#pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace DB { struct Settings; namespace ErrorCodes { extern const int LOGICAL_ERROR; } } /// Implementing the Reservoir Sampling algorithm. Incrementally selects from the added objects a random subset of the sample_count size. /// Can approximately get quantiles. /// Call `quantile` takes O(sample_count log sample_count), if after the previous call `quantile` there was at least one call `insert`. Otherwise O(1). /// That is, it makes sense to first add, then get quantiles without adding. const size_t DEFAULT_SAMPLE_COUNT = 8192; /// What if there is not a single value - throw an exception, or return 0 or NaN in the case of double? namespace ReservoirSamplerOnEmpty { enum Enum { THROW, RETURN_NAN_OR_ZERO, }; } template struct NanLikeValueConstructor { static ResultType getValue() { return std::numeric_limits::quiet_NaN(); } }; template struct NanLikeValueConstructor { static ResultType getValue() { return ResultType(); } }; template > class ReservoirSampler { public: explicit ReservoirSampler(size_t sample_count_ = DEFAULT_SAMPLE_COUNT) : sample_count(sample_count_) { rng.seed(123456); } void clear() { samples.clear(); sorted = false; total_values = 0; rng.seed(123456); } void insert(const T & v) { if (isNaN(v)) return; sorted = false; ++total_values; if (samples.size() < sample_count) { samples.push_back(v); } else { UInt64 rnd = genRandom(total_values); if (rnd < sample_count) samples[rnd] = v; } } size_t size() const { return total_values; } T quantileNearest(double level) { if (samples.empty()) return onEmpty(); sortIfNeeded(); double index = level * (samples.size() - 1); size_t int_index = static_cast(index + 0.5); /// NOLINT int_index = std::max(0LU, std::min(samples.size() - 1, int_index)); return samples[int_index]; } /** If T is not a numeric type, using this method causes a compilation error, * but use of error class does not. SFINAE. */ double quantileInterpolated(double level) { if (samples.empty()) { if (DB::is_decimal) return 0; return onEmpty(); } sortIfNeeded(); double index = std::max(0., std::min(samples.size() - 1., level * (samples.size() - 1))); /// To get the value of a fractional index, we linearly interpolate between neighboring values. size_t left_index = static_cast(index); size_t right_index = left_index + 1; if (right_index == samples.size()) { if constexpr (DB::is_decimal) return static_cast(samples[left_index].value); else return static_cast(samples[left_index]); } double left_coef = right_index - index; double right_coef = index - left_index; if constexpr (DB::is_decimal) return static_cast(samples[left_index].value) * left_coef + static_cast(samples[right_index].value) * right_coef; else return static_cast(samples[left_index]) * left_coef + static_cast(samples[right_index]) * right_coef; } void merge(const ReservoirSampler & b) { if (sample_count != b.sample_count) throw Poco::Exception("Cannot merge ReservoirSampler's with different sample_count"); sorted = false; if (b.total_values <= sample_count) { for (size_t i = 0; i < b.samples.size(); ++i) insert(b.samples[i]); } else if (total_values <= sample_count) { Array from = std::move(samples); samples.assign(b.samples.begin(), b.samples.end()); total_values = b.total_values; for (size_t i = 0; i < from.size(); ++i) insert(from[i]); } else { /// Replace every element in our reservoir to the b's reservoir /// with the probability of b.total_values / (a.total_values + b.total_values) /// Do it more roughly than true random sampling to save performance. total_values += b.total_values; /// Will replace every frequency'th element in a to element from b. double frequency = static_cast(total_values) / b.total_values; /// When frequency is too low, replace just one random element with the corresponding probability. if (frequency * 2 >= sample_count) { UInt64 rnd = genRandom(frequency); if (rnd < sample_count) samples[rnd] = b.samples[rnd]; } else { for (double i = 0; i < sample_count; i += frequency) /// NOLINT samples[i] = b.samples[i]; } } } void read(DB::ReadBuffer & buf) { DB::readIntBinary(sample_count, buf); DB::readIntBinary(total_values, buf); samples.resize(std::min(total_values, sample_count)); std::string rng_string; DB::readStringBinary(rng_string, buf); DB::ReadBufferFromString rng_buf(rng_string); rng_buf >> rng; for (size_t i = 0; i < samples.size(); ++i) DB::readBinary(samples[i], buf); sorted = false; } void write(DB::WriteBuffer & buf) const { DB::writeIntBinary(sample_count, buf); DB::writeIntBinary(total_values, buf); DB::WriteBufferFromOwnString rng_buf; rng_buf << rng; DB::writeStringBinary(rng_buf.str(), buf); for (size_t i = 0; i < std::min(sample_count, total_values); ++i) DB::writeBinary(samples[i], buf); } private: /// We allocate a little memory on the stack - to avoid allocations when there are many objects with a small number of elements. using Array = DB::PODArrayWithStackMemory; size_t sample_count; size_t total_values = 0; Array samples; pcg32_fast rng; bool sorted = false; UInt64 genRandom(size_t lim) { assert(lim > 0); /// With a large number of values, we will generate random numbers several times slower. if (lim <= static_cast(rng.max())) return static_cast(rng()) % static_cast(lim); else return (static_cast(rng()) * (static_cast(rng.max()) + 1ULL) + static_cast(rng())) % lim; } void sortIfNeeded() { if (sorted) return; sorted = true; ::sort(samples.begin(), samples.end(), Comparer()); } template ResultType onEmpty() const { if (OnEmpty == ReservoirSamplerOnEmpty::THROW) throw DB::Exception(DB::ErrorCodes::LOGICAL_ERROR, "Quantile of empty ReservoirSampler"); else return NanLikeValueConstructor>::getValue(); } };