#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace DB { namespace ErrorCodes { extern const int INVALID_SETTING_VALUE; } namespace { template void calculateMax(Max & max, T x) { if (Max(x) > max) max = x; } template void calculateMaxAndSum(Max & max, Sum & sum, T x) { sum += x; if (Max(x) > max) max = x; } } ServerAsynchronousMetrics::ServerAsynchronousMetrics( ContextPtr global_context_, int update_period_seconds, int heavy_metrics_update_period_seconds, const ProtocolServerMetricsFunc & protocol_server_metrics_func_) : AsynchronousMetrics(update_period_seconds, protocol_server_metrics_func_) , WithContext(global_context_) , heavy_metric_update_period(heavy_metrics_update_period_seconds) { /// sanity check if (update_period_seconds == 0 || heavy_metrics_update_period_seconds == 0) throw Exception(ErrorCodes::INVALID_SETTING_VALUE, "Setting asynchronous_metrics_update_period_s and asynchronous_heavy_metrics_update_period_s must not be zero"); } void ServerAsynchronousMetrics::updateImpl(AsynchronousMetricValues & new_values, TimePoint update_time, TimePoint current_time) { if (auto mark_cache = getContext()->getMarkCache()) { new_values["MarkCacheBytes"] = { mark_cache->sizeInBytes(), "Total size of mark cache in bytes" }; new_values["MarkCacheFiles"] = { mark_cache->count(), "Total number of mark files cached in the mark cache" }; } if (auto uncompressed_cache = getContext()->getUncompressedCache()) { new_values["UncompressedCacheBytes"] = { uncompressed_cache->sizeInBytes(), "Total size of uncompressed cache in bytes. Uncompressed cache does not usually improve the performance and should be mostly avoided." }; new_values["UncompressedCacheCells"] = { uncompressed_cache->count(), "Total number of entries in the uncompressed cache. Each entry represents a decompressed block of data. Uncompressed cache does not usually improve performance and should be mostly avoided." }; } if (auto index_mark_cache = getContext()->getIndexMarkCache()) { new_values["IndexMarkCacheBytes"] = { index_mark_cache->sizeInBytes(), "Total size of mark cache for secondary indices in bytes." }; new_values["IndexMarkCacheFiles"] = { index_mark_cache->count(), "Total number of mark files cached in the mark cache for secondary indices." }; } if (auto index_uncompressed_cache = getContext()->getIndexUncompressedCache()) { new_values["IndexUncompressedCacheBytes"] = { index_uncompressed_cache->sizeInBytes(), "Total size of uncompressed cache in bytes for secondary indices. Uncompressed cache does not usually improve the performance and should be mostly avoided." }; new_values["IndexUncompressedCacheCells"] = { index_uncompressed_cache->count(), "Total number of entries in the uncompressed cache for secondary indices. Each entry represents a decompressed block of data. Uncompressed cache does not usually improve performance and should be mostly avoided." }; } if (auto mmap_cache = getContext()->getMMappedFileCache()) { new_values["MMapCacheCells"] = { mmap_cache->count(), "The number of files opened with `mmap` (mapped in memory)." " This is used for queries with the setting `local_filesystem_read_method` set to `mmap`." " The files opened with `mmap` are kept in the cache to avoid costly TLB flushes."}; } if (auto query_cache = getContext()->getQueryCache()) { new_values["QueryCacheBytes"] = { query_cache->sizeInBytes(), "Total size of the query cache in bytes." }; new_values["QueryCacheEntries"] = { query_cache->count(), "Total number of entries in the query cache." }; } { auto caches = FileCacheFactory::instance().getAll(); size_t total_bytes = 0; size_t total_files = 0; for (const auto & [_, cache_data] : caches) { total_bytes += cache_data->cache->getUsedCacheSize(); total_files += cache_data->cache->getFileSegmentsNum(); } new_values["FilesystemCacheBytes"] = { total_bytes, "Total bytes in the `cache` virtual filesystem. This cache is hold on disk." }; new_values["FilesystemCacheFiles"] = { total_files, "Total number of cached file segments in the `cache` virtual filesystem. This cache is hold on disk." }; } #if USE_EMBEDDED_COMPILER if (auto * compiled_expression_cache = CompiledExpressionCacheFactory::instance().tryGetCache()) { new_values["CompiledExpressionCacheBytes"] = { compiled_expression_cache->sizeInBytes(), "Total bytes used for the cache of JIT-compiled code." }; new_values["CompiledExpressionCacheCount"] = { compiled_expression_cache->count(), "Total entries in the cache of JIT-compiled code." }; } #endif new_values["Uptime"] = { getContext()->getUptimeSeconds(), "The server uptime in seconds. It includes the time spent for server initialization before accepting connections." }; if (const auto stats = getHashTablesCacheStatistics()) { new_values["HashTableStatsCacheEntries"] = { stats->entries, "The number of entries in the cache of hash table sizes." " The cache for hash table sizes is used for predictive optimization of GROUP BY." }; new_values["HashTableStatsCacheHits"] = { stats->hits, "The number of times the prediction of a hash table size was correct." }; new_values["HashTableStatsCacheMisses"] = { stats->misses, "The number of times the prediction of a hash table size was incorrect." }; } /// Free space in filesystems at data path and logs path. { auto stat = getStatVFS(getContext()->getPath()); new_values["FilesystemMainPathTotalBytes"] = { stat.f_blocks * stat.f_frsize, "The size of the volume where the main ClickHouse path is mounted, in bytes." }; new_values["FilesystemMainPathAvailableBytes"] = { stat.f_bavail * stat.f_frsize, "Available bytes on the volume where the main ClickHouse path is mounted." }; new_values["FilesystemMainPathUsedBytes"] = { (stat.f_blocks - stat.f_bavail) * stat.f_frsize, "Used bytes on the volume where the main ClickHouse path is mounted." }; new_values["FilesystemMainPathTotalINodes"] = { stat.f_files, "The total number of inodes on the volume where the main ClickHouse path is mounted. If it is less than 25 million, it indicates a misconfiguration." }; new_values["FilesystemMainPathAvailableINodes"] = { stat.f_favail, "The number of available inodes on the volume where the main ClickHouse path is mounted. If it is close to zero, it indicates a misconfiguration, and you will get 'no space left on device' even when the disk is not full." }; new_values["FilesystemMainPathUsedINodes"] = { stat.f_files - stat.f_favail, "The number of used inodes on the volume where the main ClickHouse path is mounted. This value mostly corresponds to the number of files." }; } { /// Current working directory of the server is the directory with logs. auto stat = getStatVFS("."); new_values["FilesystemLogsPathTotalBytes"] = { stat.f_blocks * stat.f_frsize, "The size of the volume where ClickHouse logs path is mounted, in bytes. It's recommended to have at least 10 GB for logs." }; new_values["FilesystemLogsPathAvailableBytes"] = { stat.f_bavail * stat.f_frsize, "Available bytes on the volume where ClickHouse logs path is mounted. If this value approaches zero, you should tune the log rotation in the configuration file." }; new_values["FilesystemLogsPathUsedBytes"] = { (stat.f_blocks - stat.f_bavail) * stat.f_frsize, "Used bytes on the volume where ClickHouse logs path is mounted." }; new_values["FilesystemLogsPathTotalINodes"] = { stat.f_files, "The total number of inodes on the volume where ClickHouse logs path is mounted." }; new_values["FilesystemLogsPathAvailableINodes"] = { stat.f_favail, "The number of available inodes on the volume where ClickHouse logs path is mounted." }; new_values["FilesystemLogsPathUsedINodes"] = { stat.f_files - stat.f_favail, "The number of used inodes on the volume where ClickHouse logs path is mounted." }; } /// Free and total space on every configured disk. { DisksMap disks_map = getContext()->getDisksMap(); for (const auto & [name, disk] : disks_map) { auto total = disk->getTotalSpace(); /// Some disks don't support information about the space. if (!total) continue; auto available = disk->getAvailableSpace(); auto unreserved = disk->getUnreservedSpace(); new_values[fmt::format("DiskTotal_{}", name)] = { *total, "The total size in bytes of the disk (virtual filesystem). Remote filesystems may not provide this information." }; if (available) { new_values[fmt::format("DiskUsed_{}", name)] = { *total - *available, "Used bytes on the disk (virtual filesystem). Remote filesystems not always provide this information." }; new_values[fmt::format("DiskAvailable_{}", name)] = { *available, "Available bytes on the disk (virtual filesystem). Remote filesystems may not provide this information." }; } if (unreserved) new_values[fmt::format("DiskUnreserved_{}", name)] = { *unreserved, "Available bytes on the disk (virtual filesystem) without the reservations for merges, fetches, and moves. Remote filesystems may not provide this information." }; } } { auto databases = DatabaseCatalog::instance().getDatabases(); size_t max_queue_size = 0; size_t max_inserts_in_queue = 0; size_t max_merges_in_queue = 0; size_t sum_queue_size = 0; size_t sum_inserts_in_queue = 0; size_t sum_merges_in_queue = 0; size_t max_absolute_delay = 0; size_t max_relative_delay = 0; size_t max_part_count_for_partition = 0; size_t number_of_databases = 0; for (auto [db_name, _] : databases) if (db_name != DatabaseCatalog::TEMPORARY_DATABASE) ++number_of_databases; /// filter out the internal database for temporary tables, system table "system.databases" behaves the same way size_t total_number_of_tables = 0; size_t total_number_of_bytes = 0; size_t total_number_of_rows = 0; size_t total_number_of_parts = 0; size_t total_number_of_tables_system = 0; size_t total_number_of_bytes_system = 0; size_t total_number_of_rows_system = 0; size_t total_number_of_parts_system = 0; size_t total_primary_key_bytes_memory = 0; size_t total_primary_key_bytes_memory_allocated = 0; for (const auto & db : databases) { /// Check if database can contain MergeTree tables if (!db.second->canContainMergeTreeTables()) continue; bool is_system = db.first == DatabaseCatalog::SYSTEM_DATABASE; for (auto iterator = db.second->getTablesIterator(getContext()); iterator->isValid(); iterator->next()) { ++total_number_of_tables; if (is_system) ++total_number_of_tables_system; const auto & table = iterator->table(); if (!table) continue; if (MergeTreeData * table_merge_tree = dynamic_cast(table.get())) { const auto & settings = getContext()->getSettingsRef(); calculateMax(max_part_count_for_partition, table_merge_tree->getMaxPartsCountAndSizeForPartition().first); size_t bytes = table_merge_tree->totalBytes(settings).value(); size_t rows = table_merge_tree->totalRows(settings).value(); size_t parts = table_merge_tree->getActivePartsCount(); total_number_of_bytes += bytes; total_number_of_rows += rows; total_number_of_parts += parts; if (is_system) { total_number_of_bytes_system += bytes; total_number_of_rows_system += rows; total_number_of_parts_system += parts; } // only fetch the parts which are in active state auto all_parts = table_merge_tree->getDataPartsVectorForInternalUsage(); for (const auto & part : all_parts) { total_primary_key_bytes_memory += part->getIndexSizeInBytes(); total_primary_key_bytes_memory_allocated += part->getIndexSizeInAllocatedBytes(); } } if (StorageReplicatedMergeTree * table_replicated_merge_tree = typeid_cast(table.get())) { ReplicatedTableStatus status; table_replicated_merge_tree->getStatus(status, false); calculateMaxAndSum(max_queue_size, sum_queue_size, status.queue.queue_size); calculateMaxAndSum(max_inserts_in_queue, sum_inserts_in_queue, status.queue.inserts_in_queue); calculateMaxAndSum(max_merges_in_queue, sum_merges_in_queue, status.queue.merges_in_queue); if (!status.is_readonly) { try { time_t absolute_delay = 0; time_t relative_delay = 0; table_replicated_merge_tree->getReplicaDelays(absolute_delay, relative_delay); calculateMax(max_absolute_delay, absolute_delay); calculateMax(max_relative_delay, relative_delay); } catch (...) { tryLogCurrentException(__PRETTY_FUNCTION__, "Cannot get replica delay for table: " + backQuoteIfNeed(db.first) + "." + backQuoteIfNeed(iterator->name())); } } } } } new_values["ReplicasMaxQueueSize"] = { max_queue_size, "Maximum queue size (in the number of operations like get, merge) across Replicated tables." }; new_values["ReplicasMaxInsertsInQueue"] = { max_inserts_in_queue, "Maximum number of INSERT operations in the queue (still to be replicated) across Replicated tables." }; new_values["ReplicasMaxMergesInQueue"] = { max_merges_in_queue, "Maximum number of merge operations in the queue (still to be applied) across Replicated tables." }; new_values["ReplicasSumQueueSize"] = { sum_queue_size, "Sum queue size (in the number of operations like get, merge) across Replicated tables." }; new_values["ReplicasSumInsertsInQueue"] = { sum_inserts_in_queue, "Sum of INSERT operations in the queue (still to be replicated) across Replicated tables." }; new_values["ReplicasSumMergesInQueue"] = { sum_merges_in_queue, "Sum of merge operations in the queue (still to be applied) across Replicated tables." }; new_values["ReplicasMaxAbsoluteDelay"] = { max_absolute_delay, "Maximum difference in seconds between the most fresh replicated part and the most fresh data part still to be replicated, across Replicated tables. A very high value indicates a replica with no data." }; new_values["ReplicasMaxRelativeDelay"] = { max_relative_delay, "Maximum difference between the replica delay and the delay of the most up-to-date replica of the same table, across Replicated tables." }; new_values["MaxPartCountForPartition"] = { max_part_count_for_partition, "Maximum number of parts per partition across all partitions of all tables of MergeTree family. Values larger than 300 indicates misconfiguration, overload, or massive data loading." }; new_values["NumberOfDatabases"] = { number_of_databases, "Total number of databases on the server." }; new_values["NumberOfTables"] = { total_number_of_tables, "Total number of tables summed across the databases on the server, excluding the databases that cannot contain MergeTree tables." " The excluded database engines are those who generate the set of tables on the fly, like `Lazy`, `MySQL`, `PostgreSQL`, `SQlite`."}; new_values["TotalBytesOfMergeTreeTables"] = { total_number_of_bytes, "Total amount of bytes (compressed, including data and indices) stored in all tables of MergeTree family." }; new_values["TotalRowsOfMergeTreeTables"] = { total_number_of_rows, "Total amount of rows (records) stored in all tables of MergeTree family." }; new_values["TotalPartsOfMergeTreeTables"] = { total_number_of_parts, "Total amount of data parts in all tables of MergeTree family." " Numbers larger than 10 000 will negatively affect the server startup time and it may indicate unreasonable choice of the partition key." }; new_values["NumberOfTablesSystem"] = { total_number_of_tables_system, "Total number of tables in the system database on the server stored in tables of MergeTree family." }; new_values["TotalBytesOfMergeTreeTablesSystem"] = { total_number_of_bytes_system, "Total amount of bytes (compressed, including data and indices) stored in tables of MergeTree family in the system database." }; new_values["TotalRowsOfMergeTreeTablesSystem"] = { total_number_of_rows_system, "Total amount of rows (records) stored in tables of MergeTree family in the system database." }; new_values["TotalPartsOfMergeTreeTablesSystem"] = { total_number_of_parts_system, "Total amount of data parts in tables of MergeTree family in the system database." }; new_values["TotalPrimaryKeyBytesInMemory"] = { total_primary_key_bytes_memory, "The total amount of memory (in bytes) used by primary key values." }; new_values["TotalPrimaryKeyBytesInMemoryAllocated"] = { total_primary_key_bytes_memory_allocated, "The total amount of memory (in bytes) reserved for primary key values." }; } #if USE_NURAFT { auto keeper_dispatcher = getContext()->tryGetKeeperDispatcher(); if (keeper_dispatcher) updateKeeperInformation(*keeper_dispatcher, new_values); } #endif updateHeavyMetricsIfNeeded(current_time, update_time, new_values); } void ServerAsynchronousMetrics::logImpl(AsynchronousMetricValues & new_values) { /// Log the new metrics. if (auto asynchronous_metric_log = getContext()->getAsynchronousMetricLog()) asynchronous_metric_log->addValues(new_values); } void ServerAsynchronousMetrics::updateDetachedPartsStats() { DetachedPartsStats current_values{}; for (const auto & db : DatabaseCatalog::instance().getDatabases()) { if (!db.second->canContainMergeTreeTables()) continue; for (auto iterator = db.second->getTablesIterator(getContext()); iterator->isValid(); iterator->next()) { const auto & table = iterator->table(); if (!table) continue; if (MergeTreeData * table_merge_tree = dynamic_cast(table.get())) { for (const auto & detached_part: table_merge_tree->getDetachedParts()) { if (!detached_part.valid_name) continue; if (detached_part.prefix.empty()) ++current_values.detached_by_user; ++current_values.count; } } } } detached_parts_stats = current_values; } void ServerAsynchronousMetrics::updateHeavyMetricsIfNeeded(TimePoint current_time, TimePoint update_time, AsynchronousMetricValues & new_values) { const auto time_after_previous_update = current_time - heavy_metric_previous_update_time; const bool update_heavy_metric = time_after_previous_update >= heavy_metric_update_period || first_run; Stopwatch watch; if (update_heavy_metric) { heavy_metric_previous_update_time = update_time; if (first_run) heavy_update_interval = heavy_metric_update_period.count(); else heavy_update_interval = std::chrono::duration_cast(time_after_previous_update).count() / 1e6; /// Test shows that listing 100000 entries consuming around 0.15 sec. updateDetachedPartsStats(); watch.stop(); /// Normally heavy metrics don't delay the rest of the metrics calculation /// otherwise log the warning message auto log_level = std::make_pair(DB::LogsLevel::trace, Poco::Message::PRIO_TRACE); if (watch.elapsedSeconds() > (update_period.count() / 2.)) log_level = std::make_pair(DB::LogsLevel::debug, Poco::Message::PRIO_DEBUG); else if (watch.elapsedSeconds() > (update_period.count() / 4. * 3)) log_level = std::make_pair(DB::LogsLevel::warning, Poco::Message::PRIO_WARNING); LOG_IMPL(log, log_level.first, log_level.second, "Update heavy metrics. " "Update period {} sec. " "Update heavy metrics period {} sec. " "Heavy metrics calculation elapsed: {} sec.", update_period.count(), heavy_metric_update_period.count(), watch.elapsedSeconds()); } new_values["AsynchronousHeavyMetricsCalculationTimeSpent"] = { watch.elapsedSeconds(), "Time in seconds spent for calculation of asynchronous heavy (tables related) metrics (this is the overhead of asynchronous metrics)." }; new_values["AsynchronousHeavyMetricsUpdateInterval"] = { heavy_update_interval, "Heavy (tables related) metrics update interval" }; new_values["NumberOfDetachedParts"] = { detached_parts_stats.count, "The total number of parts detached from MergeTree tables. A part can be detached by a user with the `ALTER TABLE DETACH` query or by the server itself it the part is broken, unexpected or unneeded. The server does not care about detached parts and they can be removed." }; new_values["NumberOfDetachedByUserParts"] = { detached_parts_stats.detached_by_user, "The total number of parts detached from MergeTree tables by users with the `ALTER TABLE DETACH` query (as opposed to unexpected, broken or ignored parts). The server does not care about detached parts and they can be removed." }; } }