Compare commits

...

36 Commits

Author SHA1 Message Date
Antonio Andelic
661714c8d7
Merge 57db5cf24c into 44b4bd38b9 2024-11-21 00:08:13 +01:00
Mikhail Artemenko
44b4bd38b9
Merge pull request #72045 from ClickHouse/issues/70174/cluster_versions
Enable cluster table functions for DataLake Storages
2024-11-20 21:22:37 +00:00
Shichao Jin
40c7d5fd1a
Merge pull request #71894 from udiz/fix-arrayWithConstant-size-estimation
Fix: arrayWithConstant size estimation using row's element size
2024-11-20 19:56:27 +00:00
Mikhail Artemenko
4ccebd9a24 fix syntax for iceberg in docs 2024-11-20 11:15:39 +00:00
Mikhail Artemenko
99177c0daf remove icebergCluster alias 2024-11-20 11:15:12 +00:00
Mikhail Artemenko
0951991c1d update aspell-dict.txt 2024-11-19 13:10:42 +00:00
Mikhail Artemenko
19aec5e572 Merge branch 'issues/70174/cluster_versions' of github.com:ClickHouse/ClickHouse into issues/70174/cluster_versions 2024-11-19 12:51:56 +00:00
Mikhail Artemenko
a367de9977 add docs 2024-11-19 12:49:59 +00:00
Antonio Andelic
57db5cf24c Randomize correctly 2024-11-19 13:39:54 +01:00
Mikhail Artemenko
6894e280b2 fix pr issues 2024-11-19 12:34:42 +00:00
Mikhail Artemenko
39ebe113d9 Merge branch 'master' into issues/70174/cluster_versions 2024-11-19 11:28:46 +00:00
Antonio Andelic
459fa898ed Merge branch 'master' into randomize-keeper-feature-flasgs-keeper 2024-11-19 10:00:41 +01:00
udiz
239bbaa133 use length 2024-11-19 00:00:43 +00:00
udiz
07fac5808d format null on test 2024-11-18 23:08:48 +00:00
udiz
ed95e0781f test uses less memory 2024-11-18 22:48:38 +00:00
robot-clickhouse
014608fb6b Automatic style fix 2024-11-18 17:51:51 +00:00
Mikhail Artemenko
a29ded4941 add test for iceberg 2024-11-18 17:39:46 +00:00
Mikhail Artemenko
d2efae7511 enable cluster versions for datalake storages 2024-11-18 17:35:21 +00:00
udiz
6879aa130a newline 2024-11-13 22:47:54 +00:00
udiz
43f3c886a2 add test 2024-11-13 22:46:36 +00:00
udiz
c383a743f7 arrayWithConstant size estimation using single value size 2024-11-13 20:02:31 +00:00
Antonio Andelic
0d875ecf5c
Always randomize in private 2024-11-04 12:56:14 +01:00
Antonio Andelic
6698212b5a Fix test 2024-10-31 13:39:41 +01:00
Antonio Andelic
c787838cb2 Merge branch 'master' into randomize-keeper-feature-flasgs-keeper 2024-10-31 12:01:31 +01:00
Antonio Andelic
eb020f1c4b Fix RemoveRecursive 2024-10-29 09:05:31 +01:00
Antonio Andelic
1a40df4d0c Merge branch 'master' into randomize-keeper-feature-flasgs-keeper 2024-10-28 12:07:38 +01:00
Antonio Andelic
4380c6035d Merge branch 'master' into randomize-keeper-feature-flasgs-keeper 2024-10-15 16:51:36 +02:00
Antonio Andelic
5145281088 Correct randomization 2024-10-15 16:51:32 +02:00
Antonio Andelic
35fa4c43e4 More fixes 2024-10-10 19:39:28 +02:00
robot-clickhouse
293e076493 Automatic style fix 2024-10-10 14:03:18 +00:00
Antonio Andelic
8b92603c6d Fix old version 2024-10-10 15:52:56 +02:00
Antonio Andelic
fb14f6e029 Fix MultiRead 2024-10-10 15:52:37 +02:00
robot-clickhouse
e1f37ec2bb Automatic style fix 2024-10-10 07:54:28 +00:00
Antonio Andelic
cc0ef6104f Fix MultiRead 2024-10-10 09:45:42 +02:00
robot-clickhouse
46ce65e66e Automatic style fix 2024-10-09 16:21:09 +00:00
Antonio Andelic
e048893b85 Randomize feature flags in integration test 2024-10-09 18:11:50 +02:00
29 changed files with 585 additions and 39 deletions

View File

@ -49,4 +49,4 @@ LIMIT 2
**See Also**
- [DeltaLake engine](/docs/en/engines/table-engines/integrations/deltalake.md)
- [DeltaLake cluster table function](/docs/en/sql-reference/table-functions/deltalakeCluster.md)

View File

@ -0,0 +1,30 @@
---
slug: /en/sql-reference/table-functions/deltalakeCluster
sidebar_position: 46
sidebar_label: deltaLakeCluster
title: "deltaLakeCluster Table Function"
---
This is an extension to the [deltaLake](/docs/en/sql-reference/table-functions/deltalake.md) table function.
Allows processing files from [Delta Lake](https://github.com/delta-io/delta) tables in Amazon S3 in parallel from many nodes in a specified cluster. On initiator it creates a connection to all nodes in the cluster and dispatches each file dynamically. On the worker node it asks the initiator about the next task to process and processes it. This is repeated until all tasks are finished.
**Syntax**
``` sql
deltaLakeCluster(cluster_name, url [,aws_access_key_id, aws_secret_access_key] [,format] [,structure] [,compression])
```
**Arguments**
- `cluster_name` — Name of a cluster that is used to build a set of addresses and connection parameters to remote and local servers.
- Description of all other arguments coincides with description of arguments in equivalent [deltaLake](/docs/en/sql-reference/table-functions/deltalake.md) table function.
**Returned value**
A table with the specified structure for reading data from cluster in the specified Delta Lake table in S3.
**See Also**
- [deltaLake engine](/docs/en/engines/table-engines/integrations/deltalake.md)
- [deltaLake table function](/docs/en/sql-reference/table-functions/deltalake.md)

View File

@ -29,4 +29,4 @@ A table with the specified structure for reading data in the specified Hudi tabl
**See Also**
- [Hudi engine](/docs/en/engines/table-engines/integrations/hudi.md)
- [Hudi cluster table function](/docs/en/sql-reference/table-functions/hudiCluster.md)

View File

@ -0,0 +1,30 @@
---
slug: /en/sql-reference/table-functions/hudiCluster
sidebar_position: 86
sidebar_label: hudiCluster
title: "hudiCluster Table Function"
---
This is an extension to the [hudi](/docs/en/sql-reference/table-functions/hudi.md) table function.
Allows processing files from Apache [Hudi](https://hudi.apache.org/) tables in Amazon S3 in parallel from many nodes in a specified cluster. On initiator it creates a connection to all nodes in the cluster and dispatches each file dynamically. On the worker node it asks the initiator about the next task to process and processes it. This is repeated until all tasks are finished.
**Syntax**
``` sql
hudiCluster(cluster_name, url [,aws_access_key_id, aws_secret_access_key] [,format] [,structure] [,compression])
```
**Arguments**
- `cluster_name` — Name of a cluster that is used to build a set of addresses and connection parameters to remote and local servers.
- Description of all other arguments coincides with description of arguments in equivalent [hudi](/docs/en/sql-reference/table-functions/hudi.md) table function.
**Returned value**
A table with the specified structure for reading data from cluster in the specified Hudi table in S3.
**See Also**
- [Hudi engine](/docs/en/engines/table-engines/integrations/hudi.md)
- [Hudi table function](/docs/en/sql-reference/table-functions/hudi.md)

View File

@ -72,3 +72,4 @@ Table function `iceberg` is an alias to `icebergS3` now.
**See Also**
- [Iceberg engine](/docs/en/engines/table-engines/integrations/iceberg.md)
- [Iceberg cluster table function](/docs/en/sql-reference/table-functions/icebergCluster.md)

View File

@ -0,0 +1,43 @@
---
slug: /en/sql-reference/table-functions/icebergCluster
sidebar_position: 91
sidebar_label: icebergCluster
title: "icebergCluster Table Function"
---
This is an extension to the [iceberg](/docs/en/sql-reference/table-functions/iceberg.md) table function.
Allows processing files from Apache [Iceberg](https://iceberg.apache.org/) in parallel from many nodes in a specified cluster. On initiator it creates a connection to all nodes in the cluster and dispatches each file dynamically. On the worker node it asks the initiator about the next task to process and processes it. This is repeated until all tasks are finished.
**Syntax**
``` sql
icebergS3Cluster(cluster_name, url [, NOSIGN | access_key_id, secret_access_key, [session_token]] [,format] [,compression_method])
icebergS3Cluster(cluster_name, named_collection[, option=value [,..]])
icebergAzureCluster(cluster_name, connection_string|storage_account_url, container_name, blobpath, [,account_name], [,account_key] [,format] [,compression_method])
icebergAzureCluster(cluster_name, named_collection[, option=value [,..]])
icebergHDFSCluster(cluster_name, path_to_table, [,format] [,compression_method])
icebergHDFSCluster(cluster_name, named_collection[, option=value [,..]])
```
**Arguments**
- `cluster_name` — Name of a cluster that is used to build a set of addresses and connection parameters to remote and local servers.
- Description of all other arguments coincides with description of arguments in equivalent [iceberg](/docs/en/sql-reference/table-functions/iceberg.md) table function.
**Returned value**
A table with the specified structure for reading data from cluster in the specified Iceberg table.
**Examples**
```sql
SELECT * FROM icebergS3Cluster('cluster_simple', 'http://test.s3.amazonaws.com/clickhouse-bucket/test_table', 'test', 'test')
```
**See Also**
- [Iceberg engine](/docs/en/engines/table-engines/integrations/iceberg.md)
- [Iceberg table function](/docs/en/sql-reference/table-functions/iceberg.md)

View File

@ -341,7 +341,10 @@ Coordination::Error ZooKeeper::tryGetChildren(
const EventPtr & watch,
Coordination::ListRequestType list_request_type)
{
return tryGetChildrenWatch(path, res, stat,
return tryGetChildrenWatch(
path,
res,
stat,
watch ? std::make_shared<Coordination::WatchCallback>(callbackForEvent(watch)) : Coordination::WatchCallbackPtr{},
list_request_type);
}
@ -975,11 +978,14 @@ void ZooKeeper::removeRecursive(const std::string & path, uint32_t remove_nodes_
Coordination::Error ZooKeeper::tryRemoveRecursive(const std::string & path, uint32_t remove_nodes_limit)
{
if (!isFeatureEnabled(DB::KeeperFeatureFlag::REMOVE_RECURSIVE))
const auto fallback_method = [&]
{
tryRemoveChildrenRecursive(path);
return tryRemove(path);
}
};
if (!isFeatureEnabled(DB::KeeperFeatureFlag::REMOVE_RECURSIVE))
return fallback_method();
auto promise = std::make_shared<std::promise<Coordination::RemoveRecursiveResponse>>();
auto future = promise->get_future();
@ -998,6 +1004,10 @@ Coordination::Error ZooKeeper::tryRemoveRecursive(const std::string & path, uint
}
auto response = future.get();
if (response.error == Coordination::Error::ZNOTEMPTY) /// limit was too low, try without RemoveRecursive request
return fallback_method();
return response.error;
}

View File

@ -486,13 +486,13 @@ public:
/// Remove the node with the subtree.
/// If Keeper supports RemoveRecursive operation then it will be performed atomically.
/// Otherwise if someone concurrently adds or removes a node in the subtree, the result is undefined.
void removeRecursive(const std::string & path, uint32_t remove_nodes_limit = 100);
void removeRecursive(const std::string & path, uint32_t remove_nodes_limit = 1000);
/// Same as removeRecursive but in case if Keeper does not supports RemoveRecursive and
/// if someone concurrently removes a node in the subtree, this will not cause errors.
/// For instance, you can call this method twice concurrently for the same node and the end
/// result would be the same as for the single call.
Coordination::Error tryRemoveRecursive(const std::string & path, uint32_t remove_nodes_limit = 100);
Coordination::Error tryRemoveRecursive(const std::string & path, uint32_t remove_nodes_limit = 1000);
/// Similar to removeRecursive(...) and tryRemoveRecursive(...), but does not remove path itself.
/// Node defined as RemoveException will not be deleted.

View File

@ -767,6 +767,11 @@ size_t ZooKeeperMultiRequest::sizeImpl() const
}
void ZooKeeperMultiRequest::readImpl(ReadBuffer & in)
{
readImpl(in, /*request_validator=*/{});
}
void ZooKeeperMultiRequest::readImpl(ReadBuffer & in, RequestValidator request_validator)
{
while (true)
{
@ -788,6 +793,8 @@ void ZooKeeperMultiRequest::readImpl(ReadBuffer & in)
ZooKeeperRequestPtr request = ZooKeeperRequestFactory::instance().get(op_num);
request->readImpl(in);
if (request_validator)
request_validator(*request);
requests.push_back(request);
if (in.eof())

View File

@ -570,6 +570,9 @@ struct ZooKeeperMultiRequest final : MultiRequest<ZooKeeperRequestPtr>, ZooKeepe
void writeImpl(WriteBuffer & out) const override;
size_t sizeImpl() const override;
void readImpl(ReadBuffer & in) override;
using RequestValidator = std::function<void(const ZooKeeperRequest &)>;
void readImpl(ReadBuffer & in, RequestValidator request_validator);
std::string toStringImpl(bool short_format) const override;
ZooKeeperResponsePtr makeResponse() const override;

View File

@ -514,7 +514,13 @@ void KeeperContext::initializeFeatureFlags(const Poco::Util::AbstractConfigurati
feature_flags.disableFeatureFlag(feature_flag.value());
}
if (feature_flags.isEnabled(KeeperFeatureFlag::MULTI_READ))
feature_flags.enableFeatureFlag(KeeperFeatureFlag::FILTERED_LIST);
else
system_nodes_with_data[keeper_api_version_path] = toString(static_cast<uint8_t>(KeeperApiVersion::ZOOKEEPER_COMPATIBLE));
system_nodes_with_data[keeper_api_feature_flags_path] = feature_flags.getFeatureFlags();
}
feature_flags.logFlags(getLogger("KeeperContext"));
@ -569,6 +575,25 @@ const CoordinationSettings & KeeperContext::getCoordinationSettings() const
return *coordination_settings;
}
bool KeeperContext::isOperationSupported(Coordination::OpNum operation) const
{
switch (operation)
{
case Coordination::OpNum::FilteredList:
return feature_flags.isEnabled(KeeperFeatureFlag::FILTERED_LIST);
case Coordination::OpNum::MultiRead:
return feature_flags.isEnabled(KeeperFeatureFlag::MULTI_READ);
case Coordination::OpNum::CreateIfNotExists:
return feature_flags.isEnabled(KeeperFeatureFlag::CREATE_IF_NOT_EXISTS);
case Coordination::OpNum::CheckNotExists:
return feature_flags.isEnabled(KeeperFeatureFlag::CHECK_NOT_EXISTS);
case Coordination::OpNum::RemoveRecursive:
return feature_flags.isEnabled(KeeperFeatureFlag::REMOVE_RECURSIVE);
default:
return true;
}
}
uint64_t KeeperContext::lastCommittedIndex() const
{
return last_committed_log_idx.load(std::memory_order_relaxed);

View File

@ -1,6 +1,7 @@
#pragma once
#include <Coordination/KeeperFeatureFlags.h>
#include <Poco/Util/AbstractConfiguration.h>
#include <Common/ZooKeeper/ZooKeeperConstants.h>
#include <atomic>
#include <condition_variable>
#include <cstdint>
@ -103,6 +104,7 @@ public:
return precommit_sleep_probability_for_testing;
}
bool isOperationSupported(Coordination::OpNum operation) const;
private:
/// local disk defined using path or disk name
using Storage = std::variant<DiskPtr, std::string>;

View File

@ -62,16 +62,17 @@ public:
for (size_t i = 0; i < num_rows; ++i)
{
auto array_size = col_num->getInt(i);
auto element_size = col_value->byteSizeAt(i);
if (unlikely(array_size < 0))
throw Exception(ErrorCodes::TOO_LARGE_ARRAY_SIZE, "Array size {} cannot be negative: while executing function {}", array_size, getName());
Int64 estimated_size = 0;
if (unlikely(common::mulOverflow(array_size, col_value->byteSize(), estimated_size)))
throw Exception(ErrorCodes::TOO_LARGE_ARRAY_SIZE, "Array size {} with element size {} bytes is too large: while executing function {}", array_size, col_value->byteSize(), getName());
if (unlikely(common::mulOverflow(array_size, element_size, estimated_size)))
throw Exception(ErrorCodes::TOO_LARGE_ARRAY_SIZE, "Array size {} with element size {} bytes is too large: while executing function {}", array_size, element_size, getName());
if (unlikely(estimated_size > max_array_size_in_columns_bytes))
throw Exception(ErrorCodes::TOO_LARGE_ARRAY_SIZE, "Array size {} with element size {} bytes is too large: while executing function {}", array_size, col_value->byteSize(), getName());
throw Exception(ErrorCodes::TOO_LARGE_ARRAY_SIZE, "Array size {} with element size {} bytes is too large: while executing function {}", array_size, element_size, getName());
offset += array_size;

View File

@ -1,5 +1,4 @@
#include <Server/KeeperTCPHandler.h>
#include "Common/ZooKeeper/ZooKeeperConstants.h"
#if USE_NURAFT
@ -19,6 +18,8 @@
# include <Common/NetException.h>
# include <Common/PipeFDs.h>
# include <Common/Stopwatch.h>
# include <Common/ZooKeeper/ZooKeeperCommon.h>
# include <Common/ZooKeeper/ZooKeeperConstants.h>
# include <Common/ZooKeeper/ZooKeeperIO.h>
# include <Common/logger_useful.h>
# include <Common/setThreadName.h>
@ -63,6 +64,7 @@ namespace ErrorCodes
extern const int LOGICAL_ERROR;
extern const int UNEXPECTED_PACKET_FROM_CLIENT;
extern const int TIMEOUT_EXCEEDED;
extern const int BAD_ARGUMENTS;
}
struct PollResult
@ -637,7 +639,23 @@ std::pair<Coordination::OpNum, Coordination::XID> KeeperTCPHandler::receiveReque
Coordination::ZooKeeperRequestPtr request = Coordination::ZooKeeperRequestFactory::instance().get(opnum);
request->xid = xid;
request->readImpl(read_buffer);
auto request_validator = [&](const Coordination::ZooKeeperRequest & current_request)
{
if (!keeper_dispatcher->getKeeperContext()->isOperationSupported(current_request.getOpNum()))
throw Exception(ErrorCodes::BAD_ARGUMENTS, "Unsupported operation: {}", current_request.getOpNum());
};
if (auto * multi_request = dynamic_cast<Coordination::ZooKeeperMultiRequest *>(request.get()))
{
multi_request->readImpl(read_buffer, request_validator);
}
else
{
request->readImpl(read_buffer);
request_validator(*request);
}
if (!keeper_dispatcher->putRequest(request, session_id, use_xid_64))
throw Exception(ErrorCodes::TIMEOUT_EXCEEDED, "Session {} already disconnected", session_id);

View File

@ -226,6 +226,26 @@ template class TableFunctionObjectStorage<HDFSClusterDefinition, StorageHDFSConf
#endif
template class TableFunctionObjectStorage<LocalDefinition, StorageLocalConfiguration>;
#if USE_AVRO && USE_AWS_S3
template class TableFunctionObjectStorage<IcebergS3ClusterDefinition, StorageS3IcebergConfiguration>;
#endif
#if USE_AVRO && USE_AZURE_BLOB_STORAGE
template class TableFunctionObjectStorage<IcebergAzureClusterDefinition, StorageAzureIcebergConfiguration>;
#endif
#if USE_AVRO && USE_HDFS
template class TableFunctionObjectStorage<IcebergHDFSClusterDefinition, StorageHDFSIcebergConfiguration>;
#endif
#if USE_PARQUET && USE_AWS_S3
template class TableFunctionObjectStorage<DeltaLakeClusterDefinition, StorageS3DeltaLakeConfiguration>;
#endif
#if USE_AWS_S3
template class TableFunctionObjectStorage<HudiClusterDefinition, StorageS3HudiConfiguration>;
#endif
#if USE_AVRO
void registerTableFunctionIceberg(TableFunctionFactory & factory)
{

View File

@ -96,7 +96,7 @@ void registerTableFunctionObjectStorageCluster(TableFunctionFactory & factory)
{
.documentation = {
.description=R"(The table function can be used to read the data stored on HDFS in parallel for many nodes in a specified cluster.)",
.examples{{"HDFSCluster", "SELECT * FROM HDFSCluster(cluster_name, uri, format)", ""}}},
.examples{{"HDFSCluster", "SELECT * FROM HDFSCluster(cluster, uri, format)", ""}}},
.allow_readonly = false
}
);
@ -105,15 +105,77 @@ void registerTableFunctionObjectStorageCluster(TableFunctionFactory & factory)
UNUSED(factory);
}
#if USE_AVRO
void registerTableFunctionIcebergCluster(TableFunctionFactory & factory)
{
UNUSED(factory);
#if USE_AWS_S3
template class TableFunctionObjectStorageCluster<S3ClusterDefinition, StorageS3Configuration>;
factory.registerFunction<TableFunctionIcebergS3Cluster>(
{.documentation
= {.description = R"(The table function can be used to read the Iceberg table stored on S3 object store in parallel for many nodes in a specified cluster.)",
.examples{{"icebergS3Cluster", "SELECT * FROM icebergS3Cluster(cluster, url, [, NOSIGN | access_key_id, secret_access_key, [session_token]], format, [,compression])", ""}},
.categories{"DataLake"}},
.allow_readonly = false});
#endif
#if USE_AZURE_BLOB_STORAGE
template class TableFunctionObjectStorageCluster<AzureClusterDefinition, StorageAzureConfiguration>;
factory.registerFunction<TableFunctionIcebergAzureCluster>(
{.documentation
= {.description = R"(The table function can be used to read the Iceberg table stored on Azure object store in parallel for many nodes in a specified cluster.)",
.examples{{"icebergAzureCluster", "SELECT * FROM icebergAzureCluster(cluster, connection_string|storage_account_url, container_name, blobpath, [account_name, account_key, format, compression])", ""}},
.categories{"DataLake"}},
.allow_readonly = false});
#endif
#if USE_HDFS
template class TableFunctionObjectStorageCluster<HDFSClusterDefinition, StorageHDFSConfiguration>;
factory.registerFunction<TableFunctionIcebergHDFSCluster>(
{.documentation
= {.description = R"(The table function can be used to read the Iceberg table stored on HDFS virtual filesystem in parallel for many nodes in a specified cluster.)",
.examples{{"icebergHDFSCluster", "SELECT * FROM icebergHDFSCluster(cluster, uri, [format], [structure], [compression_method])", ""}},
.categories{"DataLake"}},
.allow_readonly = false});
#endif
}
#endif
#if USE_AWS_S3
#if USE_PARQUET
void registerTableFunctionDeltaLakeCluster(TableFunctionFactory & factory)
{
factory.registerFunction<TableFunctionDeltaLakeCluster>(
{.documentation
= {.description = R"(The table function can be used to read the DeltaLake table stored on object store in parallel for many nodes in a specified cluster.)",
.examples{{"deltaLakeCluster", "SELECT * FROM deltaLakeCluster(cluster, url, access_key_id, secret_access_key)", ""}},
.categories{"DataLake"}},
.allow_readonly = false});
}
#endif
void registerTableFunctionHudiCluster(TableFunctionFactory & factory)
{
factory.registerFunction<TableFunctionHudiCluster>(
{.documentation
= {.description = R"(The table function can be used to read the Hudi table stored on object store in parallel for many nodes in a specified cluster.)",
.examples{{"hudiCluster", "SELECT * FROM hudiCluster(cluster, url, access_key_id, secret_access_key)", ""}},
.categories{"DataLake"}},
.allow_readonly = false});
}
#endif
void registerDataLakeClusterTableFunctions(TableFunctionFactory & factory)
{
UNUSED(factory);
#if USE_AVRO
registerTableFunctionIcebergCluster(factory);
#endif
#if USE_AWS_S3
#if USE_PARQUET
registerTableFunctionDeltaLakeCluster(factory);
#endif
registerTableFunctionHudiCluster(factory);
#endif
}
}

View File

@ -33,6 +33,36 @@ struct HDFSClusterDefinition
static constexpr auto storage_type_name = "HDFSCluster";
};
struct IcebergS3ClusterDefinition
{
static constexpr auto name = "icebergS3Cluster";
static constexpr auto storage_type_name = "IcebergS3Cluster";
};
struct IcebergAzureClusterDefinition
{
static constexpr auto name = "icebergAzureCluster";
static constexpr auto storage_type_name = "IcebergAzureCluster";
};
struct IcebergHDFSClusterDefinition
{
static constexpr auto name = "icebergHDFSCluster";
static constexpr auto storage_type_name = "IcebergHDFSCluster";
};
struct DeltaLakeClusterDefinition
{
static constexpr auto name = "deltaLakeCluster";
static constexpr auto storage_type_name = "DeltaLakeS3Cluster";
};
struct HudiClusterDefinition
{
static constexpr auto name = "hudiCluster";
static constexpr auto storage_type_name = "HudiS3Cluster";
};
/**
* Class implementing s3/hdfs/azureBlobStorageCluster(...) table functions,
* which allow to process many files from S3/HDFS/Azure blob storage on a specific cluster.
@ -79,4 +109,25 @@ using TableFunctionAzureBlobCluster = TableFunctionObjectStorageCluster<AzureClu
#if USE_HDFS
using TableFunctionHDFSCluster = TableFunctionObjectStorageCluster<HDFSClusterDefinition, StorageHDFSConfiguration>;
#endif
#if USE_AVRO && USE_AWS_S3
using TableFunctionIcebergS3Cluster = TableFunctionObjectStorageCluster<IcebergS3ClusterDefinition, StorageS3IcebergConfiguration>;
#endif
#if USE_AVRO && USE_AZURE_BLOB_STORAGE
using TableFunctionIcebergAzureCluster = TableFunctionObjectStorageCluster<IcebergAzureClusterDefinition, StorageAzureIcebergConfiguration>;
#endif
#if USE_AVRO && USE_HDFS
using TableFunctionIcebergHDFSCluster = TableFunctionObjectStorageCluster<IcebergHDFSClusterDefinition, StorageHDFSIcebergConfiguration>;
#endif
#if USE_AWS_S3 && USE_PARQUET
using TableFunctionDeltaLakeCluster = TableFunctionObjectStorageCluster<DeltaLakeClusterDefinition, StorageS3DeltaLakeConfiguration>;
#endif
#if USE_AWS_S3
using TableFunctionHudiCluster = TableFunctionObjectStorageCluster<HudiClusterDefinition, StorageS3HudiConfiguration>;
#endif
}

View File

@ -66,6 +66,7 @@ void registerTableFunctions(bool use_legacy_mongodb_integration [[maybe_unused]]
registerTableFunctionObjectStorage(factory);
registerTableFunctionObjectStorageCluster(factory);
registerDataLakeTableFunctions(factory);
registerDataLakeClusterTableFunctions(factory);
}
}

View File

@ -70,6 +70,7 @@ void registerTableFunctionExplain(TableFunctionFactory & factory);
void registerTableFunctionObjectStorage(TableFunctionFactory & factory);
void registerTableFunctionObjectStorageCluster(TableFunctionFactory & factory);
void registerDataLakeTableFunctions(TableFunctionFactory & factory);
void registerDataLakeClusterTableFunctions(TableFunctionFactory & factory);
void registerTableFunctionTimeSeries(TableFunctionFactory & factory);

View File

@ -7,6 +7,7 @@ import os.path as p
import platform
import pprint
import pwd
import random
import re
import shlex
import shutil
@ -1650,6 +1651,8 @@ class ClickHouseCluster:
minio_certs_dir=None,
minio_data_dir=None,
use_keeper=True,
keeper_randomize_feature_flags=True,
keeper_required_feature_flags=[],
main_config_name="config.xml",
users_config_name="users.xml",
copy_common_configs=True,
@ -1682,6 +1685,8 @@ class ClickHouseCluster:
if not env_variables:
env_variables = {}
self.use_keeper = use_keeper
self.keeper_randomize_feature_flags = keeper_randomize_feature_flags
self.keeper_required_feature_flags = keeper_required_feature_flags
# Code coverage files will be placed in database directory
# (affect only WITH_COVERAGE=1 build)
@ -2828,15 +2833,51 @@ class ClickHouseCluster:
if self.use_keeper: # TODO: remove hardcoded paths from here
for i in range(1, 4):
current_keeper_config_dir = os.path.join(
f"{self.keeper_instance_dir_prefix}{i}", "config"
)
shutil.copy(
os.path.join(
self.keeper_config_dir, f"keeper_config{i}.xml"
),
os.path.join(
self.keeper_instance_dir_prefix + f"{i}", "config"
),
current_keeper_config_dir,
)
extra_configs_dir = os.path.join(
current_keeper_config_dir, f"keeper_config{i}.d"
)
os.mkdir(extra_configs_dir)
feature_flags_config = os.path.join(
extra_configs_dir, "feature_flags.yaml"
)
indentation = 4 * " "
def get_feature_flag_value(feature_flag):
if not self.keeper_randomize_feature_flags:
return 1
if feature_flag in self.keeper_required_feature_flags:
return 1
return random.randint(0, 1)
with open(feature_flags_config, "w") as ff_config:
ff_config.write("keeper_server:\n")
ff_config.write(f"{indentation}feature_flags:\n")
indentation *= 2
for feature_flag in [
"filtered_list",
"multi_read",
"check_not_exists",
"create_if_not_exists",
"remove_recursive",
]:
ff_config.write(
f"{indentation}{feature_flag}: {get_feature_flag_value(feature_flag)}\n"
)
run_and_check(self.base_zookeeper_cmd + common_opts, env=self.env)
self.up_called = True

View File

@ -13,6 +13,7 @@ node = cluster.add_instance(
main_configs=["configs/enable_keeper_map.xml"],
user_configs=["configs/keeper_retries.xml"],
with_zookeeper=True,
keeper_required_feature_flags=["multi_read"],
stay_alive=True,
)

View File

@ -20,6 +20,7 @@ node1 = cluster.add_instance(
main_configs=["configs/config.xml"],
user_configs=["configs/users.xml"],
with_zookeeper=True,
keeper_required_feature_flags=["multi_read", "create_if_not_exists"],
macros={"shard": "shard1", "replica": "1"},
stay_alive=True,
)
@ -28,6 +29,7 @@ node2 = cluster.add_instance(
main_configs=["configs/config.xml"],
user_configs=["configs/users.xml"],
with_zookeeper=True,
keeper_required_feature_flags=["multi_read", "create_if_not_exists"],
macros={"shard": "shard1", "replica": "2"},
)
nodes = [node1, node2]

View File

@ -0,0 +1,20 @@
<clickhouse>
<remote_servers>
<cluster_simple>
<shard>
<replica>
<host>node1</host>
<port>9000</port>
</replica>
<replica>
<host>node2</host>
<port>9000</port>
</replica>
<replica>
<host>node3</host>
<port>9000</port>
</replica>
</shard>
</cluster_simple>
</remote_servers>
</clickhouse>

View File

@ -0,0 +1,6 @@
<clickhouse>
<query_log>
<database>system</database>
<table>query_log</table>
</query_log>
</clickhouse>

View File

@ -73,14 +73,38 @@ def started_cluster():
cluster.add_instance(
"node1",
main_configs=[
"configs/config.d/query_log.xml",
"configs/config.d/cluster.xml",
"configs/config.d/named_collections.xml",
"configs/config.d/filesystem_caches.xml",
],
user_configs=["configs/users.d/users.xml"],
with_minio=True,
with_azurite=True,
stay_alive=True,
with_hdfs=with_hdfs,
stay_alive=True,
)
cluster.add_instance(
"node2",
main_configs=[
"configs/config.d/query_log.xml",
"configs/config.d/cluster.xml",
"configs/config.d/named_collections.xml",
"configs/config.d/filesystem_caches.xml",
],
user_configs=["configs/users.d/users.xml"],
stay_alive=True,
)
cluster.add_instance(
"node3",
main_configs=[
"configs/config.d/query_log.xml",
"configs/config.d/cluster.xml",
"configs/config.d/named_collections.xml",
"configs/config.d/filesystem_caches.xml",
],
user_configs=["configs/users.d/users.xml"],
stay_alive=True,
)
logging.info("Starting cluster...")
@ -182,6 +206,7 @@ def get_creation_expression(
cluster,
format="Parquet",
table_function=False,
run_on_cluster=False,
**kwargs,
):
if storage_type == "s3":
@ -189,35 +214,56 @@ def get_creation_expression(
bucket = kwargs["bucket"]
else:
bucket = cluster.minio_bucket
print(bucket)
if table_function:
return f"icebergS3(s3, filename = 'iceberg_data/default/{table_name}/', format={format}, url = 'http://minio1:9001/{bucket}/')"
if run_on_cluster:
assert table_function
return f"icebergS3Cluster('cluster_simple', s3, filename = 'iceberg_data/default/{table_name}/', format={format}, url = 'http://minio1:9001/{bucket}/')"
else:
return f"""
DROP TABLE IF EXISTS {table_name};
CREATE TABLE {table_name}
ENGINE=IcebergS3(s3, filename = 'iceberg_data/default/{table_name}/', format={format}, url = 'http://minio1:9001/{bucket}/')"""
if table_function:
return f"icebergS3(s3, filename = 'iceberg_data/default/{table_name}/', format={format}, url = 'http://minio1:9001/{bucket}/')"
else:
return f"""
DROP TABLE IF EXISTS {table_name};
CREATE TABLE {table_name}
ENGINE=IcebergS3(s3, filename = 'iceberg_data/default/{table_name}/', format={format}, url = 'http://minio1:9001/{bucket}/')"""
elif storage_type == "azure":
if table_function:
if run_on_cluster:
assert table_function
return f"""
icebergAzure(azure, container = '{cluster.azure_container_name}', storage_account_url = '{cluster.env_variables["AZURITE_STORAGE_ACCOUNT_URL"]}', blob_path = '/iceberg_data/default/{table_name}/', format={format})
icebergAzureCluster('cluster_simple', azure, container = '{cluster.azure_container_name}', storage_account_url = '{cluster.env_variables["AZURITE_STORAGE_ACCOUNT_URL"]}', blob_path = '/iceberg_data/default/{table_name}/', format={format})
"""
else:
return f"""
DROP TABLE IF EXISTS {table_name};
CREATE TABLE {table_name}
ENGINE=IcebergAzure(azure, container = {cluster.azure_container_name}, storage_account_url = '{cluster.env_variables["AZURITE_STORAGE_ACCOUNT_URL"]}', blob_path = '/iceberg_data/default/{table_name}/', format={format})"""
if table_function:
return f"""
icebergAzure(azure, container = '{cluster.azure_container_name}', storage_account_url = '{cluster.env_variables["AZURITE_STORAGE_ACCOUNT_URL"]}', blob_path = '/iceberg_data/default/{table_name}/', format={format})
"""
else:
return f"""
DROP TABLE IF EXISTS {table_name};
CREATE TABLE {table_name}
ENGINE=IcebergAzure(azure, container = {cluster.azure_container_name}, storage_account_url = '{cluster.env_variables["AZURITE_STORAGE_ACCOUNT_URL"]}', blob_path = '/iceberg_data/default/{table_name}/', format={format})"""
elif storage_type == "hdfs":
if table_function:
if run_on_cluster:
assert table_function
return f"""
icebergHDFS(hdfs, filename= 'iceberg_data/default/{table_name}/', format={format}, url = 'hdfs://hdfs1:9000/')
icebergHDFSCluster('cluster_simple', hdfs, filename= 'iceberg_data/default/{table_name}/', format={format}, url = 'hdfs://hdfs1:9000/')
"""
else:
return f"""
DROP TABLE IF EXISTS {table_name};
CREATE TABLE {table_name}
ENGINE=IcebergHDFS(hdfs, filename = 'iceberg_data/default/{table_name}/', format={format}, url = 'hdfs://hdfs1:9000/');"""
if table_function:
return f"""
icebergHDFS(hdfs, filename= 'iceberg_data/default/{table_name}/', format={format}, url = 'hdfs://hdfs1:9000/')
"""
else:
return f"""
DROP TABLE IF EXISTS {table_name};
CREATE TABLE {table_name}
ENGINE=IcebergHDFS(hdfs, filename = 'iceberg_data/default/{table_name}/', format={format}, url = 'hdfs://hdfs1:9000/');"""
elif storage_type == "local":
assert not run_on_cluster
if table_function:
return f"""
icebergLocal(local, path = '/iceberg_data/default/{table_name}/', format={format})
@ -227,6 +273,7 @@ def get_creation_expression(
DROP TABLE IF EXISTS {table_name};
CREATE TABLE {table_name}
ENGINE=IcebergLocal(local, path = '/iceberg_data/default/{table_name}/', format={format});"""
else:
raise Exception(f"Unknown iceberg storage type: {storage_type}")
@ -492,6 +539,108 @@ def test_types(started_cluster, format_version, storage_type):
)
@pytest.mark.parametrize("format_version", ["1", "2"])
@pytest.mark.parametrize("storage_type", ["s3", "azure", "hdfs"])
def test_cluster_table_function(started_cluster, format_version, storage_type):
if is_arm() and storage_type == "hdfs":
pytest.skip("Disabled test IcebergHDFS for aarch64")
instance = started_cluster.instances["node1"]
spark = started_cluster.spark_session
TABLE_NAME = (
"test_iceberg_cluster_"
+ format_version
+ "_"
+ storage_type
+ "_"
+ get_uuid_str()
)
def add_df(mode):
write_iceberg_from_df(
spark,
generate_data(spark, 0, 100),
TABLE_NAME,
mode=mode,
format_version=format_version,
)
files = default_upload_directory(
started_cluster,
storage_type,
f"/iceberg_data/default/{TABLE_NAME}/",
f"/iceberg_data/default/{TABLE_NAME}/",
)
logging.info(f"Adding another dataframe. result files: {files}")
return files
files = add_df(mode="overwrite")
for i in range(1, len(started_cluster.instances)):
files = add_df(mode="append")
logging.info(f"Setup complete. files: {files}")
assert len(files) == 5 + 4 * (len(started_cluster.instances) - 1)
clusters = instance.query(f"SELECT * FROM system.clusters")
logging.info(f"Clusters setup: {clusters}")
# Regular Query only node1
table_function_expr = get_creation_expression(
storage_type, TABLE_NAME, started_cluster, table_function=True
)
select_regular = (
instance.query(f"SELECT * FROM {table_function_expr}").strip().split()
)
# Cluster Query with node1 as coordinator
table_function_expr_cluster = get_creation_expression(
storage_type,
TABLE_NAME,
started_cluster,
table_function=True,
run_on_cluster=True,
)
select_cluster = (
instance.query(f"SELECT * FROM {table_function_expr_cluster}").strip().split()
)
# Simple size check
assert len(select_regular) == 600
assert len(select_cluster) == 600
# Actual check
assert select_cluster == select_regular
# Check query_log
for replica in started_cluster.instances.values():
replica.query("SYSTEM FLUSH LOGS")
for node_name, replica in started_cluster.instances.items():
cluster_secondary_queries = (
replica.query(
f"""
SELECT query, type, is_initial_query, read_rows, read_bytes FROM system.query_log
WHERE
type = 'QueryStart' AND
positionCaseInsensitive(query, '{storage_type}Cluster') != 0 AND
position(query, '{TABLE_NAME}') != 0 AND
position(query, 'system.query_log') = 0 AND
NOT is_initial_query
"""
)
.strip()
.split("\n")
)
logging.info(
f"[{node_name}] cluster_secondary_queries: {cluster_secondary_queries}"
)
assert len(cluster_secondary_queries) == 1
@pytest.mark.parametrize("format_version", ["1", "2"])
@pytest.mark.parametrize("storage_type", ["s3", "azure", "hdfs", "local"])
def test_delete_files(started_cluster, format_version, storage_type):

View File

@ -59,6 +59,9 @@ instance = cluster.add_instance(
user_configs=["configs/users.xml"],
with_kafka=True,
with_zookeeper=True, # For Replicated Table
keeper_required_feature_flags=[
"create_if_not_exists"
], # new Kafka doesn't work without this feature
macros={
"kafka_broker": "kafka1",
"kafka_topic_old": KAFKA_TOPIC_OLD,

View File

@ -99,6 +99,7 @@ def started_cluster():
with_minio=True,
with_azurite=True,
with_zookeeper=True,
keeper_required_feature_flags=["create_if_not_exists"],
main_configs=[
"configs/zookeeper.xml",
"configs/s3queue_log.xml",
@ -110,6 +111,7 @@ def started_cluster():
user_configs=["configs/users.xml"],
with_minio=True,
with_zookeeper=True,
keeper_required_feature_flags=["create_if_not_exists"],
main_configs=[
"configs/s3queue_log.xml",
],
@ -118,6 +120,7 @@ def started_cluster():
cluster.add_instance(
"old_instance",
with_zookeeper=True,
keeper_required_feature_flags=["create_if_not_exists"],
image="clickhouse/clickhouse-server",
tag="23.12",
stay_alive=True,
@ -127,6 +130,7 @@ def started_cluster():
cluster.add_instance(
"node1",
with_zookeeper=True,
keeper_required_feature_flags=["create_if_not_exists"],
stay_alive=True,
main_configs=[
"configs/zookeeper.xml",
@ -137,6 +141,7 @@ def started_cluster():
cluster.add_instance(
"node2",
with_zookeeper=True,
keeper_required_feature_flags=["create_if_not_exists"],
stay_alive=True,
main_configs=[
"configs/zookeeper.xml",
@ -149,6 +154,7 @@ def started_cluster():
user_configs=["configs/users.xml"],
with_minio=True,
with_zookeeper=True,
keeper_required_feature_flags=["create_if_not_exists"],
main_configs=[
"configs/s3queue_log.xml",
"configs/merge_tree.xml",
@ -158,6 +164,7 @@ def started_cluster():
cluster.add_instance(
"instance_24.5",
with_zookeeper=True,
keeper_required_feature_flags=["create_if_not_exists"],
image="clickhouse/clickhouse-server",
tag="24.5",
stay_alive=True,
@ -170,6 +177,7 @@ def started_cluster():
cluster.add_instance(
"node_cloud_mode",
with_zookeeper=True,
keeper_required_feature_flags=["create_if_not_exists"],
stay_alive=True,
main_configs=[
"configs/zookeeper.xml",

View File

@ -1,3 +1,6 @@
SELECT arrayWithConstant(96142475, ['qMUF']); -- { serverError TOO_LARGE_ARRAY_SIZE }
SELECT arrayWithConstant(100000000, materialize([[[[[[[[[['Hello, world!']]]]]]]]]])); -- { serverError TOO_LARGE_ARRAY_SIZE }
SELECT length(arrayWithConstant(10000000, materialize([[[[[[[[[['Hello world']]]]]]]]]])));
CREATE TEMPORARY TABLE args (value Array(Int)) ENGINE=Memory AS SELECT [1, 1, 1, 1] as value FROM numbers(1, 100);
SELECT length(arrayWithConstant(1000000, value)) FROM args FORMAT NULL;

View File

@ -244,7 +244,10 @@ Deduplication
DefaultTableEngine
DelayedInserts
DeliveryTag
Deltalake
DeltaLake
deltalakeCluster
deltaLakeCluster
Denormalize
DestroyAggregatesThreads
DestroyAggregatesThreadsActive
@ -377,10 +380,15 @@ Homebrew's
HorizontalDivide
Hostname
HouseOps
hudi
Hudi
hudiCluster
HudiCluster
HyperLogLog
Hypot
IANA
icebergCluster
IcebergCluster
IDE
IDEs
IDNA