#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace DB { namespace ErrorCodes { extern const int LOGICAL_ERROR; extern const int SET_SIZE_LIMIT_EXCEEDED; extern const int TYPE_MISMATCH; extern const int INCORRECT_ELEMENT_OF_SET; extern const int NUMBER_OF_COLUMNS_DOESNT_MATCH; } template void NO_INLINE Set::insertFromBlockImpl( Method & method, const ColumnRawPtrs & key_columns, size_t rows, SetVariants & variants, ConstNullMapPtr null_map, ColumnUInt8::Container * out_filter) { if (null_map) { if (out_filter) insertFromBlockImplCase(method, key_columns, rows, variants, null_map, out_filter); else insertFromBlockImplCase(method, key_columns, rows, variants, null_map, out_filter); } else { if (out_filter) insertFromBlockImplCase(method, key_columns, rows, variants, null_map, out_filter); else insertFromBlockImplCase(method, key_columns, rows, variants, null_map, out_filter); } } template void NO_INLINE Set::insertFromBlockImplCase( Method & method, const ColumnRawPtrs & key_columns, size_t rows, SetVariants & variants, [[maybe_unused]] ConstNullMapPtr null_map, [[maybe_unused]] ColumnUInt8::Container * out_filter) { typename Method::State state(key_columns, key_sizes, nullptr); /// For all rows for (size_t i = 0; i < rows; ++i) { if constexpr (has_null_map) { if ((*null_map)[i]) { if constexpr (build_filter) { (*out_filter)[i] = false; } continue; } } [[maybe_unused]] auto emplace_result = state.emplaceKey(method.data, i, variants.string_pool); if constexpr (build_filter) (*out_filter)[i] = emplace_result.isInserted(); } } void Set::setHeader(const Block & block) { std::unique_lock lock(rwlock); if (!empty()) return; keys_size = block.columns(); ColumnRawPtrs key_columns; key_columns.reserve(keys_size); data_types.reserve(keys_size); set_elements_types.reserve(keys_size); /// The constant columns to the right of IN are not supported directly. For this, they first materialize. Columns materialized_columns; /// Remember the columns we will work with for (size_t i = 0; i < keys_size; ++i) { materialized_columns.emplace_back(block.safeGetByPosition(i).column->convertToFullColumnIfConst()); key_columns.emplace_back(materialized_columns.back().get()); data_types.emplace_back(block.safeGetByPosition(i).type); set_elements_types.emplace_back(block.safeGetByPosition(i).type); /// Convert low cardinality column to full. if (auto * low_cardinality_type = typeid_cast(data_types.back().get())) { data_types.back() = low_cardinality_type->getDictionaryType(); materialized_columns.emplace_back(key_columns.back()->convertToFullColumnIfLowCardinality()); key_columns.back() = materialized_columns.back().get(); } } /// We will insert to the Set only keys, where all components are not NULL. ConstNullMapPtr null_map{}; ColumnPtr null_map_holder = extractNestedColumnsAndNullMap(key_columns, null_map); if (fill_set_elements) { /// Create empty columns with set values in advance. /// It is needed because set may be empty, so method 'insertFromBlock' will be never called. set_elements.reserve(keys_size); for (const auto & type : set_elements_types) set_elements.emplace_back(type->createColumn()); } /// Choose data structure to use for the set. data.init(data.chooseMethod(key_columns, key_sizes)); } bool Set::insertFromBlock(const Block & block) { std::unique_lock lock(rwlock); if (empty()) throw Exception("Method Set::setHeader must be called before Set::insertFromBlock", ErrorCodes::LOGICAL_ERROR); ColumnRawPtrs key_columns; key_columns.reserve(keys_size); /// The constant columns to the right of IN are not supported directly. For this, they first materialize. Columns materialized_columns; /// Remember the columns we will work with for (size_t i = 0; i < keys_size; ++i) { materialized_columns.emplace_back(block.safeGetByPosition(i).column->convertToFullColumnIfConst()->convertToFullColumnIfLowCardinality()); key_columns.emplace_back(materialized_columns.back().get()); } size_t rows = block.rows(); /// We will insert to the Set only keys, where all components are not NULL. ConstNullMapPtr null_map{}; ColumnPtr null_map_holder = extractNestedColumnsAndNullMap(key_columns, null_map); /// Filter to extract distinct values from the block. ColumnUInt8::MutablePtr filter; if (fill_set_elements) filter = ColumnUInt8::create(block.rows()); switch (data.type) { case SetVariants::Type::EMPTY: break; #define M(NAME) \ case SetVariants::Type::NAME: \ insertFromBlockImpl(*data.NAME, key_columns, rows, data, null_map, filter ? &filter->getData() : nullptr); \ break; APPLY_FOR_SET_VARIANTS(M) #undef M } if (fill_set_elements) { for (size_t i = 0; i < keys_size; ++i) { auto filtered_column = block.getByPosition(i).column->filter(filter->getData(), rows); if (set_elements[i]->empty()) set_elements[i] = filtered_column; else set_elements[i]->insertRangeFrom(*filtered_column, 0, filtered_column->size()); } } return limits.check(getTotalRowCount(), getTotalByteCount(), "IN-set", ErrorCodes::SET_SIZE_LIMIT_EXCEEDED); } static Field extractValueFromNode(const ASTPtr & node, const IDataType & type, const Context & context) { if (const auto * lit = node->as()) { return convertFieldToType(lit->value, type); } else if (node->as()) { std::pair value_raw = evaluateConstantExpression(node, context); return convertFieldToType(value_raw.first, type, value_raw.second.get()); } else throw Exception("Incorrect element of set. Must be literal or constant expression.", ErrorCodes::INCORRECT_ELEMENT_OF_SET); } void Set::createFromAST(const DataTypes & types, ASTPtr node, const Context & context) { /// Will form a block with values from the set. Block header; size_t num_columns = types.size(); for (size_t i = 0; i < num_columns; ++i) header.insert(ColumnWithTypeAndName(types[i]->createColumn(), types[i], "_" + toString(i))); setHeader(header); MutableColumns columns = header.cloneEmptyColumns(); DataTypePtr tuple_type; Row tuple_values; const auto & list = node->as(); for (auto & elem : list.children) { if (num_columns == 1) { Field value = extractValueFromNode(elem, *types[0], context); if (!value.isNull()) columns[0]->insert(value); } else if (const auto * func = elem->as()) { Field function_result; const Tuple * tuple = nullptr; if (func->name != "tuple") { if (!tuple_type) tuple_type = std::make_shared(types); function_result = extractValueFromNode(elem, *tuple_type, context); if (function_result.getType() != Field::Types::Tuple) throw Exception("Invalid type of set. Expected tuple, got " + String(function_result.getTypeName()), ErrorCodes::INCORRECT_ELEMENT_OF_SET); tuple = &function_result.get(); } size_t tuple_size = tuple ? tuple->size() : func->arguments->children.size(); if (tuple_size != num_columns) throw Exception("Incorrect size of tuple in set: " + toString(tuple_size) + " instead of " + toString(num_columns), ErrorCodes::INCORRECT_ELEMENT_OF_SET); if (tuple_values.empty()) tuple_values.resize(tuple_size); size_t i = 0; for (; i < tuple_size; ++i) { Field value = tuple ? (*tuple)[i] : extractValueFromNode(func->arguments->children[i], *types[i], context); /// If at least one of the elements of the tuple has an impossible (outside the range of the type) value, then the entire tuple too. if (value.isNull()) break; tuple_values[i] = value; } if (i == tuple_size) for (i = 0; i < tuple_size; ++i) columns[i]->insert(tuple_values[i]); } else throw Exception("Incorrect element of set", ErrorCodes::INCORRECT_ELEMENT_OF_SET); } Block block = header.cloneWithColumns(std::move(columns)); insertFromBlock(block); finishInsert(); } ColumnPtr Set::execute(const Block & block, bool negative) const { size_t num_key_columns = block.columns(); if (0 == num_key_columns) throw Exception("Logical error: no columns passed to Set::execute method.", ErrorCodes::LOGICAL_ERROR); auto res = ColumnUInt8::create(); ColumnUInt8::Container & vec_res = res->getData(); vec_res.resize(block.safeGetByPosition(0).column->size()); if (vec_res.empty()) return res; std::shared_lock lock(rwlock); /// If the set is empty. if (data_types.empty()) { if (negative) memset(vec_res.data(), 1, vec_res.size()); else memset(vec_res.data(), 0, vec_res.size()); return res; } checkColumnsNumber(num_key_columns); /// Remember the columns we will work with. Also check that the data types are correct. ColumnRawPtrs key_columns; key_columns.reserve(num_key_columns); /// The constant columns to the left of IN are not supported directly. For this, they first materialize. Columns materialized_columns; for (size_t i = 0; i < num_key_columns; ++i) { checkTypesEqual(i, block.safeGetByPosition(i).type); materialized_columns.emplace_back(block.safeGetByPosition(i).column->convertToFullColumnIfConst()); key_columns.emplace_back() = materialized_columns.back().get(); } /// We will check existence in Set only for keys, where all components are not NULL. ConstNullMapPtr null_map{}; ColumnPtr null_map_holder = extractNestedColumnsAndNullMap(key_columns, null_map); executeOrdinary(key_columns, vec_res, negative, null_map); return res; } template void NO_INLINE Set::executeImpl( Method & method, const ColumnRawPtrs & key_columns, ColumnUInt8::Container & vec_res, bool negative, size_t rows, ConstNullMapPtr null_map) const { if (null_map) executeImplCase(method, key_columns, vec_res, negative, rows, null_map); else executeImplCase(method, key_columns, vec_res, negative, rows, null_map); } template void NO_INLINE Set::executeImplCase( Method & method, const ColumnRawPtrs & key_columns, ColumnUInt8::Container & vec_res, bool negative, size_t rows, ConstNullMapPtr null_map) const { Arena pool; typename Method::State state(key_columns, key_sizes, nullptr); /// NOTE Optimization is not used for consecutive identical strings. /// For all rows for (size_t i = 0; i < rows; ++i) { if (has_null_map && (*null_map)[i]) vec_res[i] = negative; else { auto find_result = state.findKey(method.data, i, pool); vec_res[i] = negative ^ find_result.isFound(); } } } void Set::executeOrdinary( const ColumnRawPtrs & key_columns, ColumnUInt8::Container & vec_res, bool negative, ConstNullMapPtr null_map) const { size_t rows = key_columns[0]->size(); switch (data.type) { case SetVariants::Type::EMPTY: break; #define M(NAME) \ case SetVariants::Type::NAME: \ executeImpl(*data.NAME, key_columns, vec_res, negative, rows, null_map); \ break; APPLY_FOR_SET_VARIANTS(M) #undef M } } void Set::checkColumnsNumber(size_t num_key_columns) const { if (data_types.size() != num_key_columns) { std::stringstream message; message << "Number of columns in section IN doesn't match. " << num_key_columns << " at left, " << data_types.size() << " at right."; throw Exception(message.str(), ErrorCodes::NUMBER_OF_COLUMNS_DOESNT_MATCH); } } void Set::checkTypesEqual(size_t set_type_idx, const DataTypePtr & other_type) const { if (!removeNullable(recursiveRemoveLowCardinality(data_types[set_type_idx]))->equals(*removeNullable(recursiveRemoveLowCardinality(other_type)))) throw Exception("Types of column " + toString(set_type_idx + 1) + " in section IN don't match: " + other_type->getName() + " on the left, " + data_types[set_type_idx]->getName() + " on the right", ErrorCodes::TYPE_MISMATCH); } MergeTreeSetIndex::MergeTreeSetIndex(const Columns & set_elements, std::vector && index_mapping_) : indexes_mapping(std::move(index_mapping_)) { std::sort(indexes_mapping.begin(), indexes_mapping.end(), [](const KeyTuplePositionMapping & l, const KeyTuplePositionMapping & r) { return std::forward_as_tuple(l.key_index, l.tuple_index) < std::forward_as_tuple(r.key_index, r.tuple_index); }); indexes_mapping.erase(std::unique( indexes_mapping.begin(), indexes_mapping.end(), [](const KeyTuplePositionMapping & l, const KeyTuplePositionMapping & r) { return l.key_index == r.key_index; }), indexes_mapping.end()); size_t tuple_size = indexes_mapping.size(); ordered_set.resize(tuple_size); /// Create columns for points here to avoid extra allocations at 'checkInRange'. left_point.reserve(tuple_size); right_point.reserve(tuple_size); for (size_t i = 0; i < tuple_size; ++i) { ordered_set[i] = set_elements[indexes_mapping[i].tuple_index]; left_point.emplace_back(ordered_set[i]->cloneEmpty()); right_point.emplace_back(ordered_set[i]->cloneEmpty()); } Block block_to_sort; SortDescription sort_description; for (size_t i = 0; i < tuple_size; ++i) { block_to_sort.insert({ ordered_set[i], nullptr, "" }); sort_description.emplace_back(i, 1, 1); } sortBlock(block_to_sort, sort_description); for (size_t i = 0; i < tuple_size; ++i) ordered_set[i] = block_to_sort.getByPosition(i).column; } /** Return the BoolMask where: * 1: the intersection of the set and the range is non-empty * 2: the range contains elements not in the set */ BoolMask MergeTreeSetIndex::checkInRange(const std::vector & key_ranges, const DataTypes & data_types) { size_t tuple_size = indexes_mapping.size(); bool invert_left_infinities = false; bool invert_right_infinities = false; for (size_t i = 0; i < tuple_size; ++i) { std::optional new_range = KeyCondition::applyMonotonicFunctionsChainToRange( key_ranges[indexes_mapping[i].key_index], indexes_mapping[i].functions, data_types[indexes_mapping[i].key_index]); if (!new_range) return {true, true}; /** A range that ends in (x, y, ..., +inf) exclusive is the same as a range * that ends in (x, y, ..., -inf) inclusive and vice versa for the left bound. */ if (new_range->left_bounded) { if (!new_range->left_included) invert_left_infinities = true; left_point[i].update(new_range->left); } else { if (invert_left_infinities) left_point[i].update(ValueWithInfinity::PLUS_INFINITY); else left_point[i].update(ValueWithInfinity::MINUS_INFINITY); } if (new_range->right_bounded) { if (!new_range->right_included) invert_right_infinities = true; right_point[i].update(new_range->right); } else { if (invert_right_infinities) right_point[i].update(ValueWithInfinity::MINUS_INFINITY); else right_point[i].update(ValueWithInfinity::PLUS_INFINITY); } } auto compare = [](const IColumn & lhs, const ValueWithInfinity & rhs, size_t row) { auto type = rhs.getType(); /// Return inverted infinity sign, because in 'lhs' all values are finite. if (type != ValueWithInfinity::NORMAL) return -static_cast(type); return lhs.compareAt(row, 0, rhs.getColumnIfFinite(), 1); }; auto less = [this, &compare, tuple_size](size_t row, const auto & point) { for (size_t i = 0; i < tuple_size; ++i) { int res = compare(*ordered_set[i], point[i], row); if (res) return res < 0; } return false; }; auto equals = [this, &compare, tuple_size](size_t row, const auto & point) { for (size_t i = 0; i < tuple_size; ++i) if (compare(*ordered_set[i], point[i], row) != 0) return false; return true; }; /** Because each parallelogram maps to a contiguous sequence of elements * layed out in the lexicographically increasing order, the set intersects the range * if and only if either bound coincides with an element or at least one element * is between the lower bounds */ auto indices = ext::range(0, size()); auto left_lower = std::lower_bound(indices.begin(), indices.end(), left_point, less); auto right_lower = std::lower_bound(indices.begin(), indices.end(), right_point, less); return { left_lower != right_lower || (left_lower != indices.end() && equals(*left_lower, left_point)) || (right_lower != indices.end() && equals(*right_lower, right_point)), true }; } void ValueWithInfinity::update(const Field & x) { /// Keep at most one element in column. if (!column->empty()) column->popBack(1); column->insert(x); type = NORMAL; } const IColumn & ValueWithInfinity::getColumnIfFinite() const { if (type != NORMAL) throw Exception("Trying to get column of infinite type", ErrorCodes::LOGICAL_ERROR); return *column; } }