#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace DB { namespace ErrorCodes { extern const int NOT_IMPLEMENTED; extern const int NO_SUCH_COLUMN_IN_TABLE; extern const int INCOMPATIBLE_TYPE_OF_JOIN; extern const int UNSUPPORTED_JOIN_KEYS; extern const int LOGICAL_ERROR; extern const int SYNTAX_ERROR; extern const int SET_SIZE_LIMIT_EXCEEDED; extern const int TYPE_MISMATCH; extern const int NUMBER_OF_ARGUMENTS_DOESNT_MATCH; } namespace { struct NotProcessedCrossJoin : public ExtraBlock { size_t left_position; size_t right_block; }; } namespace JoinStuff { /// for single disjunct bool JoinUsedFlags::getUsedSafe(size_t i) const { return getUsedSafe(nullptr, i); } /// for multiple disjuncts bool JoinUsedFlags::getUsedSafe(const Block * block_ptr, size_t row_idx) const { if (auto it = flags.find(block_ptr); it != flags.end()) return it->second[row_idx].load(); return !need_flags; } /// for single disjunct template void JoinUsedFlags::reinit(size_t size) { if constexpr (MapGetter::flagged) { assert(flags[nullptr].size() <= size); need_flags = true; // For one disjunct clause case, we don't need to reinit each time we call addBlockToJoin. // and there is no value inserted in this JoinUsedFlags before addBlockToJoin finish. // So we reinit only when the hash table is rehashed to a larger size. if (flags.empty() || flags[nullptr].size() < size) [[unlikely]] { flags[nullptr] = std::vector(size); } } } /// for multiple disjuncts template void JoinUsedFlags::reinit(const Block * block_ptr) { if constexpr (MapGetter::flagged) { assert(flags[block_ptr].size() <= block_ptr->rows()); need_flags = true; flags[block_ptr] = std::vector(block_ptr->rows()); } } template void JoinUsedFlags::setUsed(const FindResult & f) { if constexpr (!use_flags) return; /// Could be set simultaneously from different threads. if constexpr (multiple_disjuncts) { auto & mapped = f.getMapped(); flags[mapped.block][mapped.row_num].store(true, std::memory_order_relaxed); } else { flags[nullptr][f.getOffset()].store(true, std::memory_order_relaxed); } } template void JoinUsedFlags::setUsed(const Block * block, size_t row_num, size_t offset) { if constexpr (!use_flags) return; /// Could be set simultaneously from different threads. if constexpr (multiple_disjuncts) { flags[block][row_num].store(true, std::memory_order_relaxed); } else { flags[nullptr][offset].store(true, std::memory_order_relaxed); } } template bool JoinUsedFlags::getUsed(const FindResult & f) { if constexpr (!use_flags) return true; if constexpr (multiple_disjuncts) { auto & mapped = f.getMapped(); return flags[mapped.block][mapped.row_num].load(); } else { return flags[nullptr][f.getOffset()].load(); } } template bool JoinUsedFlags::setUsedOnce(const FindResult & f) { if constexpr (!use_flags) return true; if constexpr (multiple_disjuncts) { auto & mapped = f.getMapped(); /// fast check to prevent heavy CAS with seq_cst order if (flags[mapped.block][mapped.row_num].load(std::memory_order_relaxed)) return false; bool expected = false; return flags[mapped.block][mapped.row_num].compare_exchange_strong(expected, true); } else { auto off = f.getOffset(); /// fast check to prevent heavy CAS with seq_cst order if (flags[nullptr][off].load(std::memory_order_relaxed)) return false; bool expected = false; return flags[nullptr][off].compare_exchange_strong(expected, true); } } } static void correctNullabilityInplace(ColumnWithTypeAndName & column, bool nullable) { if (nullable) { JoinCommon::convertColumnToNullable(column); } else { /// We have to replace values masked by NULLs with defaults. if (column.column) if (const auto * nullable_column = checkAndGetColumn(*column.column)) column.column = JoinCommon::filterWithBlanks(column.column, nullable_column->getNullMapColumn().getData(), true); JoinCommon::removeColumnNullability(column); } } static void correctNullabilityInplace(ColumnWithTypeAndName & column, bool nullable, const ColumnUInt8 & negative_null_map) { if (nullable) { JoinCommon::convertColumnToNullable(column); if (column.type->isNullable() && !negative_null_map.empty()) { MutableColumnPtr mutable_column = IColumn::mutate(std::move(column.column)); assert_cast(*mutable_column).applyNegatedNullMap(negative_null_map); column.column = std::move(mutable_column); } } else JoinCommon::removeColumnNullability(column); } HashJoin::HashJoin(std::shared_ptr table_join_, const Block & right_sample_block_, bool any_take_last_row_, size_t reserve_num) : table_join(table_join_) , kind(table_join->kind()) , strictness(table_join->strictness()) , any_take_last_row(any_take_last_row_) , asof_inequality(table_join->getAsofInequality()) , data(std::make_shared()) , right_sample_block(right_sample_block_) , log(&Poco::Logger::get("HashJoin")) { LOG_DEBUG(log, "({}) Datatype: {}, kind: {}, strictness: {}, right header: {}", fmt::ptr(this), data->type, kind, strictness, right_sample_block.dumpStructure()); LOG_DEBUG(log, "({}) Keys: {}", fmt::ptr(this), TableJoin::formatClauses(table_join->getClauses(), true)); if (isCrossOrComma(kind)) { data->type = Type::CROSS; sample_block_with_columns_to_add = right_sample_block; } else if (table_join->getClauses().empty()) { data->type = Type::EMPTY; sample_block_with_columns_to_add = right_sample_block; } else if (table_join->oneDisjunct()) { const auto & key_names_right = table_join->getOnlyClause().key_names_right; JoinCommon::splitAdditionalColumns(key_names_right, right_sample_block, right_table_keys, sample_block_with_columns_to_add); required_right_keys = table_join->getRequiredRightKeys(right_table_keys, required_right_keys_sources); } else { /// required right keys concept does not work well if multiple disjuncts, we need all keys sample_block_with_columns_to_add = right_table_keys = materializeBlock(right_sample_block); } JoinCommon::convertToFullColumnsInplace(right_table_keys); initRightBlockStructure(data->sample_block); JoinCommon::createMissedColumns(sample_block_with_columns_to_add); size_t disjuncts_num = table_join->getClauses().size(); data->maps.resize(disjuncts_num); key_sizes.reserve(disjuncts_num); for (const auto & clause : table_join->getClauses()) { const auto & key_names_right = clause.key_names_right; ColumnRawPtrs key_columns = JoinCommon::extractKeysForJoin(right_table_keys, key_names_right); if (strictness == JoinStrictness::Asof) { assert(disjuncts_num == 1); /// @note ASOF JOIN is not INNER. It's better avoid use of 'INNER ASOF' combination in messages. /// In fact INNER means 'LEFT SEMI ASOF' while LEFT means 'LEFT OUTER ASOF'. if (!isLeft(kind) && !isInner(kind)) throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Wrong ASOF JOIN type. Only ASOF and LEFT ASOF joins are supported"); if (key_columns.size() <= 1) throw Exception(ErrorCodes::SYNTAX_ERROR, "ASOF join needs at least one equi-join column"); size_t asof_size; asof_type = SortedLookupVectorBase::getTypeSize(*key_columns.back(), asof_size); key_columns.pop_back(); /// this is going to set up the appropriate hash table for the direct lookup part of the join /// However, this does not depend on the size of the asof join key (as that goes into the BST) /// Therefore, add it back in such that it can be extracted appropriately from the full stored /// key_columns and key_sizes auto & asof_key_sizes = key_sizes.emplace_back(); data->type = chooseMethod(kind, key_columns, asof_key_sizes); asof_key_sizes.push_back(asof_size); } else { /// Choose data structure to use for JOIN. auto current_join_method = chooseMethod(kind, key_columns, key_sizes.emplace_back()); if (data->type == Type::EMPTY) data->type = current_join_method; else if (data->type != current_join_method) data->type = Type::hashed; } } for (auto & maps : data->maps) dataMapInit(maps, reserve_num); } HashJoin::Type HashJoin::chooseMethod(JoinKind kind, const ColumnRawPtrs & key_columns, Sizes & key_sizes) { size_t keys_size = key_columns.size(); if (keys_size == 0) { if (isCrossOrComma(kind)) return Type::CROSS; return Type::EMPTY; } bool all_fixed = true; size_t keys_bytes = 0; key_sizes.resize(keys_size); for (size_t j = 0; j < keys_size; ++j) { if (!key_columns[j]->isFixedAndContiguous()) { all_fixed = false; break; } key_sizes[j] = key_columns[j]->sizeOfValueIfFixed(); keys_bytes += key_sizes[j]; } /// If there is one numeric key that fits in 64 bits if (keys_size == 1 && key_columns[0]->isNumeric()) { size_t size_of_field = key_columns[0]->sizeOfValueIfFixed(); if (size_of_field == 1) return Type::key8; if (size_of_field == 2) return Type::key16; if (size_of_field == 4) return Type::key32; if (size_of_field == 8) return Type::key64; if (size_of_field == 16) return Type::keys128; if (size_of_field == 32) return Type::keys256; throw Exception(ErrorCodes::LOGICAL_ERROR, "Logical error: numeric column has sizeOfField not in 1, 2, 4, 8, 16, 32."); } /// If the keys fit in N bits, we will use a hash table for N-bit-packed keys if (all_fixed && keys_bytes <= 16) return Type::keys128; if (all_fixed && keys_bytes <= 32) return Type::keys256; /// If there is single string key, use hash table of it's values. if (keys_size == 1 && (typeid_cast(key_columns[0]) || (isColumnConst(*key_columns[0]) && typeid_cast(&assert_cast(key_columns[0])->getDataColumn())))) return Type::key_string; if (keys_size == 1 && typeid_cast(key_columns[0])) return Type::key_fixed_string; /// Otherwise, will use set of cryptographic hashes of unambiguously serialized values. return Type::hashed; } template static KeyGetter createKeyGetter(const ColumnRawPtrs & key_columns, const Sizes & key_sizes) { if constexpr (is_asof_join) { auto key_column_copy = key_columns; auto key_size_copy = key_sizes; key_column_copy.pop_back(); key_size_copy.pop_back(); return KeyGetter(key_column_copy, key_size_copy, nullptr); } else return KeyGetter(key_columns, key_sizes, nullptr); } template using FindResultImpl = ColumnsHashing::columns_hashing_impl::FindResultImpl; /// Dummy key getter, always find nothing, used for JOIN ON NULL template class KeyGetterEmpty { public: struct MappedType { using mapped_type = Mapped; }; using FindResult = ColumnsHashing::columns_hashing_impl::FindResultImpl; KeyGetterEmpty() = default; FindResult findKey(MappedType, size_t, const Arena &) { return FindResult(); } }; template struct KeyGetterForTypeImpl; constexpr bool use_offset = true; template struct KeyGetterForTypeImpl { using Type = ColumnsHashing::HashMethodOneNumber; }; template struct KeyGetterForTypeImpl { using Type = ColumnsHashing::HashMethodOneNumber; }; template struct KeyGetterForTypeImpl { using Type = ColumnsHashing::HashMethodOneNumber; }; template struct KeyGetterForTypeImpl { using Type = ColumnsHashing::HashMethodOneNumber; }; template struct KeyGetterForTypeImpl { using Type = ColumnsHashing::HashMethodString; }; template struct KeyGetterForTypeImpl { using Type = ColumnsHashing::HashMethodFixedString; }; template struct KeyGetterForTypeImpl { using Type = ColumnsHashing::HashMethodKeysFixed; }; template struct KeyGetterForTypeImpl { using Type = ColumnsHashing::HashMethodKeysFixed; }; template struct KeyGetterForTypeImpl { using Type = ColumnsHashing::HashMethodHashed; }; template struct KeyGetterForType { using Value = typename Data::value_type; using Mapped_t = typename Data::mapped_type; using Mapped = std::conditional_t, const Mapped_t, Mapped_t>; using Type = typename KeyGetterForTypeImpl::Type; }; void HashJoin::dataMapInit(MapsVariant & map, size_t reserve_num) { if (kind == JoinKind::Cross) return; joinDispatchInit(kind, strictness, map); joinDispatch(kind, strictness, map, [&](auto, auto, auto & map_) { map_.create(data->type); }); if (reserve_num) { joinDispatch(kind, strictness, map, [&](auto, auto, auto & map_) { map_.reserve(data->type, reserve_num); }); } if (!data) throw Exception(ErrorCodes::LOGICAL_ERROR, "HashJoin::dataMapInit called with empty data"); } bool HashJoin::empty() const { return data->type == Type::EMPTY; } bool HashJoin::alwaysReturnsEmptySet() const { return isInnerOrRight(getKind()) && data->empty; } size_t HashJoin::getTotalRowCount() const { if (!data) return 0; size_t res = 0; if (data->type == Type::CROSS) { for (const auto & block : data->blocks) res += block.rows(); } else { for (const auto & map : data->maps) { joinDispatch(kind, strictness, map, [&](auto, auto, auto & map_) { res += map_.getTotalRowCount(data->type); }); } } return res; } size_t HashJoin::getTotalByteCount() const { if (!data) return 0; #ifndef NDEBUG size_t debug_blocks_allocated_size = 0; for (const auto & block : data->blocks) debug_blocks_allocated_size += block.allocatedBytes(); if (data->blocks_allocated_size != debug_blocks_allocated_size) throw Exception(ErrorCodes::LOGICAL_ERROR, "data->blocks_allocated_size != debug_blocks_allocated_size ({} != {})", data->blocks_allocated_size, debug_blocks_allocated_size); size_t debug_blocks_nullmaps_allocated_size = 0; for (const auto & nullmap : data->blocks_nullmaps) debug_blocks_nullmaps_allocated_size += nullmap.second->allocatedBytes(); if (data->blocks_nullmaps_allocated_size != debug_blocks_nullmaps_allocated_size) throw Exception(ErrorCodes::LOGICAL_ERROR, "data->blocks_nullmaps_allocated_size != debug_blocks_nullmaps_allocated_size ({} != {})", data->blocks_nullmaps_allocated_size, debug_blocks_nullmaps_allocated_size); #endif size_t res = 0; res += data->blocks_allocated_size; res += data->blocks_nullmaps_allocated_size; res += data->pool.allocatedBytes(); if (data->type != Type::CROSS) { for (const auto & map : data->maps) { joinDispatch(kind, strictness, map, [&](auto, auto, auto & map_) { res += map_.getTotalByteCountImpl(data->type); }); } } return res; } namespace { /// Inserting an element into a hash table of the form `key -> reference to a string`, which will then be used by JOIN. template struct Inserter { static ALWAYS_INLINE bool insertOne(const HashJoin & join, Map & map, KeyGetter & key_getter, Block * stored_block, size_t i, Arena & pool) { auto emplace_result = key_getter.emplaceKey(map, i, pool); if (emplace_result.isInserted() || join.anyTakeLastRow()) { new (&emplace_result.getMapped()) typename Map::mapped_type(stored_block, i); return true; } return false; } static ALWAYS_INLINE void insertAll(const HashJoin &, Map & map, KeyGetter & key_getter, Block * stored_block, size_t i, Arena & pool) { auto emplace_result = key_getter.emplaceKey(map, i, pool); if (emplace_result.isInserted()) new (&emplace_result.getMapped()) typename Map::mapped_type(stored_block, i); else { /// The first element of the list is stored in the value of the hash table, the rest in the pool. emplace_result.getMapped().insert({stored_block, i}, pool); } } static ALWAYS_INLINE void insertAsof(HashJoin & join, Map & map, KeyGetter & key_getter, Block * stored_block, size_t i, Arena & pool, const IColumn & asof_column) { auto emplace_result = key_getter.emplaceKey(map, i, pool); typename Map::mapped_type * time_series_map = &emplace_result.getMapped(); TypeIndex asof_type = *join.getAsofType(); if (emplace_result.isInserted()) time_series_map = new (time_series_map) typename Map::mapped_type(createAsofRowRef(asof_type, join.getAsofInequality())); (*time_series_map)->insert(asof_column, stored_block, i); } }; template size_t NO_INLINE insertFromBlockImplTypeCase( HashJoin & join, Map & map, size_t rows, const ColumnRawPtrs & key_columns, const Sizes & key_sizes, Block * stored_block, ConstNullMapPtr null_map, UInt8ColumnDataPtr join_mask, Arena & pool, bool & is_inserted) { [[maybe_unused]] constexpr bool mapped_one = std::is_same_v; constexpr bool is_asof_join = STRICTNESS == JoinStrictness::Asof; const IColumn * asof_column [[maybe_unused]] = nullptr; if constexpr (is_asof_join) asof_column = key_columns.back(); auto key_getter = createKeyGetter(key_columns, key_sizes); /// For ALL and ASOF join always insert values is_inserted = !mapped_one || is_asof_join; for (size_t i = 0; i < rows; ++i) { if (null_map && (*null_map)[i]) { /// nulls are not inserted into hash table, /// keep them for RIGHT and FULL joins is_inserted = true; continue; } /// Check condition for right table from ON section if (join_mask && !(*join_mask)[i]) continue; if constexpr (is_asof_join) Inserter::insertAsof(join, map, key_getter, stored_block, i, pool, *asof_column); else if constexpr (mapped_one) is_inserted |= Inserter::insertOne(join, map, key_getter, stored_block, i, pool); else Inserter::insertAll(join, map, key_getter, stored_block, i, pool); } return map.getBufferSizeInCells(); } template size_t insertFromBlockImpl( HashJoin & join, HashJoin::Type type, Maps & maps, size_t rows, const ColumnRawPtrs & key_columns, const Sizes & key_sizes, Block * stored_block, ConstNullMapPtr null_map, UInt8ColumnDataPtr join_mask, Arena & pool, bool & is_inserted) { switch (type) { case HashJoin::Type::EMPTY: [[fallthrough]]; case HashJoin::Type::CROSS: /// Do nothing. We will only save block, and it is enough is_inserted = true; return 0; #define M(TYPE) \ case HashJoin::Type::TYPE: \ return insertFromBlockImplTypeCase>::Type>(\ join, *maps.TYPE, rows, key_columns, key_sizes, stored_block, null_map, join_mask, pool, is_inserted); \ break; APPLY_FOR_JOIN_VARIANTS(M) #undef M } UNREACHABLE(); } } void HashJoin::initRightBlockStructure(Block & saved_block_sample) { if (isCrossOrComma(kind)) { /// cross join doesn't have keys, just add all columns saved_block_sample = sample_block_with_columns_to_add.cloneEmpty(); return; } bool multiple_disjuncts = !table_join->oneDisjunct(); /// We could remove key columns for LEFT | INNER HashJoin but we should keep them for JoinSwitcher (if any). bool save_key_columns = table_join->isEnabledAlgorithm(JoinAlgorithm::AUTO) || table_join->isEnabledAlgorithm(JoinAlgorithm::GRACE_HASH) || isRightOrFull(kind) || multiple_disjuncts; if (save_key_columns) { saved_block_sample = right_table_keys.cloneEmpty(); } else if (strictness == JoinStrictness::Asof) { /// Save ASOF key saved_block_sample.insert(right_table_keys.safeGetByPosition(right_table_keys.columns() - 1)); } /// Save non key columns for (auto & column : sample_block_with_columns_to_add) { if (auto * col = saved_block_sample.findByName(column.name)) *col = column; else saved_block_sample.insert(column); } } Block HashJoin::prepareRightBlock(const Block & block, const Block & saved_block_sample_) { Block structured_block; for (const auto & sample_column : saved_block_sample_.getColumnsWithTypeAndName()) { ColumnWithTypeAndName column = block.getByName(sample_column.name); /// There's no optimization for right side const columns. Remove constness if any. column.column = recursiveRemoveSparse(column.column->convertToFullColumnIfConst()); if (column.column->lowCardinality() && !sample_column.column->lowCardinality()) { column.column = column.column->convertToFullColumnIfLowCardinality(); column.type = removeLowCardinality(column.type); } if (sample_column.column->isNullable()) JoinCommon::convertColumnToNullable(column); structured_block.insert(std::move(column)); } return structured_block; } Block HashJoin::prepareRightBlock(const Block & block) const { return prepareRightBlock(block, savedBlockSample()); } bool HashJoin::addBlockToJoin(const Block & source_block_, bool check_limits) { if (!data) throw Exception(ErrorCodes::LOGICAL_ERROR, "Join data was released"); /// RowRef::SizeT is uint32_t (not size_t) for hash table Cell memory efficiency. /// It's possible to split bigger blocks and insert them by parts here. But it would be a dead code. if (unlikely(source_block_.rows() > std::numeric_limits::max())) throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Too many rows in right table block for HashJoin: {}", source_block_.rows()); Block source_block = source_block_; if (strictness == JoinStrictness::Asof) { chassert(kind == JoinKind::Left || kind == JoinKind::Inner); /// Filter out rows with NULLs in ASOF key, nulls are not joined with anything since they are not comparable /// We support only INNER/LEFT ASOF join, so rows with NULLs never return from the right joined table. /// So filter them out here not to handle in implementation. const auto & asof_key_name = table_join->getOnlyClause().key_names_right.back(); auto & asof_column = source_block.getByName(asof_key_name); if (asof_column.type->isNullable()) { /// filter rows with nulls in asof key if (const auto * asof_const_column = typeid_cast(asof_column.column.get())) { if (asof_const_column->isNullAt(0)) return false; } else { const auto & asof_column_nullable = assert_cast(*asof_column.column).getNullMapData(); NullMap negative_null_map(asof_column_nullable.size()); for (size_t i = 0; i < asof_column_nullable.size(); ++i) negative_null_map[i] = !asof_column_nullable[i]; for (auto & column : source_block) column.column = column.column->filter(negative_null_map, -1); } } } size_t rows = source_block.rows(); ColumnPtrMap all_key_columns = JoinCommon::materializeColumnsInplaceMap(source_block, table_join->getAllNames(JoinTableSide::Right)); Block block_to_save = prepareRightBlock(source_block); size_t total_rows = 0; size_t total_bytes = 0; { if (storage_join_lock) throw DB::Exception(ErrorCodes::LOGICAL_ERROR, "addBlockToJoin called when HashJoin locked to prevent updates"); data->blocks_allocated_size += block_to_save.allocatedBytes(); data->blocks.emplace_back(std::move(block_to_save)); Block * stored_block = &data->blocks.back(); if (rows) data->empty = false; bool multiple_disjuncts = !table_join->oneDisjunct(); const auto & onexprs = table_join->getClauses(); for (size_t onexpr_idx = 0; onexpr_idx < onexprs.size(); ++onexpr_idx) { ColumnRawPtrs key_columns; for (const auto & name : onexprs[onexpr_idx].key_names_right) key_columns.push_back(all_key_columns[name].get()); /// We will insert to the map only keys, where all components are not NULL. ConstNullMapPtr null_map{}; ColumnPtr null_map_holder = extractNestedColumnsAndNullMap(key_columns, null_map); /// If RIGHT or FULL save blocks with nulls for NotJoinedBlocks UInt8 save_nullmap = 0; if (isRightOrFull(kind) && null_map) { /// Save rows with NULL keys for (size_t i = 0; !save_nullmap && i < null_map->size(); ++i) save_nullmap |= (*null_map)[i]; } auto join_mask_col = JoinCommon::getColumnAsMask(source_block, onexprs[onexpr_idx].condColumnNames().second); /// Save blocks that do not hold conditions in ON section ColumnUInt8::MutablePtr not_joined_map = nullptr; if (!multiple_disjuncts && isRightOrFull(kind) && join_mask_col.hasData()) { const auto & join_mask = join_mask_col.getData(); /// Save rows that do not hold conditions not_joined_map = ColumnUInt8::create(rows, 0); for (size_t i = 0, sz = join_mask->size(); i < sz; ++i) { /// Condition hold, do not save row if ((*join_mask)[i]) continue; /// NULL key will be saved anyway because, do not save twice if (save_nullmap && (*null_map)[i]) continue; not_joined_map->getData()[i] = 1; } } bool is_inserted = false; if (kind != JoinKind::Cross) { joinDispatch(kind, strictness, data->maps[onexpr_idx], [&](auto kind_, auto strictness_, auto & map) { size_t size = insertFromBlockImpl( *this, data->type, map, rows, key_columns, key_sizes[onexpr_idx], stored_block, null_map, /// If mask is false constant, rows are added to hashmap anyway. It's not a happy-flow, so this case is not optimized join_mask_col.getData(), data->pool, is_inserted); if (multiple_disjuncts) used_flags.reinit(stored_block); else if (is_inserted) /// Number of buckets + 1 value from zero storage used_flags.reinit(size + 1); }); } if (!multiple_disjuncts && save_nullmap && is_inserted) { data->blocks_nullmaps_allocated_size += null_map_holder->allocatedBytes(); data->blocks_nullmaps.emplace_back(stored_block, null_map_holder); } if (!multiple_disjuncts && not_joined_map && is_inserted) { data->blocks_nullmaps_allocated_size += not_joined_map->allocatedBytes(); data->blocks_nullmaps.emplace_back(stored_block, std::move(not_joined_map)); } if (!multiple_disjuncts && !is_inserted) { LOG_TRACE(log, "Skipping inserting block with {} rows", rows); data->blocks_allocated_size -= stored_block->allocatedBytes(); data->blocks.pop_back(); } if (!check_limits) return true; /// TODO: Do not calculate them every time total_rows = getTotalRowCount(); total_bytes = getTotalByteCount(); } } return table_join->sizeLimits().check(total_rows, total_bytes, "JOIN", ErrorCodes::SET_SIZE_LIMIT_EXCEEDED); } namespace { struct JoinOnKeyColumns { Names key_names; Columns materialized_keys_holder; ColumnRawPtrs key_columns; ConstNullMapPtr null_map; ColumnPtr null_map_holder; /// Only rows where mask == true can be joined JoinCommon::JoinMask join_mask_column; Sizes key_sizes; explicit JoinOnKeyColumns(const Block & block, const Names & key_names_, const String & cond_column_name, const Sizes & key_sizes_) : key_names(key_names_) , materialized_keys_holder(JoinCommon::materializeColumns(block, key_names)) /// Rare case, when keys are constant or low cardinality. To avoid code bloat, simply materialize them. , key_columns(JoinCommon::getRawPointers(materialized_keys_holder)) , null_map(nullptr) , null_map_holder(extractNestedColumnsAndNullMap(key_columns, null_map)) , join_mask_column(JoinCommon::getColumnAsMask(block, cond_column_name)) , key_sizes(key_sizes_) { } bool isRowFiltered(size_t i) const { return join_mask_column.isRowFiltered(i); } }; class AddedColumns { public: struct TypeAndName { DataTypePtr type; String name; String qualified_name; TypeAndName(DataTypePtr type_, const String & name_, const String & qualified_name_) : type(type_), name(name_), qualified_name(qualified_name_) { } }; AddedColumns( const Block & block_with_columns_to_add, const Block & block, const Block & saved_block_sample, const HashJoin & join, std::vector && join_on_keys_, bool is_asof_join, bool is_join_get_) : join_on_keys(join_on_keys_) , rows_to_add(block.rows()) , sample_block(saved_block_sample) , is_join_get(is_join_get_) { size_t num_columns_to_add = block_with_columns_to_add.columns(); if (is_asof_join) ++num_columns_to_add; columns.reserve(num_columns_to_add); type_name.reserve(num_columns_to_add); right_indexes.reserve(num_columns_to_add); for (const auto & src_column : block_with_columns_to_add) { /// Column names `src_column.name` and `qualified_name` can differ for StorageJoin, /// because it uses not qualified right block column names auto qualified_name = join.getTableJoin().renamedRightColumnName(src_column.name); /// Don't insert column if it's in left block if (!block.has(qualified_name)) addColumn(src_column, qualified_name); } if (is_asof_join) { assert(join_on_keys.size() == 1); const ColumnWithTypeAndName & right_asof_column = join.rightAsofKeyColumn(); addColumn(right_asof_column, right_asof_column.name); left_asof_key = join_on_keys[0].key_columns.back(); } for (auto & tn : type_name) right_indexes.push_back(saved_block_sample.getPositionByName(tn.name)); } size_t size() const { return columns.size(); } ColumnWithTypeAndName moveColumn(size_t i) { return ColumnWithTypeAndName(std::move(columns[i]), type_name[i].type, type_name[i].qualified_name); } static void assertBlockEqualsStructureUpToLowCard(const Block & lhs_block, const Block & rhs_block) { if (lhs_block.columns() != rhs_block.columns()) throw Exception(ErrorCodes::LOGICAL_ERROR, "Different number of columns in blocks [{}] and [{}]", lhs_block.dumpStructure(), rhs_block.dumpStructure()); for (size_t i = 0; i < lhs_block.columns(); ++i) { const auto & lhs = lhs_block.getByPosition(i); const auto & rhs = rhs_block.getByPosition(i); if (lhs.name != rhs.name) throw DB::Exception(ErrorCodes::LOGICAL_ERROR, "Block structure mismatch: [{}] != [{}] ({} != {})", lhs_block.dumpStructure(), rhs_block.dumpStructure(), lhs.name, rhs.name); const auto & ltype = recursiveRemoveLowCardinality(lhs.type); const auto & rtype = recursiveRemoveLowCardinality(rhs.type); if (!ltype->equals(*rtype)) throw DB::Exception(ErrorCodes::LOGICAL_ERROR, "Block structure mismatch: [{}] != [{}] ({} != {})", lhs_block.dumpStructure(), rhs_block.dumpStructure(), ltype->getName(), rtype->getName()); const auto & lcol = recursiveRemoveLowCardinality(lhs.column); const auto & rcol = recursiveRemoveLowCardinality(rhs.column); if (lcol->getDataType() != rcol->getDataType()) throw DB::Exception(ErrorCodes::LOGICAL_ERROR, "Block structure mismatch: [{}] != [{}] ({} != {})", lhs_block.dumpStructure(), rhs_block.dumpStructure(), lcol->getDataType(), rcol->getDataType()); } } template void appendFromBlock(const Block & block, size_t row_num) { if constexpr (has_defaults) applyLazyDefaults(); #ifndef NDEBUG /// Like assertBlocksHaveEqualStructure but doesn't check low cardinality assertBlockEqualsStructureUpToLowCard(sample_block, block); #else UNUSED(assertBlockEqualsStructureUpToLowCard); #endif if (is_join_get) { /// If it's joinGetOrNull, we need to wrap not-nullable columns in StorageJoin. for (size_t j = 0, size = right_indexes.size(); j < size; ++j) { const auto & column_from_block = block.getByPosition(right_indexes[j]); if (auto * nullable_col = typeid_cast(columns[j].get()); nullable_col && !column_from_block.column->isNullable()) nullable_col->insertFromNotNullable(*column_from_block.column, row_num); else if (auto * lowcard_col = typeid_cast(columns[j].get()); lowcard_col && !typeid_cast(column_from_block.column.get())) lowcard_col->insertFromFullColumn(*column_from_block.column, row_num); else columns[j]->insertFrom(*column_from_block.column, row_num); } } else { for (size_t j = 0, size = right_indexes.size(); j < size; ++j) { const auto & column_from_block = block.getByPosition(right_indexes[j]); if (auto * lowcard_col = typeid_cast(columns[j].get()); lowcard_col && !typeid_cast(column_from_block.column.get())) lowcard_col->insertFromFullColumn(*column_from_block.column, row_num); else columns[j]->insertFrom(*column_from_block.column, row_num); } } } void appendDefaultRow() { ++lazy_defaults_count; } void applyLazyDefaults() { if (lazy_defaults_count) { for (size_t j = 0, size = right_indexes.size(); j < size; ++j) JoinCommon::addDefaultValues(*columns[j], type_name[j].type, lazy_defaults_count); lazy_defaults_count = 0; } } const IColumn & leftAsofKey() const { return *left_asof_key; } std::vector join_on_keys; size_t rows_to_add; std::unique_ptr offsets_to_replicate; bool need_filter = false; private: std::vector type_name; MutableColumns columns; std::vector right_indexes; size_t lazy_defaults_count = 0; /// for ASOF const IColumn * left_asof_key = nullptr; Block sample_block; bool is_join_get; void addColumn(const ColumnWithTypeAndName & src_column, const std::string & qualified_name) { columns.push_back(src_column.column->cloneEmpty()); columns.back()->reserve(src_column.column->size()); type_name.emplace_back(src_column.type, src_column.name, qualified_name); } }; template struct JoinFeatures { static constexpr bool is_any_join = STRICTNESS == JoinStrictness::Any; static constexpr bool is_any_or_semi_join = STRICTNESS == JoinStrictness::Any || STRICTNESS == JoinStrictness::RightAny || (STRICTNESS == JoinStrictness::Semi && KIND == JoinKind::Left); static constexpr bool is_all_join = STRICTNESS == JoinStrictness::All; static constexpr bool is_asof_join = STRICTNESS == JoinStrictness::Asof; static constexpr bool is_semi_join = STRICTNESS == JoinStrictness::Semi; static constexpr bool is_anti_join = STRICTNESS == JoinStrictness::Anti; static constexpr bool left = KIND == JoinKind::Left; static constexpr bool right = KIND == JoinKind::Right; static constexpr bool inner = KIND == JoinKind::Inner; static constexpr bool full = KIND == JoinKind::Full; static constexpr bool need_replication = is_all_join || (is_any_join && right) || (is_semi_join && right); static constexpr bool need_filter = !need_replication && (inner || right || (is_semi_join && left) || (is_anti_join && left)); static constexpr bool add_missing = (left || full) && !is_semi_join; static constexpr bool need_flags = MapGetter::flagged; }; template class KnownRowsHolder; /// Keep already joined rows to prevent duplication if many disjuncts /// if for a particular pair of rows condition looks like TRUE or TRUE or TRUE /// we want to have it once in resultset template<> class KnownRowsHolder { public: using Type = std::pair; private: static const size_t MAX_LINEAR = 16; // threshold to switch from Array to Set using ArrayHolder = std::array; using SetHolder = std::set; using SetHolderPtr = std::unique_ptr; ArrayHolder array_holder; SetHolderPtr set_holder_ptr; size_t items; public: KnownRowsHolder() : items(0) { } template void add(InputIt from, InputIt to) { const size_t new_items = std::distance(from, to); if (items + new_items <= MAX_LINEAR) { std::copy(from, to, &array_holder[items]); } else { if (items <= MAX_LINEAR) { set_holder_ptr = std::make_unique(); set_holder_ptr->insert(std::cbegin(array_holder), std::cbegin(array_holder) + items); } set_holder_ptr->insert(from, to); } items += new_items; } template bool isKnown(const Needle & needle) { return items <= MAX_LINEAR ? std::find(std::cbegin(array_holder), std::cbegin(array_holder) + items, needle) != std::cbegin(array_holder) + items : set_holder_ptr->find(needle) != set_holder_ptr->end(); } }; template<> class KnownRowsHolder { public: template void add(InputIt, InputIt) { } template static bool isKnown(const Needle &) { return false; } }; template void addFoundRowAll( const typename Map::mapped_type & mapped, AddedColumns & added, IColumn::Offset & current_offset, KnownRowsHolder & known_rows [[maybe_unused]], JoinStuff::JoinUsedFlags * used_flags [[maybe_unused]]) { if constexpr (add_missing) added.applyLazyDefaults(); if constexpr (multiple_disjuncts) { std::unique_ptr::Type>> new_known_rows_ptr; for (auto it = mapped.begin(); it.ok(); ++it) { if (!known_rows.isKnown(std::make_pair(it->block, it->row_num))) { added.appendFromBlock(*it->block, it->row_num); ++current_offset; if (!new_known_rows_ptr) { new_known_rows_ptr = std::make_unique::Type>>(); } new_known_rows_ptr->push_back(std::make_pair(it->block, it->row_num)); if (used_flags) { used_flags->JoinStuff::JoinUsedFlags::setUsedOnce( FindResultImpl(*it, true, 0)); } } } if (new_known_rows_ptr) { known_rows.add(std::cbegin(*new_known_rows_ptr), std::cend(*new_known_rows_ptr)); } } else { for (auto it = mapped.begin(); it.ok(); ++it) { added.appendFromBlock(*it->block, it->row_num); ++current_offset; } } } template void addNotFoundRow(AddedColumns & added [[maybe_unused]], IColumn::Offset & current_offset [[maybe_unused]]) { if constexpr (add_missing) { added.appendDefaultRow(); if constexpr (need_offset) ++current_offset; } } template void setUsed(IColumn::Filter & filter [[maybe_unused]], size_t pos [[maybe_unused]]) { if constexpr (need_filter) filter[pos] = 1; } /// Joins right table columns which indexes are present in right_indexes using specified map. /// Makes filter (1 if row presented in right table) and returns offsets to replicate (for ALL JOINS). template NO_INLINE IColumn::Filter joinRightColumns( std::vector && key_getter_vector, const std::vector & mapv, AddedColumns & added_columns, JoinStuff::JoinUsedFlags & used_flags [[maybe_unused]]) { constexpr JoinFeatures join_features; size_t rows = added_columns.rows_to_add; IColumn::Filter filter; if constexpr (need_filter) filter = IColumn::Filter(rows, 0); Arena pool; if constexpr (join_features.need_replication) added_columns.offsets_to_replicate = std::make_unique(rows); IColumn::Offset current_offset = 0; for (size_t i = 0; i < rows; ++i) { bool right_row_found = false; KnownRowsHolder known_rows; for (size_t onexpr_idx = 0; onexpr_idx < added_columns.join_on_keys.size(); ++onexpr_idx) { const auto & join_keys = added_columns.join_on_keys[onexpr_idx]; if (join_keys.null_map && (*join_keys.null_map)[i]) continue; bool row_acceptable = !join_keys.isRowFiltered(i); using FindResult = typename KeyGetter::FindResult; auto find_result = row_acceptable ? key_getter_vector[onexpr_idx].findKey(*(mapv[onexpr_idx]), i, pool) : FindResult(); if (find_result.isFound()) { right_row_found = true; auto & mapped = find_result.getMapped(); if constexpr (join_features.is_asof_join) { const IColumn & left_asof_key = added_columns.leftAsofKey(); auto row_ref = mapped->findAsof(left_asof_key, i); if (row_ref.block) { setUsed(filter, i); if constexpr (multiple_disjuncts) used_flags.template setUsed(row_ref.block, row_ref.row_num, 0); else used_flags.template setUsed(find_result); added_columns.appendFromBlock(*row_ref.block, row_ref.row_num); } else addNotFoundRow(added_columns, current_offset); } else if constexpr (join_features.is_all_join) { setUsed(filter, i); used_flags.template setUsed(find_result); auto used_flags_opt = join_features.need_flags ? &used_flags : nullptr; addFoundRowAll(mapped, added_columns, current_offset, known_rows, used_flags_opt); } else if constexpr ((join_features.is_any_join || join_features.is_semi_join) && join_features.right) { /// Use first appeared left key + it needs left columns replication bool used_once = used_flags.template setUsedOnce(find_result); if (used_once) { auto used_flags_opt = join_features.need_flags ? &used_flags : nullptr; setUsed(filter, i); addFoundRowAll(mapped, added_columns, current_offset, known_rows, used_flags_opt); } } else if constexpr (join_features.is_any_join && KIND == JoinKind::Inner) { bool used_once = used_flags.template setUsedOnce(find_result); /// Use first appeared left key only if (used_once) { setUsed(filter, i); added_columns.appendFromBlock(*mapped.block, mapped.row_num); } break; } else if constexpr (join_features.is_any_join && join_features.full) { /// TODO } else if constexpr (join_features.is_anti_join) { if constexpr (join_features.right && join_features.need_flags) used_flags.template setUsed(find_result); } else /// ANY LEFT, SEMI LEFT, old ANY (RightAny) { setUsed(filter, i); used_flags.template setUsed(find_result); added_columns.appendFromBlock(*mapped.block, mapped.row_num); if (join_features.is_any_or_semi_join) { break; } } } } if (!right_row_found) { if constexpr (join_features.is_anti_join && join_features.left) setUsed(filter, i); addNotFoundRow(added_columns, current_offset); } if constexpr (join_features.need_replication) { (*added_columns.offsets_to_replicate)[i] = current_offset; } } added_columns.applyLazyDefaults(); return filter; } template IColumn::Filter joinRightColumnsSwitchMultipleDisjuncts( std::vector && key_getter_vector, const std::vector & mapv, AddedColumns & added_columns, JoinStuff::JoinUsedFlags & used_flags [[maybe_unused]]) { return mapv.size() > 1 ? joinRightColumns(std::forward>(key_getter_vector), mapv, added_columns, used_flags) : joinRightColumns(std::forward>(key_getter_vector), mapv, added_columns, used_flags); } template IColumn::Filter joinRightColumnsSwitchNullability( std::vector && key_getter_vector, const std::vector & mapv, AddedColumns & added_columns, JoinStuff::JoinUsedFlags & used_flags) { if (added_columns.need_filter) { return joinRightColumnsSwitchMultipleDisjuncts(std::forward>(key_getter_vector), mapv, added_columns, used_flags); } else { return joinRightColumnsSwitchMultipleDisjuncts(std::forward>(key_getter_vector), mapv, added_columns, used_flags); } } template IColumn::Filter switchJoinRightColumns( const std::vector & mapv, AddedColumns & added_columns, HashJoin::Type type, JoinStuff::JoinUsedFlags & used_flags) { constexpr bool is_asof_join = STRICTNESS == JoinStrictness::Asof; switch (type) { case HashJoin::Type::EMPTY: { if constexpr (!is_asof_join) { using KeyGetter = KeyGetterEmpty; std::vector key_getter_vector; key_getter_vector.emplace_back(); using MapTypeVal = typename KeyGetter::MappedType; std::vector a_map_type_vector; a_map_type_vector.emplace_back(); return joinRightColumnsSwitchNullability( std::move(key_getter_vector), a_map_type_vector, added_columns, used_flags); } throw Exception(ErrorCodes::UNSUPPORTED_JOIN_KEYS, "Unsupported JOIN keys. Type: {}", type); } #define M(TYPE) \ case HashJoin::Type::TYPE: \ { \ using MapTypeVal = const typename std::remove_reference_t::element_type; \ using KeyGetter = typename KeyGetterForType::Type; \ std::vector a_map_type_vector(mapv.size()); \ std::vector key_getter_vector; \ for (size_t d = 0; d < added_columns.join_on_keys.size(); ++d) \ { \ const auto & join_on_key = added_columns.join_on_keys[d]; \ a_map_type_vector[d] = mapv[d]->TYPE.get(); \ key_getter_vector.push_back(std::move(createKeyGetter(join_on_key.key_columns, join_on_key.key_sizes))); \ } \ return joinRightColumnsSwitchNullability( \ std::move(key_getter_vector), a_map_type_vector, added_columns, used_flags); \ } APPLY_FOR_JOIN_VARIANTS(M) #undef M default: throw Exception(ErrorCodes::UNSUPPORTED_JOIN_KEYS, "Unsupported JOIN keys (type: {})", type); } } } /// nameless template void HashJoin::joinBlockImpl( Block & block, const Block & block_with_columns_to_add, const std::vector & maps_, bool is_join_get) const { constexpr JoinFeatures join_features; std::vector join_on_keys; const auto & onexprs = table_join->getClauses(); for (size_t i = 0; i < onexprs.size(); ++i) { const auto & key_names = !is_join_get ? onexprs[i].key_names_left : onexprs[i].key_names_right; join_on_keys.emplace_back(block, key_names, onexprs[i].condColumnNames().first, key_sizes[i]); } size_t existing_columns = block.columns(); /** If you use FULL or RIGHT JOIN, then the columns from the "left" table must be materialized. * Because if they are constants, then in the "not joined" rows, they may have different values * - default values, which can differ from the values of these constants. */ if constexpr (join_features.right || join_features.full) { materializeBlockInplace(block); } /** For LEFT/INNER JOIN, the saved blocks do not contain keys. * For FULL/RIGHT JOIN, the saved blocks contain keys; * but they will not be used at this stage of joining (and will be in `AdderNonJoined`), and they need to be skipped. * For ASOF, the last column is used as the ASOF column */ AddedColumns added_columns( block_with_columns_to_add, block, savedBlockSample(), *this, std::move(join_on_keys), join_features.is_asof_join, is_join_get); bool has_required_right_keys = (required_right_keys.columns() != 0); added_columns.need_filter = join_features.need_filter || has_required_right_keys; IColumn::Filter row_filter = switchJoinRightColumns(maps_, added_columns, data->type, used_flags); for (size_t i = 0; i < added_columns.size(); ++i) block.insert(added_columns.moveColumn(i)); std::vector right_keys_to_replicate [[maybe_unused]]; if constexpr (join_features.need_filter) { /// If ANY INNER | RIGHT JOIN - filter all the columns except the new ones. for (size_t i = 0; i < existing_columns; ++i) block.safeGetByPosition(i).column = block.safeGetByPosition(i).column->filter(row_filter, -1); /// Add join key columns from right block if needed using value from left table because of equality for (size_t i = 0; i < required_right_keys.columns(); ++i) { const auto & right_key = required_right_keys.getByPosition(i); // renamed ??? if (!block.findByName(right_key.name)) { const auto & left_name = required_right_keys_sources[i]; /// asof column is already in block. if (join_features.is_asof_join && right_key.name == table_join->getOnlyClause().key_names_right.back()) continue; const auto & col = block.getByName(left_name); bool is_nullable = JoinCommon::isNullable(right_key.type); auto right_col_name = getTableJoin().renamedRightColumnName(right_key.name); ColumnWithTypeAndName right_col(col.column, col.type, right_col_name); if (right_col.type->lowCardinality() != right_key.type->lowCardinality()) JoinCommon::changeLowCardinalityInplace(right_col); correctNullabilityInplace(right_col, is_nullable); block.insert(std::move(right_col)); } } } else if (has_required_right_keys) { /// Some trash to represent IColumn::Filter as ColumnUInt8 needed for ColumnNullable::applyNullMap() auto null_map_filter_ptr = ColumnUInt8::create(); ColumnUInt8 & null_map_filter = assert_cast(*null_map_filter_ptr); null_map_filter.getData().swap(row_filter); const IColumn::Filter & filter = null_map_filter.getData(); /// Add join key columns from right block if needed. for (size_t i = 0; i < required_right_keys.columns(); ++i) { const auto & right_key = required_right_keys.getByPosition(i); auto right_col_name = getTableJoin().renamedRightColumnName(right_key.name); if (!block.findByName(right_col_name)) { const auto & left_name = required_right_keys_sources[i]; /// asof column is already in block. if (join_features.is_asof_join && right_key.name == table_join->getOnlyClause().key_names_right.back()) continue; const auto & col = block.getByName(left_name); bool is_nullable = JoinCommon::isNullable(right_key.type); ColumnPtr thin_column = JoinCommon::filterWithBlanks(col.column, filter); ColumnWithTypeAndName right_col(thin_column, col.type, right_col_name); if (right_col.type->lowCardinality() != right_key.type->lowCardinality()) JoinCommon::changeLowCardinalityInplace(right_col); correctNullabilityInplace(right_col, is_nullable, null_map_filter); block.insert(std::move(right_col)); if constexpr (join_features.need_replication) right_keys_to_replicate.push_back(block.getPositionByName(right_col_name)); } } } if constexpr (join_features.need_replication) { std::unique_ptr & offsets_to_replicate = added_columns.offsets_to_replicate; /// If ALL ... JOIN - we replicate all the columns except the new ones. for (size_t i = 0; i < existing_columns; ++i) block.safeGetByPosition(i).column = block.safeGetByPosition(i).column->replicate(*offsets_to_replicate); /// Replicate additional right keys for (size_t pos : right_keys_to_replicate) block.safeGetByPosition(pos).column = block.safeGetByPosition(pos).column->replicate(*offsets_to_replicate); } } void HashJoin::joinBlockImplCross(Block & block, ExtraBlockPtr & not_processed) const { size_t max_joined_block_rows = table_join->maxJoinedBlockRows(); size_t start_left_row = 0; size_t start_right_block = 0; if (not_processed) { auto & continuation = static_cast(*not_processed); start_left_row = continuation.left_position; start_right_block = continuation.right_block; not_processed.reset(); } size_t num_existing_columns = block.columns(); size_t num_columns_to_add = sample_block_with_columns_to_add.columns(); ColumnRawPtrs src_left_columns; MutableColumns dst_columns; { src_left_columns.reserve(num_existing_columns); dst_columns.reserve(num_existing_columns + num_columns_to_add); for (const ColumnWithTypeAndName & left_column : block) { src_left_columns.push_back(left_column.column.get()); dst_columns.emplace_back(src_left_columns.back()->cloneEmpty()); } for (const ColumnWithTypeAndName & right_column : sample_block_with_columns_to_add) dst_columns.emplace_back(right_column.column->cloneEmpty()); for (auto & dst : dst_columns) dst->reserve(max_joined_block_rows); } size_t rows_left = block.rows(); size_t rows_added = 0; for (size_t left_row = start_left_row; left_row < rows_left; ++left_row) { size_t block_number = 0; for (const Block & block_right : data->blocks) { ++block_number; if (block_number < start_right_block) continue; size_t rows_right = block_right.rows(); rows_added += rows_right; for (size_t col_num = 0; col_num < num_existing_columns; ++col_num) dst_columns[col_num]->insertManyFrom(*src_left_columns[col_num], left_row, rows_right); for (size_t col_num = 0; col_num < num_columns_to_add; ++col_num) { const IColumn & column_right = *block_right.getByPosition(col_num).column; dst_columns[num_existing_columns + col_num]->insertRangeFrom(column_right, 0, rows_right); } } start_right_block = 0; if (rows_added > max_joined_block_rows) { not_processed = std::make_shared( NotProcessedCrossJoin{{block.cloneEmpty()}, left_row, block_number + 1}); not_processed->block.swap(block); break; } } for (const ColumnWithTypeAndName & src_column : sample_block_with_columns_to_add) block.insert(src_column); block = block.cloneWithColumns(std::move(dst_columns)); } DataTypePtr HashJoin::joinGetCheckAndGetReturnType(const DataTypes & data_types, const String & column_name, bool or_null) const { size_t num_keys = data_types.size(); if (right_table_keys.columns() != num_keys) throw Exception(ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH, "Number of arguments for function joinGet{} doesn't match: passed, should be equal to {}", toString(or_null ? "OrNull" : ""), toString(num_keys)); for (size_t i = 0; i < num_keys; ++i) { const auto & left_type_origin = data_types[i]; const auto & [c2, right_type_origin, right_name] = right_table_keys.safeGetByPosition(i); auto left_type = removeNullable(recursiveRemoveLowCardinality(left_type_origin)); auto right_type = removeNullable(recursiveRemoveLowCardinality(right_type_origin)); if (!left_type->equals(*right_type)) throw Exception(ErrorCodes::TYPE_MISMATCH, "Type mismatch in joinGet key {}: " "found type {}, while the needed type is {}", i, left_type->getName(), right_type->getName()); } if (!sample_block_with_columns_to_add.has(column_name)) throw Exception(ErrorCodes::NO_SUCH_COLUMN_IN_TABLE, "StorageJoin doesn't contain column {}", column_name); auto elem = sample_block_with_columns_to_add.getByName(column_name); if (or_null && JoinCommon::canBecomeNullable(elem.type)) elem.type = makeNullable(elem.type); return elem.type; } /// TODO: return multiple columns as named tuple /// TODO: return array of values when strictness == JoinStrictness::All ColumnWithTypeAndName HashJoin::joinGet(const Block & block, const Block & block_with_columns_to_add) const { bool is_valid = (strictness == JoinStrictness::Any || strictness == JoinStrictness::RightAny) && kind == JoinKind::Left; if (!is_valid) throw Exception(ErrorCodes::INCOMPATIBLE_TYPE_OF_JOIN, "joinGet only supports StorageJoin of type Left Any"); const auto & key_names_right = table_join->getOnlyClause().key_names_right; /// Assemble the key block with correct names. Block keys; for (size_t i = 0; i < block.columns(); ++i) { auto key = block.getByPosition(i); key.name = key_names_right[i]; keys.insert(std::move(key)); } static_assert(!MapGetter::flagged, "joinGet are not protected from hash table changes between block processing"); std::vector maps_vector; maps_vector.push_back(&std::get(data->maps[0])); joinBlockImpl( keys, block_with_columns_to_add, maps_vector, true); return keys.getByPosition(keys.columns() - 1); } void HashJoin::checkTypesOfKeys(const Block & block) const { for (const auto & onexpr : table_join->getClauses()) { JoinCommon::checkTypesOfKeys(block, onexpr.key_names_left, right_table_keys, onexpr.key_names_right); } } void HashJoin::joinBlock(Block & block, ExtraBlockPtr & not_processed) { if (!data) throw Exception(ErrorCodes::LOGICAL_ERROR, "Cannot join after data has been released"); for (const auto & onexpr : table_join->getClauses()) { auto cond_column_name = onexpr.condColumnNames(); JoinCommon::checkTypesOfKeys( block, onexpr.key_names_left, cond_column_name.first, right_sample_block, onexpr.key_names_right, cond_column_name.second); } if (kind == JoinKind::Cross) { joinBlockImplCross(block, not_processed); return; } if (kind == JoinKind::Right || kind == JoinKind::Full) { materializeBlockInplace(block); } { std::vectormaps[0])> * > maps_vector; for (size_t i = 0; i < table_join->getClauses().size(); ++i) maps_vector.push_back(&data->maps[i]); if (joinDispatch(kind, strictness, maps_vector, [&](auto kind_, auto strictness_, auto & maps_vector_) { joinBlockImpl(block, sample_block_with_columns_to_add, maps_vector_); })) { /// Joined } else throw Exception(ErrorCodes::LOGICAL_ERROR, "Wrong JOIN combination: {} {}", strictness, kind); } } HashJoin::~HashJoin() { if (!data) { LOG_TRACE(log, "({}) Join data has been already released", fmt::ptr(this)); return; } LOG_TRACE(log, "({}) Join data is being destroyed, {} bytes and {} rows in hash table", fmt::ptr(this), getTotalByteCount(), getTotalRowCount()); } template struct AdderNonJoined { static void add(const Mapped & mapped, size_t & rows_added, MutableColumns & columns_right) { constexpr bool mapped_asof = std::is_same_v; [[maybe_unused]] constexpr bool mapped_one = std::is_same_v; if constexpr (mapped_asof) { /// Do nothing } else if constexpr (mapped_one) { for (size_t j = 0; j < columns_right.size(); ++j) { const auto & mapped_column = mapped.block->getByPosition(j).column; columns_right[j]->insertFrom(*mapped_column, mapped.row_num); } ++rows_added; } else { for (auto it = mapped.begin(); it.ok(); ++it) { for (size_t j = 0; j < columns_right.size(); ++j) { const auto & mapped_column = it->block->getByPosition(j).column; columns_right[j]->insertFrom(*mapped_column, it->row_num); } ++rows_added; } } } }; /// Stream from not joined earlier rows of the right table. /// Based on: /// - map offsetInternal saved in used_flags for single disjuncts /// - flags in BlockWithFlags for multiple disjuncts template class NotJoinedHash final : public NotJoinedBlocks::RightColumnsFiller { public: NotJoinedHash(const HashJoin & parent_, UInt64 max_block_size_) : parent(parent_), max_block_size(max_block_size_), current_block_start(0) { if (parent.data == nullptr) throw Exception(ErrorCodes::LOGICAL_ERROR, "Cannot join after data has been released"); } Block getEmptyBlock() override { return parent.savedBlockSample().cloneEmpty(); } size_t fillColumns(MutableColumns & columns_right) override { size_t rows_added = 0; if (unlikely(parent.data->type == HashJoin::Type::EMPTY)) { rows_added = fillColumnsFromData(parent.data->blocks, columns_right); } else { auto fill_callback = [&](auto, auto strictness, auto & map) { rows_added = fillColumnsFromMap(map, columns_right); }; if (!joinDispatch(parent.kind, parent.strictness, parent.data->maps.front(), fill_callback)) throw Exception(ErrorCodes::LOGICAL_ERROR, "Unknown JOIN strictness '{}' (must be on of: ANY, ALL, ASOF)", parent.strictness); } if constexpr (!multiple_disjuncts) { fillNullsFromBlocks(columns_right, rows_added); } return rows_added; } private: const HashJoin & parent; UInt64 max_block_size; size_t current_block_start; std::any position; std::optional nulls_position; std::optional used_position; size_t fillColumnsFromData(const BlocksList & blocks, MutableColumns & columns_right) { if (!position.has_value()) position = std::make_any(blocks.begin()); auto & block_it = std::any_cast(position); auto end = blocks.end(); size_t rows_added = 0; for (; block_it != end; ++block_it) { size_t rows_from_block = std::min(max_block_size - rows_added, block_it->rows() - current_block_start); for (size_t j = 0; j < columns_right.size(); ++j) { const auto & col = block_it->getByPosition(j).column; columns_right[j]->insertRangeFrom(*col, current_block_start, rows_from_block); } rows_added += rows_from_block; if (rows_added >= max_block_size) { /// How many rows have been read current_block_start += rows_from_block; if (block_it->rows() <= current_block_start) { /// current block was fully read ++block_it; current_block_start = 0; } break; } current_block_start = 0; } return rows_added; } template size_t fillColumnsFromMap(const Maps & maps, MutableColumns & columns_keys_and_right) { switch (parent.data->type) { #define M(TYPE) \ case HashJoin::Type::TYPE: \ return fillColumns(*maps.TYPE, columns_keys_and_right); APPLY_FOR_JOIN_VARIANTS(M) #undef M default: throw Exception(ErrorCodes::UNSUPPORTED_JOIN_KEYS, "Unsupported JOIN keys (type: {})", parent.data->type) ; } UNREACHABLE(); } template size_t fillColumns(const Map & map, MutableColumns & columns_keys_and_right) { size_t rows_added = 0; if constexpr (multiple_disjuncts) { if (!used_position.has_value()) used_position = parent.data->blocks.begin(); auto end = parent.data->blocks.end(); for (auto & it = *used_position; it != end && rows_added < max_block_size; ++it) { const Block & mapped_block = *it; for (size_t row = 0; row < mapped_block.rows(); ++row) { if (!parent.isUsed(&mapped_block, row)) { for (size_t colnum = 0; colnum < columns_keys_and_right.size(); ++colnum) { columns_keys_and_right[colnum]->insertFrom(*mapped_block.getByPosition(colnum).column, row); } ++rows_added; } } } } else { using Mapped = typename Map::mapped_type; using Iterator = typename Map::const_iterator; if (!position.has_value()) position = std::make_any(map.begin()); Iterator & it = std::any_cast(position); auto end = map.end(); for (; it != end; ++it) { const Mapped & mapped = it->getMapped(); size_t off = map.offsetInternal(it.getPtr()); if (parent.isUsed(off)) continue; AdderNonJoined::add(mapped, rows_added, columns_keys_and_right); if (rows_added >= max_block_size) { ++it; break; } } } return rows_added; } void fillNullsFromBlocks(MutableColumns & columns_keys_and_right, size_t & rows_added) { if (!nulls_position.has_value()) nulls_position = parent.data->blocks_nullmaps.begin(); auto end = parent.data->blocks_nullmaps.end(); for (auto & it = *nulls_position; it != end && rows_added < max_block_size; ++it) { const auto * block = it->first; ConstNullMapPtr nullmap = nullptr; if (it->second) nullmap = &assert_cast(*it->second).getData(); for (size_t row = 0; row < block->rows(); ++row) { if (nullmap && (*nullmap)[row]) { for (size_t col = 0; col < columns_keys_and_right.size(); ++col) columns_keys_and_right[col]->insertFrom(*block->getByPosition(col).column, row); ++rows_added; } } } } }; IBlocksStreamPtr HashJoin::getNonJoinedBlocks(const Block & left_sample_block, const Block & result_sample_block, UInt64 max_block_size) const { if (!JoinCommon::hasNonJoinedBlocks(*table_join)) return {}; bool multiple_disjuncts = !table_join->oneDisjunct(); if (multiple_disjuncts) { /// ... calculate `left_columns_count` ... size_t left_columns_count = left_sample_block.columns(); auto non_joined = std::make_unique>(*this, max_block_size); return std::make_unique(std::move(non_joined), result_sample_block, left_columns_count, *table_join); } else { size_t left_columns_count = left_sample_block.columns(); assert(left_columns_count == result_sample_block.columns() - required_right_keys.columns() - sample_block_with_columns_to_add.columns()); auto non_joined = std::make_unique>(*this, max_block_size); return std::make_unique(std::move(non_joined), result_sample_block, left_columns_count, *table_join); } } void HashJoin::reuseJoinedData(const HashJoin & join) { data = join.data; from_storage_join = true; bool multiple_disjuncts = !table_join->oneDisjunct(); if (multiple_disjuncts) throw Exception(ErrorCodes::NOT_IMPLEMENTED, "StorageJoin with ORs is not supported"); for (auto & map : data->maps) { joinDispatch(kind, strictness, map, [this](auto kind_, auto strictness_, auto & map_) { used_flags.reinit(map_.getBufferSizeInCells(data->type) + 1); }); } } BlocksList HashJoin::releaseJoinedBlocks(bool restructure) { LOG_TRACE(log, "({}) Join data is being released, {} bytes and {} rows in hash table", fmt::ptr(this), getTotalByteCount(), getTotalRowCount()); BlocksList right_blocks = std::move(data->blocks); if (!restructure) { data.reset(); return right_blocks; } data->maps.clear(); data->blocks_nullmaps.clear(); BlocksList restored_blocks; /// names to positions optimization std::vector positions; std::vector is_nullable; if (!right_blocks.empty()) { positions.reserve(right_sample_block.columns()); const Block & tmp_block = *right_blocks.begin(); for (const auto & sample_column : right_sample_block) { positions.emplace_back(tmp_block.getPositionByName(sample_column.name)); is_nullable.emplace_back(JoinCommon::isNullable(sample_column.type)); } } for (Block & saved_block : right_blocks) { Block restored_block; for (size_t i = 0; i < positions.size(); ++i) { auto & column = saved_block.getByPosition(positions[i]); correctNullabilityInplace(column, is_nullable[i]); restored_block.insert(column); } restored_blocks.emplace_back(std::move(restored_block)); } data.reset(); return restored_blocks; } const ColumnWithTypeAndName & HashJoin::rightAsofKeyColumn() const { /// It should be nullable when right side is nullable return savedBlockSample().getByName(table_join->getOnlyClause().key_names_right.back()); } }