
For more information and documentation see https://clickhouse.com/. For more information and documentation see https://clickhouse.com/.
<!-- This is not related to the docker official library, remove it before commit to https://github.com/docker-library/docs -->
## Versions ## Versions
- The `latest` tag points to the latest release of the latest stable branch. - The `latest` tag points to the latest release of the latest stable branch.
- Branch tags like `22.2` point to the latest release of the corresponding branch. - Branch tags like `22.2` point to the latest release of the corresponding branch.
- Full version tags like `22.2.3` and `22.2.3.5` point to the corresponding release. - Full version tags like `22.2.3.5` point to the corresponding release.
<!-- docker-official-library:off -->
<!-- This is not related to the docker official library, remove it before commit to https://github.com/docker-library/docs -->
- The tag `head` is built from the latest commit to the default branch. - The tag `head` is built from the latest commit to the default branch.
- Each tag has optional `-alpine` suffix to reflect that it's built on top of `alpine`. - Each tag has optional `-alpine` suffix to reflect that it's built on top of `alpine`.
<!-- REMOVE UNTIL HERE --> <!-- REMOVE UNTIL HERE -->
<!-- docker-official-library:on -->
### Compatibility ### Compatibility
- The amd64 image requires support for [SSE3 instructions](https://en.wikipedia.org/wiki/SSE3). Virtually all x86 CPUs after 2005 support SSE3. - The amd64 image requires support for [SSE3 instructions](https://en.wikipedia.org/wiki/SSE3). Virtually all x86 CPUs after 2005 support SSE3.

View File

@ -10,18 +10,16 @@ ClickHouse works 100-1000x faster than traditional database management systems,
For more information and documentation see https://clickhouse.com/. For more information and documentation see https://clickhouse.com/.
<!-- This is not related to the docker official library, remove it before commit to https://github.com/docker-library/docs -->
## Versions ## Versions
- The `latest` tag points to the latest release of the latest stable branch. - The `latest` tag points to the latest release of the latest stable branch.
- Branch tags like `22.2` point to the latest release of the corresponding branch. - Branch tags like `22.2` point to the latest release of the corresponding branch.
- Full version tags like `22.2.3` and `22.2.3.5` point to the corresponding release. - Full version tags like `22.2.3.5` point to the corresponding release.
<!-- docker-official-library:off -->
<!-- This is not related to the docker official library, remove it before commit to https://github.com/docker-library/docs -->
- The tag `head` is built from the latest commit to the default branch. - The tag `head` is built from the latest commit to the default branch.
- Each tag has optional `-alpine` suffix to reflect that it's built on top of `alpine`. - Each tag has optional `-alpine` suffix to reflect that it's built on top of `alpine`.
<!-- REMOVE UNTIL HERE --> <!-- REMOVE UNTIL HERE -->
<!-- docker-official-library:on -->
### Compatibility ### Compatibility
- The amd64 image requires support for [SSE3 instructions](https://en.wikipedia.org/wiki/SSE3). Virtually all x86 CPUs after 2005 support SSE3. - The amd64 image requires support for [SSE3 instructions](https://en.wikipedia.org/wiki/SSE3). Virtually all x86 CPUs after 2005 support SSE3.

View File

@ -522,3 +522,4 @@ sidebar_label: 2024
* Backported in [#68518](https://github.com/ClickHouse/ClickHouse/issues/68518): Minor update in Dynamic/JSON serializations. [#68459](https://github.com/ClickHouse/ClickHouse/pull/68459) ([Kruglov Pavel](https://github.com/Avogar)). * Backported in [#68518](https://github.com/ClickHouse/ClickHouse/issues/68518): Minor update in Dynamic/JSON serializations. [#68459](https://github.com/ClickHouse/ClickHouse/pull/68459) ([Kruglov Pavel](https://github.com/Avogar)).
* Backported in [#68558](https://github.com/ClickHouse/ClickHouse/issues/68558): CI: Minor release workflow fix. [#68536](https://github.com/ClickHouse/ClickHouse/pull/68536) ([Max K.](https://github.com/maxknv)). * Backported in [#68558](https://github.com/ClickHouse/ClickHouse/issues/68558): CI: Minor release workflow fix. [#68536](https://github.com/ClickHouse/ClickHouse/pull/68536) ([Max K.](https://github.com/maxknv)).
* Backported in [#68576](https://github.com/ClickHouse/ClickHouse/issues/68576): CI: Tidy build timeout from 2h to 3h. [#68567](https://github.com/ClickHouse/ClickHouse/pull/68567) ([Max K.](https://github.com/maxknv)). * Backported in [#68576](https://github.com/ClickHouse/ClickHouse/issues/68576): CI: Tidy build timeout from 2h to 3h. [#68567](https://github.com/ClickHouse/ClickHouse/pull/68567) ([Max K.](https://github.com/maxknv)).

View File

@ -497,3 +497,4 @@ sidebar_label: 2024
* Backported in [#69899](https://github.com/ClickHouse/ClickHouse/issues/69899): Revert "Merge pull request [#69032](https://github.com/ClickHouse/ClickHouse/issues/69032) from alexon1234/include_real_time_execution_in_http_header". [#69885](https://github.com/ClickHouse/ClickHouse/pull/69885) ([Alexey Milovidov](https://github.com/alexey-milovidov)). * Backported in [#69899](https://github.com/ClickHouse/ClickHouse/issues/69899): Revert "Merge pull request [#69032](https://github.com/ClickHouse/ClickHouse/issues/69032) from alexon1234/include_real_time_execution_in_http_header". [#69885](https://github.com/ClickHouse/ClickHouse/pull/69885) ([Alexey Milovidov](https://github.com/alexey-milovidov)).
* Backported in [#69931](https://github.com/ClickHouse/ClickHouse/issues/69931): RIPE is an acronym and thus should be capital. RIPE stands for **R**ACE **I**ntegrity **P**rimitives **E**valuation and RACE stands for **R**esearch and Development in **A**dvanced **C**ommunications **T**echnologies in **E**urope. [#69901](https://github.com/ClickHouse/ClickHouse/pull/69901) ([Nikita Mikhaylov](https://github.com/nikitamikhaylov)). * Backported in [#69931](https://github.com/ClickHouse/ClickHouse/issues/69931): RIPE is an acronym and thus should be capital. RIPE stands for **R**ACE **I**ntegrity **P**rimitives **E**valuation and RACE stands for **R**esearch and Development in **A**dvanced **C**ommunications **T**echnologies in **E**urope. [#69901](https://github.com/ClickHouse/ClickHouse/pull/69901) ([Nikita Mikhaylov](https://github.com/nikitamikhaylov)).
* Backported in [#70034](https://github.com/ClickHouse/ClickHouse/issues/70034): Revert "Add RIPEMD160 function". [#70005](https://github.com/ClickHouse/ClickHouse/pull/70005) ([Robert Schulze](https://github.com/rschu1ze)). * Backported in [#70034](https://github.com/ClickHouse/ClickHouse/issues/70034): Revert "Add RIPEMD160 function". [#70005](https://github.com/ClickHouse/ClickHouse/pull/70005) ([Robert Schulze](https://github.com/rschu1ze)).

View File

@ -936,4 +936,4 @@ SELECT mapPartialReverseSort((k, v) -> v, 2, map('k1', 3, 'k2', 1, 'k3', 2));
┌─mapPartialReverseSort(lambda(tuple(k, v), v), 2, map('k1', 3, 'k2', 1, 'k3', 2))─┐ ┌─mapPartialReverseSort(lambda(tuple(k, v), v), 2, map('k1', 3, 'k2', 1, 'k3', 2))─┐
│ {'k1':3,'k3':2,'k2':1} │ │ {'k1':3,'k3':2,'k2':1} │
└──────────────────────────────────────────────────────────────────────────────────┘ └──────────────────────────────────────────────────────────────────────────────────┘
``` ```

View File

@ -49,4 +49,4 @@ LIMIT 2
**See Also** **See Also**
- [DeltaLake engine](/docs/en/engines/table-engines/integrations/deltalake.md) - [DeltaLake engine](/docs/en/engines/table-engines/integrations/deltalake.md)
- [DeltaLake cluster table function](/docs/en/sql-reference/table-functions/deltalakeCluster.md)

View File

@ -1,30 +0,0 @@
---
slug: /en/sql-reference/table-functions/deltalakeCluster
sidebar_position: 46
sidebar_label: deltaLakeCluster
title: "deltaLakeCluster Table Function"
---
This is an extension to the [deltaLake](/docs/en/sql-reference/table-functions/deltalake.md) table function.
Allows processing files from [Delta Lake](https://github.com/delta-io/delta) tables in Amazon S3 in parallel from many nodes in a specified cluster. On initiator it creates a connection to all nodes in the cluster and dispatches each file dynamically. On the worker node it asks the initiator about the next task to process and processes it. This is repeated until all tasks are finished.
**Syntax**
``` sql
deltaLakeCluster(cluster_name, url [,aws_access_key_id, aws_secret_access_key] [,format] [,structure] [,compression])
```
**Arguments**
- `cluster_name` — Name of a cluster that is used to build a set of addresses and connection parameters to remote and local servers.
- Description of all other arguments coincides with description of arguments in equivalent [deltaLake](/docs/en/sql-reference/table-functions/deltalake.md) table function.
**Returned value**
A table with the specified structure for reading data from cluster in the specified Delta Lake table in S3.
**See Also**
- [deltaLake engine](/docs/en/engines/table-engines/integrations/deltalake.md)
- [deltaLake table function](/docs/en/sql-reference/table-functions/deltalake.md)

View File

@ -29,4 +29,4 @@ A table with the specified structure for reading data in the specified Hudi tabl
**See Also** **See Also**
- [Hudi engine](/docs/en/engines/table-engines/integrations/hudi.md) - [Hudi engine](/docs/en/engines/table-engines/integrations/hudi.md)
- [Hudi cluster table function](/docs/en/sql-reference/table-functions/hudiCluster.md)

View File

@ -1,30 +0,0 @@
---
slug: /en/sql-reference/table-functions/hudiCluster
sidebar_position: 86
sidebar_label: hudiCluster
title: "hudiCluster Table Function"
---
This is an extension to the [hudi](/docs/en/sql-reference/table-functions/hudi.md) table function.
Allows processing files from Apache [Hudi](https://hudi.apache.org/) tables in Amazon S3 in parallel from many nodes in a specified cluster. On initiator it creates a connection to all nodes in the cluster and dispatches each file dynamically. On the worker node it asks the initiator about the next task to process and processes it. This is repeated until all tasks are finished.
**Syntax**
``` sql
hudiCluster(cluster_name, url [,aws_access_key_id, aws_secret_access_key] [,format] [,structure] [,compression])
```
**Arguments**
- `cluster_name` — Name of a cluster that is used to build a set of addresses and connection parameters to remote and local servers.
- Description of all other arguments coincides with description of arguments in equivalent [hudi](/docs/en/sql-reference/table-functions/hudi.md) table function.
**Returned value**
A table with the specified structure for reading data from cluster in the specified Hudi table in S3.
**See Also**
- [Hudi engine](/docs/en/engines/table-engines/integrations/hudi.md)
- [Hudi table function](/docs/en/sql-reference/table-functions/hudi.md)

View File

@ -72,4 +72,3 @@ Table function `iceberg` is an alias to `icebergS3` now.
**See Also** **See Also**
- [Iceberg engine](/docs/en/engines/table-engines/integrations/iceberg.md) - [Iceberg engine](/docs/en/engines/table-engines/integrations/iceberg.md)
- [Iceberg cluster table function](/docs/en/sql-reference/table-functions/icebergCluster.md)

View File

@ -1,43 +0,0 @@
---
slug: /en/sql-reference/table-functions/icebergCluster
sidebar_position: 91
sidebar_label: icebergCluster
title: "icebergCluster Table Function"
---
This is an extension to the [iceberg](/docs/en/sql-reference/table-functions/iceberg.md) table function.
Allows processing files from Apache [Iceberg](https://iceberg.apache.org/) in parallel from many nodes in a specified cluster. On initiator it creates a connection to all nodes in the cluster and dispatches each file dynamically. On the worker node it asks the initiator about the next task to process and processes it. This is repeated until all tasks are finished.
**Syntax**
``` sql
icebergS3Cluster(cluster_name, url [, NOSIGN | access_key_id, secret_access_key, [session_token]] [,format] [,compression_method])
icebergS3Cluster(cluster_name, named_collection[, option=value [,..]])
icebergAzureCluster(cluster_name, connection_string|storage_account_url, container_name, blobpath, [,account_name], [,account_key] [,format] [,compression_method])
icebergAzureCluster(cluster_name, named_collection[, option=value [,..]])
icebergHDFSCluster(cluster_name, path_to_table, [,format] [,compression_method])
icebergHDFSCluster(cluster_name, named_collection[, option=value [,..]])
```
**Arguments**
- `cluster_name` — Name of a cluster that is used to build a set of addresses and connection parameters to remote and local servers.
- Description of all other arguments coincides with description of arguments in equivalent [iceberg](/docs/en/sql-reference/table-functions/iceberg.md) table function.
**Returned value**
A table with the specified structure for reading data from cluster in the specified Iceberg table.
**Examples**
```sql
SELECT * FROM icebergS3Cluster('cluster_simple', 'http://test.s3.amazonaws.com/clickhouse-bucket/test_table', 'test', 'test')
```
**See Also**
- [Iceberg engine](/docs/en/engines/table-engines/integrations/iceberg.md)
- [Iceberg table function](/docs/en/sql-reference/table-functions/iceberg.md)

View File

@ -476,7 +476,7 @@
<input id="edit" type="button" value="✎" style="display: none;"> <input id="edit" type="button" value="✎" style="display: none;">
<input id="add" type="button" value="Add chart" style="display: none;"> <input id="add" type="button" value="Add chart" style="display: none;">
<input id="reload" type="button" value="Reload"> <input id="reload" type="button" value="Reload">
<span id="search-span" class="nowrap" style="display: none;"><input id="search" type="button" value="🔎" title="Run query to obtain list of charts from ClickHouse. Either select dashboard name or write your own query"><input id="search-query" name="search" list="search-options" type="text" spellcheck="false"><datalist id="search-options"></datalist></span> <span id="search-span" class="nowrap" style="display: none;"><input id="search" type="button" value="🔎" title="Run query to obtain list of charts from ClickHouse"><input id="search-query" name="search" type="text" spellcheck="false"></span>
<div id="chart-params"></div> <div id="chart-params"></div>
</div> </div>
</form> </form>
@ -532,15 +532,9 @@ const errorMessages = [
} }
] ]
/// Dashboard selector
const dashboardSearchQuery = (dashboard_name) => `SELECT title, query FROM system.dashboards WHERE dashboard = '${dashboard_name}'`;
let dashboard_queries = {
"Overview": dashboardSearchQuery("Overview"),
};
const default_dashboard = 'Overview';
/// Query to fill `queries` list for the dashboard /// Query to fill `queries` list for the dashboard
let search_query = dashboardSearchQuery(default_dashboard); let search_query = `SELECT title, query FROM system.dashboards WHERE dashboard = 'Overview'`;
let customized = false; let customized = false;
let queries = []; let queries = [];
@ -1445,7 +1439,7 @@ async function reloadAll(do_search) {
try { try {
updateParams(); updateParams();
if (do_search) { if (do_search) {
search_query = toSearchQuery(document.getElementById('search-query').value); search_query = document.getElementById('search-query').value;
queries = []; queries = [];
refreshCustomized(false); refreshCustomized(false);
} }
@ -1510,7 +1504,7 @@ function updateFromState() {
document.getElementById('url').value = host; document.getElementById('url').value = host;
document.getElementById('user').value = user; document.getElementById('user').value = user;
document.getElementById('password').value = password; document.getElementById('password').value = password;
document.getElementById('search-query').value = fromSearchQuery(search_query); document.getElementById('search-query').value = search_query;
refreshCustomized(); refreshCustomized();
} }
@ -1549,44 +1543,6 @@ if (window.location.hash) {
} catch {} } catch {}
} }
function fromSearchQuery(query) {
for (const dashboard_name in dashboard_queries) {
if (query == dashboard_queries[dashboard_name])
return dashboard_name;
}
return query;
}
function toSearchQuery(value) {
if (value in dashboard_queries)
return dashboard_queries[value];
else
return value;
}
async function populateSearchOptions() {
let {reply, error} = await doFetch("SELECT dashboard FROM system.dashboards GROUP BY dashboard ORDER BY ALL");
if (error) {
throw new Error(error);
}
let data = reply.data;
if (data.dashboard.length == 0) {
console.log("Unable to fetch dashboards list");
return;
}
dashboard_queries = {};
for (let i = 0; i < data.dashboard.length; i++) {
const dashboard = data.dashboard[i];
dashboard_queries[dashboard] = dashboardSearchQuery(dashboard);
}
const searchOptions = document.getElementById('search-options');
for (const dashboard in dashboard_queries) {
const opt = document.createElement('option');
opt.value = dashboard;
searchOptions.appendChild(opt);
}
}
async function start() { async function start() {
try { try {
updateFromState(); updateFromState();
@ -1602,7 +1558,6 @@ async function start() {
} else { } else {
drawAll(); drawAll();
} }
await populateSearchOptions();
} catch (e) { } catch (e) {
showError(e.message); showError(e.message);
} }

View File

@ -528,7 +528,7 @@ QueryTreeNodePtr IdentifierResolver::tryResolveIdentifierFromCompoundExpression(
* *
* Resolve strategy: * Resolve strategy:
* 1. Try to bind identifier to scope argument name to node map. * 1. Try to bind identifier to scope argument name to node map.
* 2. If identifier is bound but expression context and node type are incompatible return nullptr. * 2. If identifier is binded but expression context and node type are incompatible return nullptr.
* *
* It is important to support edge cases, where we lookup for table or function node, but argument has same name. * It is important to support edge cases, where we lookup for table or function node, but argument has same name.
* Example: WITH (x -> x + 1) AS func, (func -> func(1) + func) AS lambda SELECT lambda(1); * Example: WITH (x -> x + 1) AS func, (func -> func(1) + func) AS lambda SELECT lambda(1);

View File

@ -362,7 +362,7 @@ ReplxxLineReader::ReplxxLineReader(
if (highlighter) if (highlighter)
rx.set_highlighter_callback(highlighter); rx.set_highlighter_callback(highlighter);
/// By default C-p/C-n bound to COMPLETE_NEXT/COMPLETE_PREV, /// By default C-p/C-n binded to COMPLETE_NEXT/COMPLETE_PREV,
/// bind C-p/C-n to history-previous/history-next like readline. /// bind C-p/C-n to history-previous/history-next like readline.
rx.bind_key(Replxx::KEY::control('N'), [this](char32_t code) { return rx.invoke(Replxx::ACTION::HISTORY_NEXT, code); }); rx.bind_key(Replxx::KEY::control('N'), [this](char32_t code) { return rx.invoke(Replxx::ACTION::HISTORY_NEXT, code); });
rx.bind_key(Replxx::KEY::control('P'), [this](char32_t code) { return rx.invoke(Replxx::ACTION::HISTORY_PREVIOUS, code); }); rx.bind_key(Replxx::KEY::control('P'), [this](char32_t code) { return rx.invoke(Replxx::ACTION::HISTORY_PREVIOUS, code); });
@ -384,9 +384,9 @@ ReplxxLineReader::ReplxxLineReader(
rx.bind_key(Replxx::KEY::control('J'), commit_action); rx.bind_key(Replxx::KEY::control('J'), commit_action);
rx.bind_key(Replxx::KEY::ENTER, commit_action); rx.bind_key(Replxx::KEY::ENTER, commit_action);
/// By default COMPLETE_NEXT/COMPLETE_PREV was bound to C-p/C-n, re-bind /// By default COMPLETE_NEXT/COMPLETE_PREV was binded to C-p/C-n, re-bind
/// to M-P/M-N (that was used for HISTORY_COMMON_PREFIX_SEARCH before, but /// to M-P/M-N (that was used for HISTORY_COMMON_PREFIX_SEARCH before, but
/// it also bound to M-p/M-n). /// it also binded to M-p/M-n).
rx.bind_key(Replxx::KEY::meta('N'), [this](char32_t code) { return rx.invoke(Replxx::ACTION::COMPLETE_NEXT, code); }); rx.bind_key(Replxx::KEY::meta('N'), [this](char32_t code) { return rx.invoke(Replxx::ACTION::COMPLETE_NEXT, code); });
rx.bind_key(Replxx::KEY::meta('P'), [this](char32_t code) { return rx.invoke(Replxx::ACTION::COMPLETE_PREVIOUS, code); }); rx.bind_key(Replxx::KEY::meta('P'), [this](char32_t code) { return rx.invoke(Replxx::ACTION::COMPLETE_PREVIOUS, code); });
/// By default M-BACKSPACE is KILL_TO_WHITESPACE_ON_LEFT, while in readline it is backward-kill-word /// By default M-BACKSPACE is KILL_TO_WHITESPACE_ON_LEFT, while in readline it is backward-kill-word

View File

@ -62,17 +62,16 @@ public:
for (size_t i = 0; i < num_rows; ++i) for (size_t i = 0; i < num_rows; ++i)
{ {
auto array_size = col_num->getInt(i); auto array_size = col_num->getInt(i);
auto element_size = col_value->byteSizeAt(i);
if (unlikely(array_size < 0)) if (unlikely(array_size < 0))
throw Exception(ErrorCodes::TOO_LARGE_ARRAY_SIZE, "Array size {} cannot be negative: while executing function {}", array_size, getName()); throw Exception(ErrorCodes::TOO_LARGE_ARRAY_SIZE, "Array size {} cannot be negative: while executing function {}", array_size, getName());
Int64 estimated_size = 0; Int64 estimated_size = 0;
if (unlikely(common::mulOverflow(array_size, element_size, estimated_size))) if (unlikely(common::mulOverflow(array_size, col_value->byteSize(), estimated_size)))
throw Exception(ErrorCodes::TOO_LARGE_ARRAY_SIZE, "Array size {} with element size {} bytes is too large: while executing function {}", array_size, element_size, getName()); throw Exception(ErrorCodes::TOO_LARGE_ARRAY_SIZE, "Array size {} with element size {} bytes is too large: while executing function {}", array_size, col_value->byteSize(), getName());
if (unlikely(estimated_size > max_array_size_in_columns_bytes)) if (unlikely(estimated_size > max_array_size_in_columns_bytes))
throw Exception(ErrorCodes::TOO_LARGE_ARRAY_SIZE, "Array size {} with element size {} bytes is too large: while executing function {}", array_size, element_size, getName()); throw Exception(ErrorCodes::TOO_LARGE_ARRAY_SIZE, "Array size {} with element size {} bytes is too large: while executing function {}", array_size, col_value->byteSize(), getName());
offset += array_size; offset += array_size;

View File

@ -237,7 +237,6 @@ bool IParserColumnDeclaration<NameParser>::parseImpl(Pos & pos, ASTPtr & node, E
null_modifier.emplace(true); null_modifier.emplace(true);
} }
bool is_comment = false;
/// Collate is also allowed after NULL/NOT NULL /// Collate is also allowed after NULL/NOT NULL
if (!collation_expression && s_collate.ignore(pos, expected) if (!collation_expression && s_collate.ignore(pos, expected)
&& !collation_parser.parse(pos, collation_expression, expected)) && !collation_parser.parse(pos, collation_expression, expected))
@ -255,9 +254,7 @@ bool IParserColumnDeclaration<NameParser>::parseImpl(Pos & pos, ASTPtr & node, E
else if (s_ephemeral.ignore(pos, expected)) else if (s_ephemeral.ignore(pos, expected))
{ {
default_specifier = s_ephemeral.getName(); default_specifier = s_ephemeral.getName();
if (s_comment.ignore(pos, expected)) if (!expr_parser.parse(pos, default_expression, expected) && type)
is_comment = true;
if ((is_comment || !expr_parser.parse(pos, default_expression, expected)) && type)
{ {
ephemeral_default = true; ephemeral_default = true;
@ -292,22 +289,19 @@ bool IParserColumnDeclaration<NameParser>::parseImpl(Pos & pos, ASTPtr & node, E
if (require_type && !type && !default_expression) if (require_type && !type && !default_expression)
return false; /// reject column name without type return false; /// reject column name without type
if (!is_comment) if ((type || default_expression) && allow_null_modifiers && !null_modifier.has_value())
{ {
if ((type || default_expression) && allow_null_modifiers && !null_modifier.has_value()) if (s_not.ignore(pos, expected))
{ {
if (s_not.ignore(pos, expected)) if (!s_null.ignore(pos, expected))
{ return false;
if (!s_null.ignore(pos, expected)) null_modifier.emplace(false);
return false;
null_modifier.emplace(false);
}
else if (s_null.ignore(pos, expected))
null_modifier.emplace(true);
} }
else if (s_null.ignore(pos, expected))
null_modifier.emplace(true);
} }
if (is_comment || s_comment.ignore(pos, expected)) if (s_comment.ignore(pos, expected))
{ {
/// should be followed by a string literal /// should be followed by a string literal
if (!string_literal_parser.parse(pos, comment_expression, expected)) if (!string_literal_parser.parse(pos, comment_expression, expected))

View File

@ -226,26 +226,6 @@ template class TableFunctionObjectStorage<HDFSClusterDefinition, StorageHDFSConf
#endif #endif
template class TableFunctionObjectStorage<LocalDefinition, StorageLocalConfiguration>; template class TableFunctionObjectStorage<LocalDefinition, StorageLocalConfiguration>;
#if USE_AVRO && USE_AWS_S3
template class TableFunctionObjectStorage<IcebergS3ClusterDefinition, StorageS3IcebergConfiguration>;
#endif
#if USE_AVRO && USE_AZURE_BLOB_STORAGE
template class TableFunctionObjectStorage<IcebergAzureClusterDefinition, StorageAzureIcebergConfiguration>;
#endif
#if USE_AVRO && USE_HDFS
template class TableFunctionObjectStorage<IcebergHDFSClusterDefinition, StorageHDFSIcebergConfiguration>;
#endif
#if USE_PARQUET && USE_AWS_S3
template class TableFunctionObjectStorage<DeltaLakeClusterDefinition, StorageS3DeltaLakeConfiguration>;
#endif
#if USE_AWS_S3
template class TableFunctionObjectStorage<HudiClusterDefinition, StorageS3HudiConfiguration>;
#endif
#if USE_AVRO #if USE_AVRO
void registerTableFunctionIceberg(TableFunctionFactory & factory) void registerTableFunctionIceberg(TableFunctionFactory & factory)
{ {

View File

@ -96,7 +96,7 @@ void registerTableFunctionObjectStorageCluster(TableFunctionFactory & factory)
{ {
.documentation = { .documentation = {
.description=R"(The table function can be used to read the data stored on HDFS in parallel for many nodes in a specified cluster.)", .description=R"(The table function can be used to read the data stored on HDFS in parallel for many nodes in a specified cluster.)",
.examples{{"HDFSCluster", "SELECT * FROM HDFSCluster(cluster, uri, format)", ""}}}, .examples{{"HDFSCluster", "SELECT * FROM HDFSCluster(cluster_name, uri, format)", ""}}},
.allow_readonly = false .allow_readonly = false
} }
); );
@ -105,77 +105,15 @@ void registerTableFunctionObjectStorageCluster(TableFunctionFactory & factory)
UNUSED(factory); UNUSED(factory);
} }
#if USE_AVRO
void registerTableFunctionIcebergCluster(TableFunctionFactory & factory)
{
UNUSED(factory);
#if USE_AWS_S3 #if USE_AWS_S3
factory.registerFunction<TableFunctionIcebergS3Cluster>( template class TableFunctionObjectStorageCluster<S3ClusterDefinition, StorageS3Configuration>;
{.documentation
= {.description = R"(The table function can be used to read the Iceberg table stored on S3 object store in parallel for many nodes in a specified cluster.)",
.examples{{"icebergS3Cluster", "SELECT * FROM icebergS3Cluster(cluster, url, [, NOSIGN | access_key_id, secret_access_key, [session_token]], format, [,compression])", ""}},
.categories{"DataLake"}},
.allow_readonly = false});
#endif #endif
#if USE_AZURE_BLOB_STORAGE #if USE_AZURE_BLOB_STORAGE
factory.registerFunction<TableFunctionIcebergAzureCluster>( template class TableFunctionObjectStorageCluster<AzureClusterDefinition, StorageAzureConfiguration>;
{.documentation
= {.description = R"(The table function can be used to read the Iceberg table stored on Azure object store in parallel for many nodes in a specified cluster.)",
.examples{{"icebergAzureCluster", "SELECT * FROM icebergAzureCluster(cluster, connection_string|storage_account_url, container_name, blobpath, [account_name, account_key, format, compression])", ""}},
.categories{"DataLake"}},
.allow_readonly = false});
#endif #endif
#if USE_HDFS #if USE_HDFS
factory.registerFunction<TableFunctionIcebergHDFSCluster>( template class TableFunctionObjectStorageCluster<HDFSClusterDefinition, StorageHDFSConfiguration>;
{.documentation
= {.description = R"(The table function can be used to read the Iceberg table stored on HDFS virtual filesystem in parallel for many nodes in a specified cluster.)",
.examples{{"icebergHDFSCluster", "SELECT * FROM icebergHDFSCluster(cluster, uri, [format], [structure], [compression_method])", ""}},
.categories{"DataLake"}},
.allow_readonly = false});
#endif #endif
} }
#endif
#if USE_AWS_S3
#if USE_PARQUET
void registerTableFunctionDeltaLakeCluster(TableFunctionFactory & factory)
{
factory.registerFunction<TableFunctionDeltaLakeCluster>(
{.documentation
= {.description = R"(The table function can be used to read the DeltaLake table stored on object store in parallel for many nodes in a specified cluster.)",
.examples{{"deltaLakeCluster", "SELECT * FROM deltaLakeCluster(cluster, url, access_key_id, secret_access_key)", ""}},
.categories{"DataLake"}},
.allow_readonly = false});
}
#endif
void registerTableFunctionHudiCluster(TableFunctionFactory & factory)
{
factory.registerFunction<TableFunctionHudiCluster>(
{.documentation
= {.description = R"(The table function can be used to read the Hudi table stored on object store in parallel for many nodes in a specified cluster.)",
.examples{{"hudiCluster", "SELECT * FROM hudiCluster(cluster, url, access_key_id, secret_access_key)", ""}},
.categories{"DataLake"}},
.allow_readonly = false});
}
#endif
void registerDataLakeClusterTableFunctions(TableFunctionFactory & factory)
{
UNUSED(factory);
#if USE_AVRO
registerTableFunctionIcebergCluster(factory);
#endif
#if USE_AWS_S3
#if USE_PARQUET
registerTableFunctionDeltaLakeCluster(factory);
#endif
registerTableFunctionHudiCluster(factory);
#endif
}
}

View File

@ -33,36 +33,6 @@ struct HDFSClusterDefinition
static constexpr auto storage_type_name = "HDFSCluster"; static constexpr auto storage_type_name = "HDFSCluster";
}; };
struct IcebergS3ClusterDefinition
{
static constexpr auto name = "icebergS3Cluster";
static constexpr auto storage_type_name = "IcebergS3Cluster";
};
struct IcebergAzureClusterDefinition
{
static constexpr auto name = "icebergAzureCluster";
static constexpr auto storage_type_name = "IcebergAzureCluster";
};
struct IcebergHDFSClusterDefinition
{
static constexpr auto name = "icebergHDFSCluster";
static constexpr auto storage_type_name = "IcebergHDFSCluster";
};
struct DeltaLakeClusterDefinition
{
static constexpr auto name = "deltaLakeCluster";
static constexpr auto storage_type_name = "DeltaLakeS3Cluster";
};
struct HudiClusterDefinition
{
static constexpr auto name = "hudiCluster";
static constexpr auto storage_type_name = "HudiS3Cluster";
};
/** /**
* Class implementing s3/hdfs/azureBlobStorageCluster(...) table functions, * Class implementing s3/hdfs/azureBlobStorageCluster(...) table functions,
* which allow to process many files from S3/HDFS/Azure blob storage on a specific cluster. * which allow to process many files from S3/HDFS/Azure blob storage on a specific cluster.
@ -109,25 +79,4 @@ using TableFunctionAzureBlobCluster = TableFunctionObjectStorageCluster<AzureClu
#if USE_HDFS #if USE_HDFS
using TableFunctionHDFSCluster = TableFunctionObjectStorageCluster<HDFSClusterDefinition, StorageHDFSConfiguration>; using TableFunctionHDFSCluster = TableFunctionObjectStorageCluster<HDFSClusterDefinition, StorageHDFSConfiguration>;
#endif #endif
#if USE_AVRO && USE_AWS_S3
using TableFunctionIcebergS3Cluster = TableFunctionObjectStorageCluster<IcebergS3ClusterDefinition, StorageS3IcebergConfiguration>;
#endif
#if USE_AVRO && USE_AZURE_BLOB_STORAGE
using TableFunctionIcebergAzureCluster = TableFunctionObjectStorageCluster<IcebergAzureClusterDefinition, StorageAzureIcebergConfiguration>;
#endif
#if USE_AVRO && USE_HDFS
using TableFunctionIcebergHDFSCluster = TableFunctionObjectStorageCluster<IcebergHDFSClusterDefinition, StorageHDFSIcebergConfiguration>;
#endif
#if USE_AWS_S3 && USE_PARQUET
using TableFunctionDeltaLakeCluster = TableFunctionObjectStorageCluster<DeltaLakeClusterDefinition, StorageS3DeltaLakeConfiguration>;
#endif
#if USE_AWS_S3
using TableFunctionHudiCluster = TableFunctionObjectStorageCluster<HudiClusterDefinition, StorageS3HudiConfiguration>;
#endif
} }

View File

@ -66,7 +66,6 @@ void registerTableFunctions(bool use_legacy_mongodb_integration [[maybe_unused]]
registerTableFunctionObjectStorage(factory); registerTableFunctionObjectStorage(factory);
registerTableFunctionObjectStorageCluster(factory); registerTableFunctionObjectStorageCluster(factory);
registerDataLakeTableFunctions(factory); registerDataLakeTableFunctions(factory);
registerDataLakeClusterTableFunctions(factory);
} }
} }

View File

@ -70,7 +70,6 @@ void registerTableFunctionExplain(TableFunctionFactory & factory);
void registerTableFunctionObjectStorage(TableFunctionFactory & factory); void registerTableFunctionObjectStorage(TableFunctionFactory & factory);
void registerTableFunctionObjectStorageCluster(TableFunctionFactory & factory); void registerTableFunctionObjectStorageCluster(TableFunctionFactory & factory);
void registerDataLakeTableFunctions(TableFunctionFactory & factory); void registerDataLakeTableFunctions(TableFunctionFactory & factory);
void registerDataLakeClusterTableFunctions(TableFunctionFactory & factory);
void registerTableFunctionTimeSeries(TableFunctionFactory & factory); void registerTableFunctionTimeSeries(TableFunctionFactory & factory);

View File

@ -299,6 +299,8 @@ class TagAttrs:
# Only one latest can exist # Only one latest can exist
latest: ClickHouseVersion latest: ClickHouseVersion
# Only one can be a major one (the most fresh per a year)
majors: Dict[int, ClickHouseVersion]
# Only one lts version can exist # Only one lts version can exist
lts: Optional[ClickHouseVersion] lts: Optional[ClickHouseVersion]
@ -343,6 +345,14 @@ def ldf_tags(version: ClickHouseVersion, distro: str, tag_attrs: TagAttrs) -> st
tags.append("lts") tags.append("lts")
tags.append(f"lts-{distro}") tags.append(f"lts-{distro}")
# If the tag `22`, `23`, `24` etc. should be included in the tags
with_major = tag_attrs.majors.get(version.major) in (None, version)
if with_major:
tag_attrs.majors[version.major] = version
if without_distro:
tags.append(f"{version.major}")
tags.append(f"{version.major}-{distro}")
# Add all normal tags # Add all normal tags
for tag in ( for tag in (
f"{version.major}.{version.minor}", f"{version.major}.{version.minor}",
@ -374,7 +384,7 @@ def generate_ldf(args: argparse.Namespace) -> None:
args.directory / git_runner(f"git -C {args.directory} rev-parse --show-cdup") args.directory / git_runner(f"git -C {args.directory} rev-parse --show-cdup")
).absolute() ).absolute()
lines = ldf_header(git, directory) lines = ldf_header(git, directory)
tag_attrs = TagAttrs(versions[-1], None) tag_attrs = TagAttrs(versions[-1], {}, None)
# We iterate from the most recent to the oldest version # We iterate from the most recent to the oldest version
for version in reversed(versions): for version in reversed(versions):

View File

@ -378,7 +378,7 @@ def test_reload_via_client(cluster, zk):
configure_from_zk(zk) configure_from_zk(zk)
break break
except QueryRuntimeException: except QueryRuntimeException:
logging.exception("The new socket is not bound yet") logging.exception("The new socket is not binded yet")
time.sleep(0.1) time.sleep(0.1)
if exception: if exception:

View File

@ -1,20 +0,0 @@
<clickhouse>
<remote_servers>
<cluster_simple>
<shard>
<replica>
<host>node1</host>
<port>9000</port>
</replica>
<replica>
<host>node2</host>
<port>9000</port>
</replica>
<replica>
<host>node3</host>
<port>9000</port>
</replica>
</shard>
</cluster_simple>
</remote_servers>
</clickhouse>

View File

@ -1,6 +0,0 @@
<clickhouse>
<query_log>
<database>system</database>
<table>query_log</table>
</query_log>
</clickhouse>

View File

@ -73,38 +73,14 @@ def started_cluster():
cluster.add_instance( cluster.add_instance(
"node1", "node1",
main_configs=[ main_configs=[
"configs/config.d/query_log.xml",
"configs/config.d/cluster.xml",
"configs/config.d/named_collections.xml", "configs/config.d/named_collections.xml",
"configs/config.d/filesystem_caches.xml", "configs/config.d/filesystem_caches.xml",
], ],
user_configs=["configs/users.d/users.xml"], user_configs=["configs/users.d/users.xml"],
with_minio=True, with_minio=True,
with_azurite=True, with_azurite=True,
stay_alive=True,
with_hdfs=with_hdfs, with_hdfs=with_hdfs,
stay_alive=True,
)
cluster.add_instance(
"node2",
main_configs=[
"configs/config.d/query_log.xml",
"configs/config.d/cluster.xml",
"configs/config.d/named_collections.xml",
"configs/config.d/filesystem_caches.xml",
],
user_configs=["configs/users.d/users.xml"],
stay_alive=True,
)
cluster.add_instance(
"node3",
main_configs=[
"configs/config.d/query_log.xml",
"configs/config.d/cluster.xml",
"configs/config.d/named_collections.xml",
"configs/config.d/filesystem_caches.xml",
],
user_configs=["configs/users.d/users.xml"],
stay_alive=True,
) )
logging.info("Starting cluster...") logging.info("Starting cluster...")
@ -206,7 +182,6 @@ def get_creation_expression(
cluster, cluster,
format="Parquet", format="Parquet",
table_function=False, table_function=False,
run_on_cluster=False,
**kwargs, **kwargs,
): ):
if storage_type == "s3": if storage_type == "s3":
@ -214,56 +189,35 @@ def get_creation_expression(
bucket = kwargs["bucket"] bucket = kwargs["bucket"]
else: else:
bucket = cluster.minio_bucket bucket = cluster.minio_bucket
print(bucket)
if run_on_cluster: if table_function:
assert table_function return f"icebergS3(s3, filename = 'iceberg_data/default/{table_name}/', format={format}, url = 'http://minio1:9001/{bucket}/')"
return f"icebergS3Cluster('cluster_simple', s3, filename = 'iceberg_data/default/{table_name}/', format={format}, url = 'http://minio1:9001/{bucket}/')"
else: else:
if table_function: return f"""
return f"icebergS3(s3, filename = 'iceberg_data/default/{table_name}/', format={format}, url = 'http://minio1:9001/{bucket}/')" DROP TABLE IF EXISTS {table_name};
else: CREATE TABLE {table_name}
return f""" ENGINE=IcebergS3(s3, filename = 'iceberg_data/default/{table_name}/', format={format}, url = 'http://minio1:9001/{bucket}/')"""
DROP TABLE IF EXISTS {table_name};
CREATE TABLE {table_name}
ENGINE=IcebergS3(s3, filename = 'iceberg_data/default/{table_name}/', format={format}, url = 'http://minio1:9001/{bucket}/')"""
elif storage_type == "azure": elif storage_type == "azure":
if run_on_cluster: if table_function:
assert table_function
return f""" return f"""
icebergAzureCluster('cluster_simple', azure, container = '{cluster.azure_container_name}', storage_account_url = '{cluster.env_variables["AZURITE_STORAGE_ACCOUNT_URL"]}', blob_path = '/iceberg_data/default/{table_name}/', format={format}) icebergAzure(azure, container = '{cluster.azure_container_name}', storage_account_url = '{cluster.env_variables["AZURITE_STORAGE_ACCOUNT_URL"]}', blob_path = '/iceberg_data/default/{table_name}/', format={format})
""" """
else: else:
if table_function: return f"""
return f""" DROP TABLE IF EXISTS {table_name};
icebergAzure(azure, container = '{cluster.azure_container_name}', storage_account_url = '{cluster.env_variables["AZURITE_STORAGE_ACCOUNT_URL"]}', blob_path = '/iceberg_data/default/{table_name}/', format={format}) CREATE TABLE {table_name}
""" ENGINE=IcebergAzure(azure, container = {cluster.azure_container_name}, storage_account_url = '{cluster.env_variables["AZURITE_STORAGE_ACCOUNT_URL"]}', blob_path = '/iceberg_data/default/{table_name}/', format={format})"""
else:
return f"""
DROP TABLE IF EXISTS {table_name};
CREATE TABLE {table_name}
ENGINE=IcebergAzure(azure, container = {cluster.azure_container_name}, storage_account_url = '{cluster.env_variables["AZURITE_STORAGE_ACCOUNT_URL"]}', blob_path = '/iceberg_data/default/{table_name}/', format={format})"""
elif storage_type == "hdfs": elif storage_type == "hdfs":
if run_on_cluster: if table_function:
assert table_function
return f""" return f"""
icebergHDFSCluster('cluster_simple', hdfs, filename= 'iceberg_data/default/{table_name}/', format={format}, url = 'hdfs://hdfs1:9000/') icebergHDFS(hdfs, filename= 'iceberg_data/default/{table_name}/', format={format}, url = 'hdfs://hdfs1:9000/')
""" """
else: else:
if table_function: return f"""
return f""" DROP TABLE IF EXISTS {table_name};
icebergHDFS(hdfs, filename= 'iceberg_data/default/{table_name}/', format={format}, url = 'hdfs://hdfs1:9000/') CREATE TABLE {table_name}
""" ENGINE=IcebergHDFS(hdfs, filename = 'iceberg_data/default/{table_name}/', format={format}, url = 'hdfs://hdfs1:9000/');"""
else:
return f"""
DROP TABLE IF EXISTS {table_name};
CREATE TABLE {table_name}
ENGINE=IcebergHDFS(hdfs, filename = 'iceberg_data/default/{table_name}/', format={format}, url = 'hdfs://hdfs1:9000/');"""
elif storage_type == "local": elif storage_type == "local":
assert not run_on_cluster
if table_function: if table_function:
return f""" return f"""
icebergLocal(local, path = '/iceberg_data/default/{table_name}/', format={format}) icebergLocal(local, path = '/iceberg_data/default/{table_name}/', format={format})
@ -273,7 +227,6 @@ def get_creation_expression(
DROP TABLE IF EXISTS {table_name}; DROP TABLE IF EXISTS {table_name};
CREATE TABLE {table_name} CREATE TABLE {table_name}
ENGINE=IcebergLocal(local, path = '/iceberg_data/default/{table_name}/', format={format});""" ENGINE=IcebergLocal(local, path = '/iceberg_data/default/{table_name}/', format={format});"""
else: else:
raise Exception(f"Unknown iceberg storage type: {storage_type}") raise Exception(f"Unknown iceberg storage type: {storage_type}")
@ -539,108 +492,6 @@ def test_types(started_cluster, format_version, storage_type):
) )
@pytest.mark.parametrize("format_version", ["1", "2"])
@pytest.mark.parametrize("storage_type", ["s3", "azure", "hdfs"])
def test_cluster_table_function(started_cluster, format_version, storage_type):
if is_arm() and storage_type == "hdfs":
pytest.skip("Disabled test IcebergHDFS for aarch64")
instance = started_cluster.instances["node1"]
spark = started_cluster.spark_session
TABLE_NAME = (
"test_iceberg_cluster_"
+ format_version
+ "_"
+ storage_type
+ "_"
+ get_uuid_str()
)
def add_df(mode):
write_iceberg_from_df(
spark,
generate_data(spark, 0, 100),
TABLE_NAME,
mode=mode,
format_version=format_version,
)
files = default_upload_directory(
started_cluster,
storage_type,
f"/iceberg_data/default/{TABLE_NAME}/",
f"/iceberg_data/default/{TABLE_NAME}/",
)
logging.info(f"Adding another dataframe. result files: {files}")
return files
files = add_df(mode="overwrite")
for i in range(1, len(started_cluster.instances)):
files = add_df(mode="append")
logging.info(f"Setup complete. files: {files}")
assert len(files) == 5 + 4 * (len(started_cluster.instances) - 1)
clusters = instance.query(f"SELECT * FROM system.clusters")
logging.info(f"Clusters setup: {clusters}")
# Regular Query only node1
table_function_expr = get_creation_expression(
storage_type, TABLE_NAME, started_cluster, table_function=True
)
select_regular = (
instance.query(f"SELECT * FROM {table_function_expr}").strip().split()
)
# Cluster Query with node1 as coordinator
table_function_expr_cluster = get_creation_expression(
storage_type,
TABLE_NAME,
started_cluster,
table_function=True,
run_on_cluster=True,
)
select_cluster = (
instance.query(f"SELECT * FROM {table_function_expr_cluster}").strip().split()
)
# Simple size check
assert len(select_regular) == 600
assert len(select_cluster) == 600
# Actual check
assert select_cluster == select_regular
# Check query_log
for replica in started_cluster.instances.values():
replica.query("SYSTEM FLUSH LOGS")
for node_name, replica in started_cluster.instances.items():
cluster_secondary_queries = (
replica.query(
f"""
SELECT query, type, is_initial_query, read_rows, read_bytes FROM system.query_log
WHERE
type = 'QueryStart' AND
positionCaseInsensitive(query, '{storage_type}Cluster') != 0 AND
position(query, '{TABLE_NAME}') != 0 AND
position(query, 'system.query_log') = 0 AND
NOT is_initial_query
"""
)
.strip()
.split("\n")
)
logging.info(
f"[{node_name}] cluster_secondary_queries: {cluster_secondary_queries}"
)
assert len(cluster_secondary_queries) == 1
@pytest.mark.parametrize("format_version", ["1", "2"]) @pytest.mark.parametrize("format_version", ["1", "2"])
@pytest.mark.parametrize("storage_type", ["s3", "azure", "hdfs", "local"]) @pytest.mark.parametrize("storage_type", ["s3", "azure", "hdfs", "local"])
def test_delete_files(started_cluster, format_version, storage_type): def test_delete_files(started_cluster, format_version, storage_type):

View File

@ -1,6 +1,3 @@
SELECT arrayWithConstant(96142475, ['qMUF']); -- { serverError TOO_LARGE_ARRAY_SIZE } SELECT arrayWithConstant(96142475, ['qMUF']); -- { serverError TOO_LARGE_ARRAY_SIZE }
SELECT arrayWithConstant(100000000, materialize([[[[[[[[[['Hello, world!']]]]]]]]]])); -- { serverError TOO_LARGE_ARRAY_SIZE } SELECT arrayWithConstant(100000000, materialize([[[[[[[[[['Hello, world!']]]]]]]]]])); -- { serverError TOO_LARGE_ARRAY_SIZE }
SELECT length(arrayWithConstant(10000000, materialize([[[[[[[[[['Hello world']]]]]]]]]]))); SELECT length(arrayWithConstant(10000000, materialize([[[[[[[[[['Hello world']]]]]]]]]])));
CREATE TEMPORARY TABLE args (value Array(Int)) ENGINE=Memory AS SELECT [1, 1, 1, 1] as value FROM numbers(1, 100);
SELECT length(arrayWithConstant(1000000, value)) FROM args FORMAT NULL;

View File

@ -1,11 +0,0 @@
drop table if exists test;
CREATE TABLE test (
`start_s` UInt32 EPHEMERAL COMMENT 'start UNIX time' ,
`start_us` UInt16 EPHEMERAL COMMENT 'start microseconds',
`finish_s` UInt32 EPHEMERAL COMMENT 'finish UNIX time',
`finish_us` UInt16 EPHEMERAL COMMENT 'finish microseconds',
`captured` DateTime MATERIALIZED fromUnixTimestamp(start_s),
`duration` Decimal32(6) MATERIALIZED finish_s - start_s + (finish_us - start_us)/1000000
)
ENGINE Null;
drop table if exists test;

View File

@ -244,10 +244,7 @@ Deduplication
DefaultTableEngine DefaultTableEngine
DelayedInserts DelayedInserts
DeliveryTag DeliveryTag
Deltalake
DeltaLake DeltaLake
deltalakeCluster
deltaLakeCluster
Denormalize Denormalize
DestroyAggregatesThreads DestroyAggregatesThreads
DestroyAggregatesThreadsActive DestroyAggregatesThreadsActive
@ -380,15 +377,10 @@ Homebrew's
HorizontalDivide HorizontalDivide
Hostname Hostname
HouseOps HouseOps
hudi
Hudi Hudi
hudiCluster
HudiCluster
HyperLogLog HyperLogLog
Hypot Hypot
IANA IANA
icebergCluster
IcebergCluster
IDE IDE
IDEs IDEs
IDNA IDNA