#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std::literals; namespace DB { namespace ErrorCodes { extern const int SYNTAX_ERROR; } bool ParserList::parseImpl(Pos & pos, ASTPtr & node, Expected & expected) { ASTs elements; auto parse_element = [&] { ASTPtr element; if (!elem_parser->parse(pos, element, expected)) return false; elements.push_back(element); return true; }; if (!parseUtil(pos, expected, parse_element, *separator_parser, allow_empty)) return false; auto list = std::make_shared(result_separator); list->children = std::move(elements); node = list; return true; } bool ParserUnionList::parseImpl(Pos & pos, ASTPtr & node, Expected & expected) { ParserUnionQueryElement elem_parser; ParserKeyword s_union_parser("UNION"); ParserKeyword s_all_parser("ALL"); ParserKeyword s_distinct_parser("DISTINCT"); ParserKeyword s_except_parser("EXCEPT"); ParserKeyword s_intersect_parser("INTERSECT"); ASTs elements; auto parse_element = [&] { ASTPtr element; if (!elem_parser.parse(pos, element, expected)) return false; elements.push_back(element); return true; }; /// Parse UNION / INTERSECT / EXCEPT mode /// The mode can be DEFAULT (unspecified) / DISTINCT / ALL auto parse_separator = [&] { if (s_union_parser.ignore(pos, expected)) { if (s_all_parser.check(pos, expected)) union_modes.push_back(SelectUnionMode::UNION_ALL); else if (s_distinct_parser.check(pos, expected)) union_modes.push_back(SelectUnionMode::UNION_DISTINCT); else union_modes.push_back(SelectUnionMode::UNION_DEFAULT); return true; } else if (s_except_parser.check(pos, expected)) { if (s_all_parser.check(pos, expected)) union_modes.push_back(SelectUnionMode::EXCEPT_ALL); else if (s_distinct_parser.check(pos, expected)) union_modes.push_back(SelectUnionMode::EXCEPT_DISTINCT); else union_modes.push_back(SelectUnionMode::EXCEPT_DEFAULT); return true; } else if (s_intersect_parser.check(pos, expected)) { if (s_all_parser.check(pos, expected)) union_modes.push_back(SelectUnionMode::INTERSECT_ALL); else if (s_distinct_parser.check(pos, expected)) union_modes.push_back(SelectUnionMode::INTERSECT_DISTINCT); else union_modes.push_back(SelectUnionMode::INTERSECT_DEFAULT); return true; } return false; }; if (!parseUtil(pos, parse_element, parse_separator)) return false; auto list = std::make_shared(); list->children = std::move(elements); node = list; return true; } static bool parseOperator(IParser::Pos & pos, const char * op, Expected & expected) { if (isWordCharASCII(*op)) { return ParserKeyword(op).ignore(pos, expected); } else { if (strlen(op) == pos->size() && 0 == memcmp(op, pos->begin, pos->size())) { ++pos; return true; } return false; } } enum class SubqueryFunctionType { NONE, ANY, ALL }; static bool modifyAST(ASTPtr ast, SubqueryFunctionType type) { /* Rewrite in AST: * = ANY --> IN * != ALL --> NOT IN * = ALL --> IN (SELECT singleValueOrNull(*) FROM subquery) * != ANY --> NOT IN (SELECT singleValueOrNull(*) FROM subquery) **/ auto * function = assert_cast(ast.get()); String operator_name = function->name; auto function_equals = operator_name == "equals"; auto function_not_equals = operator_name == "notEquals"; String aggregate_function_name; if (function_equals || function_not_equals) { if (operator_name == "notEquals") function->name = "notIn"; else function->name = "in"; if ((type == SubqueryFunctionType::ANY && function_equals) || (type == SubqueryFunctionType::ALL && function_not_equals)) { return true; } aggregate_function_name = "singleValueOrNull"; } else if (operator_name == "greaterOrEquals" || operator_name == "greater") { aggregate_function_name = (type == SubqueryFunctionType::ANY ? "min" : "max"); } else if (operator_name == "lessOrEquals" || operator_name == "less") { aggregate_function_name = (type == SubqueryFunctionType::ANY ? "max" : "min"); } else return false; /// subquery --> (SELECT aggregate_function(*) FROM subquery) auto aggregate_function = makeASTFunction(aggregate_function_name, std::make_shared()); auto subquery_node = function->children[0]->children[1]; auto table_expression = std::make_shared(); table_expression->subquery = std::move(subquery_node); table_expression->children.push_back(table_expression->subquery); auto tables_in_select_element = std::make_shared(); tables_in_select_element->table_expression = std::move(table_expression); tables_in_select_element->children.push_back(tables_in_select_element->table_expression); auto tables_in_select = std::make_shared(); tables_in_select->children.push_back(std::move(tables_in_select_element)); auto select_exp_list = std::make_shared(); select_exp_list->children.push_back(aggregate_function); auto select_query = std::make_shared(); select_query->children.push_back(select_exp_list); select_query->children.push_back(tables_in_select); select_query->setExpression(ASTSelectQuery::Expression::SELECT, select_exp_list); select_query->setExpression(ASTSelectQuery::Expression::TABLES, tables_in_select); auto select_with_union_query = std::make_shared(); select_with_union_query->list_of_selects = std::make_shared(); select_with_union_query->list_of_selects->children.push_back(std::move(select_query)); select_with_union_query->children.push_back(select_with_union_query->list_of_selects); auto new_subquery = std::make_shared(); new_subquery->children.push_back(select_with_union_query); ast->children[0]->children.back() = std::move(new_subquery); return true; } bool ParserLeftAssociativeBinaryOperatorList::parseImpl(Pos & pos, ASTPtr & node, Expected & expected) { bool first = true; auto current_depth = pos.depth; while (true) { if (first) { ASTPtr elem; if (!first_elem_parser->parse(pos, elem, expected)) return false; node = elem; first = false; } else { /// try to find any of the valid operators const char ** it; Expected stub; for (it = overlapping_operators_to_skip; *it; ++it) if (ParserKeyword{*it}.checkWithoutMoving(pos, stub)) break; if (*it) break; for (it = operators; *it; it += 2) if (parseOperator(pos, *it, expected)) break; if (!*it) break; /// the function corresponding to the operator auto function = std::make_shared(); /// function arguments auto exp_list = std::make_shared(); ASTPtr elem; SubqueryFunctionType subquery_function_type = SubqueryFunctionType::NONE; if (comparison_expression) { if (ParserKeyword("ANY").ignore(pos, expected)) subquery_function_type = SubqueryFunctionType::ANY; else if (ParserKeyword("ALL").ignore(pos, expected)) subquery_function_type = SubqueryFunctionType::ALL; } if (subquery_function_type != SubqueryFunctionType::NONE && !ParserSubquery().parse(pos, elem, expected)) subquery_function_type = SubqueryFunctionType::NONE; if (subquery_function_type == SubqueryFunctionType::NONE && !(remaining_elem_parser ? remaining_elem_parser : first_elem_parser)->parse(pos, elem, expected)) return false; /// the first argument of the function is the previous element, the second is the next one function->name = it[1]; function->arguments = exp_list; function->children.push_back(exp_list); exp_list->children.push_back(node); exp_list->children.push_back(elem); if (comparison_expression && subquery_function_type != SubqueryFunctionType::NONE && !modifyAST(function, subquery_function_type)) return false; /** special exception for the access operator to the element of the array `x[y]`, which * contains the infix part '[' and the suffix ''] '(specified as' [') */ if (it[0] == "["sv) { if (pos->type != TokenType::ClosingSquareBracket) return false; ++pos; } /// Left associative operator chain is parsed as a tree: ((((1 + 1) + 1) + 1) + 1)... /// We must account it's depth - otherwise we may end up with stack overflow later - on destruction of AST. pos.increaseDepth(); node = function; } } pos.depth = current_depth; return true; } bool ParserVariableArityOperatorList::parseImpl(Pos & pos, ASTPtr & node, Expected & expected) { ASTPtr arguments; if (!elem_parser->parse(pos, node, expected)) return false; while (true) { if (!parseOperator(pos, infix, expected)) break; if (!arguments) { node = makeASTFunction(function_name, node); arguments = node->as().arguments; } ASTPtr elem; if (!elem_parser->parse(pos, elem, expected)) return false; arguments->children.push_back(elem); } return true; } ASTPtr makeBetweenOperator(bool negative, ASTs arguments) { // subject = arguments[0], left = arguments[1], right = arguments[2] auto f_combined_expression = std::make_shared(); auto args_combined_expression = std::make_shared(); /// [NOT] BETWEEN left AND right auto f_left_expr = std::make_shared(); auto args_left_expr = std::make_shared(); auto f_right_expr = std::make_shared(); auto args_right_expr = std::make_shared(); args_left_expr->children.emplace_back(arguments[0]); args_left_expr->children.emplace_back(arguments[1]); args_right_expr->children.emplace_back(arguments[0]); args_right_expr->children.emplace_back(arguments[2]); if (negative) { /// NOT BETWEEN f_left_expr->name = "less"; f_right_expr->name = "greater"; f_combined_expression->name = "or"; } else { /// BETWEEN f_left_expr->name = "greaterOrEquals"; f_right_expr->name = "lessOrEquals"; f_combined_expression->name = "and"; } f_left_expr->arguments = args_left_expr; f_left_expr->children.emplace_back(f_left_expr->arguments); f_right_expr->arguments = args_right_expr; f_right_expr->children.emplace_back(f_right_expr->arguments); args_combined_expression->children.emplace_back(f_left_expr); args_combined_expression->children.emplace_back(f_right_expr); f_combined_expression->arguments = args_combined_expression; f_combined_expression->children.emplace_back(f_combined_expression->arguments); return f_combined_expression; } bool ParserTableFunctionExpression::parseImpl(Pos & pos, ASTPtr & node, Expected & expected) { if (ParserTableFunctionView().parse(pos, node, expected)) return true; ParserKeyword s_settings("SETTINGS"); if (s_settings.ignore(pos, expected)) { ParserSetQuery parser_settings(true); if (parser_settings.parse(pos, node, expected)) return true; } return elem_parser.parse(pos, node, expected); } bool ParserPrefixUnaryOperatorExpression::parseImpl(Pos & pos, ASTPtr & node, Expected & expected) { /// try to find any of the valid operators const char ** it; for (it = operators; *it; it += 2) { if (parseOperator(pos, *it, expected)) break; } /// Let's parse chains of the form `NOT NOT x`. This is hack. /** This is done, because among the unary operators there is only a minus and NOT. * But for a minus the chain of unary operators does not need to be supported. */ size_t count = 1; if (it[0] && 0 == strncmp(it[0], "NOT", 3)) { while (true) { const char ** jt; for (jt = operators; *jt; jt += 2) if (parseOperator(pos, *jt, expected)) break; if (!*jt) break; ++count; } } ASTPtr elem; if (!elem_parser->parse(pos, elem, expected)) return false; if (!*it) node = elem; else { for (size_t i = 0; i < count; ++i) { /// the function corresponding to the operator auto function = std::make_shared(); /// function arguments auto exp_list = std::make_shared(); function->name = it[1]; function->arguments = exp_list; function->children.push_back(exp_list); if (node) exp_list->children.push_back(node); else exp_list->children.push_back(elem); node = function; } } return true; } bool ParserCastExpression::parseImpl(Pos & pos, ASTPtr & node, Expected & expected) { ASTPtr expr_ast; if (!elem_parser->parse(pos, expr_ast, expected)) return false; ASTPtr type_ast; if (ParserToken(TokenType::DoubleColon).ignore(pos, expected) && ParserDataType().parse(pos, type_ast, expected)) { node = createFunctionCast(expr_ast, type_ast); } else { node = expr_ast; } return true; } ParserExpressionWithOptionalAlias::ParserExpressionWithOptionalAlias(bool allow_alias_without_as_keyword, bool is_table_function) : impl(std::make_unique( is_table_function ? ParserPtr(std::make_unique()) : ParserPtr(std::make_unique()), allow_alias_without_as_keyword)) { } bool ParserExpressionList::parseImpl(Pos & pos, ASTPtr & node, Expected & expected) { return ParserList( std::make_unique(allow_alias_without_as_keyword, is_table_function), std::make_unique(TokenType::Comma)) .parse(pos, node, expected); } bool ParserNotEmptyExpressionList::parseImpl(Pos & pos, ASTPtr & node, Expected & expected) { return nested_parser.parse(pos, node, expected) && !node->children.empty(); } bool ParserOrderByExpressionList::parseImpl(Pos & pos, ASTPtr & node, Expected & expected) { return ParserList(std::make_unique(), std::make_unique(TokenType::Comma), false) .parse(pos, node, expected); } bool ParserGroupingSetsExpressionListElements::parseImpl(Pos & pos, ASTPtr & node, Expected & expected) { auto command_list = std::make_shared(); node = command_list; ParserToken s_comma(TokenType::Comma); ParserToken s_open(TokenType::OpeningRoundBracket); ParserToken s_close(TokenType::ClosingRoundBracket); ParserExpressionWithOptionalAlias p_expression(false); ParserList p_command(std::make_unique(false), std::make_unique(TokenType::Comma), true); do { Pos begin = pos; ASTPtr command; if (!s_open.ignore(pos, expected)) { pos = begin; if (!p_expression.parse(pos, command, expected)) { return false; } auto list = std::make_shared(','); list->children.push_back(command); command = std::move(list); } else { if (!p_command.parse(pos, command, expected)) return false; if (!s_close.ignore(pos, expected)) break; } command_list->children.push_back(command); } while (s_comma.ignore(pos, expected)); return true; } bool ParserGroupingSetsExpressionList::parseImpl(Pos & pos, ASTPtr & node, Expected & expected) { ParserGroupingSetsExpressionListElements grouping_sets_elements; return grouping_sets_elements.parse(pos, node, expected); } bool ParserInterpolateExpressionList::parseImpl(Pos & pos, ASTPtr & node, Expected & expected) { return ParserList(std::make_unique(), std::make_unique(TokenType::Comma), true) .parse(pos, node, expected); } bool ParserTTLExpressionList::parseImpl(Pos & pos, ASTPtr & node, Expected & expected) { return ParserList(std::make_unique(), std::make_unique(TokenType::Comma), false) .parse(pos, node, expected); } bool ParserKeyValuePair::parseImpl(Pos & pos, ASTPtr & node, Expected & expected) { ParserIdentifier id_parser; ParserLiteral literal_parser; ParserFunction func_parser; ASTPtr identifier; ASTPtr value; bool with_brackets = false; if (!id_parser.parse(pos, identifier, expected)) return false; /// If it's neither literal, nor identifier, nor function, than it's possible list of pairs if (!func_parser.parse(pos, value, expected) && !literal_parser.parse(pos, value, expected) && !id_parser.parse(pos, value, expected)) { ParserKeyValuePairsList kv_pairs_list; ParserToken open(TokenType::OpeningRoundBracket); ParserToken close(TokenType::ClosingRoundBracket); if (!open.ignore(pos)) return false; if (!kv_pairs_list.parse(pos, value, expected)) return false; if (!close.ignore(pos)) return false; with_brackets = true; } auto pair = std::make_shared(with_brackets); pair->first = Poco::toLower(identifier->as()->name()); pair->set(pair->second, value); node = pair; return true; } bool ParserKeyValuePairsList::parseImpl(Pos & pos, ASTPtr & node, Expected & expected) { ParserList parser(std::make_unique(), std::make_unique(), true, 0); return parser.parse(pos, node, expected); } enum class Action { OPERAND, OPERATOR }; /** Operator types are needed for special handling of certain operators. * Operators can be grouped into some type if they have similar behaviour. * Certain operators are unique in terms of their behaviour, so they are assigned a separate type. */ enum class OperatorType { None, Comparison, Mergeable, ArrayElement, TupleElement, IsNull, StartBetween, StartNotBetween, FinishBetween, StartIf, FinishIf, Cast, Lambda }; /** Operator class stores parameters of the operator: * - function_name name of the function that operator will create * - priority priority of the operator relative to the other operators * - arity the amount of arguments that operator will consume * - type type of the operator that defines its behaviour */ class Operator { public: Operator() = default; Operator(String function_name_, Int32 priority_, Int32 arity_ = 2, OperatorType type_ = OperatorType::None) : type(type_), priority(priority_), arity(arity_), function_name(function_name_) { } OperatorType type; Int32 priority; Int32 arity; String function_name; }; enum class Checkpoint { None, Interval, Case }; /** Layer is a class that represents context for parsing certain element, * that consists of other elements e.g. f(x1, x2, x3) * * - Manages operands and operators for the future elements (arguments) * - Combines operands and operator into one element * - Parsers separators and endings * - Combines resulting elements into a function */ class Layer { public: explicit Layer(bool allow_alias_ = true, bool allow_alias_without_as_keyword_ = true) : allow_alias(allow_alias_), allow_alias_without_as_keyword(allow_alias_without_as_keyword_) { } virtual ~Layer() = default; bool popOperator(Operator & op) { if (operators.empty()) return false; op = std::move(operators.back()); operators.pop_back(); return true; } void pushOperator(Operator op) { operators.push_back(std::move(op)); } bool popOperand(ASTPtr & op) { if (operands.empty()) return false; op = std::move(operands.back()); operands.pop_back(); return true; } void pushOperand(ASTPtr op) { operands.push_back(std::move(op)); } void pushResult(ASTPtr op) { elements.push_back(std::move(op)); } virtual bool getResult(ASTPtr & op) { if (elements.size() == 1) { op = std::move(elements[0]); return true; } return false; } virtual bool parse(IParser::Pos & /*pos*/, Expected & /*expected*/, Action & /*action*/) = 0; bool isFinished() const { return finished; } int previousPriority() const { if (operators.empty()) return 0; return operators.back().priority; } OperatorType previousType() const { if (operators.empty()) return OperatorType::None; return operators.back().type; } int empty() const { return operators.empty() && operands.empty(); } bool popLastNOperands(ASTs & asts, size_t n) { if (n > operands.size()) return false; asts.reserve(asts.size() + n); auto start = operands.begin() + operands.size() - n; asts.insert(asts.end(), std::make_move_iterator(start), std::make_move_iterator(operands.end())); operands.erase(start, operands.end()); return true; } /// Merge operators and operands into a single element (column), then push it to 'elements' vector. /// Operators are previously sorted in ascending order of priority /// (operator with priority 1 has higher priority than operator with priority 2), /// so we can just merge them with operands starting from the end. /// /// If we fail here it means that the query was incorrect and we should return an error. /// bool mergeElement(bool push_to_elements = true) { Operator cur_op; while (popOperator(cur_op)) { ASTPtr function; // Special case of ternary operator if (cur_op.type == OperatorType::StartIf) return false; if (cur_op.type == OperatorType::FinishIf) { Operator tmp; if (!popOperator(tmp) || tmp.type != OperatorType::StartIf) return false; } // Special case of a BETWEEN b AND c operator if (cur_op.type == OperatorType::StartBetween || cur_op.type == OperatorType::StartNotBetween) return false; if (cur_op.type == OperatorType::FinishBetween) { Operator tmp_op; if (!popOperator(tmp_op)) return false; if (tmp_op.type != OperatorType::StartBetween && tmp_op.type != OperatorType::StartNotBetween) return false; bool negative = tmp_op.type == OperatorType::StartNotBetween; ASTs arguments; if (!popLastNOperands(arguments, 3)) return false; function = makeBetweenOperator(negative, arguments); } else { function = makeASTFunction(cur_op.function_name); if (!popLastNOperands(function->children[0]->children, cur_op.arity)) return false; } pushOperand(function); } ASTPtr node; if (!popOperand(node)) return false; bool res = empty(); if (push_to_elements) pushResult(node); else pushOperand(node); return res; } bool parseLambda() { // 0. If empty - create function tuple with 0 args if (empty()) { auto function = makeASTFunction("tuple"); pushOperand(function); return true; } if (operands.size() != 1 || !operators.empty() || !mergeElement()) return false; /// 1. If there is already tuple do nothing if (tryGetFunctionName(elements.back()) == "tuple") { pushOperand(elements.back()); elements.pop_back(); } /// 2. Put all elements in a single tuple else { auto function = makeASTFunction("tuple", elements); elements.clear(); pushOperand(function); } return true; } /// Put 'node' identifier into the last operand as its alias bool insertAlias(ASTPtr node) { if (!mergeElement(false)) return false; if (operands.empty()) return false; if (auto * ast_with_alias = dynamic_cast(operands.back().get())) tryGetIdentifierNameInto(node, ast_with_alias->alias); else return false; return true; } /// 'AND' in operator '... BETWEEN ... AND ...' mirrors logical operator 'AND'. /// In order to distinguish them we keep a counter of BETWEENs without matching ANDs. int between_counter = 0; bool allow_alias = true; bool allow_alias_without_as_keyword = true; std::optional> saved_checkpoint; Checkpoint current_checkpoint; protected: std::vector operators; ASTs operands; ASTs elements; bool finished = false; int state = 0; }; class SingleElementLayer : public Layer { public: SingleElementLayer() : Layer(false, false) { } bool getResult(ASTPtr & op) override { /// We can exit the main cycle outside the parse() function, /// so we need to merge the element here if (!mergeElement()) return false; if (elements.size() == 1) { op = std::move(elements[0]); return true; } return false; } bool parse(IParser::Pos & pos, Expected & /*expected*/, Action & /*action*/) override { if (pos->type == TokenType::Comma) finished = true; return true; } }; /// Basic layer for a function with certain separator and end tokens: /// 1. If we parse a separator we should merge current operands and operators /// into one element and push in to 'elements' vector. /// 2. If we parse an ending token, we should merge everything as in (1) and /// also set 'finished' flag. template class BaseLayer : public Layer { public: bool parse(IParser::Pos & pos, Expected & expected, Action & action) override { if (ParserToken(separator).ignore(pos, expected)) { action = Action::OPERAND; return mergeElement(); } if (ParserToken(end).ignore(pos, expected)) { action = Action::OPERATOR; if (!empty() || !elements.empty()) if (!mergeElement()) return false; finished = true; } return true; } }; class OrdinaryFunctionLayer : public Layer { public: explicit OrdinaryFunctionLayer(String function_name_, bool allow_function_parameters_ = true) : function_name(function_name_), allow_function_parameters(allow_function_parameters_){} bool parse(IParser::Pos & pos, Expected & expected, Action & action) override { /// | 0 | 1 | 2 | /// f(ALL ...)(ALL ...) FILTER ... /// /// 0. Parse ALL and DISTINCT qualifiers (-> 1) /// 1. Parse all the arguments and ending token (-> 2), possibly with parameters list (-> 1) /// 2. Create function, possibly parse FILTER and OVER window definitions (finished) if (state == 0) { state = 1; auto pos_after_bracket = pos; auto old_expected = expected; ParserKeyword all("ALL"); ParserKeyword distinct("DISTINCT"); if (all.ignore(pos, expected)) has_all = true; if (distinct.ignore(pos, expected)) has_distinct = true; if (!has_all && all.ignore(pos, expected)) has_all = true; if (has_all && has_distinct) return false; if (has_all || has_distinct) { /// case f(ALL), f(ALL, x), f(DISTINCT), f(DISTINCT, x), ALL and DISTINCT should be treat as identifier if (pos->type == TokenType::Comma || pos->type == TokenType::ClosingRoundBracket) { pos = pos_after_bracket; expected = old_expected; has_all = false; has_distinct = false; } } contents_begin = pos->begin; } if (state == 1) { if (ParserToken(TokenType::Comma).ignore(pos, expected)) { action = Action::OPERAND; return mergeElement(); } if (ParserToken(TokenType::ClosingRoundBracket).ignore(pos, expected)) { action = Action::OPERATOR; if (!empty() || !elements.empty()) if (!mergeElement()) return false; contents_end = pos->begin; /** Check for a common error case - often due to the complexity of quoting command-line arguments, * an expression of the form toDate(2014-01-01) appears in the query instead of toDate('2014-01-01'). * If you do not report that the first option is an error, then the argument will be interpreted as 2014 - 01 - 01 - some number, * and the query silently returns an unexpected elements. */ if (function_name == "toDate" && contents_end - contents_begin == strlen("2014-01-01") && contents_begin[0] >= '2' && contents_begin[0] <= '3' && contents_begin[1] >= '0' && contents_begin[1] <= '9' && contents_begin[2] >= '0' && contents_begin[2] <= '9' && contents_begin[3] >= '0' && contents_begin[3] <= '9' && contents_begin[4] == '-' && contents_begin[5] >= '0' && contents_begin[5] <= '9' && contents_begin[6] >= '0' && contents_begin[6] <= '9' && contents_begin[7] == '-' && contents_begin[8] >= '0' && contents_begin[8] <= '9' && contents_begin[9] >= '0' && contents_begin[9] <= '9') { std::string contents_str(contents_begin, contents_end - contents_begin); throw Exception("Argument of function toDate is unquoted: toDate(" + contents_str + "), must be: toDate('" + contents_str + "')" , ErrorCodes::SYNTAX_ERROR); } if (allow_function_parameters && ParserToken(TokenType::OpeningRoundBracket).ignore(pos, expected)) { parameters = std::make_shared(); std::swap(parameters->children, elements); action = Action::OPERAND; /// Parametric aggregate functions cannot have DISTINCT in parameters list. if (has_distinct) return false; auto pos_after_bracket = pos; auto old_expected = expected; ParserKeyword all("ALL"); ParserKeyword distinct("DISTINCT"); if (all.ignore(pos, expected)) has_all = true; if (distinct.ignore(pos, expected)) has_distinct = true; if (!has_all && all.ignore(pos, expected)) has_all = true; if (has_all && has_distinct) return false; if (has_all || has_distinct) { /// case f(ALL), f(ALL, x), f(DISTINCT), f(DISTINCT, x), ALL and DISTINCT should be treat as identifier if (pos->type == TokenType::Comma || pos->type == TokenType::ClosingRoundBracket) { pos = pos_after_bracket; expected = old_expected; has_distinct = false; } } } else { state = 2; } } } if (state == 2) { if (has_distinct) function_name += "Distinct"; auto function_node = makeASTFunction(function_name, std::move(elements)); if (parameters) { function_node->parameters = parameters; function_node->children.push_back(function_node->parameters); } ParserKeyword filter("FILTER"); ParserKeyword over("OVER"); if (filter.ignore(pos, expected)) { // We are slightly breaking the parser interface by parsing the window // definition into an existing ASTFunction. Normally it would take a // reference to ASTPtr and assign it the new node. We only have a pointer // of a different type, hence this workaround with a temporary pointer. ASTPtr function_node_as_iast = function_node; // Recursion ParserFilterClause filter_parser; if (!filter_parser.parse(pos, function_node_as_iast, expected)) return false; } if (over.ignore(pos, expected)) { function_node->is_window_function = true; ASTPtr function_node_as_iast = function_node; // Recursion ParserWindowReference window_reference; if (!window_reference.parse(pos, function_node_as_iast, expected)) return false; } elements = {function_node}; finished = true; } return true; } private: bool has_all = false; bool has_distinct = false; const char * contents_begin; const char * contents_end; String function_name; ASTPtr parameters; bool allow_function_parameters; }; /// Layer for priority brackets and tuple function class RoundBracketsLayer : public Layer { public: bool getResult(ASTPtr & op) override { // Round brackets can mean priority operator as well as function tuple() if (!is_tuple && elements.size() == 1) op = std::move(elements[0]); else op = makeASTFunction("tuple", std::move(elements)); return true; } bool parse(IParser::Pos & pos, Expected & expected, Action & action) override { if (ParserToken(TokenType::Comma).ignore(pos, expected)) { action = Action::OPERAND; is_tuple = true; if (!mergeElement()) return false; } if (ParserToken(TokenType::ClosingRoundBracket).ignore(pos, expected)) { action = Action::OPERATOR; if (!empty()) if (!mergeElement()) return false; // Special case for (('a', 'b')) -> tuple(('a', 'b')) if (!is_tuple && elements.size() == 1) if (auto * literal = elements[0]->as()) if (literal->value.getType() == Field::Types::Tuple) is_tuple = true; finished = true; } return true; } private: bool is_tuple = false; }; /// Layer for array square brackets operator class ArrayLayer : public BaseLayer { public: bool getResult(ASTPtr & op) override { op = makeASTFunction("array", std::move(elements)); return true; } bool parse(IParser::Pos & pos, Expected & expected, Action & action) override { return BaseLayer::parse(pos, expected, action); } }; /// Layer for arrayElement square brackets operator /// This layer does not create a function, it is only needed to parse closing token /// and return only one element. class ArrayElementLayer : public BaseLayer { public: bool parse(IParser::Pos & pos, Expected & expected, Action & action) override { return BaseLayer::parse(pos, expected, action); } }; class CastLayer : public Layer { public: bool parse(IParser::Pos & pos, Expected & expected, Action & action) override { /// CAST(x [AS alias1], T [AS alias2]) or CAST(x [AS alias1] AS T) /// /// 0. Parse all the cases (-> 1) /// 1. Parse closing token (finished) ParserKeyword as_keyword_parser("AS"); ASTPtr alias; /// expr AS type if (state == 0) { ASTPtr type_node; if (as_keyword_parser.ignore(pos, expected)) { auto old_pos = pos; if (ParserIdentifier().parse(pos, alias, expected) && as_keyword_parser.ignore(pos, expected) && ParserDataType().parse(pos, type_node, expected) && ParserToken(TokenType::ClosingRoundBracket).ignore(pos, expected)) { if (!insertAlias(alias)) return false; if (!mergeElement()) return false; elements = {createFunctionCast(elements[0], type_node)}; finished = true; return true; } pos = old_pos; if (ParserIdentifier().parse(pos, alias, expected) && ParserToken(TokenType::Comma).ignore(pos, expected)) { action = Action::OPERAND; if (!insertAlias(alias)) return false; if (!mergeElement()) return false; state = 1; return true; } pos = old_pos; if (ParserDataType().parse(pos, type_node, expected) && ParserToken(TokenType::ClosingRoundBracket).ignore(pos, expected)) { if (!mergeElement()) return false; elements = {createFunctionCast(elements[0], type_node)}; finished = true; return true; } return false; } if (ParserToken(TokenType::Comma).ignore(pos, expected)) { action = Action::OPERAND; if (!mergeElement()) return false; state = 1; return true; } } if (state == 1) { if (ParserToken(TokenType::ClosingRoundBracket).ignore(pos, expected)) { if (!mergeElement()) return false; elements = {makeASTFunction("CAST", elements[0], elements[1])}; finished = true; return true; } } return true; } }; class ExtractLayer : public BaseLayer { public: bool getResult(ASTPtr & op) override { if (state == 2) { if (elements.empty()) return false; op = makeASTFunction(interval_kind.toNameOfFunctionExtractTimePart(), elements[0]); } else { op = makeASTFunction("extract", std::move(elements)); } return true; } bool parse(IParser::Pos & pos, Expected & expected, Action & action) override { /// extract(haystack, pattern) or EXTRACT(DAY FROM Date) /// /// 0. If we parse interval_kind and 'FROM' keyword (-> 2), otherwise (-> 1) /// 1. Basic parser /// 2. Parse closing bracket (finished) if (state == 0) { IParser::Pos begin = pos; ParserKeyword s_from("FROM"); if (parseIntervalKind(pos, expected, interval_kind) && s_from.ignore(pos, expected)) { state = 2; return true; } else { state = 1; pos = begin; } } if (state == 1) { return BaseLayer::parse(pos, expected, action); } if (state == 2) { if (ParserToken(TokenType::ClosingRoundBracket).ignore(pos, expected)) { if (!mergeElement()) return false; finished = true; return true; } } return true; } private: IntervalKind interval_kind; }; class SubstringLayer : public Layer { public: bool getResult(ASTPtr & op) override { op = makeASTFunction("substring", std::move(elements)); return true; } bool parse(IParser::Pos & pos, Expected & expected, Action & action) override { /// Either SUBSTRING(expr FROM start [FOR length]) or SUBSTRING(expr, start, length) /// /// 0: Parse first separator: FROM or comma (-> 1) /// 1: Parse second separator: FOR or comma (-> 2) /// 1 or 2: Parse closing bracket (finished) if (state == 0) { if (ParserToken(TokenType::Comma).ignore(pos, expected) || ParserKeyword("FROM").ignore(pos, expected)) { action = Action::OPERAND; if (!mergeElement()) return false; state = 1; } } if (state == 1) { if (ParserToken(TokenType::Comma).ignore(pos, expected) || ParserKeyword("FOR").ignore(pos, expected)) { action = Action::OPERAND; if (!mergeElement()) return false; state = 2; } } if (state == 1 || state == 2) { if (ParserToken(TokenType::ClosingRoundBracket).ignore(pos, expected)) { if (!mergeElement()) return false; finished = true; } } return true; } }; class PositionLayer : public Layer { public: bool getResult(ASTPtr & op) override { if (state == 2) std::swap(elements[1], elements[0]); op = makeASTFunction("position", std::move(elements)); return true; } bool parse(IParser::Pos & pos, Expected & expected, Action & action) override { /// position(haystack, needle[, start_pos]) or position(needle IN haystack) /// /// 0: Parse separator: comma (-> 1) or IN (-> 2) /// 1: Parse second separator: comma /// 1 or 2: Parse closing bracket (finished) if (state == 0) { if (ParserToken(TokenType::Comma).ignore(pos, expected)) { action = Action::OPERAND; if (!mergeElement()) return false; state = 1; } if (ParserKeyword("IN").ignore(pos, expected)) { action = Action::OPERAND; if (!mergeElement()) return false; state = 2; } } if (state == 1) { if (ParserToken(TokenType::Comma).ignore(pos, expected)) { action = Action::OPERAND; if (!mergeElement()) return false; } } if (state == 1 || state == 2) { if (ParserToken(TokenType::ClosingRoundBracket).ignore(pos, expected)) { if (!mergeElement()) return false; finished = true; } } return true; } }; class ExistsLayer : public Layer { public: bool parse(IParser::Pos & pos, Expected & expected, Action & /*action*/) override { ASTPtr node; // Recursion if (!ParserSelectWithUnionQuery().parse(pos, node, expected)) return false; if (!ParserToken(TokenType::ClosingRoundBracket).ignore(pos, expected)) return false; auto subquery = std::make_shared(); subquery->children.push_back(node); elements = {makeASTFunction("exists", subquery)}; finished = true; return true; } }; class TrimLayer : public Layer { public: TrimLayer(bool trim_left_, bool trim_right_) : trim_left(trim_left_), trim_right(trim_right_) { } bool getResult(ASTPtr & op) override { op = makeASTFunction(function_name, std::move(elements)); return true; } bool parse(IParser::Pos & pos, Expected & expected, Action & action) override { /// Handles all possible TRIM/LTRIM/RTRIM call variants /// /// 0: If flags 'trim_left' and 'trim_right' are set (-> 2). /// If not, try to parse 'BOTH', 'LEADING', 'TRAILING' keywords, /// then if char_override (-> 1), else (-> 2) /// 1. Parse 'FROM' keyword (-> 2) /// 2. Parse closing token, choose name, add arguments (finished) if (state == 0) { if (!trim_left && !trim_right) { if (ParserKeyword("BOTH").ignore(pos, expected)) { trim_left = true; trim_right = true; char_override = true; } else if (ParserKeyword("LEADING").ignore(pos, expected)) { trim_left = true; char_override = true; } else if (ParserKeyword("TRAILING").ignore(pos, expected)) { trim_right = true; char_override = true; } else { trim_left = true; trim_right = true; } if (char_override) state = 1; else state = 2; } else { state = 2; } } if (state == 1) { if (ParserKeyword("FROM").ignore(pos, expected)) { action = Action::OPERAND; if (!mergeElement()) return false; to_remove = makeASTFunction("regexpQuoteMeta", elements[0]); elements.clear(); state = 2; } } if (state == 2) { if (ParserToken(TokenType::ClosingRoundBracket).ignore(pos, expected)) { if (!mergeElement()) return false; ASTPtr pattern_node; if (char_override) { auto pattern_func_node = std::make_shared(); auto pattern_list_args = std::make_shared(); if (trim_left && trim_right) { pattern_list_args->children = { std::make_shared("^["), to_remove, std::make_shared("]+|["), to_remove, std::make_shared("]+$") }; function_name = "replaceRegexpAll"; } else { if (trim_left) { pattern_list_args->children = { std::make_shared("^["), to_remove, std::make_shared("]+") }; } else { /// trim_right == false not possible pattern_list_args->children = { std::make_shared("["), to_remove, std::make_shared("]+$") }; } function_name = "replaceRegexpOne"; } pattern_func_node->name = "concat"; pattern_func_node->arguments = std::move(pattern_list_args); pattern_func_node->children.push_back(pattern_func_node->arguments); pattern_node = std::move(pattern_func_node); } else { if (trim_left && trim_right) { function_name = "trimBoth"; } else { if (trim_left) function_name = "trimLeft"; else function_name = "trimRight"; } } if (char_override) { elements.push_back(pattern_node); elements.push_back(std::make_shared("")); } finished = true; } } return true; } private: bool trim_left; bool trim_right; bool char_override = false; ASTPtr to_remove; String function_name; }; class DateAddLayer : public BaseLayer { public: explicit DateAddLayer(const char * function_name_) : function_name(function_name_) { } bool getResult(ASTPtr & op) override { if (parsed_interval_kind) { elements[0] = makeASTFunction(interval_kind.toNameOfFunctionToIntervalDataType(), elements[0]); op = makeASTFunction(function_name, elements[1], elements[0]); } else op = makeASTFunction(function_name, std::move(elements)); return true; } bool parse(IParser::Pos & pos, Expected & expected, Action & action) override { /// DATEADD(YEAR, 1, date) or DATEADD(INTERVAL 1 YEAR, date); /// /// 0. Try to parse interval_kind (-> 1) /// 1. Basic parser if (state == 0) { if (parseIntervalKind(pos, expected, interval_kind)) { if (!ParserToken(TokenType::Comma).ignore(pos, expected)) return false; action = Action::OPERAND; parsed_interval_kind = true; } state = 1; } if (state == 1) { return BaseLayer::parse(pos, expected, action); } return true; } private: IntervalKind interval_kind; const char * function_name; bool parsed_interval_kind = false; }; class DateDiffLayer : public BaseLayer { public: bool getResult(ASTPtr & op) override { if (parsed_interval_kind) { if (elements.size() == 2) op = makeASTFunction("dateDiff", std::make_shared(interval_kind.toDateDiffUnit()), elements[0], elements[1]); else if (elements.size() == 3) op = makeASTFunction("dateDiff", std::make_shared(interval_kind.toDateDiffUnit()), elements[0], elements[1], elements[2]); else return false; } else { op = makeASTFunction("dateDiff", std::move(elements)); } return true; } bool parse(IParser::Pos & pos, Expected & expected, Action & action) override { /// 0. Try to parse interval_kind (-> 1) /// 1. Basic parser if (state == 0) { if (parseIntervalKind(pos, expected, interval_kind)) { parsed_interval_kind = true; if (!ParserToken(TokenType::Comma).ignore(pos, expected)) return false; } state = 1; } if (state == 1) { return BaseLayer::parse(pos, expected, action); } return true; } private: IntervalKind interval_kind; bool parsed_interval_kind = false; }; class IntervalLayer : public Layer { public: bool parse(IParser::Pos & pos, Expected & expected, Action & action) override { /// INTERVAL 1 HOUR or INTERVAL expr HOUR /// /// 0. Try to parse interval_kind (-> 1) /// 1. Basic parser if (state == 0) { auto begin = pos; auto init_expected = expected; ASTPtr string_literal; //// A String literal followed INTERVAL keyword, /// the literal can be a part of an expression or /// include Number and INTERVAL TYPE at the same time if (ParserStringLiteral{}.parse(pos, string_literal, expected)) { String literal; if (string_literal->as().value.tryGet(literal)) { Tokens tokens(literal.data(), literal.data() + literal.size()); IParser::Pos token_pos(tokens, 0); Expected token_expected; ASTPtr expr; if (!ParserNumber{}.parse(token_pos, expr, token_expected)) { return false; } else { /// case: INTERVAL '1' HOUR /// back to begin if (!token_pos.isValid()) { pos = begin; expected = init_expected; } else { /// case: INTERVAL '1 HOUR' if (!parseIntervalKind(token_pos, token_expected, interval_kind)) return false; elements = {makeASTFunction(interval_kind.toNameOfFunctionToIntervalDataType(), expr)}; finished = true; return true; } } } } state = 1; return true; } if (state == 1) { if (action == Action::OPERATOR && parseIntervalKind(pos, expected, interval_kind)) { if (!mergeElement()) return false; elements = {makeASTFunction(interval_kind.toNameOfFunctionToIntervalDataType(), elements)}; finished = true; } } return true; } private: IntervalKind interval_kind; }; class CaseLayer : public Layer { public: bool parse(IParser::Pos & pos, Expected & expected, Action & action) override { /// CASE [x] WHEN expr THEN expr [WHEN expr THEN expr [...]] [ELSE expr] END /// /// 0. Check if we have case expression [x] (-> 1) /// 1. Parse keywords: WHEN (-> 2), ELSE (-> 3), END (finished) /// 2. Parse THEN keyword (-> 1) /// 3. Parse END keyword (finished) if (state == 0) { auto old_pos = pos; has_case_expr = !ParserKeyword("WHEN").ignore(pos, expected); pos = old_pos; state = 1; } if (state == 1) { if (ParserKeyword("WHEN").ignore(pos, expected)) { if ((has_case_expr || !elements.empty()) && !mergeElement()) return false; action = Action::OPERAND; state = 2; } else if (ParserKeyword("ELSE").ignore(pos, expected)) { if (!mergeElement()) return false; action = Action::OPERAND; state = 3; } else if (ParserKeyword("END").ignore(pos, expected)) { if (!mergeElement()) return false; Field field_with_null; ASTLiteral null_literal(field_with_null); elements.push_back(std::make_shared(null_literal)); if (has_case_expr) elements = {makeASTFunction("caseWithExpression", elements)}; else elements = {makeASTFunction("multiIf", elements)}; finished = true; } } if (state == 2) { if (ParserKeyword("THEN").ignore(pos, expected)) { if (!mergeElement()) return false; action = Action::OPERAND; state = 1; } } if (state == 3) { if (ParserKeyword("END").ignore(pos, expected)) { if (!mergeElement()) return false; if (has_case_expr) elements = {makeASTFunction("caseWithExpression", elements)}; else elements = {makeASTFunction("multiIf", elements)}; finished = true; } } return true; } private: bool has_case_expr; }; std::unique_ptr getFunctionLayer(ASTPtr identifier, bool allow_function_parameters_ = true) { /// Special cases for expressions that look like functions but contain some syntax sugar: /// CAST, EXTRACT, POSITION, EXISTS /// DATE_ADD, DATEADD, TIMESTAMPADD, DATE_SUB, DATESUB, TIMESTAMPSUB, /// DATE_DIFF, DATEDIFF, TIMESTAMPDIFF, TIMESTAMP_DIFF, /// SUBSTRING, TRIM, LTRIM, RTRIM, POSITION /// Can be parsed as a composition of functions, but the contents must be unwrapped: /// POSITION(x IN y) -> POSITION(in(x, y)) -> POSITION(y, x) /// Can be parsed as a function, but not always: /// CAST(x AS type) - alias has to be unwrapped /// CAST(x AS type(params)) /// Can be parsed as a function, but some identifier arguments have special meanings. /// DATE_ADD(MINUTE, x, y) -> addMinutes(x, y) /// DATE_DIFF(MINUTE, x, y) /// Have keywords that have to processed explicitly: /// EXTRACT(x FROM y) /// TRIM(BOTH|LEADING|TRAILING x FROM y) /// SUBSTRING(x FROM a) /// SUBSTRING(x FROM a FOR b) String function_name = getIdentifierName(identifier); String function_name_lowercase = Poco::toLower(function_name); if (function_name_lowercase == "cast") return std::make_unique(); else if (function_name_lowercase == "extract") return std::make_unique(); else if (function_name_lowercase == "substring") return std::make_unique(); else if (function_name_lowercase == "position") return std::make_unique(); else if (function_name_lowercase == "exists") return std::make_unique(); else if (function_name_lowercase == "trim") return std::make_unique(false, false); else if (function_name_lowercase == "ltrim") return std::make_unique(true, false); else if (function_name_lowercase == "rtrim") return std::make_unique(false, true); else if (function_name_lowercase == "dateadd" || function_name_lowercase == "date_add" || function_name_lowercase == "timestampadd" || function_name_lowercase == "timestamp_add") return std::make_unique("plus"); else if (function_name_lowercase == "datesub" || function_name_lowercase == "date_sub" || function_name_lowercase == "timestampsub" || function_name_lowercase == "timestamp_sub") return std::make_unique("minus"); else if (function_name_lowercase == "datediff" || function_name_lowercase == "date_diff" || function_name_lowercase == "timestampdiff" || function_name_lowercase == "timestamp_diff") return std::make_unique(); else if (function_name_lowercase == "grouping") return std::make_unique(function_name_lowercase, allow_function_parameters_); else return std::make_unique(function_name, allow_function_parameters_); } bool ParseCastExpression(IParser::Pos & pos, ASTPtr & node, Expected & expected) { IParser::Pos begin = pos; if (ParserCastOperator().parse(pos, node, expected)) return true; pos = begin; /// As an exception, negative numbers should be parsed as literals, and not as an application of the operator. if (pos->type == TokenType::Minus) { if (ParserLiteral().parse(pos, node, expected)) return true; } return false; } bool ParseDateOperatorExpression(IParser::Pos & pos, ASTPtr & node, Expected & expected) { auto begin = pos; /// If no DATE keyword, go to the nested parser. if (!ParserKeyword("DATE").ignore(pos, expected)) return false; ASTPtr expr; if (!ParserStringLiteral().parse(pos, expr, expected)) { pos = begin; return false; } node = makeASTFunction("toDate", expr); return true; } bool ParseTimestampOperatorExpression(IParser::Pos & pos, ASTPtr & node, Expected & expected) { auto begin = pos; /// If no TIMESTAMP keyword, go to the nested parser. if (!ParserKeyword("TIMESTAMP").ignore(pos, expected)) return false; ASTPtr expr; if (!ParserStringLiteral().parse(pos, expr, expected)) { pos = begin; return false; } node = makeASTFunction("toDateTime", expr); return true; } struct ParserExpressionImpl { static std::vector> operators_table; static std::vector> unary_operators_table; static const char * overlapping_operators_to_skip[]; static Operator finish_between_operator; ParserCompoundIdentifier identifier_parser{false, true}; ParserNumber number_parser; ParserAsterisk asterisk_parser; ParserLiteral literal_parser; ParserTupleOfLiterals tuple_literal_parser; ParserArrayOfLiterals array_literal_parser; ParserSubstitution substitution_parser; ParserMySQLGlobalVariable mysql_global_variable_parser; ParserKeyword any_parser{"ANY"}; ParserKeyword all_parser{"ALL"}; // Recursion ParserQualifiedAsterisk qualified_asterisk_parser; ParserColumnsMatcher columns_matcher_parser; ParserSubquery subquery_parser; bool parse(std::unique_ptr start, IParser::Pos & pos, ASTPtr & node, Expected & expected); enum class ParseResult { OPERAND, OPERATOR, ERROR, END, }; using Layers = std::vector>; ParseResult tryParseOperand(Layers & layers, IParser::Pos & pos, Expected & expected); static ParseResult tryParseOperator(Layers & layers, IParser::Pos & pos, Expected & expected); }; bool ParserExpression::parseImpl(Pos & pos, ASTPtr & node, Expected & expected) { auto start = std::make_unique(); return ParserExpressionImpl().parse(std::move(start), pos, node, expected); } bool ParserIntervalOperatorExpression::parseImpl(Pos & pos, ASTPtr & node, Expected & expected) { auto start = std::make_unique(); return ParserKeyword("INTERVAL").parse(pos, node, expected) && ParserExpressionImpl().parse(std::move(start), pos, node, expected); } bool ParserArray::parseImpl(Pos & pos, ASTPtr & node, Expected & expected) { auto start = std::make_unique(); return ParserToken(TokenType::OpeningSquareBracket).ignore(pos, expected) && ParserExpressionImpl().parse(std::move(start), pos, node, expected); } bool ParserFunction::parseImpl(Pos & pos, ASTPtr & node, Expected & expected) { if (is_table_function) { if (ParserTableFunctionView().parse(pos, node, expected)) return true; } ASTPtr identifier; if (ParserIdentifier(true).parse(pos, identifier, expected) && ParserToken(TokenType::OpeningRoundBracket).ignore(pos, expected)) { auto start = getFunctionLayer(identifier, allow_function_parameters); return ParserExpressionImpl().parse(std::move(start), pos, node, expected); } else { return false; } } std::vector> ParserExpressionImpl::operators_table({ {"->", Operator("lambda", 1, 2, OperatorType::Lambda)}, {"?", Operator("", 2, 0, OperatorType::StartIf)}, {":", Operator("if", 3, 3, OperatorType::FinishIf)}, {"OR", Operator("or", 3, 2, OperatorType::Mergeable)}, {"AND", Operator("and", 4, 2, OperatorType::Mergeable)}, {"BETWEEN", Operator("", 6, 0, OperatorType::StartBetween)}, {"NOT BETWEEN", Operator("", 6, 0, OperatorType::StartNotBetween)}, {"IS NULL", Operator("isNull", 8, 1, OperatorType::IsNull)}, {"IS NOT NULL", Operator("isNotNull", 8, 1, OperatorType::IsNull)}, {"==", Operator("equals", 9, 2, OperatorType::Comparison)}, {"!=", Operator("notEquals", 9, 2, OperatorType::Comparison)}, {"<>", Operator("notEquals", 9, 2, OperatorType::Comparison)}, {"<=", Operator("lessOrEquals", 9, 2, OperatorType::Comparison)}, {">=", Operator("greaterOrEquals", 9, 2, OperatorType::Comparison)}, {"<", Operator("less", 9, 2, OperatorType::Comparison)}, {">", Operator("greater", 9, 2, OperatorType::Comparison)}, {"=", Operator("equals", 9, 2, OperatorType::Comparison)}, {"LIKE", Operator("like", 9)}, {"ILIKE", Operator("ilike", 9)}, {"NOT LIKE", Operator("notLike", 9)}, {"NOT ILIKE", Operator("notILike", 9)}, {"IN", Operator("in", 9)}, {"NOT IN", Operator("notIn", 9)}, {"GLOBAL IN", Operator("globalIn", 9)}, {"GLOBAL NOT IN", Operator("globalNotIn", 9)}, {"||", Operator("concat", 10, 2, OperatorType::Mergeable)}, {"+", Operator("plus", 11)}, {"-", Operator("minus", 11)}, {"*", Operator("multiply", 12)}, {"/", Operator("divide", 12)}, {"%", Operator("modulo", 12)}, {"MOD", Operator("modulo", 12)}, {"DIV", Operator("intDiv", 12)}, {".", Operator("tupleElement", 14, 2, OperatorType::TupleElement)}, {"[", Operator("arrayElement", 14, 2, OperatorType::ArrayElement)}, {"::", Operator("CAST", 14, 2, OperatorType::Cast)}, }); std::vector> ParserExpressionImpl::unary_operators_table({ {"NOT", Operator("not", 5, 1)}, {"-", Operator("negate", 13, 1)} }); Operator ParserExpressionImpl::finish_between_operator = Operator("", 7, 0, OperatorType::FinishBetween); const char * ParserExpressionImpl::overlapping_operators_to_skip[] = { "IN PARTITION", nullptr }; bool ParserExpressionImpl::parse(std::unique_ptr start, IParser::Pos & pos, ASTPtr & node, Expected & expected) { Action next = Action::OPERAND; std::vector> layers; layers.push_back(std::move(start)); while (true) { while (pos.isValid()) { if (!layers.back()->parse(pos, expected, next)) break; if (layers.back()->isFinished()) { if (layers.size() == 1) break; next = Action::OPERATOR; ASTPtr res; if (!layers.back()->getResult(res)) break; layers.pop_back(); layers.back()->pushOperand(res); continue; } ParseResult result; if (next == Action::OPERAND) result = tryParseOperand(layers, pos, expected); else result = tryParseOperator(layers, pos, expected); if (result == ParseResult::END) break; else if (result == ParseResult::ERROR) break; else if (result == ParseResult::OPERATOR) next = Action::OPERATOR; else if (result == ParseResult::OPERAND) next = Action::OPERAND; } /// When we exit the loop we should be on the 1st level if (layers.size() == 1 && layers.back()->getResult(node)) return true; layers.pop_back(); /// We try to check whether there was a checkpoint while (!layers.empty() && !layers.back()->saved_checkpoint) layers.pop_back(); if (layers.empty()) return false; /// Currently all checkpoints are located in operand section next = Action::OPERAND; auto saved_checkpoint = layers.back()->saved_checkpoint.value(); layers.back()->saved_checkpoint.reset(); pos = saved_checkpoint.first; layers.back()->current_checkpoint = saved_checkpoint.second; } } typename ParserExpressionImpl::ParseResult ParserExpressionImpl::tryParseOperand(Layers & layers, IParser::Pos & pos, Expected & expected) { ASTPtr tmp; /// Special case for cast expression if (layers.back()->previousType() != OperatorType::TupleElement && ParseCastExpression(pos, tmp, expected)) { layers.back()->pushOperand(std::move(tmp)); return ParseResult::OPERATOR; } if (layers.back()->previousType() == OperatorType::Comparison) { SubqueryFunctionType subquery_function_type = SubqueryFunctionType::NONE; if (any_parser.ignore(pos, expected) && subquery_parser.parse(pos, tmp, expected)) subquery_function_type = SubqueryFunctionType::ANY; else if (all_parser.ignore(pos, expected) && subquery_parser.parse(pos, tmp, expected)) subquery_function_type = SubqueryFunctionType::ALL; if (subquery_function_type != SubqueryFunctionType::NONE) { Operator prev_op; ASTPtr function, argument; if (!layers.back()->popOperator(prev_op)) return ParseResult::ERROR; if (!layers.back()->popOperand(argument)) return ParseResult::ERROR; function = makeASTFunction(prev_op.function_name, argument, tmp); if (!modifyAST(function, subquery_function_type)) return ParseResult::ERROR; layers.back()->pushOperand(std::move(function)); return ParseResult::OPERATOR; } } /// Try to find any unary operators auto cur_op = unary_operators_table.begin(); for (; cur_op != unary_operators_table.end(); ++cur_op) { if (parseOperator(pos, cur_op->first, expected)) break; } if (cur_op != unary_operators_table.end()) { layers.back()->pushOperator(cur_op->second); return ParseResult::OPERAND; } auto old_pos = pos; auto current_checkpoint = layers.back()->current_checkpoint; layers.back()->current_checkpoint = Checkpoint::None; if (current_checkpoint != Checkpoint::Interval && parseOperator(pos, "INTERVAL", expected)) { layers.back()->saved_checkpoint = {old_pos, Checkpoint::Interval}; layers.push_back(std::make_unique()); return ParseResult::OPERAND; } else if (current_checkpoint != Checkpoint::Case && parseOperator(pos, "CASE", expected)) { layers.back()->saved_checkpoint = {old_pos, Checkpoint::Case}; layers.push_back(std::make_unique()); return ParseResult::OPERAND; } if (ParseDateOperatorExpression(pos, tmp, expected) || ParseTimestampOperatorExpression(pos, tmp, expected) || tuple_literal_parser.parse(pos, tmp, expected) || array_literal_parser.parse(pos, tmp, expected) || number_parser.parse(pos, tmp, expected) || literal_parser.parse(pos, tmp, expected) || asterisk_parser.parse(pos, tmp, expected) || qualified_asterisk_parser.parse(pos, tmp, expected) || columns_matcher_parser.parse(pos, tmp, expected)) { layers.back()->pushOperand(std::move(tmp)); } else if (identifier_parser.parse(pos, tmp, expected)) { if (pos->type == TokenType::OpeningRoundBracket) { ++pos; layers.push_back(getFunctionLayer(tmp)); return ParseResult::OPERAND; } else { layers.back()->pushOperand(std::move(tmp)); } } else if (substitution_parser.parse(pos, tmp, expected)) { layers.back()->pushOperand(std::move(tmp)); } else if (pos->type == TokenType::OpeningRoundBracket) { if (subquery_parser.parse(pos, tmp, expected)) { layers.back()->pushOperand(std::move(tmp)); return ParseResult::OPERATOR; } ++pos; layers.push_back(std::make_unique()); return ParseResult::OPERAND; } else if (pos->type == TokenType::OpeningSquareBracket) { ++pos; layers.push_back(std::make_unique()); return ParseResult::OPERAND; } else if (mysql_global_variable_parser.parse(pos, tmp, expected)) { layers.back()->pushOperand(std::move(tmp)); } else { return ParseResult::END; } return ParseResult::OPERATOR; } typename ParserExpressionImpl::ParseResult ParserExpressionImpl::tryParseOperator(Layers & layers, IParser::Pos & pos, Expected & expected) { ASTPtr tmp; /// ParserExpression can be called in this part of the query: /// ALTER TABLE partition_all2 CLEAR INDEX [ p ] IN PARTITION ALL /// /// 'IN PARTITION' here is not an 'IN' operator, so we should stop parsing immediately Expected stub; for (const char ** it = overlapping_operators_to_skip; *it; ++it) if (ParserKeyword{*it}.checkWithoutMoving(pos, stub)) return ParseResult::END; /// Try to find operators from 'operators_table' auto cur_op = operators_table.begin(); for (; cur_op != operators_table.end(); ++cur_op) { if (parseOperator(pos, cur_op->first, expected)) break; } if (cur_op == operators_table.end()) { if (layers.back()->allow_alias && ParserAlias(layers.back()->allow_alias_without_as_keyword).parse(pos, tmp, expected)) { if (!layers.back()->insertAlias(tmp)) return ParseResult::ERROR; return ParseResult::OPERATOR; } return ParseResult::END; } auto op = cur_op->second; if (op.type == OperatorType::Lambda) { if (!layers.back()->parseLambda()) return ParseResult::ERROR; layers.back()->pushOperator(op); return ParseResult::OPERAND; } /// 'AND' can be both boolean function and part of the '... BETWEEN ... AND ...' operator if (op.function_name == "and" && layers.back()->between_counter) { layers.back()->between_counter--; op = finish_between_operator; } while (layers.back()->previousPriority() >= op.priority) { ASTPtr function; Operator prev_op; layers.back()->popOperator(prev_op); /// Mergeable operators are operators that are merged into one function: /// For example: 'a OR b OR c' -> 'or(a, b, c)' and not 'or(or(a,b), c)' if (prev_op.type == OperatorType::Mergeable && op.function_name == prev_op.function_name) { op.arity += prev_op.arity - 1; break; } if (prev_op.type == OperatorType::FinishBetween) { Operator tmp_op; if (!layers.back()->popOperator(tmp_op)) return ParseResult::ERROR; if (tmp_op.type != OperatorType::StartBetween && tmp_op.type != OperatorType::StartNotBetween) return ParseResult::ERROR; bool negative = tmp_op.type == OperatorType::StartNotBetween; ASTs arguments; if (!layers.back()->popLastNOperands(arguments, 3)) return ParseResult::ERROR; function = makeBetweenOperator(negative, arguments); } else { function = makeASTFunction(prev_op.function_name); if (!layers.back()->popLastNOperands(function->children[0]->children, prev_op.arity)) return ParseResult::ERROR; } layers.back()->pushOperand(function); } layers.back()->pushOperator(op); if (op.type == OperatorType::ArrayElement) layers.push_back(std::make_unique()); ParseResult next = ParseResult::OPERAND; /// isNull & isNotNull are postfix unary operators if (op.type == OperatorType::IsNull) next = ParseResult::OPERATOR; if (op.type == OperatorType::StartBetween || op.type == OperatorType::StartNotBetween) layers.back()->between_counter++; if (op.type == OperatorType::Cast) { next = ParseResult::OPERATOR; ASTPtr type_ast; if (!ParserDataType().parse(pos, type_ast, expected)) return ParseResult::ERROR; layers.back()->pushOperand(std::make_shared(queryToString(type_ast))); } return next; } }