#ifdef __SSE2__ #include #endif #include #include #include #include #include "ColumnsCommon.h" namespace DB { size_t countBytesInFilter(const IColumn::Filter & filt) { size_t count = 0; /** NOTE: In theory, `filt` should only contain zeros and ones. * But, just in case, here the condition > 0 (to signed bytes) is used. * It would be better to use != 0, then this does not allow SSE2. */ const Int8 * pos = reinterpret_cast(filt.data()); const Int8 * end = pos + filt.size(); #if defined(__SSE2__) && defined(__POPCNT__) const __m128i zero16 = _mm_setzero_si128(); const Int8 * end64 = pos + filt.size() / 64 * 64; for (; pos < end64; pos += 64) count += __builtin_popcountll( static_cast(_mm_movemask_epi8(_mm_cmpgt_epi8( _mm_loadu_si128(reinterpret_cast(pos)), zero16))) | (static_cast(_mm_movemask_epi8(_mm_cmpgt_epi8( _mm_loadu_si128(reinterpret_cast(pos + 16)), zero16))) << 16) | (static_cast(_mm_movemask_epi8(_mm_cmpgt_epi8( _mm_loadu_si128(reinterpret_cast(pos + 32)), zero16))) << 32) | (static_cast(_mm_movemask_epi8(_mm_cmpgt_epi8( _mm_loadu_si128(reinterpret_cast(pos + 48)), zero16))) << 48)); /// TODO Add duff device for tail? #endif for (; pos < end; ++pos) count += *pos > 0; return count; } std::vector countColumnsSizeInSelector(IColumn::ColumnIndex num_columns, const IColumn::Selector & selector) { std::vector counts(num_columns); for (auto idx : selector) ++counts[idx]; return counts; } bool memoryIsByte(const void * data, size_t size, uint8_t byte) { if (size == 0) return true; auto ptr = reinterpret_cast(data); return *ptr == byte && memcmp(ptr, ptr + 1, size - 1) == 0; } bool memoryIsZero(const void * data, size_t size) { return memoryIsByte(data, size, 0x0); } namespace ErrorCodes { extern const int SIZES_OF_COLUMNS_DOESNT_MATCH; } namespace { /// Implementation details of filterArraysImpl function, used as template parameter. /// Allow to build or not to build offsets array. struct ResultOffsetsBuilder { IColumn::Offsets & res_offsets; IColumn::Offset current_src_offset = 0; explicit ResultOffsetsBuilder(IColumn::Offsets * res_offsets_) : res_offsets(*res_offsets_) {} void reserve(ssize_t result_size_hint, size_t src_size) { res_offsets.reserve(result_size_hint > 0 ? result_size_hint : src_size); } void insertOne(size_t array_size) { current_src_offset += array_size; res_offsets.push_back(current_src_offset); } template void insertChunk( const IColumn::Offset * src_offsets_pos, bool first, IColumn::Offset chunk_offset, size_t chunk_size) { const auto offsets_size_old = res_offsets.size(); res_offsets.resize(offsets_size_old + SIMD_BYTES); memcpy(&res_offsets[offsets_size_old], src_offsets_pos, SIMD_BYTES * sizeof(IColumn::Offset)); if (!first) { /// difference between current and actual offset const auto diff_offset = chunk_offset - current_src_offset; if (diff_offset > 0) { const auto res_offsets_pos = &res_offsets[offsets_size_old]; /// adjust offsets for (size_t i = 0; i < SIMD_BYTES; ++i) res_offsets_pos[i] -= diff_offset; } } current_src_offset += chunk_size; } }; struct NoResultOffsetsBuilder { explicit NoResultOffsetsBuilder(IColumn::Offsets *) {} void reserve(ssize_t, size_t) {} void insertOne(size_t) {} template void insertChunk( const IColumn::Offset *, bool, IColumn::Offset, size_t) { } }; template void filterArraysImplGeneric( const PaddedPODArray & src_elems, const IColumn::Offsets & src_offsets, PaddedPODArray & res_elems, IColumn::Offsets * res_offsets, const IColumn::Filter & filt, ssize_t result_size_hint) { const size_t size = src_offsets.size(); if (size != filt.size()) throw Exception("Size of filter doesn't match size of column.", ErrorCodes::SIZES_OF_COLUMNS_DOESNT_MATCH); ResultOffsetsBuilder result_offsets_builder(res_offsets); if (result_size_hint) { result_offsets_builder.reserve(result_size_hint, size); if (result_size_hint < 0) res_elems.reserve(src_elems.size()); else if (result_size_hint < 1000000000 && src_elems.size() < 1000000000) /// Avoid overflow. res_elems.reserve((result_size_hint * src_elems.size() + size - 1) / size); } const UInt8 * filt_pos = filt.data(); const auto filt_end = filt_pos + size; auto offsets_pos = src_offsets.data(); const auto offsets_begin = offsets_pos; /// copy array ending at *end_offset_ptr const auto copy_array = [&] (const IColumn::Offset * offset_ptr) { const auto arr_offset = offset_ptr == offsets_begin ? 0 : offset_ptr[-1]; const auto arr_size = *offset_ptr - arr_offset; result_offsets_builder.insertOne(arr_size); const auto elems_size_old = res_elems.size(); res_elems.resize(elems_size_old + arr_size); memcpy(&res_elems[elems_size_old], &src_elems[arr_offset], arr_size * sizeof(T)); }; #ifdef __SSE2__ const __m128i zero_vec = _mm_setzero_si128(); static constexpr size_t SIMD_BYTES = 16; const auto filt_end_aligned = filt_pos + size / SIMD_BYTES * SIMD_BYTES; while (filt_pos < filt_end_aligned) { const auto mask = _mm_movemask_epi8(_mm_cmpgt_epi8( _mm_loadu_si128(reinterpret_cast(filt_pos)), zero_vec)); if (mask == 0) { /// SIMD_BYTES consecutive rows do not pass the filter } else if (mask == 0xffff) { /// SIMD_BYTES consecutive rows pass the filter const auto first = offsets_pos == offsets_begin; const auto chunk_offset = first ? 0 : offsets_pos[-1]; const auto chunk_size = offsets_pos[SIMD_BYTES - 1] - chunk_offset; result_offsets_builder.template insertChunk(offsets_pos, first, chunk_offset, chunk_size); /// copy elements for SIMD_BYTES arrays at once const auto elems_size_old = res_elems.size(); res_elems.resize(elems_size_old + chunk_size); memcpy(&res_elems[elems_size_old], &src_elems[chunk_offset], chunk_size * sizeof(T)); } else { for (size_t i = 0; i < SIMD_BYTES; ++i) if (filt_pos[i]) copy_array(offsets_pos + i); } filt_pos += SIMD_BYTES; offsets_pos += SIMD_BYTES; } #endif while (filt_pos < filt_end) { if (*filt_pos) copy_array(offsets_pos); ++filt_pos; ++offsets_pos; } } } template void filterArraysImpl( const PaddedPODArray & src_elems, const IColumn::Offsets & src_offsets, PaddedPODArray & res_elems, IColumn::Offsets & res_offsets, const IColumn::Filter & filt, ssize_t result_size_hint) { return filterArraysImplGeneric(src_elems, src_offsets, res_elems, &res_offsets, filt, result_size_hint); } template void filterArraysImplOnlyData( const PaddedPODArray & src_elems, const IColumn::Offsets & src_offsets, PaddedPODArray & res_elems, const IColumn::Filter & filt, ssize_t result_size_hint) { return filterArraysImplGeneric(src_elems, src_offsets, res_elems, nullptr, filt, result_size_hint); } /// Explicit instantiations - not to place the implementation of the function above in the header file. #define INSTANTIATE(TYPE) \ template void filterArraysImpl( \ const PaddedPODArray &, const IColumn::Offsets &, \ PaddedPODArray &, IColumn::Offsets &, \ const IColumn::Filter &, ssize_t); \ template void filterArraysImplOnlyData( \ const PaddedPODArray &, const IColumn::Offsets &, \ PaddedPODArray &, \ const IColumn::Filter &, ssize_t); INSTANTIATE(UInt8) INSTANTIATE(UInt16) INSTANTIATE(UInt32) INSTANTIATE(UInt64) INSTANTIATE(Int8) INSTANTIATE(Int16) INSTANTIATE(Int32) INSTANTIATE(Int64) INSTANTIATE(Float32) INSTANTIATE(Float64) #undef INSTANTIATE namespace detail { template const PaddedPODArray * getIndexesData(const IColumn & indexes) { auto * column = typeid_cast *>(&indexes); if (column) return &column->getData(); return nullptr; } template const PaddedPODArray * getIndexesData(const IColumn & indexes); template const PaddedPODArray * getIndexesData(const IColumn & indexes); template const PaddedPODArray * getIndexesData(const IColumn & indexes); template const PaddedPODArray * getIndexesData(const IColumn & indexes); } }