Compare commits

...

28 Commits

Author SHA1 Message Date
Pavel Kruglov
c21521ef08
Merge 84b9e8b94d into 44b4bd38b9 2024-11-20 15:25:22 -08:00
Mikhail Artemenko
44b4bd38b9
Merge pull request #72045 from ClickHouse/issues/70174/cluster_versions
Enable cluster table functions for DataLake Storages
2024-11-20 21:22:37 +00:00
Shichao Jin
40c7d5fd1a
Merge pull request #71894 from udiz/fix-arrayWithConstant-size-estimation
Fix: arrayWithConstant size estimation using row's element size
2024-11-20 19:56:27 +00:00
Pavel Kruglov
84b9e8b94d
Merge branch 'master' into fix-dynamic-json-serialization-compatibility 2024-11-20 12:26:09 +01:00
Mikhail Artemenko
4ccebd9a24 fix syntax for iceberg in docs 2024-11-20 11:15:39 +00:00
Mikhail Artemenko
99177c0daf remove icebergCluster alias 2024-11-20 11:15:12 +00:00
Mikhail Artemenko
0951991c1d update aspell-dict.txt 2024-11-19 13:10:42 +00:00
Mikhail Artemenko
19aec5e572 Merge branch 'issues/70174/cluster_versions' of github.com:ClickHouse/ClickHouse into issues/70174/cluster_versions 2024-11-19 12:51:56 +00:00
Mikhail Artemenko
a367de9977 add docs 2024-11-19 12:49:59 +00:00
Mikhail Artemenko
6894e280b2 fix pr issues 2024-11-19 12:34:42 +00:00
Mikhail Artemenko
39ebe113d9 Merge branch 'master' into issues/70174/cluster_versions 2024-11-19 11:28:46 +00:00
udiz
239bbaa133 use length 2024-11-19 00:00:43 +00:00
udiz
07fac5808d format null on test 2024-11-18 23:08:48 +00:00
udiz
ed95e0781f test uses less memory 2024-11-18 22:48:38 +00:00
robot-clickhouse
014608fb6b Automatic style fix 2024-11-18 17:51:51 +00:00
Mikhail Artemenko
a29ded4941 add test for iceberg 2024-11-18 17:39:46 +00:00
Mikhail Artemenko
d2efae7511 enable cluster versions for datalake storages 2024-11-18 17:35:21 +00:00
Pavel Kruglov
8f4c9c1520
Merge branch 'master' into fix-dynamic-json-serialization-compatibility 2024-11-18 12:46:13 +01:00
Pavel Kruglov
29187f689a
Merge branch 'master' into fix-dynamic-json-serialization-compatibility 2024-11-14 13:16:03 +01:00
udiz
6879aa130a newline 2024-11-13 22:47:54 +00:00
udiz
43f3c886a2 add test 2024-11-13 22:46:36 +00:00
udiz
c383a743f7 arrayWithConstant size estimation using single value size 2024-11-13 20:02:31 +00:00
avogar
0e70a375dc Restart CI 2024-11-13 13:19:12 +00:00
Pavel Kruglov
5f660a50a1
Update Settings.cpp 2024-11-12 17:13:49 +01:00
Pavel Kruglov
cfecdd60dd
Update SettingsChangesHistory.cpp 2024-11-12 17:12:07 +01:00
Pavel Kruglov
e0af2e9738
Merge branch 'master' into fix-dynamic-json-serialization-compatibility 2024-11-12 16:18:55 +01:00
avogar
013fde41e4 Add setting to fallback to V1 serialization for Dynamic and Object 2024-11-12 15:18:00 +00:00
avogar
69e4f93a2a Fix JSON/Dynamic Native serialization with old server and new client 2024-11-12 13:14:53 +00:00
28 changed files with 493 additions and 35 deletions

View File

@ -49,4 +49,4 @@ LIMIT 2
**See Also**
- [DeltaLake engine](/docs/en/engines/table-engines/integrations/deltalake.md)
- [DeltaLake cluster table function](/docs/en/sql-reference/table-functions/deltalakeCluster.md)

View File

@ -0,0 +1,30 @@
---
slug: /en/sql-reference/table-functions/deltalakeCluster
sidebar_position: 46
sidebar_label: deltaLakeCluster
title: "deltaLakeCluster Table Function"
---
This is an extension to the [deltaLake](/docs/en/sql-reference/table-functions/deltalake.md) table function.
Allows processing files from [Delta Lake](https://github.com/delta-io/delta) tables in Amazon S3 in parallel from many nodes in a specified cluster. On initiator it creates a connection to all nodes in the cluster and dispatches each file dynamically. On the worker node it asks the initiator about the next task to process and processes it. This is repeated until all tasks are finished.
**Syntax**
``` sql
deltaLakeCluster(cluster_name, url [,aws_access_key_id, aws_secret_access_key] [,format] [,structure] [,compression])
```
**Arguments**
- `cluster_name` — Name of a cluster that is used to build a set of addresses and connection parameters to remote and local servers.
- Description of all other arguments coincides with description of arguments in equivalent [deltaLake](/docs/en/sql-reference/table-functions/deltalake.md) table function.
**Returned value**
A table with the specified structure for reading data from cluster in the specified Delta Lake table in S3.
**See Also**
- [deltaLake engine](/docs/en/engines/table-engines/integrations/deltalake.md)
- [deltaLake table function](/docs/en/sql-reference/table-functions/deltalake.md)

View File

@ -29,4 +29,4 @@ A table with the specified structure for reading data in the specified Hudi tabl
**See Also**
- [Hudi engine](/docs/en/engines/table-engines/integrations/hudi.md)
- [Hudi cluster table function](/docs/en/sql-reference/table-functions/hudiCluster.md)

View File

@ -0,0 +1,30 @@
---
slug: /en/sql-reference/table-functions/hudiCluster
sidebar_position: 86
sidebar_label: hudiCluster
title: "hudiCluster Table Function"
---
This is an extension to the [hudi](/docs/en/sql-reference/table-functions/hudi.md) table function.
Allows processing files from Apache [Hudi](https://hudi.apache.org/) tables in Amazon S3 in parallel from many nodes in a specified cluster. On initiator it creates a connection to all nodes in the cluster and dispatches each file dynamically. On the worker node it asks the initiator about the next task to process and processes it. This is repeated until all tasks are finished.
**Syntax**
``` sql
hudiCluster(cluster_name, url [,aws_access_key_id, aws_secret_access_key] [,format] [,structure] [,compression])
```
**Arguments**
- `cluster_name` — Name of a cluster that is used to build a set of addresses and connection parameters to remote and local servers.
- Description of all other arguments coincides with description of arguments in equivalent [hudi](/docs/en/sql-reference/table-functions/hudi.md) table function.
**Returned value**
A table with the specified structure for reading data from cluster in the specified Hudi table in S3.
**See Also**
- [Hudi engine](/docs/en/engines/table-engines/integrations/hudi.md)
- [Hudi table function](/docs/en/sql-reference/table-functions/hudi.md)

View File

@ -72,3 +72,4 @@ Table function `iceberg` is an alias to `icebergS3` now.
**See Also**
- [Iceberg engine](/docs/en/engines/table-engines/integrations/iceberg.md)
- [Iceberg cluster table function](/docs/en/sql-reference/table-functions/icebergCluster.md)

View File

@ -0,0 +1,43 @@
---
slug: /en/sql-reference/table-functions/icebergCluster
sidebar_position: 91
sidebar_label: icebergCluster
title: "icebergCluster Table Function"
---
This is an extension to the [iceberg](/docs/en/sql-reference/table-functions/iceberg.md) table function.
Allows processing files from Apache [Iceberg](https://iceberg.apache.org/) in parallel from many nodes in a specified cluster. On initiator it creates a connection to all nodes in the cluster and dispatches each file dynamically. On the worker node it asks the initiator about the next task to process and processes it. This is repeated until all tasks are finished.
**Syntax**
``` sql
icebergS3Cluster(cluster_name, url [, NOSIGN | access_key_id, secret_access_key, [session_token]] [,format] [,compression_method])
icebergS3Cluster(cluster_name, named_collection[, option=value [,..]])
icebergAzureCluster(cluster_name, connection_string|storage_account_url, container_name, blobpath, [,account_name], [,account_key] [,format] [,compression_method])
icebergAzureCluster(cluster_name, named_collection[, option=value [,..]])
icebergHDFSCluster(cluster_name, path_to_table, [,format] [,compression_method])
icebergHDFSCluster(cluster_name, named_collection[, option=value [,..]])
```
**Arguments**
- `cluster_name` — Name of a cluster that is used to build a set of addresses and connection parameters to remote and local servers.
- Description of all other arguments coincides with description of arguments in equivalent [iceberg](/docs/en/sql-reference/table-functions/iceberg.md) table function.
**Returned value**
A table with the specified structure for reading data from cluster in the specified Iceberg table.
**Examples**
```sql
SELECT * FROM icebergS3Cluster('cluster_simple', 'http://test.s3.amazonaws.com/clickhouse-bucket/test_table', 'test', 'test')
```
**See Also**
- [Iceberg engine](/docs/en/engines/table-engines/integrations/iceberg.md)
- [Iceberg table function](/docs/en/sql-reference/table-functions/iceberg.md)

View File

@ -93,6 +93,8 @@ static constexpr auto DBMS_MIN_REVISION_WITH_VERSIONED_PARALLEL_REPLICAS_PROTOCO
/// Push externally granted roles to other nodes
static constexpr auto DBMS_MIN_PROTOCOL_VERSION_WITH_INTERSERVER_EXTERNALLY_GRANTED_ROLES = 54472;
static constexpr auto DBMS_MIN_REVISION_WITH_V2_DYNAMIC_AND_JSON_SERIALIZATION = 54473;
/// Version of ClickHouse TCP protocol.
///
/// Should be incremented manually on protocol changes.
@ -100,6 +102,6 @@ static constexpr auto DBMS_MIN_PROTOCOL_VERSION_WITH_INTERSERVER_EXTERNALLY_GRAN
/// NOTE: DBMS_TCP_PROTOCOL_VERSION has nothing common with VERSION_REVISION,
/// later is just a number for server version (one number instead of commit SHA)
/// for simplicity (sometimes it may be more convenient in some use cases).
static constexpr auto DBMS_TCP_PROTOCOL_VERSION = 54472;
static constexpr auto DBMS_TCP_PROTOCOL_VERSION = 54473;
}

View File

@ -1225,6 +1225,9 @@ Possible values: non-negative numbers. Note that if the value is too small or to
If true then data can be parsed directly to columns with custom serialization (e.g. Sparse) according to hints for serialization got from the table.
)", 0) \
\
DECLARE(Bool, merge_tree_use_v1_object_and_dynamic_serialization, false, R"(
When enabled, V1 serialization version of JSON and Dynamic types will be used in MergeTree instead of V2. Changing this setting takes affect only after server restart.
)", 0) \
DECLARE(UInt64, merge_tree_min_rows_for_concurrent_read, (20 * 8192), R"(
If the number of rows to be read from a file of a [MergeTree](../../engines/table-engines/mergetree-family/mergetree.md) table exceeds `merge_tree_min_rows_for_concurrent_read` then ClickHouse tries to perform a concurrent reading from this file on several threads.

View File

@ -82,6 +82,7 @@ static std::initializer_list<std::pair<ClickHouseVersion, SettingsChangesHistory
{"backup_restore_finish_timeout_after_error_sec", 0, 180, "New setting."},
{"query_plan_merge_filters", false, true, "Allow to merge filters in the query plan. This is required to properly support filter-push-down with a new analyzer."},
{"parallel_replicas_local_plan", false, true, "Use local plan for local replica in a query with parallel replicas"},
{"merge_tree_use_v1_object_and_dynamic_serialization", true, false, "Add new serialization V2 version for JSON and Dynamic types"},
{"min_joined_block_size_bytes", 524288, 524288, "New setting."},
{"allow_experimental_bfloat16_type", false, false, "Add new experimental BFloat16 type"},
{"filesystem_cache_skip_download_if_exceeds_per_query_cache_write_limit", 1, 1, "Rename of setting skip_download_if_exceeds_query_cache_limit"},

View File

@ -286,6 +286,9 @@ public:
SUFFIX, /// Write statistics in suffix.
};
ObjectAndDynamicStatisticsMode object_and_dynamic_write_statistics = ObjectAndDynamicStatisticsMode::NONE;
/// Use old V1 serialization of JSON and Dynamic types. Needed for compatibility.
bool use_v1_object_and_dynamic_serialization = false;
};
struct DeserializeBinaryBulkSettings

View File

@ -108,16 +108,22 @@ void SerializationDynamic::serializeBinaryBulkStatePrefix(
throw Exception(ErrorCodes::LOGICAL_ERROR, "Missing stream for Dynamic column structure during serialization of binary bulk state prefix");
/// Write structure serialization version.
UInt64 structure_version = DynamicSerializationVersion::Value::V2;
UInt64 structure_version = settings.use_v1_object_and_dynamic_serialization ? DynamicSerializationVersion::Value::V1 : DynamicSerializationVersion::Value::V2;
writeBinaryLittleEndian(structure_version, *stream);
auto dynamic_state = std::make_shared<SerializeBinaryBulkStateDynamic>(structure_version);
dynamic_state->variant_type = variant_info.variant_type;
dynamic_state->variant_names = variant_info.variant_names;
const auto & variant_column = column_dynamic.getVariantColumn();
/// Write information about dynamic types.
dynamic_state->num_dynamic_types = dynamic_state->variant_names.size() - 1; /// -1 for SharedVariant
/// In V1 version we had max_dynamic_types parameter written, but now we need only actual number of variants.
/// For compatibility we need to write V1 version sometimes, but we should write number of variants instead of
/// max_dynamic_types (because now max_dynamic_types can be different in different serialized columns).
if (structure_version == DynamicSerializationVersion::Value::V1)
writeVarUInt(dynamic_state->num_dynamic_types, *stream);
writeVarUInt(dynamic_state->num_dynamic_types, *stream);
if (settings.data_types_binary_encoding)
{

View File

@ -187,7 +187,11 @@ void SerializationObject::serializeBinaryBulkStatePrefix(
throw Exception(ErrorCodes::LOGICAL_ERROR, "Missing stream for Object column structure during serialization of binary bulk state prefix");
/// Write serialization version.
UInt64 serialization_version = settings.write_json_as_string ? ObjectSerializationVersion::Value::STRING : ObjectSerializationVersion::Value::V2;
UInt64 serialization_version = ObjectSerializationVersion::Value::V2;
if (settings.write_json_as_string)
serialization_version = ObjectSerializationVersion::Value::STRING;
else if (settings.use_v1_object_and_dynamic_serialization)
serialization_version = ObjectSerializationVersion::Value::V1;
writeBinaryLittleEndian(serialization_version, *stream);
auto object_state = std::make_shared<SerializeBinaryBulkStateObject>(serialization_version);
@ -202,6 +206,13 @@ void SerializationObject::serializeBinaryBulkStatePrefix(
for (const auto & [path, _] : dynamic_paths)
object_state->sorted_dynamic_paths.push_back(path);
std::sort(object_state->sorted_dynamic_paths.begin(), object_state->sorted_dynamic_paths.end());
/// In V1 version we had max_dynamic_paths parameter written, but now we need only actual number of dynamic paths.
/// For compatibility we need to write V1 version sometimes, but we should write number of dynamic paths instead of
/// max_dynamic_paths (because now max_dynamic_paths can be different in different serialized columns).
if (serialization_version == ObjectSerializationVersion::Value::V1)
writeVarUInt(object_state->sorted_dynamic_paths.size(), *stream);
writeVarUInt(object_state->sorted_dynamic_paths.size(), *stream);
for (const auto & path : object_state->sorted_dynamic_paths)
writeStringBinary(path, *stream);

View File

@ -56,7 +56,7 @@ void NativeWriter::flush()
}
static void writeData(const ISerialization & serialization, const ColumnPtr & column, WriteBuffer & ostr, const std::optional<FormatSettings> & format_settings, UInt64 offset, UInt64 limit)
static void writeData(const ISerialization & serialization, const ColumnPtr & column, WriteBuffer & ostr, const std::optional<FormatSettings> & format_settings, UInt64 offset, UInt64 limit, UInt64 client_revision)
{
/** If there are columns-constants - then we materialize them.
* (Since the data type does not know how to serialize / deserialize constants.)
@ -70,6 +70,7 @@ static void writeData(const ISerialization & serialization, const ColumnPtr & co
settings.low_cardinality_max_dictionary_size = 0;
settings.data_types_binary_encoding = format_settings && format_settings->native.encode_types_in_binary_format;
settings.write_json_as_string = format_settings && format_settings->native.write_json_as_string;
settings.use_v1_object_and_dynamic_serialization = client_revision < DBMS_MIN_REVISION_WITH_V2_DYNAMIC_AND_JSON_SERIALIZATION;
ISerialization::SerializeBinaryBulkStatePtr state;
serialization.serializeBinaryBulkStatePrefix(*full_column, settings, state);
@ -181,7 +182,7 @@ size_t NativeWriter::write(const Block & block)
/// Data
if (rows) /// Zero items of data is always represented as zero number of bytes.
writeData(*serialization, column.column, ostr, format_settings, 0, 0);
writeData(*serialization, column.column, ostr, format_settings, 0, 0, client_revision);
if (index)
{

View File

@ -62,16 +62,17 @@ public:
for (size_t i = 0; i < num_rows; ++i)
{
auto array_size = col_num->getInt(i);
auto element_size = col_value->byteSizeAt(i);
if (unlikely(array_size < 0))
throw Exception(ErrorCodes::TOO_LARGE_ARRAY_SIZE, "Array size {} cannot be negative: while executing function {}", array_size, getName());
Int64 estimated_size = 0;
if (unlikely(common::mulOverflow(array_size, col_value->byteSize(), estimated_size)))
throw Exception(ErrorCodes::TOO_LARGE_ARRAY_SIZE, "Array size {} with element size {} bytes is too large: while executing function {}", array_size, col_value->byteSize(), getName());
if (unlikely(common::mulOverflow(array_size, element_size, estimated_size)))
throw Exception(ErrorCodes::TOO_LARGE_ARRAY_SIZE, "Array size {} with element size {} bytes is too large: while executing function {}", array_size, element_size, getName());
if (unlikely(estimated_size > max_array_size_in_columns_bytes))
throw Exception(ErrorCodes::TOO_LARGE_ARRAY_SIZE, "Array size {} with element size {} bytes is too large: while executing function {}", array_size, col_value->byteSize(), getName());
throw Exception(ErrorCodes::TOO_LARGE_ARRAY_SIZE, "Array size {} with element size {} bytes is too large: while executing function {}", array_size, element_size, getName());
offset += array_size;

View File

@ -154,6 +154,7 @@ void writeColumnSingleGranule(
serialize_settings.position_independent_encoding = true;
serialize_settings.low_cardinality_max_dictionary_size = 0;
serialize_settings.use_compact_variant_discriminators_serialization = settings.use_compact_variant_discriminators_serialization;
serialize_settings.use_v1_object_and_dynamic_serialization = settings.use_v1_object_and_dynamic_serialization;
serialize_settings.object_and_dynamic_write_statistics = ISerialization::SerializeBinaryBulkSettings::ObjectAndDynamicStatisticsMode::PREFIX;
serialization->serializeBinaryBulkStatePrefix(*column.column, serialize_settings, state);

View File

@ -467,6 +467,7 @@ void MergeTreeDataPartWriterWide::writeColumn(
{
ISerialization::SerializeBinaryBulkSettings serialize_settings;
serialize_settings.use_compact_variant_discriminators_serialization = settings.use_compact_variant_discriminators_serialization;
serialize_settings.use_v1_object_and_dynamic_serialization = settings.use_v1_object_and_dynamic_serialization;
serialize_settings.getter = createStreamGetter(name_and_type, offset_columns);
serialization->serializeBinaryBulkStatePrefix(column, serialize_settings, it->second);
}

View File

@ -12,6 +12,7 @@ namespace Setting
extern const SettingsBool low_cardinality_use_single_dictionary_for_part;
extern const SettingsUInt64 min_compress_block_size;
extern const SettingsUInt64 max_compress_block_size;
extern const SettingsBool merge_tree_use_v1_object_and_dynamic_serialization;
}
namespace MergeTreeSetting
@ -53,6 +54,7 @@ MergeTreeWriterSettings::MergeTreeWriterSettings(
, low_cardinality_max_dictionary_size(global_settings[Setting::low_cardinality_max_dictionary_size])
, low_cardinality_use_single_dictionary_for_part(global_settings[Setting::low_cardinality_use_single_dictionary_for_part] != 0)
, use_compact_variant_discriminators_serialization((*storage_settings)[MergeTreeSetting::use_compact_variant_discriminators_serialization])
, use_v1_object_and_dynamic_serialization(global_settings[Setting::merge_tree_use_v1_object_and_dynamic_serialization])
, use_adaptive_write_buffer_for_dynamic_subcolumns((*storage_settings)[MergeTreeSetting::use_adaptive_write_buffer_for_dynamic_subcolumns])
, adaptive_write_buffer_initial_size((*storage_settings)[MergeTreeSetting::adaptive_write_buffer_initial_size])
{

View File

@ -85,6 +85,7 @@ struct MergeTreeWriterSettings
size_t low_cardinality_max_dictionary_size;
bool low_cardinality_use_single_dictionary_for_part;
bool use_compact_variant_discriminators_serialization;
bool use_v1_object_and_dynamic_serialization;
bool use_adaptive_write_buffer_for_dynamic_subcolumns;
size_t adaptive_write_buffer_initial_size;
};

View File

@ -226,6 +226,26 @@ template class TableFunctionObjectStorage<HDFSClusterDefinition, StorageHDFSConf
#endif
template class TableFunctionObjectStorage<LocalDefinition, StorageLocalConfiguration>;
#if USE_AVRO && USE_AWS_S3
template class TableFunctionObjectStorage<IcebergS3ClusterDefinition, StorageS3IcebergConfiguration>;
#endif
#if USE_AVRO && USE_AZURE_BLOB_STORAGE
template class TableFunctionObjectStorage<IcebergAzureClusterDefinition, StorageAzureIcebergConfiguration>;
#endif
#if USE_AVRO && USE_HDFS
template class TableFunctionObjectStorage<IcebergHDFSClusterDefinition, StorageHDFSIcebergConfiguration>;
#endif
#if USE_PARQUET && USE_AWS_S3
template class TableFunctionObjectStorage<DeltaLakeClusterDefinition, StorageS3DeltaLakeConfiguration>;
#endif
#if USE_AWS_S3
template class TableFunctionObjectStorage<HudiClusterDefinition, StorageS3HudiConfiguration>;
#endif
#if USE_AVRO
void registerTableFunctionIceberg(TableFunctionFactory & factory)
{

View File

@ -96,7 +96,7 @@ void registerTableFunctionObjectStorageCluster(TableFunctionFactory & factory)
{
.documentation = {
.description=R"(The table function can be used to read the data stored on HDFS in parallel for many nodes in a specified cluster.)",
.examples{{"HDFSCluster", "SELECT * FROM HDFSCluster(cluster_name, uri, format)", ""}}},
.examples{{"HDFSCluster", "SELECT * FROM HDFSCluster(cluster, uri, format)", ""}}},
.allow_readonly = false
}
);
@ -105,15 +105,77 @@ void registerTableFunctionObjectStorageCluster(TableFunctionFactory & factory)
UNUSED(factory);
}
#if USE_AVRO
void registerTableFunctionIcebergCluster(TableFunctionFactory & factory)
{
UNUSED(factory);
#if USE_AWS_S3
template class TableFunctionObjectStorageCluster<S3ClusterDefinition, StorageS3Configuration>;
factory.registerFunction<TableFunctionIcebergS3Cluster>(
{.documentation
= {.description = R"(The table function can be used to read the Iceberg table stored on S3 object store in parallel for many nodes in a specified cluster.)",
.examples{{"icebergS3Cluster", "SELECT * FROM icebergS3Cluster(cluster, url, [, NOSIGN | access_key_id, secret_access_key, [session_token]], format, [,compression])", ""}},
.categories{"DataLake"}},
.allow_readonly = false});
#endif
#if USE_AZURE_BLOB_STORAGE
template class TableFunctionObjectStorageCluster<AzureClusterDefinition, StorageAzureConfiguration>;
factory.registerFunction<TableFunctionIcebergAzureCluster>(
{.documentation
= {.description = R"(The table function can be used to read the Iceberg table stored on Azure object store in parallel for many nodes in a specified cluster.)",
.examples{{"icebergAzureCluster", "SELECT * FROM icebergAzureCluster(cluster, connection_string|storage_account_url, container_name, blobpath, [account_name, account_key, format, compression])", ""}},
.categories{"DataLake"}},
.allow_readonly = false});
#endif
#if USE_HDFS
template class TableFunctionObjectStorageCluster<HDFSClusterDefinition, StorageHDFSConfiguration>;
factory.registerFunction<TableFunctionIcebergHDFSCluster>(
{.documentation
= {.description = R"(The table function can be used to read the Iceberg table stored on HDFS virtual filesystem in parallel for many nodes in a specified cluster.)",
.examples{{"icebergHDFSCluster", "SELECT * FROM icebergHDFSCluster(cluster, uri, [format], [structure], [compression_method])", ""}},
.categories{"DataLake"}},
.allow_readonly = false});
#endif
}
#endif
#if USE_AWS_S3
#if USE_PARQUET
void registerTableFunctionDeltaLakeCluster(TableFunctionFactory & factory)
{
factory.registerFunction<TableFunctionDeltaLakeCluster>(
{.documentation
= {.description = R"(The table function can be used to read the DeltaLake table stored on object store in parallel for many nodes in a specified cluster.)",
.examples{{"deltaLakeCluster", "SELECT * FROM deltaLakeCluster(cluster, url, access_key_id, secret_access_key)", ""}},
.categories{"DataLake"}},
.allow_readonly = false});
}
#endif
void registerTableFunctionHudiCluster(TableFunctionFactory & factory)
{
factory.registerFunction<TableFunctionHudiCluster>(
{.documentation
= {.description = R"(The table function can be used to read the Hudi table stored on object store in parallel for many nodes in a specified cluster.)",
.examples{{"hudiCluster", "SELECT * FROM hudiCluster(cluster, url, access_key_id, secret_access_key)", ""}},
.categories{"DataLake"}},
.allow_readonly = false});
}
#endif
void registerDataLakeClusterTableFunctions(TableFunctionFactory & factory)
{
UNUSED(factory);
#if USE_AVRO
registerTableFunctionIcebergCluster(factory);
#endif
#if USE_AWS_S3
#if USE_PARQUET
registerTableFunctionDeltaLakeCluster(factory);
#endif
registerTableFunctionHudiCluster(factory);
#endif
}
}

View File

@ -33,6 +33,36 @@ struct HDFSClusterDefinition
static constexpr auto storage_type_name = "HDFSCluster";
};
struct IcebergS3ClusterDefinition
{
static constexpr auto name = "icebergS3Cluster";
static constexpr auto storage_type_name = "IcebergS3Cluster";
};
struct IcebergAzureClusterDefinition
{
static constexpr auto name = "icebergAzureCluster";
static constexpr auto storage_type_name = "IcebergAzureCluster";
};
struct IcebergHDFSClusterDefinition
{
static constexpr auto name = "icebergHDFSCluster";
static constexpr auto storage_type_name = "IcebergHDFSCluster";
};
struct DeltaLakeClusterDefinition
{
static constexpr auto name = "deltaLakeCluster";
static constexpr auto storage_type_name = "DeltaLakeS3Cluster";
};
struct HudiClusterDefinition
{
static constexpr auto name = "hudiCluster";
static constexpr auto storage_type_name = "HudiS3Cluster";
};
/**
* Class implementing s3/hdfs/azureBlobStorageCluster(...) table functions,
* which allow to process many files from S3/HDFS/Azure blob storage on a specific cluster.
@ -79,4 +109,25 @@ using TableFunctionAzureBlobCluster = TableFunctionObjectStorageCluster<AzureClu
#if USE_HDFS
using TableFunctionHDFSCluster = TableFunctionObjectStorageCluster<HDFSClusterDefinition, StorageHDFSConfiguration>;
#endif
#if USE_AVRO && USE_AWS_S3
using TableFunctionIcebergS3Cluster = TableFunctionObjectStorageCluster<IcebergS3ClusterDefinition, StorageS3IcebergConfiguration>;
#endif
#if USE_AVRO && USE_AZURE_BLOB_STORAGE
using TableFunctionIcebergAzureCluster = TableFunctionObjectStorageCluster<IcebergAzureClusterDefinition, StorageAzureIcebergConfiguration>;
#endif
#if USE_AVRO && USE_HDFS
using TableFunctionIcebergHDFSCluster = TableFunctionObjectStorageCluster<IcebergHDFSClusterDefinition, StorageHDFSIcebergConfiguration>;
#endif
#if USE_AWS_S3 && USE_PARQUET
using TableFunctionDeltaLakeCluster = TableFunctionObjectStorageCluster<DeltaLakeClusterDefinition, StorageS3DeltaLakeConfiguration>;
#endif
#if USE_AWS_S3
using TableFunctionHudiCluster = TableFunctionObjectStorageCluster<HudiClusterDefinition, StorageS3HudiConfiguration>;
#endif
}

View File

@ -66,6 +66,7 @@ void registerTableFunctions(bool use_legacy_mongodb_integration [[maybe_unused]]
registerTableFunctionObjectStorage(factory);
registerTableFunctionObjectStorageCluster(factory);
registerDataLakeTableFunctions(factory);
registerDataLakeClusterTableFunctions(factory);
}
}

View File

@ -70,6 +70,7 @@ void registerTableFunctionExplain(TableFunctionFactory & factory);
void registerTableFunctionObjectStorage(TableFunctionFactory & factory);
void registerTableFunctionObjectStorageCluster(TableFunctionFactory & factory);
void registerDataLakeTableFunctions(TableFunctionFactory & factory);
void registerDataLakeClusterTableFunctions(TableFunctionFactory & factory);
void registerTableFunctionTimeSeries(TableFunctionFactory & factory);

View File

@ -0,0 +1,20 @@
<clickhouse>
<remote_servers>
<cluster_simple>
<shard>
<replica>
<host>node1</host>
<port>9000</port>
</replica>
<replica>
<host>node2</host>
<port>9000</port>
</replica>
<replica>
<host>node3</host>
<port>9000</port>
</replica>
</shard>
</cluster_simple>
</remote_servers>
</clickhouse>

View File

@ -0,0 +1,6 @@
<clickhouse>
<query_log>
<database>system</database>
<table>query_log</table>
</query_log>
</clickhouse>

View File

@ -73,14 +73,38 @@ def started_cluster():
cluster.add_instance(
"node1",
main_configs=[
"configs/config.d/query_log.xml",
"configs/config.d/cluster.xml",
"configs/config.d/named_collections.xml",
"configs/config.d/filesystem_caches.xml",
],
user_configs=["configs/users.d/users.xml"],
with_minio=True,
with_azurite=True,
stay_alive=True,
with_hdfs=with_hdfs,
stay_alive=True,
)
cluster.add_instance(
"node2",
main_configs=[
"configs/config.d/query_log.xml",
"configs/config.d/cluster.xml",
"configs/config.d/named_collections.xml",
"configs/config.d/filesystem_caches.xml",
],
user_configs=["configs/users.d/users.xml"],
stay_alive=True,
)
cluster.add_instance(
"node3",
main_configs=[
"configs/config.d/query_log.xml",
"configs/config.d/cluster.xml",
"configs/config.d/named_collections.xml",
"configs/config.d/filesystem_caches.xml",
],
user_configs=["configs/users.d/users.xml"],
stay_alive=True,
)
logging.info("Starting cluster...")
@ -182,6 +206,7 @@ def get_creation_expression(
cluster,
format="Parquet",
table_function=False,
run_on_cluster=False,
**kwargs,
):
if storage_type == "s3":
@ -189,35 +214,56 @@ def get_creation_expression(
bucket = kwargs["bucket"]
else:
bucket = cluster.minio_bucket
print(bucket)
if table_function:
return f"icebergS3(s3, filename = 'iceberg_data/default/{table_name}/', format={format}, url = 'http://minio1:9001/{bucket}/')"
if run_on_cluster:
assert table_function
return f"icebergS3Cluster('cluster_simple', s3, filename = 'iceberg_data/default/{table_name}/', format={format}, url = 'http://minio1:9001/{bucket}/')"
else:
return f"""
DROP TABLE IF EXISTS {table_name};
CREATE TABLE {table_name}
ENGINE=IcebergS3(s3, filename = 'iceberg_data/default/{table_name}/', format={format}, url = 'http://minio1:9001/{bucket}/')"""
if table_function:
return f"icebergS3(s3, filename = 'iceberg_data/default/{table_name}/', format={format}, url = 'http://minio1:9001/{bucket}/')"
else:
return f"""
DROP TABLE IF EXISTS {table_name};
CREATE TABLE {table_name}
ENGINE=IcebergS3(s3, filename = 'iceberg_data/default/{table_name}/', format={format}, url = 'http://minio1:9001/{bucket}/')"""
elif storage_type == "azure":
if table_function:
if run_on_cluster:
assert table_function
return f"""
icebergAzure(azure, container = '{cluster.azure_container_name}', storage_account_url = '{cluster.env_variables["AZURITE_STORAGE_ACCOUNT_URL"]}', blob_path = '/iceberg_data/default/{table_name}/', format={format})
icebergAzureCluster('cluster_simple', azure, container = '{cluster.azure_container_name}', storage_account_url = '{cluster.env_variables["AZURITE_STORAGE_ACCOUNT_URL"]}', blob_path = '/iceberg_data/default/{table_name}/', format={format})
"""
else:
return f"""
DROP TABLE IF EXISTS {table_name};
CREATE TABLE {table_name}
ENGINE=IcebergAzure(azure, container = {cluster.azure_container_name}, storage_account_url = '{cluster.env_variables["AZURITE_STORAGE_ACCOUNT_URL"]}', blob_path = '/iceberg_data/default/{table_name}/', format={format})"""
if table_function:
return f"""
icebergAzure(azure, container = '{cluster.azure_container_name}', storage_account_url = '{cluster.env_variables["AZURITE_STORAGE_ACCOUNT_URL"]}', blob_path = '/iceberg_data/default/{table_name}/', format={format})
"""
else:
return f"""
DROP TABLE IF EXISTS {table_name};
CREATE TABLE {table_name}
ENGINE=IcebergAzure(azure, container = {cluster.azure_container_name}, storage_account_url = '{cluster.env_variables["AZURITE_STORAGE_ACCOUNT_URL"]}', blob_path = '/iceberg_data/default/{table_name}/', format={format})"""
elif storage_type == "hdfs":
if table_function:
if run_on_cluster:
assert table_function
return f"""
icebergHDFS(hdfs, filename= 'iceberg_data/default/{table_name}/', format={format}, url = 'hdfs://hdfs1:9000/')
icebergHDFSCluster('cluster_simple', hdfs, filename= 'iceberg_data/default/{table_name}/', format={format}, url = 'hdfs://hdfs1:9000/')
"""
else:
return f"""
DROP TABLE IF EXISTS {table_name};
CREATE TABLE {table_name}
ENGINE=IcebergHDFS(hdfs, filename = 'iceberg_data/default/{table_name}/', format={format}, url = 'hdfs://hdfs1:9000/');"""
if table_function:
return f"""
icebergHDFS(hdfs, filename= 'iceberg_data/default/{table_name}/', format={format}, url = 'hdfs://hdfs1:9000/')
"""
else:
return f"""
DROP TABLE IF EXISTS {table_name};
CREATE TABLE {table_name}
ENGINE=IcebergHDFS(hdfs, filename = 'iceberg_data/default/{table_name}/', format={format}, url = 'hdfs://hdfs1:9000/');"""
elif storage_type == "local":
assert not run_on_cluster
if table_function:
return f"""
icebergLocal(local, path = '/iceberg_data/default/{table_name}/', format={format})
@ -227,6 +273,7 @@ def get_creation_expression(
DROP TABLE IF EXISTS {table_name};
CREATE TABLE {table_name}
ENGINE=IcebergLocal(local, path = '/iceberg_data/default/{table_name}/', format={format});"""
else:
raise Exception(f"Unknown iceberg storage type: {storage_type}")
@ -492,6 +539,108 @@ def test_types(started_cluster, format_version, storage_type):
)
@pytest.mark.parametrize("format_version", ["1", "2"])
@pytest.mark.parametrize("storage_type", ["s3", "azure", "hdfs"])
def test_cluster_table_function(started_cluster, format_version, storage_type):
if is_arm() and storage_type == "hdfs":
pytest.skip("Disabled test IcebergHDFS for aarch64")
instance = started_cluster.instances["node1"]
spark = started_cluster.spark_session
TABLE_NAME = (
"test_iceberg_cluster_"
+ format_version
+ "_"
+ storage_type
+ "_"
+ get_uuid_str()
)
def add_df(mode):
write_iceberg_from_df(
spark,
generate_data(spark, 0, 100),
TABLE_NAME,
mode=mode,
format_version=format_version,
)
files = default_upload_directory(
started_cluster,
storage_type,
f"/iceberg_data/default/{TABLE_NAME}/",
f"/iceberg_data/default/{TABLE_NAME}/",
)
logging.info(f"Adding another dataframe. result files: {files}")
return files
files = add_df(mode="overwrite")
for i in range(1, len(started_cluster.instances)):
files = add_df(mode="append")
logging.info(f"Setup complete. files: {files}")
assert len(files) == 5 + 4 * (len(started_cluster.instances) - 1)
clusters = instance.query(f"SELECT * FROM system.clusters")
logging.info(f"Clusters setup: {clusters}")
# Regular Query only node1
table_function_expr = get_creation_expression(
storage_type, TABLE_NAME, started_cluster, table_function=True
)
select_regular = (
instance.query(f"SELECT * FROM {table_function_expr}").strip().split()
)
# Cluster Query with node1 as coordinator
table_function_expr_cluster = get_creation_expression(
storage_type,
TABLE_NAME,
started_cluster,
table_function=True,
run_on_cluster=True,
)
select_cluster = (
instance.query(f"SELECT * FROM {table_function_expr_cluster}").strip().split()
)
# Simple size check
assert len(select_regular) == 600
assert len(select_cluster) == 600
# Actual check
assert select_cluster == select_regular
# Check query_log
for replica in started_cluster.instances.values():
replica.query("SYSTEM FLUSH LOGS")
for node_name, replica in started_cluster.instances.items():
cluster_secondary_queries = (
replica.query(
f"""
SELECT query, type, is_initial_query, read_rows, read_bytes FROM system.query_log
WHERE
type = 'QueryStart' AND
positionCaseInsensitive(query, '{storage_type}Cluster') != 0 AND
position(query, '{TABLE_NAME}') != 0 AND
position(query, 'system.query_log') = 0 AND
NOT is_initial_query
"""
)
.strip()
.split("\n")
)
logging.info(
f"[{node_name}] cluster_secondary_queries: {cluster_secondary_queries}"
)
assert len(cluster_secondary_queries) == 1
@pytest.mark.parametrize("format_version", ["1", "2"])
@pytest.mark.parametrize("storage_type", ["s3", "azure", "hdfs", "local"])
def test_delete_files(started_cluster, format_version, storage_type):

View File

@ -1,3 +1,6 @@
SELECT arrayWithConstant(96142475, ['qMUF']); -- { serverError TOO_LARGE_ARRAY_SIZE }
SELECT arrayWithConstant(100000000, materialize([[[[[[[[[['Hello, world!']]]]]]]]]])); -- { serverError TOO_LARGE_ARRAY_SIZE }
SELECT length(arrayWithConstant(10000000, materialize([[[[[[[[[['Hello world']]]]]]]]]])));
CREATE TEMPORARY TABLE args (value Array(Int)) ENGINE=Memory AS SELECT [1, 1, 1, 1] as value FROM numbers(1, 100);
SELECT length(arrayWithConstant(1000000, value)) FROM args FORMAT NULL;

View File

@ -244,7 +244,10 @@ Deduplication
DefaultTableEngine
DelayedInserts
DeliveryTag
Deltalake
DeltaLake
deltalakeCluster
deltaLakeCluster
Denormalize
DestroyAggregatesThreads
DestroyAggregatesThreadsActive
@ -377,10 +380,15 @@ Homebrew's
HorizontalDivide
Hostname
HouseOps
hudi
Hudi
hudiCluster
HudiCluster
HyperLogLog
Hypot
IANA
icebergCluster
IcebergCluster
IDE
IDEs
IDNA