#include #include #include #include #include #include namespace DB { namespace ErrorCodes { extern const int VIOLATED_CONSTRAINT; } namespace { /// Make function a > b or a >= b ASTPtr normalizeAtom(const ASTPtr & atom) { static const std::map inverse_relations = { {"lessOrEquals", "greaterOrEquals"}, {"less", "greater"}, }; ASTPtr res = atom->clone(); if (const auto * func = res->as()) { if (const auto it = inverse_relations.find(func->name); it != std::end(inverse_relations)) { res = makeASTFunction(it->second, func->arguments->children[1]->clone(), func->arguments->children[0]->clone()); } } return res; } bool less(const Field & lhs, const Field & rhs) { return applyVisitor(FieldVisitorAccurateLess{}, lhs, rhs); } bool greater(const Field & lhs, const Field & rhs) { return applyVisitor(FieldVisitorAccurateLess{}, rhs, lhs); } bool equals(const Field & lhs, const Field & rhs) { return applyVisitor(FieldVisitorAccurateEquals{}, lhs, rhs); } } ComparisonGraph::ComparisonGraph(const ASTs & atomic_formulas) { if (atomic_formulas.empty()) return; static const std::unordered_map relation_to_enum = { {"equals", Edge::EQUAL}, {"greater", Edge::GREATER}, {"greaterOrEquals", Edge::GREATER_OR_EQUAL}, }; /// Firstly build an intermediate graph, /// in which each vertex corresponds to one expression. /// That means that if we have edge (A, B) with type GREATER, then always A > B. /// If we have EQUAL relation, then we add both edges (A, B) and (B, A). Graph g; for (const auto & atom_raw : atomic_formulas) { const auto atom = normalizeAtom(atom_raw); auto get_index = [](const ASTPtr & ast, Graph & asts_graph) -> std::optional { const auto it = asts_graph.ast_hash_to_component.find(ast->getTreeHash()); if (it != std::end(asts_graph.ast_hash_to_component)) { if (!std::any_of( std::cbegin(asts_graph.vertices[it->second].asts), std::cend(asts_graph.vertices[it->second].asts), [ast](const ASTPtr & constraint_ast) { return constraint_ast->getTreeHash() == ast->getTreeHash() && constraint_ast->getColumnName() == ast->getColumnName(); })) { return {}; } return it->second; } else { asts_graph.ast_hash_to_component[ast->getTreeHash()] = asts_graph.vertices.size(); asts_graph.vertices.push_back(EqualComponent{{ast}, std::nullopt}); asts_graph.edges.emplace_back(); return asts_graph.vertices.size() - 1; } }; const auto * func = atom->as(); if (func && func->arguments->children.size() == 2) { auto index_left = get_index(func->arguments->children[0], g); auto index_right = get_index(func->arguments->children[1], g); if (index_left && index_right) { if (const auto it = relation_to_enum.find(func->name); it != std::end(relation_to_enum)) { g.edges[*index_left].push_back(Edge{it->second, *index_right}); if (it->second == Edge::EQUAL) g.edges[*index_right].push_back(Edge{it->second, *index_left}); } } } } /// Now expressions A and B are equal, if and only if /// we have both paths from A to B and from B to A in graph. /// That means that equivalence classes of expressions /// are the same as strongly connected components in graph. /// So, we find such components and build graph on them. /// All expressions from one equivalence class will be stored /// in the corresponding vertex of new graph. graph = buildGraphFromAstsGraph(g); dists = buildDistsFromGraph(graph); std::tie(ast_const_lower_bound, ast_const_upper_bound) = buildConstBounds(); /// Find expressions that are known to be unequal. static const std::unordered_set not_equals_functions = {"notEquals", "greater"}; /// Explicitly save unequal components. /// TODO: Build a graph for unequal components. for (const auto & atom_raw : atomic_formulas) { const auto atom = normalizeAtom(atom_raw); const auto * func = atom->as(); if (func && not_equals_functions.contains(func->name)) { auto index_left = graph.ast_hash_to_component.at(func->arguments->children[0]->getTreeHash()); auto index_right = graph.ast_hash_to_component.at(func->arguments->children[1]->getTreeHash()); if (index_left == index_right) throw Exception(ErrorCodes::VIOLATED_CONSTRAINT, "Found expression '{}', but its arguments considered equal according to constraints", queryToString(atom)); not_equal.emplace(index_left, index_right); not_equal.emplace(index_right, index_left); } } } ComparisonGraph::CompareResult ComparisonGraph::pathToCompareResult(Path path, bool inverse) { switch (path) { case Path::GREATER: return inverse ? CompareResult::LESS : CompareResult::GREATER; case Path::GREATER_OR_EQUAL: return inverse ? CompareResult::LESS_OR_EQUAL : CompareResult::GREATER_OR_EQUAL; } __builtin_unreachable(); } std::optional ComparisonGraph::findPath(size_t start, size_t finish) const { const auto it = dists.find(std::make_pair(start, finish)); if (it == std::end(dists)) return {}; /// Since path can be only GREATER or GREATER_OR_EQUALS, /// we can strengthen the condition. return not_equal.contains({start, finish}) ? Path::GREATER : it->second; } ComparisonGraph::CompareResult ComparisonGraph::compare(const ASTPtr & left, const ASTPtr & right) const { size_t start = 0; size_t finish = 0; /// TODO: check full ast const auto it_left = graph.ast_hash_to_component.find(left->getTreeHash()); const auto it_right = graph.ast_hash_to_component.find(right->getTreeHash()); if (it_left == std::end(graph.ast_hash_to_component) || it_right == std::end(graph.ast_hash_to_component)) { CompareResult result = CompareResult::UNKNOWN; { const auto left_bound = getConstLowerBound(left); const auto right_bound = getConstUpperBound(right); if (left_bound && right_bound) { if (greater(left_bound->first, right_bound->first)) result = CompareResult::GREATER; else if (equals(left_bound->first, right_bound->first)) result = left_bound->second || right_bound->second ? CompareResult::GREATER : CompareResult::GREATER_OR_EQUAL; } } { const auto left_bound = getConstUpperBound(left); const auto right_bound = getConstLowerBound(right); if (left_bound && right_bound) { if (less(left_bound->first, right_bound->first)) result = CompareResult::LESS; else if (equals(left_bound->first, right_bound->first)) result = left_bound->second || right_bound->second ? CompareResult::LESS : CompareResult::LESS_OR_EQUAL; } } return result; } else { start = it_left->second; finish = it_right->second; } if (start == finish) return CompareResult::EQUAL; if (auto path = findPath(start, finish)) return pathToCompareResult(*path, /*inverse=*/ false); if (auto path = findPath(finish, start)) return pathToCompareResult(*path, /*inverse=*/ true); if (not_equal.contains({start, finish})) return CompareResult::NOT_EQUAL; return CompareResult::UNKNOWN; } bool ComparisonGraph::isPossibleCompare(CompareResult expected, const ASTPtr & left, const ASTPtr & right) const { const auto result = compare(left, right); if (expected == CompareResult::UNKNOWN || result == CompareResult::UNKNOWN) return true; if (expected == result) return true; static const std::set> possible_pairs = { {CompareResult::EQUAL, CompareResult::LESS_OR_EQUAL}, {CompareResult::EQUAL, CompareResult::GREATER_OR_EQUAL}, {CompareResult::LESS_OR_EQUAL, CompareResult::LESS}, {CompareResult::LESS_OR_EQUAL, CompareResult::EQUAL}, {CompareResult::LESS_OR_EQUAL, CompareResult::NOT_EQUAL}, {CompareResult::GREATER_OR_EQUAL, CompareResult::GREATER}, {CompareResult::GREATER_OR_EQUAL, CompareResult::EQUAL}, {CompareResult::GREATER_OR_EQUAL, CompareResult::NOT_EQUAL}, {CompareResult::LESS, CompareResult::LESS}, {CompareResult::LESS, CompareResult::LESS_OR_EQUAL}, {CompareResult::LESS, CompareResult::NOT_EQUAL}, {CompareResult::GREATER, CompareResult::GREATER}, {CompareResult::GREATER, CompareResult::GREATER_OR_EQUAL}, {CompareResult::GREATER, CompareResult::NOT_EQUAL}, {CompareResult::NOT_EQUAL, CompareResult::LESS}, {CompareResult::NOT_EQUAL, CompareResult::GREATER}, {CompareResult::NOT_EQUAL, CompareResult::LESS_OR_EQUAL}, {CompareResult::NOT_EQUAL, CompareResult::GREATER_OR_EQUAL}, }; return possible_pairs.contains({expected, result}); } bool ComparisonGraph::isAlwaysCompare(CompareResult expected, const ASTPtr & left, const ASTPtr & right) const { const auto result = compare(left, right); if (expected == CompareResult::UNKNOWN || result == CompareResult::UNKNOWN) return false; if (expected == result) return true; static const std::set> possible_pairs = { {CompareResult::LESS_OR_EQUAL, CompareResult::LESS}, {CompareResult::LESS_OR_EQUAL, CompareResult::EQUAL}, {CompareResult::GREATER_OR_EQUAL, CompareResult::GREATER}, {CompareResult::GREATER_OR_EQUAL, CompareResult::EQUAL}, {CompareResult::NOT_EQUAL, CompareResult::GREATER}, {CompareResult::NOT_EQUAL, CompareResult::LESS}, }; return possible_pairs.contains({expected, result}); } ASTs ComparisonGraph::getEqual(const ASTPtr & ast) const { const auto res = getComponentId(ast); if (!res) return {}; else return getComponent(res.value()); } std::optional ComparisonGraph::getComponentId(const ASTPtr & ast) const { const auto hash_it = graph.ast_hash_to_component.find(ast->getTreeHash()); if (hash_it == std::end(graph.ast_hash_to_component)) return {}; const size_t index = hash_it->second; if (std::any_of( std::cbegin(graph.vertices[index].asts), std::cend(graph.vertices[index].asts), [ast](const ASTPtr & constraint_ast) { return constraint_ast->getTreeHash() == ast->getTreeHash() && constraint_ast->getColumnName() == ast->getColumnName(); })) { return index; } else { return {}; } } bool ComparisonGraph::hasPath(size_t left, size_t right) const { return findPath(left, right) || findPath(right, left); } ASTs ComparisonGraph::getComponent(size_t id) const { return graph.vertices[id].asts; } bool ComparisonGraph::EqualComponent::hasConstant() const { return constant_index.has_value(); } ASTPtr ComparisonGraph::EqualComponent::getConstant() const { assert(constant_index); return asts[*constant_index]; } void ComparisonGraph::EqualComponent::buildConstants() { constant_index.reset(); for (size_t i = 0; i < asts.size(); ++i) { if (asts[i]->as()) { constant_index = i; return; } } } ComparisonGraph::CompareResult ComparisonGraph::atomToCompareResult(const CNFQuery::AtomicFormula & atom) { if (const auto * func = atom.ast->as()) { auto expected = functionNameToCompareResult(func->name); if (atom.negative) expected = inverseCompareResult(expected); return expected; } return ComparisonGraph::CompareResult::UNKNOWN; } ComparisonGraph::CompareResult ComparisonGraph::functionNameToCompareResult(const std::string & name) { static const std::unordered_map relation_to_compare = { {"equals", CompareResult::EQUAL}, {"notEquals", CompareResult::NOT_EQUAL}, {"less", CompareResult::LESS}, {"lessOrEquals", CompareResult::LESS_OR_EQUAL}, {"greaterOrEquals", CompareResult::GREATER_OR_EQUAL}, {"greater", CompareResult::GREATER}, }; const auto it = relation_to_compare.find(name); return it == std::end(relation_to_compare) ? CompareResult::UNKNOWN : it->second; } ComparisonGraph::CompareResult ComparisonGraph::inverseCompareResult(CompareResult result) { static const std::unordered_map inverse_relations = { {CompareResult::NOT_EQUAL, CompareResult::EQUAL}, {CompareResult::EQUAL, CompareResult::NOT_EQUAL}, {CompareResult::GREATER_OR_EQUAL, CompareResult::LESS}, {CompareResult::GREATER, CompareResult::LESS_OR_EQUAL}, {CompareResult::LESS, CompareResult::GREATER_OR_EQUAL}, {CompareResult::LESS_OR_EQUAL, CompareResult::GREATER}, {CompareResult::UNKNOWN, CompareResult::UNKNOWN}, }; return inverse_relations.at(result); } std::optional ComparisonGraph::getEqualConst(const ASTPtr & ast) const { const auto hash_it = graph.ast_hash_to_component.find(ast->getTreeHash()); if (hash_it == std::end(graph.ast_hash_to_component)) return std::nullopt; const size_t index = hash_it->second; return graph.vertices[index].hasConstant() ? std::optional{graph.vertices[index].getConstant()} : std::nullopt; } std::optional> ComparisonGraph::getConstUpperBound(const ASTPtr & ast) const { if (const auto * literal = ast->as()) return std::make_pair(literal->value, false); const auto it = graph.ast_hash_to_component.find(ast->getTreeHash()); if (it == std::end(graph.ast_hash_to_component)) return std::nullopt; const size_t to = it->second; const ssize_t from = ast_const_upper_bound[to]; if (from == -1) return std::nullopt; return std::make_pair(graph.vertices[from].getConstant()->as()->value, dists.at({from, to}) == Path::GREATER); } std::optional> ComparisonGraph::getConstLowerBound(const ASTPtr & ast) const { if (const auto * literal = ast->as()) return std::make_pair(literal->value, false); const auto it = graph.ast_hash_to_component.find(ast->getTreeHash()); if (it == std::end(graph.ast_hash_to_component)) return std::nullopt; const size_t from = it->second; const ssize_t to = ast_const_lower_bound[from]; if (to == -1) return std::nullopt; return std::make_pair(graph.vertices[to].getConstant()->as()->value, dists.at({from, to}) == Path::GREATER); } void ComparisonGraph::dfsOrder(const Graph & asts_graph, size_t v, std::vector & visited, std::vector & order) { visited[v] = true; for (const auto & edge : asts_graph.edges[v]) if (!visited[edge.to]) dfsOrder(asts_graph, edge.to, visited, order); order.push_back(v); } ComparisonGraph::Graph ComparisonGraph::reverseGraph(const Graph & asts_graph) { Graph g; g.ast_hash_to_component = asts_graph.ast_hash_to_component; g.vertices = asts_graph.vertices; g.edges.resize(g.vertices.size()); for (size_t v = 0; v < asts_graph.vertices.size(); ++v) for (const auto & edge : asts_graph.edges[v]) g.edges[edge.to].push_back(Edge{edge.type, v}); return g; } std::vector ComparisonGraph::getVertices() const { std::vector result; for (const auto & vertex : graph.vertices) { result.emplace_back(); for (const auto & ast : vertex.asts) result.back().push_back(ast); } return result; } void ComparisonGraph::dfsComponents( const Graph & reversed_graph, size_t v, OptionalIndices & components, size_t component) { components[v] = component; for (const auto & edge : reversed_graph.edges[v]) if (!components[edge.to]) dfsComponents(reversed_graph, edge.to, components, component); } ComparisonGraph::Graph ComparisonGraph::buildGraphFromAstsGraph(const Graph & asts_graph) { /// Find strongly connected component by using 2 dfs traversals. /// https://en.wikipedia.org/wiki/Kosaraju%27s_algorithm const auto n = asts_graph.vertices.size(); std::vector order; { std::vector visited(n, false); for (size_t v = 0; v < n; ++v) { if (!visited[v]) dfsOrder(asts_graph, v, visited, order); } } OptionalIndices components(n); size_t component = 0; { const Graph reversed_graph = reverseGraph(asts_graph); for (auto it = order.rbegin(); it != order.rend(); ++it) { if (!components[*it]) { dfsComponents(reversed_graph, *it, components, component); ++component; } } } Graph result; result.vertices.resize(component); result.edges.resize(component); for (const auto & [hash, index] : asts_graph.ast_hash_to_component) { assert(components[index]); result.ast_hash_to_component[hash] = *components[index]; result.vertices[*components[index]].asts.insert( std::end(result.vertices[*components[index]].asts), std::begin(asts_graph.vertices[index].asts), std::end(asts_graph.vertices[index].asts)); // asts_graph has only one ast per vertex } /// Calculate constants for (auto & vertex : result.vertices) vertex.buildConstants(); /// For each edge in initial graph, we add an edge between components in condensation graph. for (size_t v = 0; v < n; ++v) { for (const auto & edge : asts_graph.edges[v]) result.edges[*components[v]].push_back(Edge{edge.type, *components[edge.to]}); /// TODO: make edges unique (left most strict) } /// If we have constansts in two components, we can compare them and add and extra edge. for (size_t v = 0; v < result.vertices.size(); ++v) { for (size_t u = 0; u < result.vertices.size(); ++u) { if (v != u && result.vertices[v].hasConstant() && result.vertices[u].hasConstant()) { const auto * left = result.vertices[v].getConstant()->as(); const auto * right = result.vertices[u].getConstant()->as(); /// Only GREATER. Equal constant fields = equal literals so it was already considered above. if (greater(left->value, right->value)) result.edges[v].push_back(Edge{Edge::GREATER, u}); } } } return result; } std::map, ComparisonGraph::Path> ComparisonGraph::buildDistsFromGraph(const Graph & g) { /// Min path : -1 means GREATER, 0 means GREATER_OR_EQUALS. /// We use Floyd–Warshall algorithm to find distances between all pairs of vertices. /// https://en.wikipedia.org/wiki/Floyd–Warshall_algorithm constexpr auto inf = std::numeric_limits::max(); const size_t n = g.vertices.size(); std::vector> results(n, std::vector(n, inf)); for (size_t v = 0; v < n; ++v) { results[v][v] = 0; for (const auto & edge : g.edges[v]) results[v][edge.to] = std::min(results[v][edge.to], static_cast(edge.type == Edge::GREATER ? -1 : 0)); } for (size_t k = 0; k < n; ++k) for (size_t v = 0; v < n; ++v) for (size_t u = 0; u < n; ++u) if (results[v][k] != inf && results[k][u] != inf) results[v][u] = std::min(results[v][u], std::min(results[v][k], results[k][u])); std::map, Path> path; for (size_t v = 0; v < n; ++v) for (size_t u = 0; u < n; ++u) if (results[v][u] != inf) path[std::make_pair(v, u)] = (results[v][u] == -1 ? Path::GREATER : Path::GREATER_OR_EQUAL); return path; } std::pair, std::vector> ComparisonGraph::buildConstBounds() const { const size_t n = graph.vertices.size(); std::vector lower(n, -1); std::vector upper(n, -1); auto get_value = [this](const size_t vertex) -> Field { return graph.vertices[vertex].getConstant()->as()->value; }; for (const auto & [edge, path] : dists) { const auto [from, to] = edge; if (graph.vertices[to].hasConstant()) { if (lower[from] == -1 || greater(get_value(to), get_value(lower[from])) || (equals(get_value(to), get_value(lower[from])) && path == Path::GREATER)) lower[from] = to; } if (graph.vertices[from].hasConstant()) { if (upper[to] == -1 || less(get_value(from), get_value(upper[to])) || (equals(get_value(from), get_value(upper[to])) && path == Path::GREATER)) upper[to] = from; } } return {lower, upper}; } }