#pragma once #include #include #include #include #include "config.h" namespace DB { class ActionsDAG; using ActionsDAGPtr = std::shared_ptr; class IExecutableFunction; using ExecutableFunctionPtr = std::shared_ptr; class IFunctionBase; using FunctionBasePtr = std::shared_ptr; class IFunctionOverloadResolver; using FunctionOverloadResolverPtr = std::shared_ptr; class IDataType; using DataTypePtr = std::shared_ptr; namespace JSONBuilder { class JSONMap; class IItem; using ItemPtr = std::unique_ptr; } class SortDescription; /// Directed acyclic graph of expressions. /// This is an intermediate representation of actions which is usually built from expression list AST. /// Node of DAG describe calculation of a single column with known type, name, and constant value (if applicable). /// /// DAG representation is useful in case we need to know explicit dependencies between actions. /// It is helpful when it is needed to optimize actions, remove unused expressions, compile subexpressions, /// split or merge parts of graph, calculate expressions on partial input. /// /// Built DAG is used by ExpressionActions, which calculates expressions on block. class ActionsDAG { public: enum class ActionType { /// Column which must be in input. INPUT, /// Constant column with known value. COLUMN, /// Another one name for column. ALIAS, /// Function arrayJoin. Specially separated because it changes the number of rows. ARRAY_JOIN, FUNCTION, }; struct Node; using NodeRawPtrs = std::vector; using NodeRawConstPtrs = std::vector; struct Node { NodeRawConstPtrs children; ActionType type{}; std::string result_name; DataTypePtr result_type; FunctionOverloadResolverPtr function_builder; /// Can be used to get function signature or properties like monotonicity. FunctionBasePtr function_base; /// Prepared function which is used in function execution. ExecutableFunctionPtr function; /// If function is a compiled statement. bool is_function_compiled = false; /// It is deterministic (See IFunction::isDeterministic). /// This property is kept after constant folding of non-deterministic functions like 'now', 'today'. bool is_deterministic = true; /// For COLUMN node and propagated constants. ColumnPtr column; void toTree(JSONBuilder::JSONMap & map) const; }; /// NOTE: std::list is an implementation detail. /// It allows to add and remove new nodes inplace without reallocation. /// Raw pointers to nodes remain valid. using Nodes = std::list; private: Nodes nodes; NodeRawConstPtrs inputs; NodeRawConstPtrs outputs; bool project_input = false; bool projected_output = false; public: ActionsDAG() = default; ActionsDAG(ActionsDAG &&) = default; ActionsDAG(const ActionsDAG &) = delete; ActionsDAG & operator=(const ActionsDAG &) = delete; explicit ActionsDAG(const NamesAndTypesList & inputs_); explicit ActionsDAG(const ColumnsWithTypeAndName & inputs_); const Nodes & getNodes() const { return nodes; } const NodeRawConstPtrs & getOutputs() const { return outputs; } /** Output nodes can contain any column returned from DAG. * You may manually change it if needed. */ NodeRawConstPtrs & getOutputs() { return outputs; } const NodeRawConstPtrs & getInputs() const { return inputs; } NamesAndTypesList getRequiredColumns() const; Names getRequiredColumnsNames() const; ColumnsWithTypeAndName getResultColumns() const; NamesAndTypesList getNamesAndTypesList() const; Names getNames() const; std::string dumpNames() const; std::string dumpDAG() const; const Node & addInput(std::string name, DataTypePtr type); const Node & addInput(ColumnWithTypeAndName column); const Node & addColumn(ColumnWithTypeAndName column); const Node & addAlias(const Node & child, std::string alias); const Node & addArrayJoin(const Node & child, std::string result_name); const Node & addFunction( const FunctionOverloadResolverPtr & function, NodeRawConstPtrs children, std::string result_name); /// Find first column by name in output nodes. This search is linear. const Node & findInOutputs(const std::string & name) const; /// Same, but return nullptr if node not found. const Node * tryFindInOutputs(const std::string & name) const; /// Find first node with the same name in output nodes and replace it. /// If was not found, add node to outputs end. void addOrReplaceInOutputs(const Node & node); /// Call addAlias several times. void addAliases(const NamesWithAliases & aliases); /// Add alias actions and remove unused columns from outputs. Also specify result columns order in outputs. void project(const NamesWithAliases & projection); /// If column is not in outputs, try to find it in nodes and insert back into outputs. bool tryRestoreColumn(const std::string & column_name); /// Find column in result. Remove it from outputs. /// If columns is in inputs and has no dependent nodes, remove it from inputs too. /// Return true if column was removed from inputs. bool removeUnusedResult(const std::string & column_name); void projectInput(bool project = true) { project_input = project; } bool isInputProjected() const { return project_input; } bool isOutputProjected() const { return projected_output; } /// Remove actions that are not needed to compute output nodes void removeUnusedActions(bool allow_remove_inputs = true, bool allow_constant_folding = true); /// Remove actions that are not needed to compute output nodes with required names void removeUnusedActions(const Names & required_names, bool allow_remove_inputs = true, bool allow_constant_folding = true); /// Remove actions that are not needed to compute output nodes with required names void removeUnusedActions(const NameSet & required_names, bool allow_remove_inputs = true, bool allow_constant_folding = true); /// Transform the current DAG in a way that leaf nodes get folded into their parents. It's done /// because each projection can provide some columns as inputs to substitute certain sub-DAGs /// (expressions). Consider the following example: /// CREATE TABLE tbl (dt DateTime, val UInt64, /// PROJECTION p_hour (SELECT sum(val) GROUP BY toStartOfHour(dt))); /// /// Query: SELECT toStartOfHour(dt), sum(val) FROM tbl GROUP BY toStartOfHour(dt); /// /// We will have an ActionsDAG like this: /// FUNCTION: toStartOfHour(dt) sum(val) /// ^ ^ /// | | /// INPUT: dt val /// /// Now we traverse the DAG and see if any FUNCTION node can be replaced by projection's INPUT node. /// The result DAG will be: /// INPUT: toStartOfHour(dt) sum(val) /// /// We don't need aggregate columns from projection because they are matched after DAG. /// Currently we use canonical names of each node to find matches. It can be improved after we /// have a full-featured name binding system. /// /// @param required_columns should contain columns which this DAG is required to produce after folding. It used for result actions. /// @param projection_block_for_keys contains all key columns of given projection. /// @param predicate_column_name means we need to produce the predicate column after folding. /// @param add_missing_keys means whether to add additional missing columns to input nodes from projection key columns directly. /// @return required columns for this folded DAG. It's expected to be fewer than the original ones if some projection is used. NameSet foldActionsByProjection( const NameSet & required_columns, const Block & projection_block_for_keys, const String & predicate_column_name = {}, bool add_missing_keys = true); /// Reorder the output nodes using given position mapping. void reorderAggregationKeysForProjection(const std::unordered_map & key_names_pos_map); /// Add aggregate columns to output nodes from projection void addAggregatesViaProjection(const Block & aggregates); bool hasArrayJoin() const; bool hasStatefulFunctions() const; bool trivial() const; /// If actions has no functions or array join. void assertDeterministic() const; /// Throw if not isDeterministic. #if USE_EMBEDDED_COMPILER void compileExpressions(size_t min_count_to_compile_expression, const std::unordered_set & lazy_executed_nodes = {}); #endif ActionsDAGPtr clone() const; /// Execute actions for header. Input block must have empty columns. /// Result should be equal to the execution of ExpressionActions built from this DAG. /// Actions are not changed, no expressions are compiled. /// /// In addition, check that result constants are constants according to DAG. /// In case if function return constant, but arguments are not constant, materialize it. Block updateHeader(Block header) const; /// For apply materialize() function for every output. /// Also add aliases so the result names remain unchanged. void addMaterializingOutputActions(); /// Apply materialize() function to node. Result node has the same name. const Node & materializeNode(const Node & node); enum class MatchColumnsMode { /// Require same number of columns in source and result. Match columns by corresponding positions, regardless to names. Position, /// Find columns in source by their names. Allow excessive columns in source. Name, }; /// Create ActionsDAG which converts block structure from source to result. /// It is needed to convert result from different sources to the same structure, e.g. for UNION query. /// Conversion should be possible with only usage of CAST function and renames. /// @param ignore_constant_values - Do not check that constants are same. Use value from result_header. /// @param add_casted_columns - Create new columns with converted values instead of replacing original. /// @param new_names - Output parameter for new column names when add_casted_columns is used. static ActionsDAGPtr makeConvertingActions( const ColumnsWithTypeAndName & source, const ColumnsWithTypeAndName & result, MatchColumnsMode mode, bool ignore_constant_values = false, bool add_casted_columns = false, NameToNameMap * new_names = nullptr); /// Create expression which add const column and then materialize it. static ActionsDAGPtr makeAddingColumnActions(ColumnWithTypeAndName column); /// Create ActionsDAG which represents expression equivalent to applying first and second actions consequently. /// Is used to replace `(first -> second)` expression chain to single `merge(first, second)` expression. /// If first.settings.project_input is set, then outputs of `first` must include inputs of `second`. /// Otherwise, any two actions may be combined. static ActionsDAGPtr merge(ActionsDAG && first, ActionsDAG && second); /// The result is similar to merge(*this, second); /// Invariant : no nodes are removed from the first (this) DAG. /// So that pointers to nodes are kept valid. void mergeInplace(ActionsDAG && second); using SplitResult = std::pair; /// Split ActionsDAG into two DAGs, where first part contains all nodes from split_nodes and their children. /// Execution of first then second parts on block is equivalent to execution of initial DAG. /// First DAG and initial DAG have equal inputs, second DAG and initial DAG has equal outputs. /// Second DAG inputs may contain less inputs then first DAG (but also include other columns). SplitResult split(std::unordered_set split_nodes) const; /// Splits actions into two parts. Returned first half may be swapped with ARRAY JOIN. SplitResult splitActionsBeforeArrayJoin(const NameSet & array_joined_columns) const; /// Splits actions into two parts. First part has minimal size sufficient for calculation of column_name. /// Outputs of initial actions must contain column_name. SplitResult splitActionsForFilter(const std::string & column_name) const; /// Splits actions into two parts. The first part contains all the calculations required to calculate sort_columns. /// The second contains the rest. SplitResult splitActionsBySortingDescription(const NameSet & sort_columns) const; /// Create actions which may calculate part of filter using only available_inputs. /// If nothing may be calculated, returns nullptr. /// Otherwise, return actions which inputs are from available_inputs. /// Returned actions add single column which may be used for filter. Added column will be the first one. /// Also, replace some nodes of current inputs to constant 1 in case they are filtered. /// /// @param all_inputs should contain inputs from previous step, which will be used for result actions. /// It is expected that all_inputs contain columns from available_inputs. /// This parameter is needed to enforce result actions save columns order in block. /// Otherwise for some queries, e.g. with GROUP BY, columns will be mixed. /// Example: SELECT sum(x), y, z FROM tab WHERE z > 0 and sum(x) > 0 /// Pushed condition: z > 0 /// GROUP BY step will transform columns `x, y, z` -> `sum(x), y, z` /// If we just add filter step with actions `z -> z > 0` before GROUP BY, /// columns will be transformed like `x, y, z` -> `z > 0, z, x, y` -(remove filter)-> `z, x, y`. /// To avoid it, add inputs from `all_inputs` list, /// so actions `x, y, z -> z > 0, x, y, z` -(remove filter)-> `x, y, z` will not change columns order. ActionsDAGPtr cloneActionsForFilterPushDown( const std::string & filter_name, bool can_remove_filter, const Names & available_inputs, const ColumnsWithTypeAndName & all_inputs); bool isSortingPreserved(const Block & input_header, const SortDescription & sort_description, const String & ignore_output_column = "") const; private: Node & addNode(Node node); #if USE_EMBEDDED_COMPILER void compileFunctions(size_t min_count_to_compile_expression, const std::unordered_set & lazy_executed_nodes = {}); #endif static ActionsDAGPtr cloneActionsForConjunction(NodeRawConstPtrs conjunction, const ColumnsWithTypeAndName & all_inputs); }; /// This is an ugly way to bypass impossibility to forward declare ActionDAG::Node. struct ActionDAGNodes { ActionsDAG::NodeRawConstPtrs nodes; }; }