Compare commits

...

32 Commits

Author SHA1 Message Date
Daniil Ivanik
3f4dd36336
Merge f76df37cfa into e0f8b8d351 2024-11-21 00:40:00 -05:00
Yakov Olkhovskiy
e0f8b8d351
Merge pull request #70458 from ClickHouse/fix-ephemeral-comment
Fix ephemeral column comment
2024-11-21 05:10:11 +00:00
Alexey Milovidov
da2176d696
Merge pull request #72081 from ClickHouse/add-dashboard-selector
Add advanced dashboard selector
2024-11-21 05:06:51 +00:00
Alexey Milovidov
53e0036593
Merge pull request #72176 from ClickHouse/change-ldf-major-versions
Get rid of `major` tags in official docker images
2024-11-21 05:05:41 +00:00
Alexey Milovidov
25bd73ea5e
Merge pull request #72023 from ClickHouse/fix-bind
Fix comments
2024-11-21 05:03:24 +00:00
Yakov Olkhovskiy
72d5af29e0 Merge branch 'master' into fix-ephemeral-comment 2024-11-20 22:01:54 +00:00
Mikhail Artemenko
44b4bd38b9
Merge pull request #72045 from ClickHouse/issues/70174/cluster_versions
Enable cluster table functions for DataLake Storages
2024-11-20 21:22:37 +00:00
Shichao Jin
40c7d5fd1a
Merge pull request #71894 from udiz/fix-arrayWithConstant-size-estimation
Fix: arrayWithConstant size estimation using row's element size
2024-11-20 19:56:27 +00:00
Mikhail f. Shiryaev
9a2a664b04
Get rid of major tags in official docker images 2024-11-20 16:36:50 +01:00
Mikhail Artemenko
4ccebd9a24 fix syntax for iceberg in docs 2024-11-20 11:15:39 +00:00
Mikhail Artemenko
99177c0daf remove icebergCluster alias 2024-11-20 11:15:12 +00:00
serxa
ad67608956 Add advanced dashboard selector 2024-11-19 13:18:21 +00:00
Mikhail Artemenko
0951991c1d update aspell-dict.txt 2024-11-19 13:10:42 +00:00
Mikhail Artemenko
19aec5e572 Merge branch 'issues/70174/cluster_versions' of github.com:ClickHouse/ClickHouse into issues/70174/cluster_versions 2024-11-19 12:51:56 +00:00
Mikhail Artemenko
a367de9977 add docs 2024-11-19 12:49:59 +00:00
Mikhail Artemenko
6894e280b2 fix pr issues 2024-11-19 12:34:42 +00:00
Mikhail Artemenko
39ebe113d9 Merge branch 'master' into issues/70174/cluster_versions 2024-11-19 11:28:46 +00:00
udiz
239bbaa133 use length 2024-11-19 00:00:43 +00:00
udiz
07fac5808d format null on test 2024-11-18 23:08:48 +00:00
udiz
ed95e0781f test uses less memory 2024-11-18 22:48:38 +00:00
robot-clickhouse
014608fb6b Automatic style fix 2024-11-18 17:51:51 +00:00
Mikhail Artemenko
a29ded4941 add test for iceberg 2024-11-18 17:39:46 +00:00
Mikhail Artemenko
d2efae7511 enable cluster versions for datalake storages 2024-11-18 17:35:21 +00:00
divanik
f76df37cfa Add getAllFilesMask 2024-11-18 17:17:26 +00:00
divanik
63621bd381 Divided logic by files 2024-11-18 16:27:11 +00:00
Alexey Milovidov
49589da56e Fix comments 2024-11-18 07:18:46 +01:00
divanik
5746970ea9 To checkout 2024-11-17 13:41:23 +00:00
udiz
6879aa130a newline 2024-11-13 22:47:54 +00:00
udiz
43f3c886a2 add test 2024-11-13 22:46:36 +00:00
udiz
c383a743f7 arrayWithConstant size estimation using single value size 2024-11-13 20:02:31 +00:00
Yakov Olkhovskiy
3827d90bb0 add test 2024-10-08 02:37:41 +00:00
Yakov Olkhovskiy
bf3a3ad607 fix ephemeral comment 2024-10-08 02:27:36 +00:00
38 changed files with 1038 additions and 245 deletions

View File

@ -16,16 +16,18 @@ ClickHouse works 100-1000x faster than traditional database management systems,
For more information and documentation see https://clickhouse.com/.
<!-- This is not related to the docker official library, remove it before commit to https://github.com/docker-library/docs -->
## Versions
- The `latest` tag points to the latest release of the latest stable branch.
- Branch tags like `22.2` point to the latest release of the corresponding branch.
- Full version tags like `22.2.3.5` point to the corresponding release.
- Full version tags like `22.2.3` and `22.2.3.5` point to the corresponding release.
<!-- docker-official-library:off -->
<!-- This is not related to the docker official library, remove it before commit to https://github.com/docker-library/docs -->
- The tag `head` is built from the latest commit to the default branch.
- Each tag has optional `-alpine` suffix to reflect that it's built on top of `alpine`.
<!-- REMOVE UNTIL HERE -->
<!-- docker-official-library:on -->
### Compatibility
- The amd64 image requires support for [SSE3 instructions](https://en.wikipedia.org/wiki/SSE3). Virtually all x86 CPUs after 2005 support SSE3.

View File

@ -10,16 +10,18 @@ ClickHouse works 100-1000x faster than traditional database management systems,
For more information and documentation see https://clickhouse.com/.
<!-- This is not related to the docker official library, remove it before commit to https://github.com/docker-library/docs -->
## Versions
- The `latest` tag points to the latest release of the latest stable branch.
- Branch tags like `22.2` point to the latest release of the corresponding branch.
- Full version tags like `22.2.3.5` point to the corresponding release.
- Full version tags like `22.2.3` and `22.2.3.5` point to the corresponding release.
<!-- docker-official-library:off -->
<!-- This is not related to the docker official library, remove it before commit to https://github.com/docker-library/docs -->
- The tag `head` is built from the latest commit to the default branch.
- Each tag has optional `-alpine` suffix to reflect that it's built on top of `alpine`.
<!-- REMOVE UNTIL HERE -->
<!-- docker-official-library:on -->
### Compatibility
- The amd64 image requires support for [SSE3 instructions](https://en.wikipedia.org/wiki/SSE3). Virtually all x86 CPUs after 2005 support SSE3.

View File

@ -522,4 +522,3 @@ sidebar_label: 2024
* Backported in [#68518](https://github.com/ClickHouse/ClickHouse/issues/68518): Minor update in Dynamic/JSON serializations. [#68459](https://github.com/ClickHouse/ClickHouse/pull/68459) ([Kruglov Pavel](https://github.com/Avogar)).
* Backported in [#68558](https://github.com/ClickHouse/ClickHouse/issues/68558): CI: Minor release workflow fix. [#68536](https://github.com/ClickHouse/ClickHouse/pull/68536) ([Max K.](https://github.com/maxknv)).
* Backported in [#68576](https://github.com/ClickHouse/ClickHouse/issues/68576): CI: Tidy build timeout from 2h to 3h. [#68567](https://github.com/ClickHouse/ClickHouse/pull/68567) ([Max K.](https://github.com/maxknv)).

View File

@ -497,4 +497,3 @@ sidebar_label: 2024
* Backported in [#69899](https://github.com/ClickHouse/ClickHouse/issues/69899): Revert "Merge pull request [#69032](https://github.com/ClickHouse/ClickHouse/issues/69032) from alexon1234/include_real_time_execution_in_http_header". [#69885](https://github.com/ClickHouse/ClickHouse/pull/69885) ([Alexey Milovidov](https://github.com/alexey-milovidov)).
* Backported in [#69931](https://github.com/ClickHouse/ClickHouse/issues/69931): RIPE is an acronym and thus should be capital. RIPE stands for **R**ACE **I**ntegrity **P**rimitives **E**valuation and RACE stands for **R**esearch and Development in **A**dvanced **C**ommunications **T**echnologies in **E**urope. [#69901](https://github.com/ClickHouse/ClickHouse/pull/69901) ([Nikita Mikhaylov](https://github.com/nikitamikhaylov)).
* Backported in [#70034](https://github.com/ClickHouse/ClickHouse/issues/70034): Revert "Add RIPEMD160 function". [#70005](https://github.com/ClickHouse/ClickHouse/pull/70005) ([Robert Schulze](https://github.com/rschu1ze)).

View File

@ -936,4 +936,4 @@ SELECT mapPartialReverseSort((k, v) -> v, 2, map('k1', 3, 'k2', 1, 'k3', 2));
┌─mapPartialReverseSort(lambda(tuple(k, v), v), 2, map('k1', 3, 'k2', 1, 'k3', 2))─┐
│ {'k1':3,'k3':2,'k2':1} │
└──────────────────────────────────────────────────────────────────────────────────┘
```
```

View File

@ -49,4 +49,4 @@ LIMIT 2
**See Also**
- [DeltaLake engine](/docs/en/engines/table-engines/integrations/deltalake.md)
- [DeltaLake cluster table function](/docs/en/sql-reference/table-functions/deltalakeCluster.md)

View File

@ -0,0 +1,30 @@
---
slug: /en/sql-reference/table-functions/deltalakeCluster
sidebar_position: 46
sidebar_label: deltaLakeCluster
title: "deltaLakeCluster Table Function"
---
This is an extension to the [deltaLake](/docs/en/sql-reference/table-functions/deltalake.md) table function.
Allows processing files from [Delta Lake](https://github.com/delta-io/delta) tables in Amazon S3 in parallel from many nodes in a specified cluster. On initiator it creates a connection to all nodes in the cluster and dispatches each file dynamically. On the worker node it asks the initiator about the next task to process and processes it. This is repeated until all tasks are finished.
**Syntax**
``` sql
deltaLakeCluster(cluster_name, url [,aws_access_key_id, aws_secret_access_key] [,format] [,structure] [,compression])
```
**Arguments**
- `cluster_name` — Name of a cluster that is used to build a set of addresses and connection parameters to remote and local servers.
- Description of all other arguments coincides with description of arguments in equivalent [deltaLake](/docs/en/sql-reference/table-functions/deltalake.md) table function.
**Returned value**
A table with the specified structure for reading data from cluster in the specified Delta Lake table in S3.
**See Also**
- [deltaLake engine](/docs/en/engines/table-engines/integrations/deltalake.md)
- [deltaLake table function](/docs/en/sql-reference/table-functions/deltalake.md)

View File

@ -29,4 +29,4 @@ A table with the specified structure for reading data in the specified Hudi tabl
**See Also**
- [Hudi engine](/docs/en/engines/table-engines/integrations/hudi.md)
- [Hudi cluster table function](/docs/en/sql-reference/table-functions/hudiCluster.md)

View File

@ -0,0 +1,30 @@
---
slug: /en/sql-reference/table-functions/hudiCluster
sidebar_position: 86
sidebar_label: hudiCluster
title: "hudiCluster Table Function"
---
This is an extension to the [hudi](/docs/en/sql-reference/table-functions/hudi.md) table function.
Allows processing files from Apache [Hudi](https://hudi.apache.org/) tables in Amazon S3 in parallel from many nodes in a specified cluster. On initiator it creates a connection to all nodes in the cluster and dispatches each file dynamically. On the worker node it asks the initiator about the next task to process and processes it. This is repeated until all tasks are finished.
**Syntax**
``` sql
hudiCluster(cluster_name, url [,aws_access_key_id, aws_secret_access_key] [,format] [,structure] [,compression])
```
**Arguments**
- `cluster_name` — Name of a cluster that is used to build a set of addresses and connection parameters to remote and local servers.
- Description of all other arguments coincides with description of arguments in equivalent [hudi](/docs/en/sql-reference/table-functions/hudi.md) table function.
**Returned value**
A table with the specified structure for reading data from cluster in the specified Hudi table in S3.
**See Also**
- [Hudi engine](/docs/en/engines/table-engines/integrations/hudi.md)
- [Hudi table function](/docs/en/sql-reference/table-functions/hudi.md)

View File

@ -72,3 +72,4 @@ Table function `iceberg` is an alias to `icebergS3` now.
**See Also**
- [Iceberg engine](/docs/en/engines/table-engines/integrations/iceberg.md)
- [Iceberg cluster table function](/docs/en/sql-reference/table-functions/icebergCluster.md)

View File

@ -0,0 +1,43 @@
---
slug: /en/sql-reference/table-functions/icebergCluster
sidebar_position: 91
sidebar_label: icebergCluster
title: "icebergCluster Table Function"
---
This is an extension to the [iceberg](/docs/en/sql-reference/table-functions/iceberg.md) table function.
Allows processing files from Apache [Iceberg](https://iceberg.apache.org/) in parallel from many nodes in a specified cluster. On initiator it creates a connection to all nodes in the cluster and dispatches each file dynamically. On the worker node it asks the initiator about the next task to process and processes it. This is repeated until all tasks are finished.
**Syntax**
``` sql
icebergS3Cluster(cluster_name, url [, NOSIGN | access_key_id, secret_access_key, [session_token]] [,format] [,compression_method])
icebergS3Cluster(cluster_name, named_collection[, option=value [,..]])
icebergAzureCluster(cluster_name, connection_string|storage_account_url, container_name, blobpath, [,account_name], [,account_key] [,format] [,compression_method])
icebergAzureCluster(cluster_name, named_collection[, option=value [,..]])
icebergHDFSCluster(cluster_name, path_to_table, [,format] [,compression_method])
icebergHDFSCluster(cluster_name, named_collection[, option=value [,..]])
```
**Arguments**
- `cluster_name` — Name of a cluster that is used to build a set of addresses and connection parameters to remote and local servers.
- Description of all other arguments coincides with description of arguments in equivalent [iceberg](/docs/en/sql-reference/table-functions/iceberg.md) table function.
**Returned value**
A table with the specified structure for reading data from cluster in the specified Iceberg table.
**Examples**
```sql
SELECT * FROM icebergS3Cluster('cluster_simple', 'http://test.s3.amazonaws.com/clickhouse-bucket/test_table', 'test', 'test')
```
**See Also**
- [Iceberg engine](/docs/en/engines/table-engines/integrations/iceberg.md)
- [Iceberg table function](/docs/en/sql-reference/table-functions/iceberg.md)

View File

@ -476,7 +476,7 @@
<input id="edit" type="button" value="✎" style="display: none;">
<input id="add" type="button" value="Add chart" style="display: none;">
<input id="reload" type="button" value="Reload">
<span id="search-span" class="nowrap" style="display: none;"><input id="search" type="button" value="🔎" title="Run query to obtain list of charts from ClickHouse"><input id="search-query" name="search" type="text" spellcheck="false"></span>
<span id="search-span" class="nowrap" style="display: none;"><input id="search" type="button" value="🔎" title="Run query to obtain list of charts from ClickHouse. Either select dashboard name or write your own query"><input id="search-query" name="search" list="search-options" type="text" spellcheck="false"><datalist id="search-options"></datalist></span>
<div id="chart-params"></div>
</div>
</form>
@ -532,9 +532,15 @@ const errorMessages = [
}
]
/// Dashboard selector
const dashboardSearchQuery = (dashboard_name) => `SELECT title, query FROM system.dashboards WHERE dashboard = '${dashboard_name}'`;
let dashboard_queries = {
"Overview": dashboardSearchQuery("Overview"),
};
const default_dashboard = 'Overview';
/// Query to fill `queries` list for the dashboard
let search_query = `SELECT title, query FROM system.dashboards WHERE dashboard = 'Overview'`;
let search_query = dashboardSearchQuery(default_dashboard);
let customized = false;
let queries = [];
@ -1439,7 +1445,7 @@ async function reloadAll(do_search) {
try {
updateParams();
if (do_search) {
search_query = document.getElementById('search-query').value;
search_query = toSearchQuery(document.getElementById('search-query').value);
queries = [];
refreshCustomized(false);
}
@ -1504,7 +1510,7 @@ function updateFromState() {
document.getElementById('url').value = host;
document.getElementById('user').value = user;
document.getElementById('password').value = password;
document.getElementById('search-query').value = search_query;
document.getElementById('search-query').value = fromSearchQuery(search_query);
refreshCustomized();
}
@ -1543,6 +1549,44 @@ if (window.location.hash) {
} catch {}
}
function fromSearchQuery(query) {
for (const dashboard_name in dashboard_queries) {
if (query == dashboard_queries[dashboard_name])
return dashboard_name;
}
return query;
}
function toSearchQuery(value) {
if (value in dashboard_queries)
return dashboard_queries[value];
else
return value;
}
async function populateSearchOptions() {
let {reply, error} = await doFetch("SELECT dashboard FROM system.dashboards GROUP BY dashboard ORDER BY ALL");
if (error) {
throw new Error(error);
}
let data = reply.data;
if (data.dashboard.length == 0) {
console.log("Unable to fetch dashboards list");
return;
}
dashboard_queries = {};
for (let i = 0; i < data.dashboard.length; i++) {
const dashboard = data.dashboard[i];
dashboard_queries[dashboard] = dashboardSearchQuery(dashboard);
}
const searchOptions = document.getElementById('search-options');
for (const dashboard in dashboard_queries) {
const opt = document.createElement('option');
opt.value = dashboard;
searchOptions.appendChild(opt);
}
}
async function start() {
try {
updateFromState();
@ -1558,6 +1602,7 @@ async function start() {
} else {
drawAll();
}
await populateSearchOptions();
} catch (e) {
showError(e.message);
}

View File

@ -528,7 +528,7 @@ QueryTreeNodePtr IdentifierResolver::tryResolveIdentifierFromCompoundExpression(
*
* Resolve strategy:
* 1. Try to bind identifier to scope argument name to node map.
* 2. If identifier is binded but expression context and node type are incompatible return nullptr.
* 2. If identifier is bound but expression context and node type are incompatible return nullptr.
*
* It is important to support edge cases, where we lookup for table or function node, but argument has same name.
* Example: WITH (x -> x + 1) AS func, (func -> func(1) + func) AS lambda SELECT lambda(1);

View File

@ -135,6 +135,7 @@ add_headers_and_sources(dbms Storages/ObjectStorage/S3)
add_headers_and_sources(dbms Storages/ObjectStorage/HDFS)
add_headers_and_sources(dbms Storages/ObjectStorage/Local)
add_headers_and_sources(dbms Storages/ObjectStorage/DataLakes)
add_headers_and_sources(dbms Storages/ObjectStorage/DataLakes/Iceberg)
add_headers_and_sources(dbms Common/NamedCollections)
add_headers_and_sources(dbms Common/Scheduler/Workload)

View File

@ -362,7 +362,7 @@ ReplxxLineReader::ReplxxLineReader(
if (highlighter)
rx.set_highlighter_callback(highlighter);
/// By default C-p/C-n binded to COMPLETE_NEXT/COMPLETE_PREV,
/// By default C-p/C-n bound to COMPLETE_NEXT/COMPLETE_PREV,
/// bind C-p/C-n to history-previous/history-next like readline.
rx.bind_key(Replxx::KEY::control('N'), [this](char32_t code) { return rx.invoke(Replxx::ACTION::HISTORY_NEXT, code); });
rx.bind_key(Replxx::KEY::control('P'), [this](char32_t code) { return rx.invoke(Replxx::ACTION::HISTORY_PREVIOUS, code); });
@ -384,9 +384,9 @@ ReplxxLineReader::ReplxxLineReader(
rx.bind_key(Replxx::KEY::control('J'), commit_action);
rx.bind_key(Replxx::KEY::ENTER, commit_action);
/// By default COMPLETE_NEXT/COMPLETE_PREV was binded to C-p/C-n, re-bind
/// By default COMPLETE_NEXT/COMPLETE_PREV was bound to C-p/C-n, re-bind
/// to M-P/M-N (that was used for HISTORY_COMMON_PREFIX_SEARCH before, but
/// it also binded to M-p/M-n).
/// it also bound to M-p/M-n).
rx.bind_key(Replxx::KEY::meta('N'), [this](char32_t code) { return rx.invoke(Replxx::ACTION::COMPLETE_NEXT, code); });
rx.bind_key(Replxx::KEY::meta('P'), [this](char32_t code) { return rx.invoke(Replxx::ACTION::COMPLETE_PREVIOUS, code); });
/// By default M-BACKSPACE is KILL_TO_WHITESPACE_ON_LEFT, while in readline it is backward-kill-word

View File

@ -291,3 +291,15 @@ namespace cctz_extension
ZoneInfoSourceFactory zone_info_source_factory = custom_factory;
}
DateLUTImpl::Values DateLUTImpl::lutIndexByMonthSinceEpochStartsZeroIndexing(Int32 months) const
{
Int16 year = 1970 + months / 12;
UInt8 month = months % 12 + 1;
return lut[makeLUTIndex(year, month, 1)];
}
DateLUTImpl::Values DateLUTImpl::lutIndexByYearSinceEpochStartsZeroIndexing(Int16 years) const
{
return lut[makeLUTIndex(years + 1970, 1, 1)];
}

View File

@ -1166,6 +1166,10 @@ public:
return LUTIndex{std::min(index, static_cast<UInt32>(DATE_LUT_SIZE - 1))};
}
Values lutIndexByMonthSinceEpochStartsZeroIndexing(Int32 months) const;
Values lutIndexByYearSinceEpochStartsZeroIndexing(Int16 years) const;
/// Create DayNum from year, month, day of month.
ExtendedDayNum makeDayNum(Int16 year, UInt8 month, UInt8 day_of_month, Int32 default_error_day_num = 0) const
{

View File

@ -62,16 +62,17 @@ public:
for (size_t i = 0; i < num_rows; ++i)
{
auto array_size = col_num->getInt(i);
auto element_size = col_value->byteSizeAt(i);
if (unlikely(array_size < 0))
throw Exception(ErrorCodes::TOO_LARGE_ARRAY_SIZE, "Array size {} cannot be negative: while executing function {}", array_size, getName());
Int64 estimated_size = 0;
if (unlikely(common::mulOverflow(array_size, col_value->byteSize(), estimated_size)))
throw Exception(ErrorCodes::TOO_LARGE_ARRAY_SIZE, "Array size {} with element size {} bytes is too large: while executing function {}", array_size, col_value->byteSize(), getName());
if (unlikely(common::mulOverflow(array_size, element_size, estimated_size)))
throw Exception(ErrorCodes::TOO_LARGE_ARRAY_SIZE, "Array size {} with element size {} bytes is too large: while executing function {}", array_size, element_size, getName());
if (unlikely(estimated_size > max_array_size_in_columns_bytes))
throw Exception(ErrorCodes::TOO_LARGE_ARRAY_SIZE, "Array size {} with element size {} bytes is too large: while executing function {}", array_size, col_value->byteSize(), getName());
throw Exception(ErrorCodes::TOO_LARGE_ARRAY_SIZE, "Array size {} with element size {} bytes is too large: while executing function {}", array_size, element_size, getName());
offset += array_size;

View File

@ -237,6 +237,7 @@ bool IParserColumnDeclaration<NameParser>::parseImpl(Pos & pos, ASTPtr & node, E
null_modifier.emplace(true);
}
bool is_comment = false;
/// Collate is also allowed after NULL/NOT NULL
if (!collation_expression && s_collate.ignore(pos, expected)
&& !collation_parser.parse(pos, collation_expression, expected))
@ -254,7 +255,9 @@ bool IParserColumnDeclaration<NameParser>::parseImpl(Pos & pos, ASTPtr & node, E
else if (s_ephemeral.ignore(pos, expected))
{
default_specifier = s_ephemeral.getName();
if (!expr_parser.parse(pos, default_expression, expected) && type)
if (s_comment.ignore(pos, expected))
is_comment = true;
if ((is_comment || !expr_parser.parse(pos, default_expression, expected)) && type)
{
ephemeral_default = true;
@ -289,19 +292,22 @@ bool IParserColumnDeclaration<NameParser>::parseImpl(Pos & pos, ASTPtr & node, E
if (require_type && !type && !default_expression)
return false; /// reject column name without type
if ((type || default_expression) && allow_null_modifiers && !null_modifier.has_value())
if (!is_comment)
{
if (s_not.ignore(pos, expected))
if ((type || default_expression) && allow_null_modifiers && !null_modifier.has_value())
{
if (!s_null.ignore(pos, expected))
return false;
null_modifier.emplace(false);
if (s_not.ignore(pos, expected))
{
if (!s_null.ignore(pos, expected))
return false;
null_modifier.emplace(false);
}
else if (s_null.ignore(pos, expected))
null_modifier.emplace(true);
}
else if (s_null.ignore(pos, expected))
null_modifier.emplace(true);
}
if (s_comment.ignore(pos, expected))
if (is_comment || s_comment.ignore(pos, expected))
{
/// should be followed by a string literal
if (!string_literal_parser.parse(pos, comment_expression, expected))

View File

@ -5,7 +5,7 @@
#include <Storages/ObjectStorage/DataLakes/DeltaLakeMetadata.h>
#include <Storages/ObjectStorage/DataLakes/HudiMetadata.h>
#include <Storages/ObjectStorage/DataLakes/IDataLakeMetadata.h>
#include <Storages/ObjectStorage/DataLakes/IcebergMetadata.h>
#include <Storages/ObjectStorage/DataLakes/Iceberg/IcebergMetadata.h>
#include <Storages/ObjectStorage/HDFS/Configuration.h>
#include <Storages/ObjectStorage/Local/Configuration.h>
#include <Storages/ObjectStorage/S3/Configuration.h>

View File

@ -1,44 +1,46 @@
#include "config.h"
#if USE_AVRO
#include <Common/logger_useful.h>
#include <Core/Settings.h>
#include <Columns/ColumnString.h>
#include <Columns/ColumnTuple.h>
#include <Columns/IColumn.h>
#include <DataTypes/DataTypeArray.h>
#include <DataTypes/DataTypeDate.h>
#include <DataTypes/DataTypeDateTime64.h>
#include <DataTypes/DataTypeFactory.h>
#include <DataTypes/DataTypeFixedString.h>
#include <DataTypes/DataTypeMap.h>
#include <DataTypes/DataTypeNullable.h>
#include <DataTypes/DataTypeString.h>
#include <DataTypes/DataTypeTuple.h>
#include <DataTypes/DataTypeUUID.h>
#include <DataTypes/DataTypesDecimal.h>
#include <DataTypes/DataTypesNumber.h>
#include <Formats/FormatFactory.h>
#include <IO/ReadBufferFromString.h>
#include <IO/ReadBufferFromFileBase.h>
#include <IO/ReadHelpers.h>
#include <Processors/Formats/Impl/AvroRowInputFormat.h>
#include <Storages/ObjectStorage/DataLakes/IcebergMetadata.h>
#include <Storages/ObjectStorage/DataLakes/Common.h>
#include <Storages/ObjectStorage/StorageObjectStorageSource.h>
# include <Columns/ColumnString.h>
# include <Columns/ColumnTuple.h>
# include <Columns/IColumn.h>
# include <Core/Settings.h>
# include <DataTypes/DataTypeArray.h>
# include <DataTypes/DataTypeDate.h>
# include <DataTypes/DataTypeDateTime64.h>
# include <DataTypes/DataTypeFactory.h>
# include <DataTypes/DataTypeFixedString.h>
# include <DataTypes/DataTypeMap.h>
# include <DataTypes/DataTypeNullable.h>
# include <DataTypes/DataTypeString.h>
# include <DataTypes/DataTypeTuple.h>
# include <DataTypes/DataTypeUUID.h>
# include <DataTypes/DataTypesDecimal.h>
# include <DataTypes/DataTypesNumber.h>
# include <Formats/FormatFactory.h>
# include <IO/ReadBufferFromFileBase.h>
# include <IO/ReadBufferFromString.h>
# include <IO/ReadHelpers.h>
# include <Processors/Formats/Impl/AvroRowInputFormat.h>
# include <Storages/ObjectStorage/DataLakes/Common.h>
# include <Storages/ObjectStorage/DataLakes/Iceberg/IcebergMetadata.h>
# include <Storages/ObjectStorage/StorageObjectStorageSource.h>
# include <Common/logger_useful.h>
#include <Poco/JSON/Array.h>
#include <Poco/JSON/Object.h>
#include <Poco/JSON/Parser.h>
#include <filesystem>
# include <Poco/JSON/Array.h>
# include <Poco/JSON/Object.h>
# include <Poco/JSON/Parser.h>
# include <filesystem>
namespace DB
{
namespace Setting
{
extern const SettingsBool iceberg_engine_ignore_schema_evolution;
extern const SettingsBool iceberg_engine_ignore_schema_evolution;
}
namespace ErrorCodes
@ -87,6 +89,7 @@ enum class DataFileContent : uint8_t
EQUALITY_DELETES = 2,
};
/**
* Iceberg supports the next data types (see https://iceberg.apache.org/spec/#schemas-and-data-types):
* - Primitive types:
@ -245,10 +248,10 @@ DataTypePtr getFieldType(const Poco::JSON::Object::Ptr & field, const String & t
}
throw Exception(ErrorCodes::BAD_ARGUMENTS, "Unexpected 'type' field: {}", type.toString());
}
std::pair<NamesAndTypesList, Int32> parseTableSchema(const Poco::JSON::Object::Ptr & metadata_object, int format_version, bool ignore_schema_evolution)
std::tuple<NamesAndTypesList, Int32, std::unordered_map<Int32, NameAndTypePair>>
parseTableSchema(const Poco::JSON::Object::Ptr & metadata_object, int format_version, bool ignore_schema_evolution)
{
Poco::JSON::Object::Ptr schema;
Int32 current_schema_id;
@ -279,20 +282,24 @@ std::pair<NamesAndTypesList, Int32> parseTableSchema(const Poco::JSON::Object::P
}
if (!schema)
throw Exception(ErrorCodes::BAD_ARGUMENTS, R"(There is no schema with "schema-id" that matches "current-schema-id" in metadata)");
throw Exception(
ErrorCodes::BAD_ARGUMENTS, R"(There is no schema with "schema-id" that matches "current-schema-id" in metadata)");
}
else
{
if (schemas->size() != 1)
throw Exception(ErrorCodes::UNSUPPORTED_METHOD,
throw Exception(
ErrorCodes::UNSUPPORTED_METHOD,
"Cannot read Iceberg table: the table schema has been changed at least 1 time, reading tables with evolved schema is "
"supported. If you want to ignore schema evolution and read all files using latest schema saved on table creation, enable setting "
"supported. If you want to ignore schema evolution and read all files using latest schema saved on table creation, "
"enable setting "
"iceberg_engine_ignore_schema_evolution (Note: enabling this setting can lead to incorrect result)");
/// Now we sure that there is only one schema.
schema = schemas->getObject(0);
if (schema->getValue<int>("schema-id") != current_schema_id)
throw Exception(ErrorCodes::BAD_ARGUMENTS, R"(Field "schema-id" of the schema doesn't match "current-schema-id" in metadata)");
throw Exception(
ErrorCodes::BAD_ARGUMENTS, R"(Field "schema-id" of the schema doesn't match "current-schema-id" in metadata)");
}
}
else
@ -301,30 +308,32 @@ std::pair<NamesAndTypesList, Int32> parseTableSchema(const Poco::JSON::Object::P
current_schema_id = schema->getValue<int>("schema-id");
/// Field "schemas" is optional for version 1, but after version 2 was introduced,
/// in most cases this field is added for new tables in version 1 as well.
if (!ignore_schema_evolution && metadata_object->has("schemas") && metadata_object->get("schemas").extract<Poco::JSON::Array::Ptr>()->size() > 1)
throw Exception(ErrorCodes::UNSUPPORTED_METHOD,
if (!ignore_schema_evolution && metadata_object->has("schemas")
&& metadata_object->get("schemas").extract<Poco::JSON::Array::Ptr>()->size() > 1§)
throw Exception(
ErrorCodes::UNSUPPORTED_METHOD,
"Cannot read Iceberg table: the table schema has been changed at least 1 time, reading tables with evolved schema is not "
"supported. If you want to ignore schema evolution and read all files using latest schema saved on table creation, enable setting "
"supported. If you want to ignore schema evolution and read all files using latest schema saved on table creation, enable "
"setting "
"iceberg_engine_ignore_schema_evolution (Note: enabling this setting can lead to incorrect result)");
}
NamesAndTypesList names_and_types;
auto fields = schema->get("fields").extract<Poco::JSON::Array::Ptr>();
std::unordered_map<Int32, NameAndTypePair> name_and_type_by_source_id;
for (size_t i = 0; i != fields->size(); ++i)
{
auto field = fields->getObject(static_cast<UInt32>(i));
auto name = field->getValue<String>("name");
bool required = field->getValue<bool>("required");
names_and_types.push_back({name, getFieldType(field, "type", required)});
name_and_type_by_source_id[field->getValue<int>("id")] = {name, names_and_types.back().type};
}
return {std::move(names_and_types), current_schema_id};
return {std::move(names_and_types), current_schema_id, name_and_type_by_source_id};
}
MutableColumns parseAvro(
avro::DataFileReaderBase & file_reader,
const Block & header,
const FormatSettings & settings)
MutableColumns parseAvro(avro::DataFileReaderBase & file_reader, const Block & header, const FormatSettings & settings)
{
auto deserializer = std::make_unique<AvroDeserializer>(header, file_reader.dataSchema(), true, true, settings);
MutableColumns columns = header.cloneEmptyColumns();
@ -345,17 +354,14 @@ MutableColumns parseAvro(
* 1) v<V>.metadata.json, where V - metadata version.
* 2) <V>-<random-uuid>.metadata.json, where V - metadata version
*/
std::pair<Int32, String> getMetadataFileAndVersion(
ObjectStoragePtr object_storage,
const StorageObjectStorage::Configuration & configuration)
std::pair<Int32, String>
getMetadataFileAndVersion(ObjectStoragePtr object_storage, const StorageObjectStorage::Configuration & configuration)
{
const auto metadata_files = listFiles(*object_storage, configuration, "metadata", ".metadata.json");
if (metadata_files.empty())
{
throw Exception(
ErrorCodes::FILE_DOESNT_EXIST,
"The metadata file for Iceberg table with path {} doesn't exist",
configuration.getPath());
ErrorCodes::FILE_DOESNT_EXIST, "The metadata file for Iceberg table with path {} doesn't exist", configuration.getPath());
}
std::vector<std::pair<UInt32, String>> metadata_files_with_versions;
@ -372,7 +378,8 @@ std::pair<Int32, String> getMetadataFileAndVersion(
version_str = String(file_name.begin(), file_name.begin() + file_name.find_first_of('-'));
if (!std::all_of(version_str.begin(), version_str.end(), isdigit))
throw Exception(ErrorCodes::BAD_ARGUMENTS, "Bad metadata file name: {}. Expected vN.metadata.json where N is a number", file_name);
throw Exception(
ErrorCodes::BAD_ARGUMENTS, "Bad metadata file name: {}. Expected vN.metadata.json where N is a number", file_name);
metadata_files_with_versions.emplace_back(std::stoi(version_str), path);
}
@ -403,7 +410,7 @@ IcebergMetadata::create(ObjectStoragePtr object_storage, ConfigurationObserverPt
const Poco::JSON::Object::Ptr & object = json.extract<Poco::JSON::Object::Ptr>();
auto format_version = object->getValue<int>("format-version");
auto [schema, schema_id]
auto [schema, schema_id, name_and_type_by_source_id]
= parseTableSchema(object, format_version, local_context->getSettingsRef()[Setting::iceberg_engine_ignore_schema_evolution]);
auto current_snapshot_id = object->getValue<Int64>("current-snapshot-id");
@ -456,7 +463,6 @@ Strings IcebergMetadata::getDataFiles() const
if (!data_files.empty())
return data_files;
Strings manifest_files;
if (manifest_list_file.empty())
return data_files;
@ -465,7 +471,8 @@ Strings IcebergMetadata::getDataFiles() const
auto context = getContext();
StorageObjectStorageSource::ObjectInfo object_info(manifest_list_file);
auto manifest_list_buf = StorageObjectStorageSource::createReadBuffer(object_info, object_storage, context, log);
auto manifest_list_file_reader = std::make_unique<avro::DataFileReaderBase>(std::make_unique<AvroInputStreamReadBufferAdapter>(*manifest_list_buf));
auto manifest_list_file_reader
= std::make_unique<avro::DataFileReaderBase>(std::make_unique<AvroInputStreamReadBufferAdapter>(*manifest_list_buf));
auto data_type = AvroSchemaReader::avroNodeToDataType(manifest_list_file_reader->dataSchema().root()->leafAt(0));
Block header{{data_type->createColumn(), data_type, "manifest_path"}};
@ -511,7 +518,8 @@ Strings IcebergMetadata::getDataFiles() const
throw Exception(
ErrorCodes::UNSUPPORTED_METHOD,
"Cannot read Iceberg table: the table schema has been changed at least 1 time, reading tables with evolved schema is not "
"supported. If you want to ignore schema evolution and read all files using latest schema saved on table creation, enable setting "
"supported. If you want to ignore schema evolution and read all files using latest schema saved on table creation, enable "
"setting "
"iceberg_engine_ignore_schema_evolution (Note: enabling this setting can lead to incorrect result)");
avro::NodePtr root_node = manifest_file_reader->dataSchema().root();
@ -520,9 +528,7 @@ Strings IcebergMetadata::getDataFiles() const
if (leaves_num < expected_min_num)
{
throw Exception(
ErrorCodes::BAD_ARGUMENTS,
"Unexpected number of columns {}. Expected at least {}",
root_node->leaves(), expected_min_num);
ErrorCodes::BAD_ARGUMENTS, "Unexpected number of columns {}. Expected at least {}", root_node->leaves(), expected_min_num);
}
avro::NodePtr status_node = root_node->leafAt(0);
@ -615,7 +621,8 @@ Strings IcebergMetadata::getDataFiles() const
{
Int32 content_type = content_int_column->getElement(i);
if (DataFileContent(content_type) != DataFileContent::DATA)
throw Exception(ErrorCodes::UNSUPPORTED_METHOD, "Cannot read Iceberg table: positional and equality deletes are not supported");
throw Exception(
ErrorCodes::UNSUPPORTED_METHOD, "Cannot read Iceberg table: positional and equality deletes are not supported");
}
const auto status = status_int_column->getInt(i);
@ -635,14 +642,12 @@ Strings IcebergMetadata::getDataFiles() const
{
LOG_TEST(log, "Processing data file for path: {}", file_path);
files.insert(file_path);
data_files.push_back(file_path);
}
}
}
data_files = std::vector<std::string>(files.begin(), files.end());
return data_files;
}
}
#endif

View File

@ -0,0 +1,272 @@
#pragma once
#include "Core/NamesAndTypes.h"
#include "DataTypes/DataTypeNullable.h"
#include "config.h"
#if USE_AVRO /// StorageIceberg depending on Avro to parse metadata with Avro format.
# include <Core/Types.h>
# include <Disks/ObjectStorages/IObjectStorage.h>
# include <Interpreters/Context_fwd.h>
# include <Storages/ObjectStorage/DataLakes/IDataLakeMetadata.h>
# include <Storages/ObjectStorage/StorageObjectStorage.h>
namespace DB
{
/**
* Useful links:
* - https://iceberg.apache.org/spec/
*
* Iceberg has two format versions, v1 and v2. The content of metadata files depends on the version.
*
* Unlike DeltaLake, Iceberg has several metadata layers: `table metadata`, `manifest list` and `manifest_files`.
* Metadata file - json file.
* Manifest list an Avro file that lists manifest files; one per snapshot.
* Manifest file an Avro file that lists data or delete files; a subset of a snapshot.
* All changes to table state create a new metadata file and replace the old metadata with an atomic swap.
*
* In order to find out which data files to read, we need to find the `manifest list`
* which corresponds to the latest snapshot. We find it by checking a list of snapshots
* in metadata's "snapshots" section.
*
* Example of metadata.json file.
* {
* "format-version" : 1,
* "table-uuid" : "ca2965ad-aae2-4813-8cf7-2c394e0c10f5",
* "location" : "/iceberg_data/db/table_name",
* "last-updated-ms" : 1680206743150,
* "last-column-id" : 2,
* "schema" : { "type" : "struct", "schema-id" : 0, "fields" : [ {<field1_info>}, {<field2_info>}, ... ] },
* "current-schema-id" : 0,
* "schemas" : [ ],
* ...
* "current-snapshot-id" : 2819310504515118887,
* "refs" : { "main" : { "snapshot-id" : 2819310504515118887, "type" : "branch" } },
* "snapshots" : [ {
* "snapshot-id" : 2819310504515118887,
* "timestamp-ms" : 1680206743150,
* "summary" : {
* "operation" : "append", "spark.app.id" : "local-1680206733239",
* "added-data-files" : "1", "added-records" : "100",
* "added-files-size" : "1070", "changed-partition-count" : "1",
* "total-records" : "100", "total-files-size" : "1070", "total-data-files" : "1", "total-delete-files" : "0",
* "total-position-deletes" : "0", "total-equality-deletes" : "0"
* },
* "manifest-list" : "/iceberg_data/db/table_name/metadata/snap-2819310504515118887-1-c87bfec7-d36c-4075-ad04-600b6b0f2020.avro",
* "schema-id" : 0
* } ],
* "statistics" : [ ],
* "snapshot-log" : [ ... ],
* "metadata-log" : [ ]
* }
*/
enum class PartitionTransform
{
Year,
Month,
Day,
Hour,
Unsupported
};
struct CommonPartitionInfo
{
std::vector<ColumnPtr> partition_columns;
std::vector<PartitionTransform> partition_transforms;
std::vector<Int32> partition_source_ids;
};
struct SpecificSchemaPartitionInfo
{
std::vector<std::vector<Range>> ranges;
NamesAndTypesList partition_names_and_types;
};
class PartitionPruningProcessor
{
public:
CommonPartitionInfo addCommonPartitionInfo(Poco::JSON::Array::Ptr partition_specification, const ColumnTuple * big_partition_tuple);
SpecificSchemaPartitionInfo getSpecificPartitionPruning(
const CommonPartitionInfo & common_info,
Int32 schema_version,
const std::unordered_map<Int32, NameAndTypePair> & name_and_type_by_source_id);
std::vector<bool> getPruningMask(const SpecificSchemaPartitionInfo & specific_info, const ActionsDAG * filter_dag, ContextPtr context);
std::vector<bool> getAllFilesMask(const ActionsDAG * filter_dag, ContextPtr context);
private:
static PartitionTransform getTransform(const String & transform_name)
{
if (transform_name == "year")
{
return PartitionTransform::Year;
}
else if (transform_name == "month")
{
return PartitionTransform::Month;
}
else if (transform_name == "day")
{
return PartitionTransform::Day;
}
else
{
return PartitionTransform::Unsupported;
}
}
static DateLUTImpl::Values getValues(Int32 value, PartitionTransform transform)
{
if (transform == PartitionTransform::Year)
{
return DateLUT::instance().lutIndexByYearSinceEpochStartsZeroIndexing(value);
}
else if (transform == PartitionTransform::Month)
{
return DateLUT::instance().lutIndexByMonthSinceEpochStartsZeroIndexing(static_cast<UInt32>(value));
}
else if (transform == PartitionTransform::Day)
{
return DateLUT::instance().getValues(static_cast<UInt16>(value));
}
throw Exception(ErrorCodes::BAD_ARGUMENTS, "Unsupported partition transform for get day function: {}", transform);
}
static Int64 getTime(Int32 value, PartitionTransform transform)
{
DateLUTImpl::Values values = getValues(value, transform);
// LOG_DEBUG(&Poco::Logger::get("Get field"), "Values: {}", values);
return values.date;
}
static Int16 getDay(Int32 value, PartitionTransform transform)
{
DateLUTImpl::Time got_time = getTime(value, transform);
LOG_DEBUG(&Poco::Logger::get("Get field"), "Time: {}", got_time);
return DateLUT::instance().toDayNum(got_time);
}
static Range
getPartitionRange(PartitionTransform partition_transform, UInt32 index, ColumnPtr partition_column, DataTypePtr column_data_type)
{
if (partition_transform == PartitionTransform::Year || partition_transform == PartitionTransform::Month
|| partition_transform == PartitionTransform::Day)
{
auto column = dynamic_cast<const ColumnNullable *>(partition_column.get())->getNestedColumnPtr();
const auto * casted_innner_column = assert_cast<const ColumnInt32 *>(column.get());
Int32 value = static_cast<Int32>(casted_innner_column->getInt(index));
LOG_DEBUG(&Poco::Logger::get("Partition"), "Partition value: {}, transform: {}", value, partition_transform);
auto nested_data_type = dynamic_cast<const DataTypeNullable *>(column_data_type.get())->getNestedType();
if (WhichDataType(nested_data_type).isDate())
{
const UInt16 begin_range_value = getDay(value, partition_transform);
const UInt16 end_range_value = getDay(value + 1, partition_transform);
return Range{begin_range_value, true, end_range_value, false};
}
else if (WhichDataType(nested_data_type).isDateTime64())
{
const UInt64 begin_range_value = getTime(value, partition_transform);
const UInt64 end_range_value = getTime(value + 1, partition_transform);
return Range{begin_range_value, true, end_range_value, false};
}
else
{
throw Exception(
ErrorCodes::BAD_ARGUMENTS,
"Partition transform {} is not supported for the type: {}",
partition_transform,
nested_data_type);
}
}
else
{
throw Exception(ErrorCodes::BAD_ARGUMENTS, "Unsupported partition transform: {}", partition_transform);
}
}
std::unordered_map<String, CommonPartitionInfo> common_partition_info_by_manifest_file;
std::map<std::pair<String, Int32>, SpecificSchemaPartitionInfo> specific_partition_info_by_manifest_file_and_schema;
std::vector<CommonPartitionInfo> common_partition_infos;
};
class IcebergMetadata : public IDataLakeMetadata, private WithContext
{
public:
using ConfigurationObserverPtr = StorageObjectStorage::ConfigurationObserverPtr;
static constexpr auto name = "Iceberg";
enum class PartitionTransform
{
Year,
Month,
Day,
Hour,
Unsupported
};
IcebergMetadata(
ObjectStoragePtr object_storage_,
ConfigurationObserverPtr configuration_,
ContextPtr context_,
Int32 metadata_version_,
Int32 format_version_,
String manifest_list_file_,
Int32 current_schema_id_,
NamesAndTypesList schema_);
/// Get data files. On first request it reads manifest_list file and iterates through manifest files to find all data files.
/// All subsequent calls will return saved list of files (because it cannot be changed without changing metadata file)
Strings getDataFiles() const override;
/// Get table schema parsed from metadata.
NamesAndTypesList getTableSchema() const override { return schema; }
const std::unordered_map<String, String> & getColumnNameToPhysicalNameMapping() const override { return column_name_to_physical_name; }
const DataLakePartitionColumns & getPartitionColumns() const override { return partition_columns; }
bool operator==(const IDataLakeMetadata & other) const override
{
const auto * iceberg_metadata = dynamic_cast<const IcebergMetadata *>(&other);
return iceberg_metadata && getVersion() == iceberg_metadata->getVersion();
}
static DataLakeMetadataPtr create(ObjectStoragePtr object_storage, ConfigurationObserverPtr configuration, ContextPtr local_context);
Strings makePartitionPruning(const ActionsDAG & filter_dag);
private:
size_t getVersion() const { return metadata_version; }
const ObjectStoragePtr object_storage;
const ConfigurationObserverPtr configuration;
Int32 metadata_version;
Int32 format_version;
String manifest_list_file;
Int32 current_schema_id;
NamesAndTypesList schema;
std::unordered_map<String, String> column_name_to_physical_name;
DataLakePartitionColumns partition_columns;
LoggerPtr log;
std::unordered_map<Int32, NameAndTypePair> name_and_type_by_source_id;
std::vector<std::pair<String, Int32>> manifest_files_with_start_index;
mutable Strings data_files;
mutable Strings manifest_files;
PartitionPruningProcessor pruning_processor;
};
}
#endif

View File

@ -0,0 +1,136 @@
#include <exception>
#include "Common/DateLUT.h"
#include "Core/NamesAndTypes.h"
#include "config.h"
#if USE_AVRO
# include <Columns/ColumnString.h>
# include <Columns/ColumnTuple.h>
# include <Columns/IColumn.h>
# include <Core/Settings.h>
# include <DataTypes/DataTypeArray.h>
# include <DataTypes/DataTypeDate.h>
# include <DataTypes/DataTypeDateTime64.h>
# include <DataTypes/DataTypeFactory.h>
# include <DataTypes/DataTypeFixedString.h>
# include <DataTypes/DataTypeMap.h>
# include <DataTypes/DataTypeNullable.h>
# include <DataTypes/DataTypeString.h>
# include <DataTypes/DataTypeTuple.h>
# include <DataTypes/DataTypeUUID.h>
# include <DataTypes/DataTypesDecimal.h>
# include <DataTypes/DataTypesNumber.h>
# include <Formats/FormatFactory.h>
# include <IO/ReadBufferFromFileBase.h>
# include <IO/ReadBufferFromString.h>
# include <IO/ReadHelpers.h>
# include <Processors/Formats/Impl/AvroRowInputFormat.h>
# include <Storages/ObjectStorage/DataLakes/Common.h>
# include <Storages/ObjectStorage/StorageObjectStorageSource.h>
# include <Common/logger_useful.h>
# include <Poco/JSON/Array.h>
# include <Poco/JSON/Object.h>
# include <Poco/JSON/Parser.h>
# include <DataFile.hh>
// # include <filesystem>
# include <Storages/ObjectStorage/DataLakes/Iceberg/IcebergMetadata.h>
namespace DB
{
CommonPartitionInfo
PartitionPruningProcessor::getCommonPartitionInfo(Poco::JSON::Array::Ptr partition_specification, const ColumnTuple * big_partition_tuple)
{
CommonPartitionInfo common_info;
for (size_t i = 0; i != partition_specification->size(); ++i)
{
auto current_field = partition_specification->getObject(static_cast<UInt32>(i));
auto source_id = current_field->getValue<Int32>("source-id");
PartitionTransform transform = getTransform(current_field->getValue<String>("transform"));
if (transform == PartitionTransform::Unsupported)
{
continue;
}
auto partition_name = current_field->getValue<String>("name");
LOG_DEBUG(&Poco::Logger::get("Partition Spec"), "Name: {}", partition_name);
common_info.partition_columns.push_back(big_partition_tuple->getColumnPtr(i));
common_info.partition_transforms.push_back(transform);
common_info.partition_source_ids.push_back(source_id);
}
return common_info;
}
SpecificSchemaPartitionInfo PartitionPruningProcessor::getSpecificPartitionPruning(
const CommonPartitionInfo & common_info,
[[maybe_unused]] Int32 schema_version,
const std::unordered_map<Int32, NameAndTypePair> & name_and_type_by_source_id)
{
SpecificSchemaPartitionInfo specific_info;
for (size_t i = 0; i < common_info.partition_columns.size(); ++i)
{
Int32 source_id = common_info.partition_source_ids[i];
auto it = name_and_type_by_source_id.find(source_id);
if (it == name_and_type_by_source_id.end())
{
continue;
}
size_t column_size = common_info.partition_columns[i]->size();
if (specific_info.ranges.empty())
{
specific_info.ranges.resize(column_size);
}
else
{
assert(specific_info.ranges.size() == column_size);
}
NameAndTypePair name_and_type = it->second;
specific_info.partition_names_and_types.push_back(name_and_type);
for (size_t j = 0; j < column_size; ++j)
{
specific_info.ranges[j].push_back(getPartitionRange(
common_info.partition_transforms[i], static_cast<UInt32>(j), common_info.partition_columns[i], name_and_type.type));
}
}
return specific_info;
}
std::vector<bool> PartitionPruningProcessor::getPruningMask(
const SpecificSchemaPartitionInfo & specific_info, const ActionsDAG * filter_dag, ContextPtr context)
{
std::vector<bool> pruning_mask;
if (!specific_info.partition_names_and_types.empty())
{
ExpressionActionsPtr partition_minmax_idx_expr = std::make_shared<ExpressionActions>(
ActionsDAG(specific_info.partition_names_and_types), ExpressionActionsSettings::fromContext(context));
const KeyCondition partition_key_condition(
filter_dag, context, specific_info.partition_names_and_types.getNames(), partition_minmax_idx_expr);
for (size_t j = 0; j < specific_info.ranges.size(); ++j)
{
if (!partition_key_condition.checkInHyperrectangle(specific_info.ranges[j], specific_info.partition_names_and_types.getTypes())
.can_be_true)
{
LOG_DEBUG(&Poco::Logger::get("Partition pruning"), "Partition pruning was successful for file: {}", j);
pruning_mask.push_back(false);
}
else
{
LOG_DEBUG(&Poco::Logger::get("Partition pruning"), "Partition pruning failed for file: {}", j);
pruning_mask.push_back(true);
}
}
}
return pruning_mask;
}
}
#endif

View File

@ -1,117 +0,0 @@
#pragma once
#include "config.h"
#if USE_AVRO /// StorageIceberg depending on Avro to parse metadata with Avro format.
#include <Interpreters/Context_fwd.h>
#include <Core/Types.h>
#include <Disks/ObjectStorages/IObjectStorage.h>
#include <Storages/ObjectStorage/StorageObjectStorage.h>
#include <Storages/ObjectStorage/DataLakes/IDataLakeMetadata.h>
namespace DB
{
/**
* Useful links:
* - https://iceberg.apache.org/spec/
*
* Iceberg has two format versions, v1 and v2. The content of metadata files depends on the version.
*
* Unlike DeltaLake, Iceberg has several metadata layers: `table metadata`, `manifest list` and `manifest_files`.
* Metadata file - json file.
* Manifest list an Avro file that lists manifest files; one per snapshot.
* Manifest file an Avro file that lists data or delete files; a subset of a snapshot.
* All changes to table state create a new metadata file and replace the old metadata with an atomic swap.
*
* In order to find out which data files to read, we need to find the `manifest list`
* which corresponds to the latest snapshot. We find it by checking a list of snapshots
* in metadata's "snapshots" section.
*
* Example of metadata.json file.
* {
* "format-version" : 1,
* "table-uuid" : "ca2965ad-aae2-4813-8cf7-2c394e0c10f5",
* "location" : "/iceberg_data/db/table_name",
* "last-updated-ms" : 1680206743150,
* "last-column-id" : 2,
* "schema" : { "type" : "struct", "schema-id" : 0, "fields" : [ {<field1_info>}, {<field2_info>}, ... ] },
* "current-schema-id" : 0,
* "schemas" : [ ],
* ...
* "current-snapshot-id" : 2819310504515118887,
* "refs" : { "main" : { "snapshot-id" : 2819310504515118887, "type" : "branch" } },
* "snapshots" : [ {
* "snapshot-id" : 2819310504515118887,
* "timestamp-ms" : 1680206743150,
* "summary" : {
* "operation" : "append", "spark.app.id" : "local-1680206733239",
* "added-data-files" : "1", "added-records" : "100",
* "added-files-size" : "1070", "changed-partition-count" : "1",
* "total-records" : "100", "total-files-size" : "1070", "total-data-files" : "1", "total-delete-files" : "0",
* "total-position-deletes" : "0", "total-equality-deletes" : "0"
* },
* "manifest-list" : "/iceberg_data/db/table_name/metadata/snap-2819310504515118887-1-c87bfec7-d36c-4075-ad04-600b6b0f2020.avro",
* "schema-id" : 0
* } ],
* "statistics" : [ ],
* "snapshot-log" : [ ... ],
* "metadata-log" : [ ]
* }
*/
class IcebergMetadata : public IDataLakeMetadata, private WithContext
{
public:
using ConfigurationObserverPtr = StorageObjectStorage::ConfigurationObserverPtr;
static constexpr auto name = "Iceberg";
IcebergMetadata(
ObjectStoragePtr object_storage_,
ConfigurationObserverPtr configuration_,
ContextPtr context_,
Int32 metadata_version_,
Int32 format_version_,
String manifest_list_file_,
Int32 current_schema_id_,
NamesAndTypesList schema_);
/// Get data files. On first request it reads manifest_list file and iterates through manifest files to find all data files.
/// All subsequent calls will return saved list of files (because it cannot be changed without changing metadata file)
Strings getDataFiles() const override;
/// Get table schema parsed from metadata.
NamesAndTypesList getTableSchema() const override { return schema; }
const std::unordered_map<String, String> & getColumnNameToPhysicalNameMapping() const override { return column_name_to_physical_name; }
const DataLakePartitionColumns & getPartitionColumns() const override { return partition_columns; }
bool operator ==(const IDataLakeMetadata & other) const override
{
const auto * iceberg_metadata = dynamic_cast<const IcebergMetadata *>(&other);
return iceberg_metadata && getVersion() == iceberg_metadata->getVersion();
}
static DataLakeMetadataPtr create(ObjectStoragePtr object_storage, ConfigurationObserverPtr configuration, ContextPtr local_context);
private:
size_t getVersion() const { return metadata_version; }
const ObjectStoragePtr object_storage;
const ConfigurationObserverPtr configuration;
Int32 metadata_version;
Int32 format_version;
String manifest_list_file;
Int32 current_schema_id;
NamesAndTypesList schema;
mutable Strings data_files;
std::unordered_map<String, String> column_name_to_physical_name;
DataLakePartitionColumns partition_columns;
LoggerPtr log;
};
}
#endif

View File

@ -226,6 +226,26 @@ template class TableFunctionObjectStorage<HDFSClusterDefinition, StorageHDFSConf
#endif
template class TableFunctionObjectStorage<LocalDefinition, StorageLocalConfiguration>;
#if USE_AVRO && USE_AWS_S3
template class TableFunctionObjectStorage<IcebergS3ClusterDefinition, StorageS3IcebergConfiguration>;
#endif
#if USE_AVRO && USE_AZURE_BLOB_STORAGE
template class TableFunctionObjectStorage<IcebergAzureClusterDefinition, StorageAzureIcebergConfiguration>;
#endif
#if USE_AVRO && USE_HDFS
template class TableFunctionObjectStorage<IcebergHDFSClusterDefinition, StorageHDFSIcebergConfiguration>;
#endif
#if USE_PARQUET && USE_AWS_S3
template class TableFunctionObjectStorage<DeltaLakeClusterDefinition, StorageS3DeltaLakeConfiguration>;
#endif
#if USE_AWS_S3
template class TableFunctionObjectStorage<HudiClusterDefinition, StorageS3HudiConfiguration>;
#endif
#if USE_AVRO
void registerTableFunctionIceberg(TableFunctionFactory & factory)
{

View File

@ -96,7 +96,7 @@ void registerTableFunctionObjectStorageCluster(TableFunctionFactory & factory)
{
.documentation = {
.description=R"(The table function can be used to read the data stored on HDFS in parallel for many nodes in a specified cluster.)",
.examples{{"HDFSCluster", "SELECT * FROM HDFSCluster(cluster_name, uri, format)", ""}}},
.examples{{"HDFSCluster", "SELECT * FROM HDFSCluster(cluster, uri, format)", ""}}},
.allow_readonly = false
}
);
@ -105,15 +105,77 @@ void registerTableFunctionObjectStorageCluster(TableFunctionFactory & factory)
UNUSED(factory);
}
#if USE_AVRO
void registerTableFunctionIcebergCluster(TableFunctionFactory & factory)
{
UNUSED(factory);
#if USE_AWS_S3
template class TableFunctionObjectStorageCluster<S3ClusterDefinition, StorageS3Configuration>;
factory.registerFunction<TableFunctionIcebergS3Cluster>(
{.documentation
= {.description = R"(The table function can be used to read the Iceberg table stored on S3 object store in parallel for many nodes in a specified cluster.)",
.examples{{"icebergS3Cluster", "SELECT * FROM icebergS3Cluster(cluster, url, [, NOSIGN | access_key_id, secret_access_key, [session_token]], format, [,compression])", ""}},
.categories{"DataLake"}},
.allow_readonly = false});
#endif
#if USE_AZURE_BLOB_STORAGE
template class TableFunctionObjectStorageCluster<AzureClusterDefinition, StorageAzureConfiguration>;
factory.registerFunction<TableFunctionIcebergAzureCluster>(
{.documentation
= {.description = R"(The table function can be used to read the Iceberg table stored on Azure object store in parallel for many nodes in a specified cluster.)",
.examples{{"icebergAzureCluster", "SELECT * FROM icebergAzureCluster(cluster, connection_string|storage_account_url, container_name, blobpath, [account_name, account_key, format, compression])", ""}},
.categories{"DataLake"}},
.allow_readonly = false});
#endif
#if USE_HDFS
template class TableFunctionObjectStorageCluster<HDFSClusterDefinition, StorageHDFSConfiguration>;
factory.registerFunction<TableFunctionIcebergHDFSCluster>(
{.documentation
= {.description = R"(The table function can be used to read the Iceberg table stored on HDFS virtual filesystem in parallel for many nodes in a specified cluster.)",
.examples{{"icebergHDFSCluster", "SELECT * FROM icebergHDFSCluster(cluster, uri, [format], [structure], [compression_method])", ""}},
.categories{"DataLake"}},
.allow_readonly = false});
#endif
}
#endif
#if USE_AWS_S3
#if USE_PARQUET
void registerTableFunctionDeltaLakeCluster(TableFunctionFactory & factory)
{
factory.registerFunction<TableFunctionDeltaLakeCluster>(
{.documentation
= {.description = R"(The table function can be used to read the DeltaLake table stored on object store in parallel for many nodes in a specified cluster.)",
.examples{{"deltaLakeCluster", "SELECT * FROM deltaLakeCluster(cluster, url, access_key_id, secret_access_key)", ""}},
.categories{"DataLake"}},
.allow_readonly = false});
}
#endif
void registerTableFunctionHudiCluster(TableFunctionFactory & factory)
{
factory.registerFunction<TableFunctionHudiCluster>(
{.documentation
= {.description = R"(The table function can be used to read the Hudi table stored on object store in parallel for many nodes in a specified cluster.)",
.examples{{"hudiCluster", "SELECT * FROM hudiCluster(cluster, url, access_key_id, secret_access_key)", ""}},
.categories{"DataLake"}},
.allow_readonly = false});
}
#endif
void registerDataLakeClusterTableFunctions(TableFunctionFactory & factory)
{
UNUSED(factory);
#if USE_AVRO
registerTableFunctionIcebergCluster(factory);
#endif
#if USE_AWS_S3
#if USE_PARQUET
registerTableFunctionDeltaLakeCluster(factory);
#endif
registerTableFunctionHudiCluster(factory);
#endif
}
}

View File

@ -33,6 +33,36 @@ struct HDFSClusterDefinition
static constexpr auto storage_type_name = "HDFSCluster";
};
struct IcebergS3ClusterDefinition
{
static constexpr auto name = "icebergS3Cluster";
static constexpr auto storage_type_name = "IcebergS3Cluster";
};
struct IcebergAzureClusterDefinition
{
static constexpr auto name = "icebergAzureCluster";
static constexpr auto storage_type_name = "IcebergAzureCluster";
};
struct IcebergHDFSClusterDefinition
{
static constexpr auto name = "icebergHDFSCluster";
static constexpr auto storage_type_name = "IcebergHDFSCluster";
};
struct DeltaLakeClusterDefinition
{
static constexpr auto name = "deltaLakeCluster";
static constexpr auto storage_type_name = "DeltaLakeS3Cluster";
};
struct HudiClusterDefinition
{
static constexpr auto name = "hudiCluster";
static constexpr auto storage_type_name = "HudiS3Cluster";
};
/**
* Class implementing s3/hdfs/azureBlobStorageCluster(...) table functions,
* which allow to process many files from S3/HDFS/Azure blob storage on a specific cluster.
@ -79,4 +109,25 @@ using TableFunctionAzureBlobCluster = TableFunctionObjectStorageCluster<AzureClu
#if USE_HDFS
using TableFunctionHDFSCluster = TableFunctionObjectStorageCluster<HDFSClusterDefinition, StorageHDFSConfiguration>;
#endif
#if USE_AVRO && USE_AWS_S3
using TableFunctionIcebergS3Cluster = TableFunctionObjectStorageCluster<IcebergS3ClusterDefinition, StorageS3IcebergConfiguration>;
#endif
#if USE_AVRO && USE_AZURE_BLOB_STORAGE
using TableFunctionIcebergAzureCluster = TableFunctionObjectStorageCluster<IcebergAzureClusterDefinition, StorageAzureIcebergConfiguration>;
#endif
#if USE_AVRO && USE_HDFS
using TableFunctionIcebergHDFSCluster = TableFunctionObjectStorageCluster<IcebergHDFSClusterDefinition, StorageHDFSIcebergConfiguration>;
#endif
#if USE_AWS_S3 && USE_PARQUET
using TableFunctionDeltaLakeCluster = TableFunctionObjectStorageCluster<DeltaLakeClusterDefinition, StorageS3DeltaLakeConfiguration>;
#endif
#if USE_AWS_S3
using TableFunctionHudiCluster = TableFunctionObjectStorageCluster<HudiClusterDefinition, StorageS3HudiConfiguration>;
#endif
}

View File

@ -66,6 +66,7 @@ void registerTableFunctions(bool use_legacy_mongodb_integration [[maybe_unused]]
registerTableFunctionObjectStorage(factory);
registerTableFunctionObjectStorageCluster(factory);
registerDataLakeTableFunctions(factory);
registerDataLakeClusterTableFunctions(factory);
}
}

View File

@ -70,6 +70,7 @@ void registerTableFunctionExplain(TableFunctionFactory & factory);
void registerTableFunctionObjectStorage(TableFunctionFactory & factory);
void registerTableFunctionObjectStorageCluster(TableFunctionFactory & factory);
void registerDataLakeTableFunctions(TableFunctionFactory & factory);
void registerDataLakeClusterTableFunctions(TableFunctionFactory & factory);
void registerTableFunctionTimeSeries(TableFunctionFactory & factory);

View File

@ -299,8 +299,6 @@ class TagAttrs:
# Only one latest can exist
latest: ClickHouseVersion
# Only one can be a major one (the most fresh per a year)
majors: Dict[int, ClickHouseVersion]
# Only one lts version can exist
lts: Optional[ClickHouseVersion]
@ -345,14 +343,6 @@ def ldf_tags(version: ClickHouseVersion, distro: str, tag_attrs: TagAttrs) -> st
tags.append("lts")
tags.append(f"lts-{distro}")
# If the tag `22`, `23`, `24` etc. should be included in the tags
with_major = tag_attrs.majors.get(version.major) in (None, version)
if with_major:
tag_attrs.majors[version.major] = version
if without_distro:
tags.append(f"{version.major}")
tags.append(f"{version.major}-{distro}")
# Add all normal tags
for tag in (
f"{version.major}.{version.minor}",
@ -384,7 +374,7 @@ def generate_ldf(args: argparse.Namespace) -> None:
args.directory / git_runner(f"git -C {args.directory} rev-parse --show-cdup")
).absolute()
lines = ldf_header(git, directory)
tag_attrs = TagAttrs(versions[-1], {}, None)
tag_attrs = TagAttrs(versions[-1], None)
# We iterate from the most recent to the oldest version
for version in reversed(versions):

View File

@ -378,7 +378,7 @@ def test_reload_via_client(cluster, zk):
configure_from_zk(zk)
break
except QueryRuntimeException:
logging.exception("The new socket is not binded yet")
logging.exception("The new socket is not bound yet")
time.sleep(0.1)
if exception:

View File

@ -0,0 +1,20 @@
<clickhouse>
<remote_servers>
<cluster_simple>
<shard>
<replica>
<host>node1</host>
<port>9000</port>
</replica>
<replica>
<host>node2</host>
<port>9000</port>
</replica>
<replica>
<host>node3</host>
<port>9000</port>
</replica>
</shard>
</cluster_simple>
</remote_servers>
</clickhouse>

View File

@ -0,0 +1,6 @@
<clickhouse>
<query_log>
<database>system</database>
<table>query_log</table>
</query_log>
</clickhouse>

View File

@ -73,14 +73,38 @@ def started_cluster():
cluster.add_instance(
"node1",
main_configs=[
"configs/config.d/query_log.xml",
"configs/config.d/cluster.xml",
"configs/config.d/named_collections.xml",
"configs/config.d/filesystem_caches.xml",
],
user_configs=["configs/users.d/users.xml"],
with_minio=True,
with_azurite=True,
stay_alive=True,
with_hdfs=with_hdfs,
stay_alive=True,
)
cluster.add_instance(
"node2",
main_configs=[
"configs/config.d/query_log.xml",
"configs/config.d/cluster.xml",
"configs/config.d/named_collections.xml",
"configs/config.d/filesystem_caches.xml",
],
user_configs=["configs/users.d/users.xml"],
stay_alive=True,
)
cluster.add_instance(
"node3",
main_configs=[
"configs/config.d/query_log.xml",
"configs/config.d/cluster.xml",
"configs/config.d/named_collections.xml",
"configs/config.d/filesystem_caches.xml",
],
user_configs=["configs/users.d/users.xml"],
stay_alive=True,
)
logging.info("Starting cluster...")
@ -182,6 +206,7 @@ def get_creation_expression(
cluster,
format="Parquet",
table_function=False,
run_on_cluster=False,
**kwargs,
):
if storage_type == "s3":
@ -189,35 +214,56 @@ def get_creation_expression(
bucket = kwargs["bucket"]
else:
bucket = cluster.minio_bucket
print(bucket)
if table_function:
return f"icebergS3(s3, filename = 'iceberg_data/default/{table_name}/', format={format}, url = 'http://minio1:9001/{bucket}/')"
if run_on_cluster:
assert table_function
return f"icebergS3Cluster('cluster_simple', s3, filename = 'iceberg_data/default/{table_name}/', format={format}, url = 'http://minio1:9001/{bucket}/')"
else:
return f"""
DROP TABLE IF EXISTS {table_name};
CREATE TABLE {table_name}
ENGINE=IcebergS3(s3, filename = 'iceberg_data/default/{table_name}/', format={format}, url = 'http://minio1:9001/{bucket}/')"""
if table_function:
return f"icebergS3(s3, filename = 'iceberg_data/default/{table_name}/', format={format}, url = 'http://minio1:9001/{bucket}/')"
else:
return f"""
DROP TABLE IF EXISTS {table_name};
CREATE TABLE {table_name}
ENGINE=IcebergS3(s3, filename = 'iceberg_data/default/{table_name}/', format={format}, url = 'http://minio1:9001/{bucket}/')"""
elif storage_type == "azure":
if table_function:
if run_on_cluster:
assert table_function
return f"""
icebergAzure(azure, container = '{cluster.azure_container_name}', storage_account_url = '{cluster.env_variables["AZURITE_STORAGE_ACCOUNT_URL"]}', blob_path = '/iceberg_data/default/{table_name}/', format={format})
icebergAzureCluster('cluster_simple', azure, container = '{cluster.azure_container_name}', storage_account_url = '{cluster.env_variables["AZURITE_STORAGE_ACCOUNT_URL"]}', blob_path = '/iceberg_data/default/{table_name}/', format={format})
"""
else:
return f"""
DROP TABLE IF EXISTS {table_name};
CREATE TABLE {table_name}
ENGINE=IcebergAzure(azure, container = {cluster.azure_container_name}, storage_account_url = '{cluster.env_variables["AZURITE_STORAGE_ACCOUNT_URL"]}', blob_path = '/iceberg_data/default/{table_name}/', format={format})"""
if table_function:
return f"""
icebergAzure(azure, container = '{cluster.azure_container_name}', storage_account_url = '{cluster.env_variables["AZURITE_STORAGE_ACCOUNT_URL"]}', blob_path = '/iceberg_data/default/{table_name}/', format={format})
"""
else:
return f"""
DROP TABLE IF EXISTS {table_name};
CREATE TABLE {table_name}
ENGINE=IcebergAzure(azure, container = {cluster.azure_container_name}, storage_account_url = '{cluster.env_variables["AZURITE_STORAGE_ACCOUNT_URL"]}', blob_path = '/iceberg_data/default/{table_name}/', format={format})"""
elif storage_type == "hdfs":
if table_function:
if run_on_cluster:
assert table_function
return f"""
icebergHDFS(hdfs, filename= 'iceberg_data/default/{table_name}/', format={format}, url = 'hdfs://hdfs1:9000/')
icebergHDFSCluster('cluster_simple', hdfs, filename= 'iceberg_data/default/{table_name}/', format={format}, url = 'hdfs://hdfs1:9000/')
"""
else:
return f"""
DROP TABLE IF EXISTS {table_name};
CREATE TABLE {table_name}
ENGINE=IcebergHDFS(hdfs, filename = 'iceberg_data/default/{table_name}/', format={format}, url = 'hdfs://hdfs1:9000/');"""
if table_function:
return f"""
icebergHDFS(hdfs, filename= 'iceberg_data/default/{table_name}/', format={format}, url = 'hdfs://hdfs1:9000/')
"""
else:
return f"""
DROP TABLE IF EXISTS {table_name};
CREATE TABLE {table_name}
ENGINE=IcebergHDFS(hdfs, filename = 'iceberg_data/default/{table_name}/', format={format}, url = 'hdfs://hdfs1:9000/');"""
elif storage_type == "local":
assert not run_on_cluster
if table_function:
return f"""
icebergLocal(local, path = '/iceberg_data/default/{table_name}/', format={format})
@ -227,6 +273,7 @@ def get_creation_expression(
DROP TABLE IF EXISTS {table_name};
CREATE TABLE {table_name}
ENGINE=IcebergLocal(local, path = '/iceberg_data/default/{table_name}/', format={format});"""
else:
raise Exception(f"Unknown iceberg storage type: {storage_type}")
@ -492,6 +539,108 @@ def test_types(started_cluster, format_version, storage_type):
)
@pytest.mark.parametrize("format_version", ["1", "2"])
@pytest.mark.parametrize("storage_type", ["s3", "azure", "hdfs"])
def test_cluster_table_function(started_cluster, format_version, storage_type):
if is_arm() and storage_type == "hdfs":
pytest.skip("Disabled test IcebergHDFS for aarch64")
instance = started_cluster.instances["node1"]
spark = started_cluster.spark_session
TABLE_NAME = (
"test_iceberg_cluster_"
+ format_version
+ "_"
+ storage_type
+ "_"
+ get_uuid_str()
)
def add_df(mode):
write_iceberg_from_df(
spark,
generate_data(spark, 0, 100),
TABLE_NAME,
mode=mode,
format_version=format_version,
)
files = default_upload_directory(
started_cluster,
storage_type,
f"/iceberg_data/default/{TABLE_NAME}/",
f"/iceberg_data/default/{TABLE_NAME}/",
)
logging.info(f"Adding another dataframe. result files: {files}")
return files
files = add_df(mode="overwrite")
for i in range(1, len(started_cluster.instances)):
files = add_df(mode="append")
logging.info(f"Setup complete. files: {files}")
assert len(files) == 5 + 4 * (len(started_cluster.instances) - 1)
clusters = instance.query(f"SELECT * FROM system.clusters")
logging.info(f"Clusters setup: {clusters}")
# Regular Query only node1
table_function_expr = get_creation_expression(
storage_type, TABLE_NAME, started_cluster, table_function=True
)
select_regular = (
instance.query(f"SELECT * FROM {table_function_expr}").strip().split()
)
# Cluster Query with node1 as coordinator
table_function_expr_cluster = get_creation_expression(
storage_type,
TABLE_NAME,
started_cluster,
table_function=True,
run_on_cluster=True,
)
select_cluster = (
instance.query(f"SELECT * FROM {table_function_expr_cluster}").strip().split()
)
# Simple size check
assert len(select_regular) == 600
assert len(select_cluster) == 600
# Actual check
assert select_cluster == select_regular
# Check query_log
for replica in started_cluster.instances.values():
replica.query("SYSTEM FLUSH LOGS")
for node_name, replica in started_cluster.instances.items():
cluster_secondary_queries = (
replica.query(
f"""
SELECT query, type, is_initial_query, read_rows, read_bytes FROM system.query_log
WHERE
type = 'QueryStart' AND
positionCaseInsensitive(query, '{storage_type}Cluster') != 0 AND
position(query, '{TABLE_NAME}') != 0 AND
position(query, 'system.query_log') = 0 AND
NOT is_initial_query
"""
)
.strip()
.split("\n")
)
logging.info(
f"[{node_name}] cluster_secondary_queries: {cluster_secondary_queries}"
)
assert len(cluster_secondary_queries) == 1
@pytest.mark.parametrize("format_version", ["1", "2"])
@pytest.mark.parametrize("storage_type", ["s3", "azure", "hdfs", "local"])
def test_delete_files(started_cluster, format_version, storage_type):

View File

@ -1,3 +1,6 @@
SELECT arrayWithConstant(96142475, ['qMUF']); -- { serverError TOO_LARGE_ARRAY_SIZE }
SELECT arrayWithConstant(100000000, materialize([[[[[[[[[['Hello, world!']]]]]]]]]])); -- { serverError TOO_LARGE_ARRAY_SIZE }
SELECT length(arrayWithConstant(10000000, materialize([[[[[[[[[['Hello world']]]]]]]]]])));
CREATE TEMPORARY TABLE args (value Array(Int)) ENGINE=Memory AS SELECT [1, 1, 1, 1] as value FROM numbers(1, 100);
SELECT length(arrayWithConstant(1000000, value)) FROM args FORMAT NULL;

View File

@ -0,0 +1,11 @@
drop table if exists test;
CREATE TABLE test (
`start_s` UInt32 EPHEMERAL COMMENT 'start UNIX time' ,
`start_us` UInt16 EPHEMERAL COMMENT 'start microseconds',
`finish_s` UInt32 EPHEMERAL COMMENT 'finish UNIX time',
`finish_us` UInt16 EPHEMERAL COMMENT 'finish microseconds',
`captured` DateTime MATERIALIZED fromUnixTimestamp(start_s),
`duration` Decimal32(6) MATERIALIZED finish_s - start_s + (finish_us - start_us)/1000000
)
ENGINE Null;
drop table if exists test;

View File

@ -244,7 +244,10 @@ Deduplication
DefaultTableEngine
DelayedInserts
DeliveryTag
Deltalake
DeltaLake
deltalakeCluster
deltaLakeCluster
Denormalize
DestroyAggregatesThreads
DestroyAggregatesThreadsActive
@ -377,10 +380,15 @@ Homebrew's
HorizontalDivide
Hostname
HouseOps
hudi
Hudi
hudiCluster
HudiCluster
HyperLogLog
Hypot
IANA
icebergCluster
IcebergCluster
IDE
IDEs
IDNA