#include #include #include #include #include #include #include #include #include #include #include namespace DB { namespace ErrorCodes { extern const int LOGICAL_ERROR; extern const int ILLEGAL_COLUMN; extern const int SIZES_OF_NESTED_COLUMNS_ARE_INCONSISTENT; } ColumnNullable::ColumnNullable(MutableColumnPtr && nested_column_, MutableColumnPtr && null_map_) : nested_column(std::move(nested_column_)), null_map(std::move(null_map_)) { /// ColumnNullable cannot have constant nested column. But constant argument could be passed. Materialize it. nested_column = getNestedColumn().convertToFullColumnIfConst(); if (!getNestedColumn().canBeInsideNullable()) throw Exception{getNestedColumn().getName() + " cannot be inside Nullable column", ErrorCodes::ILLEGAL_COLUMN}; if (isColumnConst(*null_map)) throw Exception{"ColumnNullable cannot have constant null map", ErrorCodes::ILLEGAL_COLUMN}; } void ColumnNullable::updateHashWithValue(size_t n, SipHash & hash) const { const auto & arr = getNullMapData(); hash.update(arr[n]); if (arr[n] == 0) getNestedColumn().updateHashWithValue(n, hash); } void ColumnNullable::updateWeakHash32(WeakHash32 & hash) const { auto s = size(); if (hash.getData().size() != s) throw Exception("Size of WeakHash32 does not match size of column: column size is " + std::to_string(s) + ", hash size is " + std::to_string(hash.getData().size()), ErrorCodes::LOGICAL_ERROR); WeakHash32 old_hash = hash; nested_column->updateWeakHash32(hash); const auto & null_map_data = getNullMapData(); auto & hash_data = hash.getData(); auto & old_hash_data = old_hash.getData(); /// Use old data for nulls. for (size_t row = 0; row < s; ++row) if (null_map_data[row]) hash_data[row] = old_hash_data[row]; } void ColumnNullable::updateHashFast(SipHash & hash) const { null_map->updateHashFast(hash); nested_column->updateHashFast(hash); } MutableColumnPtr ColumnNullable::cloneResized(size_t new_size) const { MutableColumnPtr new_nested_col = getNestedColumn().cloneResized(new_size); auto new_null_map = ColumnUInt8::create(); if (new_size > 0) { new_null_map->getData().resize(new_size); size_t count = std::min(size(), new_size); memcpy(new_null_map->getData().data(), getNullMapData().data(), count * sizeof(getNullMapData()[0])); /// If resizing to bigger one, set all new values to NULLs. if (new_size > count) memset(&new_null_map->getData()[count], 1, new_size - count); } return ColumnNullable::create(std::move(new_nested_col), std::move(new_null_map)); } Field ColumnNullable::operator[](size_t n) const { return isNullAt(n) ? Null() : getNestedColumn()[n]; } void ColumnNullable::get(size_t n, Field & res) const { if (isNullAt(n)) res = Null(); else getNestedColumn().get(n, res); } void ColumnNullable::insertData(const char * pos, size_t length) { if (pos == nullptr) { getNestedColumn().insertDefault(); getNullMapData().push_back(1); } else { getNestedColumn().insertData(pos, length); getNullMapData().push_back(0); } } StringRef ColumnNullable::serializeValueIntoArena(size_t n, Arena & arena, char const *& begin) const { const auto & arr = getNullMapData(); static constexpr auto s = sizeof(arr[0]); auto * pos = arena.allocContinue(s, begin); memcpy(pos, &arr[n], s); if (arr[n]) return StringRef(pos, s); auto nested_ref = getNestedColumn().serializeValueIntoArena(n, arena, begin); /// serializeValueIntoArena may reallocate memory. Have to use ptr from nested_ref.data and move it back. return StringRef(nested_ref.data - s, nested_ref.size + s); } const char * ColumnNullable::deserializeAndInsertFromArena(const char * pos) { UInt8 val = unalignedLoad(pos); pos += sizeof(val); getNullMapData().push_back(val); if (val == 0) pos = getNestedColumn().deserializeAndInsertFromArena(pos); else getNestedColumn().insertDefault(); return pos; } const char * ColumnNullable::skipSerializedInArena(const char * pos) const { UInt8 val = unalignedLoad(pos); pos += sizeof(val); if (val == 0) return getNestedColumn().skipSerializedInArena(pos); return pos; } void ColumnNullable::insertRangeFrom(const IColumn & src, size_t start, size_t length) { const ColumnNullable & nullable_col = assert_cast(src); getNullMapColumn().insertRangeFrom(*nullable_col.null_map, start, length); getNestedColumn().insertRangeFrom(*nullable_col.nested_column, start, length); } void ColumnNullable::insert(const Field & x) { if (x.isNull()) { getNestedColumn().insertDefault(); getNullMapData().push_back(1); } else { getNestedColumn().insert(x); getNullMapData().push_back(0); } } void ColumnNullable::insertFrom(const IColumn & src, size_t n) { const ColumnNullable & src_concrete = assert_cast(src); getNestedColumn().insertFrom(src_concrete.getNestedColumn(), n); getNullMapData().push_back(src_concrete.getNullMapData()[n]); } void ColumnNullable::insertFromNotNullable(const IColumn & src, size_t n) { getNestedColumn().insertFrom(src, n); getNullMapData().push_back(0); } void ColumnNullable::insertRangeFromNotNullable(const IColumn & src, size_t start, size_t length) { getNestedColumn().insertRangeFrom(src, start, length); getNullMapData().resize_fill(getNullMapData().size() + length, 0); } void ColumnNullable::insertManyFromNotNullable(const IColumn & src, size_t position, size_t length) { for (size_t i = 0; i < length; ++i) insertFromNotNullable(src, position); } void ColumnNullable::popBack(size_t n) { getNestedColumn().popBack(n); getNullMapColumn().popBack(n); } ColumnPtr ColumnNullable::filter(const Filter & filt, ssize_t result_size_hint, bool inverse) const { ColumnPtr filtered_data = getNestedColumn().filter(filt, result_size_hint, inverse); ColumnPtr filtered_null_map = getNullMapColumn().filter(filt, result_size_hint, inverse); return ColumnNullable::create(filtered_data, filtered_null_map); } void ColumnNullable::expand(const IColumn::Filter & mask, bool inverse) { nested_column->expand(mask, inverse); null_map->expand(mask, inverse); } ColumnPtr ColumnNullable::permute(const Permutation & perm, size_t limit) const { ColumnPtr permuted_data = getNestedColumn().permute(perm, limit); ColumnPtr permuted_null_map = getNullMapColumn().permute(perm, limit); return ColumnNullable::create(permuted_data, permuted_null_map); } ColumnPtr ColumnNullable::index(const IColumn & indexes, size_t limit) const { ColumnPtr indexed_data = getNestedColumn().index(indexes, limit); ColumnPtr indexed_null_map = getNullMapColumn().index(indexes, limit); return ColumnNullable::create(indexed_data, indexed_null_map); } int ColumnNullable::compareAtImpl(size_t n, size_t m, const IColumn & rhs_, int null_direction_hint, const Collator * collator) const { /// NULL values share the properties of NaN values. /// Here the last parameter of compareAt is called null_direction_hint /// instead of the usual nan_direction_hint and is used to implement /// the ordering specified by either NULLS FIRST or NULLS LAST in the /// ORDER BY construction. const ColumnNullable & nullable_rhs = assert_cast(rhs_); bool lval_is_null = isNullAt(n); bool rval_is_null = nullable_rhs.isNullAt(m); if (unlikely(lval_is_null || rval_is_null)) { if (lval_is_null && rval_is_null) return 0; else return lval_is_null ? null_direction_hint : -null_direction_hint; } const IColumn & nested_rhs = nullable_rhs.getNestedColumn(); if (collator) return getNestedColumn().compareAtWithCollation(n, m, nested_rhs, null_direction_hint, *collator); return getNestedColumn().compareAt(n, m, nested_rhs, null_direction_hint); } int ColumnNullable::compareAt(size_t n, size_t m, const IColumn & rhs_, int null_direction_hint) const { return compareAtImpl(n, m, rhs_, null_direction_hint); } int ColumnNullable::compareAtWithCollation(size_t n, size_t m, const IColumn & rhs_, int null_direction_hint, const Collator & collator) const { return compareAtImpl(n, m, rhs_, null_direction_hint, &collator); } void ColumnNullable::compareColumn(const IColumn & rhs, size_t rhs_row_num, PaddedPODArray * row_indexes, PaddedPODArray & compare_results, int direction, int nan_direction_hint) const { return doCompareColumn(assert_cast(rhs), rhs_row_num, row_indexes, compare_results, direction, nan_direction_hint); } bool ColumnNullable::hasEqualValues() const { return hasEqualValuesImpl(); } void ColumnNullable::getPermutationImpl(bool reverse, size_t limit, int null_direction_hint, Permutation & res, const Collator * collator) const { /// Cannot pass limit because of unknown amount of NULLs. if (collator) getNestedColumn().getPermutationWithCollation(*collator, reverse, 0, null_direction_hint, res); else getNestedColumn().getPermutation(reverse, 0, null_direction_hint, res); if ((null_direction_hint > 0) != reverse) { /// Shift all NULL values to the end. size_t read_idx = 0; size_t write_idx = 0; size_t end_idx = res.size(); if (!limit) limit = end_idx; else limit = std::min(end_idx, limit); while (read_idx < limit && !isNullAt(res[read_idx])) { ++read_idx; ++write_idx; } ++read_idx; /// Invariants: /// write_idx < read_idx /// write_idx points to NULL /// read_idx will be incremented to position of next not-NULL /// there are range of NULLs between write_idx and read_idx - 1, /// We are moving elements from end to begin of this range, /// so range will "bubble" towards the end. /// Relative order of NULL elements could be changed, /// but relative order of non-NULLs is preserved. while (read_idx < end_idx && write_idx < limit) { if (!isNullAt(res[read_idx])) { std::swap(res[read_idx], res[write_idx]); ++write_idx; } ++read_idx; } } else { /// Shift all NULL values to the beginning. ssize_t read_idx = res.size() - 1; ssize_t write_idx = res.size() - 1; while (read_idx >= 0 && !isNullAt(res[read_idx])) { --read_idx; --write_idx; } --read_idx; while (read_idx >= 0 && write_idx >= 0) { if (!isNullAt(res[read_idx])) { std::swap(res[read_idx], res[write_idx]); --write_idx; } --read_idx; } } } void ColumnNullable::updatePermutationImpl(bool reverse, size_t limit, int null_direction_hint, Permutation & res, EqualRanges & equal_ranges, const Collator * collator) const { if (equal_ranges.empty()) return; /// We will sort nested columns into `new_ranges` and call updatePermutation in next columns with `null_ranges`. EqualRanges new_ranges, null_ranges; const auto is_nulls_last = ((null_direction_hint > 0) != reverse); if (is_nulls_last) { /// Shift all NULL values to the end. for (const auto & [first, last] : equal_ranges) { /// Current interval is righter than limit. if (limit && first > limit) break; /// Consider a half interval [first, last) size_t read_idx = first; size_t write_idx = first; size_t end_idx = last; /// We can't check the limit here because the interval is not sorted by nested column. while (read_idx < end_idx && !isNullAt(res[read_idx])) { ++read_idx; ++write_idx; } ++read_idx; /// Invariants: /// write_idx < read_idx /// write_idx points to NULL /// read_idx will be incremented to position of next not-NULL /// there are range of NULLs between write_idx and read_idx - 1, /// We are moving elements from end to begin of this range, /// so range will "bubble" towards the end. /// Relative order of NULL elements could be changed, /// but relative order of non-NULLs is preserved. while (read_idx < end_idx && write_idx < end_idx) { if (!isNullAt(res[read_idx])) { std::swap(res[read_idx], res[write_idx]); ++write_idx; } ++read_idx; } /// We have a range [first, write_idx) of non-NULL values if (first != write_idx) new_ranges.emplace_back(first, write_idx); /// We have a range [write_idx, list) of NULL values if (write_idx != last) null_ranges.emplace_back(write_idx, last); } } else { /// Shift all NULL values to the beginning. for (const auto & [first, last] : equal_ranges) { /// Current interval is righter than limit. if (limit && first > limit) break; ssize_t read_idx = last - 1; ssize_t write_idx = last - 1; ssize_t begin_idx = first; while (read_idx >= begin_idx && !isNullAt(res[read_idx])) { --read_idx; --write_idx; } --read_idx; while (read_idx >= begin_idx && write_idx >= begin_idx) { if (!isNullAt(res[read_idx])) { std::swap(res[read_idx], res[write_idx]); --write_idx; } --read_idx; } /// We have a range [write_idx+1, last) of non-NULL values if (write_idx != static_cast(last)) new_ranges.emplace_back(write_idx + 1, last); /// We have a range [first, write_idx+1) of NULL values if (static_cast(first) != write_idx) null_ranges.emplace_back(first, write_idx + 1); } } if (collator) getNestedColumn().updatePermutationWithCollation(*collator, reverse, limit, null_direction_hint, res, new_ranges); else getNestedColumn().updatePermutation(reverse, limit, null_direction_hint, res, new_ranges); equal_ranges = std::move(new_ranges); std::move(null_ranges.begin(), null_ranges.end(), std::back_inserter(equal_ranges)); } void ColumnNullable::getPermutation(bool reverse, size_t limit, int null_direction_hint, Permutation & res) const { getPermutationImpl(reverse, limit, null_direction_hint, res); } void ColumnNullable::updatePermutation(bool reverse, size_t limit, int null_direction_hint, IColumn::Permutation & res, EqualRanges & equal_ranges) const { updatePermutationImpl(reverse, limit, null_direction_hint, res, equal_ranges); } void ColumnNullable::getPermutationWithCollation(const Collator & collator, bool reverse, size_t limit, int null_direction_hint, Permutation & res) const { getPermutationImpl(reverse, limit, null_direction_hint, res, &collator); } void ColumnNullable::updatePermutationWithCollation(const Collator & collator, bool reverse, size_t limit, int null_direction_hint, Permutation & res, EqualRanges & equal_range) const { updatePermutationImpl(reverse, limit, null_direction_hint, res, equal_range, &collator); } void ColumnNullable::gather(ColumnGathererStream & gatherer) { gatherer.gather(*this); } void ColumnNullable::reserve(size_t n) { getNestedColumn().reserve(n); getNullMapData().reserve(n); } size_t ColumnNullable::byteSize() const { return getNestedColumn().byteSize() + getNullMapColumn().byteSize(); } size_t ColumnNullable::byteSizeAt(size_t n) const { return sizeof(getNullMapData()[0]) + getNestedColumn().byteSizeAt(n); } size_t ColumnNullable::allocatedBytes() const { return getNestedColumn().allocatedBytes() + getNullMapColumn().allocatedBytes(); } void ColumnNullable::protect() { getNestedColumn().protect(); getNullMapColumn().protect(); } ColumnPtr ColumnNullable::compress() const { ColumnPtr nested_compressed = nested_column->compress(); ColumnPtr null_map_compressed = null_map->compress(); size_t byte_size = nested_column->byteSize() + null_map->byteSize(); return ColumnCompressed::create(size(), byte_size, [nested_column = std::move(nested_column), null_map = std::move(null_map)] { return ColumnNullable::create(nested_column->decompress(), null_map->decompress()); }); } namespace { /// The following function implements a slightly more general version /// of getExtremes() than the implementation from Not-Null IColumns. /// It takes into account the possible presence of nullable values. void getExtremesWithNulls(const IColumn & nested_column, const NullMap & null_array, Field & min, Field & max, bool null_last = false) { size_t number_of_nulls = 0; size_t n = null_array.size(); NullMap not_null_array(n); for (auto i = 0ul; i < n; ++i) { if (null_array[i]) { ++number_of_nulls; not_null_array[i] = 0; } else { not_null_array[i] = 1; } } if (number_of_nulls == 0) { nested_column.getExtremes(min, max); } else if (number_of_nulls == n) { min = PositiveInfinity(); max = PositiveInfinity(); } else { auto filtered_column = nested_column.filter(not_null_array, -1); filtered_column->getExtremes(min, max); if (null_last) max = PositiveInfinity(); } } } void ColumnNullable::getExtremes(Field & min, Field & max) const { getExtremesWithNulls(getNestedColumn(), getNullMapData(), min, max); } void ColumnNullable::getExtremesNullLast(Field & min, Field & max) const { getExtremesWithNulls(getNestedColumn(), getNullMapData(), min, max, true); } ColumnPtr ColumnNullable::replicate(const Offsets & offsets) const { ColumnPtr replicated_data = getNestedColumn().replicate(offsets); ColumnPtr replicated_null_map = getNullMapColumn().replicate(offsets); return ColumnNullable::create(replicated_data, replicated_null_map); } template void ColumnNullable::applyNullMapImpl(const ColumnUInt8 & map) { NullMap & arr1 = getNullMapData(); const NullMap & arr2 = map.getData(); if (arr1.size() != arr2.size()) throw Exception{"Inconsistent sizes of ColumnNullable objects", ErrorCodes::LOGICAL_ERROR}; for (size_t i = 0, size = arr1.size(); i < size; ++i) arr1[i] |= negative ^ arr2[i]; } void ColumnNullable::applyNullMap(const ColumnUInt8 & map) { applyNullMapImpl(map); } void ColumnNullable::applyNegatedNullMap(const ColumnUInt8 & map) { applyNullMapImpl(map); } void ColumnNullable::applyNullMap(const ColumnNullable & other) { applyNullMap(other.getNullMapColumn()); } void ColumnNullable::checkConsistency() const { if (null_map->size() != getNestedColumn().size()) throw Exception("Logical error: Sizes of nested column and null map of Nullable column are not equal", ErrorCodes::SIZES_OF_NESTED_COLUMNS_ARE_INCONSISTENT); } ColumnPtr makeNullable(const ColumnPtr & column) { if (isColumnNullable(*column)) return column; if (isColumnConst(*column)) return ColumnConst::create(makeNullable(assert_cast(*column).getDataColumnPtr()), column->size()); return ColumnNullable::create(column, ColumnUInt8::create(column->size(), 0)); } }