--- slug: /en/sql-reference/functions/distance-functions --- # Distance functions ## L1Norm Calculates the sum of absolute values of a vector. **Syntax** ```sql L1Norm(vector) ``` Alias: `normL1`. **Arguments** - `vector` — [Tuple](../../sql-reference/data-types/tuple.md) or [Array](../../sql-reference/data-types/array.md). **Returned value** - L1-norm or [taxicab geometry](https://en.wikipedia.org/wiki/Taxicab_geometry) distance. Type: [UInt](../../sql-reference/data-types/int-uint.md), [Float](../../sql-reference/data-types/float.md) or [Decimal](../../sql-reference/data-types/decimal.md). **Examples** Query: ```sql SELECT L1Norm((1, 2)); ``` Result: ```text ┌─L1Norm((1, 2))─┐ │ 3 │ └────────────────┘ ``` ## L2Norm Calculates the square root of the sum of the squares of the vector values. **Syntax** ```sql L2Norm(vector) ``` Alias: `normL2`. **Arguments** - `vector` — [Tuple](../../sql-reference/data-types/tuple.md) or [Array](../../sql-reference/data-types/array.md). **Returned value** - L2-norm or [Euclidean distance](https://en.wikipedia.org/wiki/Euclidean_distance). Type: [Float](../../sql-reference/data-types/float.md). **Example** Query: ```sql SELECT L2Norm((1, 2)); ``` Result: ```text ┌───L2Norm((1, 2))─┐ │ 2.23606797749979 │ └──────────────────┘ ``` ## LinfNorm Calculates the maximum of absolute values of a vector. **Syntax** ```sql LinfNorm(vector) ``` Alias: `normLinf`. **Arguments** - `vector` — [Tuple](../../sql-reference/data-types/tuple.md) or [Array](../../sql-reference/data-types/array.md). **Returned value** - Linf-norm or the maximum absolute value. Type: [Float](../../sql-reference/data-types/float.md). **Example** Query: ```sql SELECT LinfNorm((1, -2)); ``` Result: ```text ┌─LinfNorm((1, -2))─┐ │ 2 │ └───────────────────┘ ``` ## LpNorm Calculates the root of `p`-th power of the sum of the absolute values of a vector in the power of `p`. **Syntax** ```sql LpNorm(vector, p) ``` Alias: `normLp`. **Arguments** - `vector` — [Tuple](../../sql-reference/data-types/tuple.md) or [Array](../../sql-reference/data-types/array.md). - `p` — The power. Possible values: real number in `[1; inf)`. [UInt](../../sql-reference/data-types/int-uint.md) or [Float](../../sql-reference/data-types/float.md). **Returned value** - [Lp-norm](https://en.wikipedia.org/wiki/Norm_(mathematics)#p-norm) Type: [Float](../../sql-reference/data-types/float.md). **Example** Query: ```sql SELECT LpNorm((1, -2), 2); ``` Result: ```text ┌─LpNorm((1, -2), 2)─┐ │ 2.23606797749979 │ └────────────────────┘ ``` ## L1Distance Calculates the distance between two points (the values of the vectors are the coordinates) in `L1` space (1-norm ([taxicab geometry](https://en.wikipedia.org/wiki/Taxicab_geometry) distance)). **Syntax** ```sql L1Distance(vector1, vector2) ``` Alias: `distanceL1`. **Arguments** - `vector1` — First vector. [Tuple](../../sql-reference/data-types/tuple.md) or [Array](../../sql-reference/data-types/array.md). - `vector2` — Second vector. [Tuple](../../sql-reference/data-types/tuple.md) or [Array](../../sql-reference/data-types/array.md). **Returned value** - 1-norm distance. Type: [Float](../../sql-reference/data-types/float.md). **Example** Query: ```sql SELECT L1Distance((1, 2), (2, 3)); ``` Result: ```text ┌─L1Distance((1, 2), (2, 3))─┐ │ 2 │ └────────────────────────────┘ ``` ## L2Distance Calculates the distance between two points (the values of the vectors are the coordinates) in Euclidean space ([Euclidean distance](https://en.wikipedia.org/wiki/Euclidean_distance)). **Syntax** ```sql L2Distance(vector1, vector2) ``` Alias: `distanceL2`. **Arguments** - `vector1` — First vector. [Tuple](../../sql-reference/data-types/tuple.md) or [Array](../../sql-reference/data-types/array.md). - `vector2` — Second vector. [Tuple](../../sql-reference/data-types/tuple.md) or [Array](../../sql-reference/data-types/array.md). **Returned value** - 2-norm distance. Type: [Float](../../sql-reference/data-types/float.md). **Example** Query: ```sql SELECT L2Distance((1, 2), (2, 3)); ``` Result: ```text ┌─L2Distance((1, 2), (2, 3))─┐ │ 1.4142135623730951 │ └────────────────────────────┘ ``` ## LinfDistance Calculates the distance between two points (the values of the vectors are the coordinates) in `L_{inf}` space ([maximum norm](https://en.wikipedia.org/wiki/Norm_(mathematics)#Maximum_norm_(special_case_of:_infinity_norm,_uniform_norm,_or_supremum_norm))). **Syntax** ```sql LinfDistance(vector1, vector2) ``` Alias: `distanceLinf`. **Arguments** - `vector1` — First vector. [Tuple](../../sql-reference/data-types/tuple.md) or [Array](../../sql-reference/data-types/array.md). - `vector1` — Second vector. [Tuple](../../sql-reference/data-types/tuple.md) or [Array](../../sql-reference/data-types/array.md). **Returned value** - Infinity-norm distance. Type: [Float](../../sql-reference/data-types/float.md). **Example** Query: ```sql SELECT LinfDistance((1, 2), (2, 3)); ``` Result: ```text ┌─LinfDistance((1, 2), (2, 3))─┐ │ 1 │ └──────────────────────────────┘ ``` ## LpDistance Calculates the distance between two points (the values of the vectors are the coordinates) in `Lp` space ([p-norm distance](https://en.wikipedia.org/wiki/Norm_(mathematics)#p-norm)). **Syntax** ```sql LpDistance(vector1, vector2, p) ``` Alias: `distanceLp`. **Arguments** - `vector1` — First vector. [Tuple](../../sql-reference/data-types/tuple.md) or [Array](../../sql-reference/data-types/array.md). - `vector2` — Second vector. [Tuple](../../sql-reference/data-types/tuple.md) or [Array](../../sql-reference/data-types/array.md). - `p` — The power. Possible values: real number from `[1; inf)`. [UInt](../../sql-reference/data-types/int-uint.md) or [Float](../../sql-reference/data-types/float.md). **Returned value** - p-norm distance. Type: [Float](../../sql-reference/data-types/float.md). **Example** Query: ```sql SELECT LpDistance((1, 2), (2, 3), 3); ``` Result: ```text ┌─LpDistance((1, 2), (2, 3), 3)─┐ │ 1.2599210498948732 │ └───────────────────────────────┘ ``` ## L1Normalize Calculates the unit vector of a given vector (the values of the tuple are the coordinates) in `L1` space ([taxicab geometry](https://en.wikipedia.org/wiki/Taxicab_geometry)). **Syntax** ```sql L1Normalize(tuple) ``` Alias: `normalizeL1`. **Arguments** - `tuple` — [Tuple](../../sql-reference/data-types/tuple.md). **Returned value** - Unit vector. Type: [Tuple](../../sql-reference/data-types/tuple.md) of [Float](../../sql-reference/data-types/float.md). **Example** Query: ```sql SELECT L1Normalize((1, 2)); ``` Result: ```text ┌─L1Normalize((1, 2))─────────────────────┐ │ (0.3333333333333333,0.6666666666666666) │ └─────────────────────────────────────────┘ ``` ## L2Normalize Calculates the unit vector of a given vector (the values of the tuple are the coordinates) in Euclidean space (using [Euclidean distance](https://en.wikipedia.org/wiki/Euclidean_distance)). **Syntax** ```sql L2Normalize(tuple) ``` Alias: `normalizeL1`. **Arguments** - `tuple` — [Tuple](../../sql-reference/data-types/tuple.md). **Returned value** - Unit vector. Type: [Tuple](../../sql-reference/data-types/tuple.md) of [Float](../../sql-reference/data-types/float.md). **Example** Query: ```sql SELECT L2Normalize((3, 4)); ``` Result: ```text ┌─L2Normalize((3, 4))─┐ │ (0.6,0.8) │ └─────────────────────┘ ``` ## LinfNormalize Calculates the unit vector of a given vector (the values of the tuple are the coordinates) in `L_{inf}` space (using [maximum norm](https://en.wikipedia.org/wiki/Norm_(mathematics)#Maximum_norm_(special_case_of:_infinity_norm,_uniform_norm,_or_supremum_norm))). **Syntax** ```sql LinfNormalize(tuple) ``` Alias: `normalizeLinf `. **Arguments** - `tuple` — [Tuple](../../sql-reference/data-types/tuple.md). **Returned value** - Unit vector. Type: [Tuple](../../sql-reference/data-types/tuple.md) of [Float](../../sql-reference/data-types/float.md). **Example** Query: ```sql SELECT LinfNormalize((3, 4)); ``` Result: ```text ┌─LinfNormalize((3, 4))─┐ │ (0.75,1) │ └───────────────────────┘ ``` ## LpNormalize Calculates the unit vector of a given vector (the values of the tuple are the coordinates) in `Lp` space (using [p-norm](https://en.wikipedia.org/wiki/Norm_(mathematics)#p-norm)). **Syntax** ```sql LpNormalize(tuple, p) ``` Alias: `normalizeLp `. **Arguments** - `tuple` — [Tuple](../../sql-reference/data-types/tuple.md). - `p` — The power. Possible values: any number from [1;inf). [UInt](../../sql-reference/data-types/int-uint.md) or [Float](../../sql-reference/data-types/float.md). **Returned value** - Unit vector. Type: [Tuple](../../sql-reference/data-types/tuple.md) of [Float](../../sql-reference/data-types/float.md). **Example** Query: ```sql SELECT LpNormalize((3, 4),5); ``` Result: ```text ┌─LpNormalize((3, 4), 5)──────────────────┐ │ (0.7187302630182624,0.9583070173576831) │ └─────────────────────────────────────────┘ ``` ## cosineDistance Calculates the cosine distance between two vectors (the values of the tuples are the coordinates). The less the returned value is, the more similar are the vectors. **Syntax** ```sql cosineDistance(vector1, vector2) ``` **Arguments** - `vector1` — First tuple. [Tuple](../../sql-reference/data-types/tuple.md) or [Array](../../sql-reference/data-types/array.md). - `vector2` — Second tuple. [Tuple](../../sql-reference/data-types/tuple.md) or [Array](../../sql-reference/data-types/array.md). **Returned value** - Cosine of the angle between two vectors substracted from one. Type: [Float](../../sql-reference/data-types/float.md). **Examples** Query: ```sql SELECT cosineDistance((1, 2), (2, 3)); ``` Result: ```text ┌─cosineDistance((1, 2), (2, 3))─┐ │ 0.007722123286332261 │ └────────────────────────────────┘ ```